1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
\GAPDocLabFile{ctbllibxpls}
\makelabel{ctbllibxpls:Title page}{}{X7D2C85EC87DD46E5}
\makelabel{ctbllibxpls:Copyright}{}{X81488B807F2A1CF1}
\makelabel{ctbllibxpls:Table of Contents}{}{X8537FEB07AF2BEC8}
\makelabel{ctbllibxpls:Maintenance Issues for the GAP Character Table Library}{1}{X8354C98179CDB193}
\makelabel{ctbllibxpls:Disproving Possible Character Tables (November 2006)}{1.1}{X7ECA800587320C2C}
\makelabel{ctbllibxpls:A Perfect Pseudo Character Table (November 2006)}{1.1.1}{X795DCCEA7F4D187A}
\makelabel{ctbllibxpls:An Error in the Character Table of E6(2) (March 2016)}{1.1.2}{X80F0B4E07B0B2277}
\makelabel{ctbllibxpls:An Error in a Power Map of the Character Table of 2.F4(2).2 (November 2015)}{1.1.3}{X7D7982CD87413F76}
\makelabel{ctbllibxpls:A Character Table with a Wrong Name (May 2017)}{1.1.4}{X836E4B6184F32EF5}
\makelabel{ctbllibxpls:Some finite factor groups of perfect space groups (February 2014)}{1.2}{X8159D79C7F071B33}
\makelabel{ctbllibxpls:Constructing the space groups in question}{1.2.1}{X8710D4947AEB366F}
\makelabel{ctbllibxpls:Constructing the factor groups in question}{1.2.2}{X84E7FE70843422B0}
\makelabel{ctbllibxpls:Examples with point group A5}{1.2.3}{X79109A20873E76DA}
\makelabel{ctbllibxpls:Examples with point group L3(2)}{1.2.4}{X83523D1E792F9E01}
\makelabel{ctbllibxpls:Example with point group SL2(7)}{1.2.5}{X7A01A9BC846BE39A}
\makelabel{ctbllibxpls:Example with point group 23.L3(2)}{1.2.6}{X7D3100B58093F37D}
\makelabel{ctbllibxpls:Examples with point group A6}{1.2.7}{X80800F3B7D6EF06C}
\makelabel{ctbllibxpls:Examples with point group L2(8)}{1.2.8}{X7D43452C79B0EAE1}
\makelabel{ctbllibxpls:Example with point group M11}{1.2.9}{X8575CE147A9819BF}
\makelabel{ctbllibxpls:Example with point group U3(3)}{1.2.10}{X7C0201B77DA1682A}
\makelabel{ctbllibxpls:Examples with point group U4(2)}{1.2.11}{X85D9C329792E58F3}
\makelabel{ctbllibxpls:A remark on one of the example groups}{1.2.12}{X8635EE0B78A66120}
\makelabel{ctbllibxpls:Listing possible generality problems}{1.3.1}{X7D1A66C3844D09B1}
\makelabel{ctbllibxpls:A generality problem concerning the group J3 (April 2015)}{1.3.2}{X80EB5D827A78975A}
\makelabel{ctbllibxpls:A generality problem concerning the group HN (August 2022)}{1.3.3}{X82C37532783168AA}
\makelabel{ctbllibxpls:Brauer Tables that can be derived from Known Tables}{1.4}{X7D8C6D1883C9CECA}
\makelabel{ctbllibxpls:Brauer Tables via Construction Information}{1.4.1}{X7DF018B77E722CA7}
\makelabel{ctbllibxpls:Liftable Brauer Characters (May 2017)}{1.4.2}{X795419A287BD228E}
\makelabel{ctbllibxpls:Information about certain subgroups of the Monster group}{1.5}{X864EFF897A854F89}
