1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
|
#SIXFORMAT GapDocGAP
HELPBOOKINFOSIXTMP := rec(
encoding := "UTF-8",
bookname := "CTblLibXpls",
entries :=
[ [ "Title page", "0.0", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5"
],
[ "Copyright", "0.0-1", [ 0, 0, 1 ], 18, 2, "copyright",
"X81488B807F2A1CF1" ],
[ "Table of Contents", "0.0-2", [ 0, 0, 2 ], 26, 3, "table of contents",
"X8537FEB07AF2BEC8" ],
[
"\033[1X\033[33X\033[0;-2YMaintenance Issues for the \033[5XGAP\033[105X\\
033[101X\027\033[1X\027 Character Table Library\033[133X\033[101X", "1",
[ 1, 0, 0 ], 1, 10,
"maintenance issues for the gap character table library",
"X8354C98179CDB193" ],
[
"\033[1X\033[33X\033[0;-2YDisproving Possible Character Tables (November 20\
06)\033[133X\033[101X", "1.1", [ 1, 1, 0 ], 9, 10,
"disproving possible character tables november 2006",
"X7ECA800587320C2C" ],
[
"\033[1X\033[33X\033[0;-2YA Perfect Pseudo Character Table (November 2006)\\
033[133X\033[101X", "1.1-1", [ 1, 1, 1 ], 23, 10,
"a perfect pseudo character table november 2006", "X795DCCEA7F4D187A" ],
[ "\033[1X\033[33X\033[0;-2YAn Error in the Character Table of \033[22XE_6(2\
)\033[122X\033[101X\027\033[1X\027 (March 2016)\033[133X\033[101X", "1.1-2",
[ 1, 1, 2 ], 208, 13,
"an error in the character table of e_6 2 march 2016",
"X80F0B4E07B0B2277" ],
[
"\033[1X\033[33X\033[0;-2YAn Error in a Power Map of the Character Table of\
\033[22X2.F_4(2).2\033[122X\033[101X\027\033[1X\027 (November 2015)\033[133X\
\033[101X", "1.1-3", [ 1, 1, 3 ], 245, 14,
"an error in a power map of the character table of 2.f_4 2 .2 november 2\
015", "X7D7982CD87413F76" ],
[
"\033[1X\033[33X\033[0;-2YA Character Table with a Wrong Name (May 2017)\\
033[133X\033[101X", "1.1-4", [ 1, 1, 4 ], 304, 15,
"a character table with a wrong name may 2017", "X836E4B6184F32EF5" ],
[ "\033[1X\033[33X\033[0;-2YSome finite factor groups of perfect space group\
s (February 2014)\033[133X\033[101X", "1.2", [ 1, 2, 0 ], 354, 16,
"some finite factor groups of perfect space groups february 2014",
"X8159D79C7F071B33" ],
[
"\033[1X\033[33X\033[0;-2YConstructing the space groups in question\033[133\
X\033[101X", "1.2-1", [ 1, 2, 1 ], 387, 16,
"constructing the space groups in question", "X8710D4947AEB366F" ],
[
"\033[1X\033[33X\033[0;-2YConstructing the factor groups in question\033[13\
3X\033[101X", "1.2-2", [ 1, 2, 2 ], 435, 17,
"constructing the factor groups in question", "X84E7FE70843422B0" ],
[
"\033[1X\033[33X\033[0;-2YExamples with point group \033[22XA_5\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-3", [ 1, 2, 3 ], 498, 18,
"examples with point group a_5", "X79109A20873E76DA" ],
[
"\033[1X\033[33X\033[0;-2YExamples with point group \033[22XL_3(2)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-4", [ 1, 2, 4 ], 583, 19,
"examples with point group l_3 2", "X83523D1E792F9E01" ],
[
"\033[1X\033[33X\033[0;-2YExample with point group SL\033[22X_2(7)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-5", [ 1, 2, 5 ], 704, 21,
"example with point group sl_2 7", "X7A01A9BC846BE39A" ],
[
"\033[1X\033[33X\033[0;-2YExample with point group \033[22X2^3.L_3(2)\033[1\
22X\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-6", [ 1, 2, 6 ], 768,
22, "example with point group 2^3.l_3 2", "X7D3100B58093F37D" ],
[
"\033[1X\033[33X\033[0;-2YExamples with point group \033[22XA_6\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-7", [ 1, 2, 7 ], 820, 23,
"examples with point group a_6", "X80800F3B7D6EF06C" ],
[
"\033[1X\033[33X\033[0;-2YExamples with point group \033[22XL_2(8)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-8", [ 1, 2, 8 ], 918, 25,
"examples with point group l_2 8", "X7D43452C79B0EAE1" ],
[
"\033[1X\033[33X\033[0;-2YExample with point group \033[22XM_11\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-9", [ 1, 2, 9 ], 998, 26,
"example with point group m_11", "X8575CE147A9819BF" ],
[
"\033[1X\033[33X\033[0;-2YExample with point group \033[22XU_3(3)\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-10", [ 1, 2, 10 ], 1031, 27,
"example with point group u_3 3", "X7C0201B77DA1682A" ],