\makelabel{ctbllibxpls:The Monster group does not contain subgroups of the type 2.U4(2) (August 2023)}{1.5.1}{X82C7A03684DD7C6E}
\makelabel{ctbllibxpls:Perfect central extensions of L3(4) (August 2023)}{1.5.2}{X87EC0C48866D1BDE}
\makelabel{ctbllibxpls:Using Table Automorphisms for Constructing Character Tables in GAP}{2}{X7B77FD307F0DE563}
\makelabel{ctbllibxpls:Overview}{2.1}{X8389AD927B74BA4A}
\makelabel{ctbllibxpls:Theoretical Background}{2.2}{X7B6AEBDF7B857E2E}
\makelabel{ctbllibxpls:Character Table Automorphisms}{2.2.1}{X78EBF9BA7A34A9C2}
\makelabel{ctbllibxpls:Permutation Equivalence of Character Tables}{2.2.2}{X832525DE7AB34F16}
\makelabel{ctbllibxpls:Class Fusions}{2.2.3}{X7906869F7F190E76}
\makelabel{ctbllibxpls:Constructing Character Tables of Certain Isoclinic Groups}{2.2.4}{X80C37276851D5E39}
\makelabel{ctbllibxpls:Character Tables of Isoclinic Groups of the Structure p.G.p (October 2016)}{2.2.5}{X7AEFFEEC84511FD0}
\makelabel{ctbllibxpls:Isoclinic Double Covers of Almost Simple Groups}{2.2.6}{X78F41D2A78E70BEE}
\makelabel{ctbllibxpls:Characters of Normal Subgroups}{2.2.7}{X834B42A07E98FBC6}
\makelabel{ctbllibxpls:The Constructions}{2.3}{X787F430E7FDB8765}
\makelabel{ctbllibxpls:Character Tables of Groups of the Structure M.G.A}{2.3.1}{X82E75B6880EC9E6C}
\makelabel{ctbllibxpls:Character Tables of Groups of the Structure G.S3}{2.3.2}{X7CCABDDE864E6300}
\makelabel{ctbllibxpls:Character Tables of Groups of the Structure G.22}{2.3.3}{X7D3EF3BC83BE05CF}
\makelabel{ctbllibxpls:Character Tables of Groups of the Structure 22.G (August 2005)}{2.3.4}{X81464C4B8178C85A}
\makelabel{ctbllibxpls:p-Modular Tables of Extensions by p-singular Automorphisms}{2.3.5}{X86CF6A607B0827EE}
\makelabel{ctbllibxpls:Character Tables of Subdirect Products of Index Two (July 2007)}{2.3.6}{X788591D78451C024}
\makelabel{ctbllibxpls:Examples for the Type M.G.A}{2.4}{X817D2134829FA8FA}
\makelabel{ctbllibxpls:Character Tables of Dihedral Groups}{2.4.1}{X7F2DBAB48437052C}
\makelabel{ctbllibxpls:An M.G.A Type Example with M noncentral in M.G (May 2004)}{2.4.2}{X7925DBFA7C5986B5}
\makelabel{ctbllibxpls:Atlas Tables of the Type M.G.A}{2.4.3}{X7ED45AB379093A70}
\makelabel{ctbllibxpls:More Atlas Tables of the Type M.G.A}{2.4.4}{X7A236EDE7A7A28F9}
\makelabel{ctbllibxpls:The Character Tables of 42.L3(4).23 and 122.L3(4).23}{2.4.5}{X794EC2FD7F69B4E6}
\makelabel{ctbllibxpls:The Character Tables of 121.U4(3).22' and 122.U4(3).23' (December 2015)}{2.4.6}{X7E3E748E85AEDDB3}
\makelabel{ctbllibxpls:Groups of the Structures 3.U3(8).31 and 3.U3(8).6 (February 2017)}{2.4.7}{X8379003582D06130}
\makelabel{ctbllibxpls:The Character Table of (22 × F4(2)):2 < B (March 2003)}{2.4.8}{X7B46C77B850D3B4D}
\makelabel{ctbllibxpls:The Character Table of 2.(S3 × Fi22.2) < 2.B (March 2003)}{2.4.9}{X8254AA4A843F99BE}
\makelabel{ctbllibxpls:The Character Table of (2 × 2.Fi22):2 < Fi24 (November 2008)}{2.4.10}{X7AF125168239D208}
\makelabel{ctbllibxpls:The Character Table of S3 × 2.U4(3).22 ≤ 2.Fi22 (September 2002)}{2.4.11}{X79C93F7D87D9CF1D}
\makelabel{ctbllibxpls:The Character Table of 4.HS.2 ≤ HN.2 (May 2002)}{2.4.12}{X83724BCE86FCD77B}
\makelabel{ctbllibxpls:The Character Tables of 4.A6.23, 12.A6.23, and 4.L2(25).23}{2.4.13}{X7E9A88DA7CBF6426}
\makelabel{ctbllibxpls:The Character Table of 4.L2(49).23 (December 2020)}{2.4.14}{X7BD79BA37C3E729B}
\makelabel{ctbllibxpls:The Character Table of 4.L2(81).23 (December 2020)}{2.4.15}{X817A961487D2DFD1}
\makelabel{ctbllibxpls:The Character Table of 9.U3(8).33 (March 2017)}{2.4.16}{X7AF324AF7A54798F}
\makelabel{ctbllibxpls:Pseudo Character Tables of the Type M.G.A (May 2004)}{2.4.17}{X7E0C603880157C4E}
\makelabel{ctbllibxpls:Some Extra-ordinary p-Modular Tables of the Type M.G.A (September 2005)}{2.4.18}{X844185EF7A8F2A99}
\makelabel{ctbllibxpls:Examples for the Type G.S3}{2.5}{X7F50C782840F06E4}
\makelabel{ctbllibxpls:Small Examples}{2.5.1}{X7F0DC29F874AA09F}
\makelabel{ctbllibxpls:Atlas Tables of the Type G.S3}{2.5.2}{X80F9BC057980A9E9}
\makelabel{ctbllibxpls:Examples for the Type G.22}{2.6}{X7EA489E07D7C7D86}
\makelabel{ctbllibxpls:The Character Table of A6.22}{2.6.1}{X8054FDE679053B1C}
\makelabel{ctbllibxpls:Atlas Tables of the Type G.22 – Easy Cases}{2.6.2}{X7FEC3AB081487AF2}
\makelabel{ctbllibxpls:The Character Table of S4(9).22 (September 2011)}{2.6.3}{X869B65D3863EDEC3}
\makelabel{ctbllibxpls:The Character Tables of Groups of the Type 2.L3(4).22 (June 2010)}{2.6.4}{X7B38006380618543}
\makelabel{ctbllibxpls:The Character Tables of Groups of the Type 6.L3(4).22 (October 2011)}{2.6.5}{X79818ABD7E972370}
\makelabel{ctbllibxpls:The Character Tables of Groups of the Type 2.U4(3).22 (February 2012)}{2.6.6}{X878889308653435F}
\makelabel{ctbllibxpls:The Character Tables of Groups of the Type 41.L3(4).22 (October 2011)}{2.6.7}{X7DC42AE57E9EED4D}
\makelabel{ctbllibxpls:The Character Tables of Groups of the Type 42.L3(4).22 (October 2011)}{2.6.8}{X7E9AF180869B4786}
\makelabel{ctbllibxpls:The Character Table of Aut(L2(81))}{2.6.9}{X7EAF9CD07E536120}
\makelabel{ctbllibxpls:Examples for the Type 22.G}{2.7}{X845BAA2A7FD768B0}
\makelabel{ctbllibxpls:The Character Table of 22.Sz(8)}{2.7.1}{X87EEBDB987249117}
\makelabel{ctbllibxpls:Atlas Tables of the Type 22.G (September 2005)}{2.7.2}{X83652A0282A64D14}
\makelabel{ctbllibxpls:The Character Table of the Schur Cover of L3(4) (September 2005)}{2.7.4}{X86A1607787DE6BB9}
\makelabel{ctbllibxpls:Examples of Extensions by p-singular Automorphisms}{2.8}{X8711DBB083655A25}
\makelabel{ctbllibxpls:Some p-Modular Tables of Groups of the Type M.G.A}{2.8.1}{X81C08739850E4AAE}
\makelabel{ctbllibxpls:Some p-Modular Tables of Groups of the Type G.S3}{2.8.2}{X7FED618F83ACB7C2}
\makelabel{ctbllibxpls:2-Modular Tables of Groups of the Type G.22}{2.8.3}{X7EEF6A7F8683177A}
\makelabel{ctbllibxpls:The 3-Modular Table of U3(8).32}{2.8.4}{X875F8DD77C0997FA}
\makelabel{ctbllibxpls:Examples of Subdirect Products of Index Two}{2.9}{X7A4D6044865E516B}
\makelabel{ctbllibxpls:Certain Dihedral Groups as Subdirect Products of Index Two}{2.9.1}{X850FF694801700CF}
\makelabel{ctbllibxpls:The Character Table of (D10 × HN).2 < M (June 2008)}{2.9.2}{X80C5D6FA83D7E2CF}
\makelabel{ctbllibxpls:A Counterexample (August 2015)}{2.9.3}{X85EECFD47EC252A2}
\makelabel{ctbllibxpls:Constructing Character Tables of Central Extensions in GAP}{3}{X7A80D5ED7D6E57B7}
\makelabel{ctbllibxpls:Coprime Central Extensions}{3.1}{X87B17873861E2F64}
\makelabel{ctbllibxpls:The Character Table Head}{3.1.1}{X85CB2671851D1206}
\makelabel{ctbllibxpls:The Irreducible Characters}{3.1.2}{X7D8F6E5D7D632046}
\makelabel{ctbllibxpls:Ordering of Conjugacy Classes}{3.1.3}{X867D16E07D36560F}
\makelabel{ctbllibxpls:Compatibility with Smaller Factor Groups}{3.1.4}{X813B9F5180A45077}
\makelabel{ctbllibxpls:Examples}{3.2}{X7A489A5D79DA9E5C}
\makelabel{ctbllibxpls:Central Extensions of Simple Atlas Groups}{3.2.1}{X861B5C3F7B1F6AB7}
\makelabel{ctbllibxpls:Central Extensions of Other Atlas Groups}{3.2.2}{X799ADD5487613BA2}
\makelabel{ctbllibxpls:Compatible Central Extensions of Maximal Subgroups}{3.2.3}{X861F558380FE4812}
\makelabel{ctbllibxpls:The 2B Centralizer in 3.Fi24' (January 2004)}{3.2.4}{X7C73944579D6EE73}
\makelabel{ctbllibxpls:GAP Computations Concerning Hamiltonian Cycles in the Generating Graphs of Finite Groups}{4}{X7D5919C182B1A462}
\makelabel{ctbllibxpls:Overview}{4.1}{X8389AD927B74BA4A}
\makelabel{ctbllibxpls:Theoretical Background}{4.2}{X7B6AEBDF7B857E2E}
\makelabel{ctbllibxpls:Character-Theoretic Lower Bounds for Vertex Degrees}{4.2.1}{X7AD3962D7AE4ADFB}
\makelabel{ctbllibxpls:Checking the Criteria}{4.2.2}{X825776BA8687E475}
\makelabel{ctbllibxpls:GAP Functions for the Computations}{4.3}{X7B56BE5384BAD54E}
\makelabel{ctbllibxpls:Computing Vertex Degrees from the Group}{4.3.1}{X802B2ED2802334B0}
\makelabel{ctbllibxpls:Computing Lower Bounds for Vertex Degrees}{4.3.2}{X87FE2DDD7F086D2F}
\makelabel{ctbllibxpls:Evaluating the (Lower Bounds for the) Vertex Degrees}{4.3.3}{X8677A8B1788ACD2C}
\makelabel{ctbllibxpls:Character-Theoretic Computations}{4.4}{X7A221012861440E2}
\makelabel{ctbllibxpls:Sporadic Simple Groups, except the Monster}{4.4.1}{X78EFD6898145F244}
\makelabel{ctbllibxpls:The Monster}{4.4.2}{X867D338F7F453092}
\makelabel{ctbllibxpls:Nonsimple Automorphism Groups of Sporadic Simple Groups}{4.4.3}{X7DC6DFCC83502CC3}
\makelabel{ctbllibxpls:Alternating and Symmetric Groups An, Sn, for 5 ≤ n ≤ 13}{4.4.4}{X8130C9CB7A33140F}
\makelabel{ctbllibxpls:Computations With Groups}{4.5}{X83DACCF07EF62FAE}
\makelabel{ctbllibxpls:Nonabelian Simple Groups of Order up to 107}{4.5.1}{X7B9ADC91802EE09F}
\makelabel{ctbllibxpls:Nonsimple Groups with Nonsolvable Socle of Order at most 106}{4.5.2}{X8033892B7FD6E62B}
\makelabel{ctbllibxpls:The Groups PSL(2,q)}{4.6}{X84E62545802FAB30}
\makelabel{ctbllibxpls:Overview}{5.1}{X8389AD927B74BA4A}
\makelabel{ctbllibxpls:Constructing Representations of M.2 and S.2}{5.2}{X85FF559084C08F0F}
\makelabel{ctbllibxpls:A Matrix Representation of the Weyl Group of Type E8}{5.2.1}{X7FEE53AB845B9327}
\makelabel{ctbllibxpls:Compatible Generators of M, M.2, S, and S.2}{5.2.3}{X83E3E79F8724C365}
\makelabel{ctbllibxpls:Constructing Representations of M.3 and S.3}{5.3}{X83F897DD7C48511C}
\makelabel{ctbllibxpls:The Action of M.3 on M}{5.3.1}{X7B7561D0855EC4F1}
\makelabel{ctbllibxpls:The Action of S.3 on S}{5.3.2}{X8246803779EB8FEE}
\makelabel{ctbllibxpls:Constructing Compatible Generators of H and G}{5.4}{X816AFA187E95C018}
\makelabel{ctbllibxpls:Appendix: The Permutation Character (1HG)H}{5.6}{X7F0C266082BE1578}
\makelabel{ctbllibxpls:Appendix: The Data File}{5.7}{X7F3A630780F8E262}
\makelabel{ctbllibxpls:Solvable Subgroups of Maximal Order in Sporadic Simple Groups}{6}{X7EF73AA88384B5F3}
\makelabel{ctbllibxpls:The Result}{6.1}{X7F817DC57A69CF0D}
\makelabel{ctbllibxpls:The Approach}{6.2}{X876F77197B2FB84A}
\makelabel{ctbllibxpls:Use the Table of Marks}{6.2.1}{X792957AB7B24C5E0}
\makelabel{ctbllibxpls:Use Information from the Character Table Library}{6.2.2}{X7B39A4467A1CCF8A}
\makelabel{ctbllibxpls:Cases where the Table of Marks is available in GAP}{6.3}{X834298A87BF43AAF}
\makelabel{ctbllibxpls:Cases where the Table of Marks is not available in GAP}{6.4}{X85559C0F7AA73E48}
\makelabel{ctbllibxpls:Proof of the Corollary}{6.5}{X7CD8E04C7F32AD56}
\makelabel{ctbllibxpls:Large Nilpotent Subgroups of Sporadic Simple Groups}{7}{X8102827B85FE3BCA}
\makelabel{ctbllibxpls:The Result}{7.1}{X7F817DC57A69CF0D}
\makelabel{ctbllibxpls:The Proof}{7.2}{X787B841383A16711}
\makelabel{ctbllibxpls:Alternative: Use GAP's Tables of Marks}{7.3}{X798EACC07F6C36D9}
\makelabel{ctbllibxpls:Permutation Characters in GAP}{8}{X7A7EEBE9858333E1}
\makelabel{ctbllibxpls:Some Computations with M24}{8.1}{X86A1325B82E5AECD}
\makelabel{ctbllibxpls:All Possible Permutation Characters of M11}{8.2}{X79C9051F805851DB}
\makelabel{ctbllibxpls:The Action of U6(2) on the Cosets of M22}{8.3}{X81A5FC968782CFC3}
\makelabel{ctbllibxpls:Degree 20736 Permutation Characters of U6(2)}{8.4}{X7EE1811C8496C428}
\makelabel{ctbllibxpls:The Action of O7(3).2 on the Cosets of 27.S7}{8.6}{X792D2C2380591D8D}
\makelabel{ctbllibxpls:The Action of S4(4).4 on the Cosets of 52.[25]}{8.8}{X7B1DFAF98182CFF4}
\makelabel{ctbllibxpls:The Action of Co1 on the Cosets of Involution Centralizers}{8.9}{X7F04F0C684AA8B30}
\makelabel{ctbllibxpls:The Multiplicity Free Permutation Characters of G2(3)}{8.10}{X8230719D8538384B}
\makelabel{ctbllibxpls:A Proof of Nonexistence of a Certain Subgroup}{8.12}{X7D8572E68194CBB9}
\makelabel{ctbllibxpls:A Permutation Character of the Lyons group}{8.13}{X8068E9DA7CD03BF2}
\makelabel{ctbllibxpls:Identifying two subgroups of Aut(U3(5)) (October 2001)}{8.14}{X87D6C1A67CC7EE0A}
\makelabel{ctbllibxpls:Four Primitive Permutation Characters of the Monster Group}{8.16}{X8337F3C682B6BE63}
\makelabel{ctbllibxpls:The Subgroup 22.211.222.(S3 × M24) (June 2009)}{8.16.1}{X78A8A1248336DD26}
\makelabel{ctbllibxpls:The Subgroup 23.26.212.218.(L3(2) × 3.S6) (September 2009)}{8.16.2}{X79E9247182B20474}
\makelabel{ctbllibxpls:The Subgroup 25.210.220.(S3 × L5(2)) (October 2009)}{8.16.3}{X7BC36C597E542DEE}
\makelabel{ctbllibxpls:A permutation character of the Baby Monster (June 2012)}{8.17}{X87D11B097D95D027}
\makelabel{ctbllibxpls:A permutation character of 2.B (October 2017)}{8.18}{X86827FA97D27F3A2}
\makelabel{ctbllibxpls:Generation of sporadic simple groups by π- and π'-subgroups (December 2021)}{8.19}{X849F0EA6807C9B19}
\makelabel{ctbllibxpls:Ambiguous Class Fusions in the GAP Character Table Library}{9}{X7A03A83E87FB1189}
\makelabel{ctbllibxpls:Some GAP Utilities}{9.1}{X784492877DB04FE9}
\makelabel{ctbllibxpls:Fusions Determined by Factorization through Intermediate Subgroups}{9.2}{X7EA839057D3AD3B4}
\makelabel{ctbllibxpls:Co3N5 → Co3 (September 2002)}{9.2.1}{X78DCEEFD85FF1EE2}
\makelabel{ctbllibxpls:31:15 → B (March 2003)}{9.2.2}{X86BCEA907EC4C833}
\makelabel{ctbllibxpls:SuzN3 → Suz (September 2002)}{9.2.3}{X7C719F527831F35A}
\makelabel{ctbllibxpls:Fusions Determined Using Commutative Diagrams Involving Smaller Subgroups}{9.3}{X7981579278F81AC6}
\makelabel{ctbllibxpls:BN7 → B (March 2002)}{9.3.1}{X7F5186E28201B027}
\makelabel{ctbllibxpls:A6 × L2(8).3 → Fi24' (November 2002)}{9.3.3}{X85822C647B29117B}
\makelabel{ctbllibxpls:(32:D8 × U4(3).22).2 → B (June 2007)}{9.3.4}{X81A607758682D9A9}
\makelabel{ctbllibxpls:37.O7(3):2 → Fi24 (November 2010)}{9.3.6}{X860B6C30812DE3FC}
\makelabel{ctbllibxpls:2E6(2)N3C → 2E6(2) (January 2019)}{9.3.7}{X7C3AC42F8342EE2E}
\makelabel{ctbllibxpls:Fusions Determined Using Commutative Diagrams Involving Factor Groups}{9.4}{X84F966E2824F5D52}
\makelabel{ctbllibxpls:3.A7 → 3.Suz (December 2010)}{9.4.1}{X7F2B104686509CAA}
\makelabel{ctbllibxpls:S6 → U4(2) (September 2011)}{9.4.2}{X82FB71647D37F4FD}
\makelabel{ctbllibxpls:Fusions Determined Using Commutative Diagrams Involving Automorphic Extensions}{9.5}{X7CFBC41B818A318C}
\makelabel{ctbllibxpls:U3(8).31 → 2E6(2) (December 2010)}{9.5.1}{X7E91F8707BA93081}
\makelabel{ctbllibxpls:L3(4).21 → U6(2) (December 2010)}{9.5.2}{X81B37EF378E89E00}
\makelabel{ctbllibxpls:Conditions Imposed by Brauer Tables}{9.6}{X85E2A6F480026C95}
\makelabel{ctbllibxpls:L2(16).4 → J3.2 (January 2004)}{9.6.1}{X7ACC7F588213D5D5}
\makelabel{ctbllibxpls:L2(17) → S8(2) (July 2004)}{9.6.2}{X7ACB86CB82ED49D1}
\makelabel{ctbllibxpls:L2(19) → J3 (April 2003)}{9.6.3}{X7DED4C437D479226}
\makelabel{ctbllibxpls:Fusions Determined by Information about the Groups}{9.7}{X8225D9FA80A7D20F}
\makelabel{ctbllibxpls:U3(3).2 → Fi24' (November 2002)}{9.7.1}{X7AE2962E82B4C814}
\makelabel{ctbllibxpls:L2(13).2 → Fi24' (September 2002)}{9.7.2}{X83061094871EE241}
\makelabel{ctbllibxpls:M11 → B (April 2009)}{9.7.3}{X7E9C203C7C4D709D}
\makelabel{ctbllibxpls:L2(11):2 → B (April 2009)}{9.7.4}{X85821D748716DC7E}
\makelabel{ctbllibxpls:L3(3) → B (April 2009)}{9.7.5}{X828D81487F57D612}
\makelabel{ctbllibxpls:L2(17).2 → B (March 2004)}{9.7.6}{X7B4E13337D66020F}
\makelabel{ctbllibxpls:L2(49).23 → B (June 2006)}{9.7.7}{X8528432A84851F7B}
\makelabel{ctbllibxpls:23.L3(2) → G2(5) (January 2004)}{9.7.8}{X7EAD52AA7A28D956}
\makelabel{ctbllibxpls:The fusion from the character table of 72:2L2(7).2 into the table of marks (January 2004)}{9.7.10}{X85C48EEB7B711C09}
\makelabel{ctbllibxpls:3 × U4(2) → 31.U4(3) (March 2010)}{9.7.11}{X7B1C689C7EFD07CB}
\makelabel{ctbllibxpls:2.34.23.S4 → 2.A12 (September 2011)}{9.7.12}{X7A94F78C792122D5}
\makelabel{ctbllibxpls:127:7 → L7(2) (January 2012)}{9.7.13}{X7E2AF30C7E8F89F9}
\makelabel{ctbllibxpls:L2(59) → M (May 2009)}{9.7.14}{X7E7B2AD67ACD27AE}
\makelabel{ctbllibxpls:L2(71) → M (May 2009)}{9.7.15}{X8409DA2E83A41ABE}
\makelabel{ctbllibxpls:L2(41) → M (April 2012)}{9.7.16}{X78B3B1BE7A2CA4D1}
\makelabel{ctbllibxpls:GAP computations needed in the proof of [DNT13, Theorem 6.1 (ii)]}{10}{X831E9D0A7A2DBC72}
\makelabel{ctbllibxpls:GAP Computations Concerning Probabilistic Generation of Finite Simple Groups}{11}{X7BE9906583D0FCEC}
\makelabel{ctbllibxpls:Overview}{11.1}{X8389AD927B74BA4A}
\makelabel{ctbllibxpls:Prerequisites}{11.2}{X7B4649CF7B7CFAA1}
\makelabel{ctbllibxpls:Theoretical Background}{11.2.1}{X7B6AEBDF7B857E2E}
\makelabel{ctbllibxpls:Computational Criteria}{11.2.2}{X79D7312484E78274}
\makelabel{ctbllibxpls:GAP Functions for the Computations}{11.3}{X7B56BE5384BAD54E}
\makelabel{ctbllibxpls:General Utilities}{11.3.1}{X806328747D1D4ECC}
\makelabel{ctbllibxpls:Character-Theoretic Computations}{11.3.2}{X7A221012861440E2}
\makelabel{ctbllibxpls:Computations with Groups}{11.3.3}{X83DACCF07EF62FAE}
\makelabel{ctbllibxpls:Character-Theoretic Computations}{11.4}{X7A221012861440E2}
\makelabel{ctbllibxpls:Sporadic Simple Groups}{11.4.1}{X86CE51E180A3D4ED}
\makelabel{ctbllibxpls:Automorphism Groups of Sporadic Simple Groups}{11.4.2}{X84E9D10F80A74A53}
\makelabel{ctbllibxpls:Other Simple Groups – Easy Cases}{11.4.3}{X80DA58F187CDCF5F}
\makelabel{ctbllibxpls:Automorphism Groups of other Simple Groups – Easy Cases}{11.4.4}{X7B1E26D586337487}
\makelabel{ctbllibxpls:O8-(3)}{11.4.5}{X78B856907ED13545}
\makelabel{ctbllibxpls:O10-(2)}{11.4.7}{X84E3E4837BB93977}
\makelabel{ctbllibxpls:O12-(2)}{11.4.9}{X834FE1B58119A5FF}
\makelabel{ctbllibxpls:S6(4)}{11.4.10}{X7C5980A385C088FA}
\makelabel{ctbllibxpls:∗ S6(5)}{11.4.11}{X829EDF7F7C0BCB8E}
\makelabel{ctbllibxpls:S8(3)}{11.4.12}{X85162B297E4B67EB}
\makelabel{ctbllibxpls:U4(4)}{11.4.13}{X8495C2BF7B6EFFEF}
\makelabel{ctbllibxpls:U6(2)}{11.4.14}{X7A3BB5AA83A2BDF3}
\makelabel{ctbllibxpls:Computations using Groups}{11.5}{X8237B8617D6F6027}
\makelabel{ctbllibxpls:A5}{11.5.2}{X7B5321337B28100B}
\makelabel{ctbllibxpls:A6}{11.5.3}{X82C3B4287B0C7BEE}
\makelabel{ctbllibxpls:A7}{11.5.4}{X85B3C7217B105D4D}
\makelabel{ctbllibxpls:Ld(q)}{11.5.5}{X84EA645A82E2BAFB}
\makelabel{ctbllibxpls:∗ Ld(q) with prime d}{11.5.6}{X855460BE787188B9}
\makelabel{ctbllibxpls:Automorphic Extensions of Ld(q)}{11.5.7}{X7EA88CEF81962F3F}
\makelabel{ctbllibxpls:L3(2)}{11.5.8}{X7C8806DB8588BB51}
\makelabel{ctbllibxpls:M11}{11.5.9}{X7B7061917ED3714D}
\makelabel{ctbllibxpls:M12}{11.5.10}{X82E0F48A7FF82BB3}
\makelabel{ctbllibxpls:O7(3)}{11.5.11}{X7FF2E8F27FBEB65C}
\makelabel{ctbllibxpls:∗ O9(3)}{11.5.15}{X86EC26F78609618E}
\makelabel{ctbllibxpls:O10-(3)}{11.5.16}{X8393978A8773997E}
\makelabel{ctbllibxpls:O14-(2)}{11.5.17}{X7BBBEEEF834F1002}
\makelabel{ctbllibxpls:∗ S4(8)}{11.5.19}{X854D85F287767342}
\makelabel{ctbllibxpls:S6(2)}{11.5.20}{X82CFBAF07D3487A0}
\makelabel{ctbllibxpls:S8(2)}{11.5.21}{X826658207D9D6570}
\makelabel{ctbllibxpls:∗ S10(2)}{11.5.22}{X82A6496887F80843}
\makelabel{ctbllibxpls:U4(2)}{11.5.23}{X7A03F8EC839AF0B5}
\makelabel{ctbllibxpls:U4(3)}{11.5.24}{X7D738BE5804CF22E}
\makelabel{ctbllibxpls:U6(3)}{11.5.25}{X7D4BC6A38074BF68}
\makelabel{ctbllibxpls:U8(2)}{11.5.26}{X7A92577A830B5F23}
\makelabel{ctbllibxpls:Bibliography}{Bib}{X7A6F98FD85F02BFE}
\makelabel{ctbllibxpls:References}{Bib}{X7A6F98FD85F02BFE}
\makelabel{ctbllibxpls:Index}{Ind}{X83A0356F839C696F}
\makelabel{ctbllibxpls:CTblLibXpls}{}{X7D2C85EC87DD46E5}
|