[
"\033[1X\033[33X\033[0;-2YExamples with point group \033[22XU_4(2)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-11", [ 1, 2, 11 ], 1091,
28, "examples with point group u_4 2", "X85D9C329792E58F3" ],
[
"\033[1X\033[33X\033[0;-2YA remark on one of the example groups\033[133X\\
033[101X", "1.2-12", [ 1, 2, 12 ], 1148, 29,
"a remark on one of the example groups", "X8635EE0B78A66120" ],
[
"\033[1X\033[33X\033[0;-2YGenerality problems (December 2004/October 2015)\\
033[133X\033[101X", "1.3", [ 1, 3, 0 ], 1167, 29,
"generality problems december 2004/october 2015", "X8448022280E82C52" ],
[ "\033[1X\033[33X\033[0;-2YListing possible generality problems\033[133X\
\033[101X", "1.3-1", [ 1, 3, 1 ], 1178, 29,
"listing possible generality problems", "X7D1A66C3844D09B1" ],
[
"\033[1X\033[33X\033[0;-2YA generality problem concerning the group \033[22\
XJ_3\033[122X\033[101X\027\033[1X\027 (April 2015)\033[133X\033[101X",
"1.3-2", [ 1, 3, 2 ], 1670, 38,
"a generality problem concerning the group j_3 april 2015",
"X80EB5D827A78975A" ],
[
"\033[1X\033[33X\033[0;-2YA generality problem concerning the group \033[22\
XHN\033[122X\033[101X\027\033[1X\027 (August 2022)\033[133X\033[101X",
"1.3-3", [ 1, 3, 3 ], 1806, 40,
"a generality problem concerning the group hn august 2022",
"X82C37532783168AA" ],
[
"\033[1X\033[33X\033[0;-2YBrauer Tables that can be derived from Known Tabl\
es\033[133X\033[101X", "1.4", [ 1, 4, 0 ], 1922, 42,
"brauer tables that can be derived from known tables",
"X7D8C6D1883C9CECA" ],
[
"\033[1X\033[33X\033[0;-2YBrauer Tables via Construction Information\033[13\
3X\033[101X", "1.4-1", [ 1, 4, 1 ], 1935, 42,
"brauer tables via construction information", "X7DF018B77E722CA7" ],
[
"\033[1X\033[33X\033[0;-2YLiftable Brauer Characters (May 2017)\033[133X\\
033[101X", "1.4-2", [ 1, 4, 2 ], 1960, 43,
"liftable brauer characters may 2017", "X795419A287BD228E" ],
[
"\033[1X\033[33X\033[0;-2YInformation about certain subgroups of the Monste\
r group\033[133X\033[101X", "1.5", [ 1, 5, 0 ], 2043, 44,
"information about certain subgroups of the monster group",
"X864EFF897A854F89" ],
[
"\033[1X\033[33X\033[0;-2YThe Monster group does not contain subgroups of t\
he type \033[22X2.U_4(2)\033[122X\033[101X\027\033[1X\027 (August 2023)\033[13\
3X\033[101X", "1.5-1", [ 1, 5, 1 ], 2046, 44,
"the monster group does not contain subgroups of the type 2.u_4 2 august\
2023", "X82C7A03684DD7C6E" ],
[
"\033[1X\033[33X\033[0;-2YPerfect central extensions of \033[22XL_3(4)\033[\
122X\033[101X\027\033[1X\027 (August 2023)\033[133X\033[101X", "1.5-2",
[ 1, 5, 2 ], 2093, 45, "perfect central extensions of l_3 4 august 2023"
, "X87EC0C48866D1BDE" ],
[
"\033[1X\033[33X\033[0;-2YThe character table of \033[22X(2 \303\227 O_8^+(\
3)).S_4 \342\211\244 2.B\033[122X\033[101X\027\033[1X\027 (October 2023)\033[1\
33X\033[101X", "1.5-3", [ 1, 5, 3 ], 2264, 47,
"the character table of 2 a\227 o_8^+ 3 .s_4 a\211\244 2.b october 2023"
, "X7F605CA28441687F" ],
[
"\033[1X\033[33X\033[0;-2YUsing Table Automorphisms for Constructing Charac\
ter Tables in \033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X",
"2", [ 2, 0, 0 ], 1, 50,
"using table automorphisms for constructing character tables in gap",
"X7B77FD307F0DE563" ],
[ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "2.1",
[ 2, 1, 0 ], 13, 50, "overview", "X8389AD927B74BA4A" ],
[ "\033[1X\033[33X\033[0;-2YTheoretical Background\033[133X\033[101X",
"2.2", [ 2, 2, 0 ], 33, 50, "theoretical background",
"X7B6AEBDF7B857E2E" ],
[ "\033[1X\033[33X\033[0;-2YCharacter Table Automorphisms\033[133X\033[101X"
, "2.2-1", [ 2, 2, 1 ], 36, 50, "character table automorphisms",
"X78EBF9BA7A34A9C2" ],
[
"\033[1X\033[33X\033[0;-2YPermutation Equivalence of Character Tables\033[1\
33X\033[101X", "2.2-2", [ 2, 2, 2 ], 67, 51,
"permutation equivalence of character tables", "X832525DE7AB34F16" ],
[ "\033[1X\033[33X\033[0;-2YClass Fusions\033[133X\033[101X", "2.2-3",
[ 2, 2, 3 ], 114, 52, "class fusions", "X7906869F7F190E76" ],
[
"\033[1X\033[33X\033[0;-2YConstructing Character Tables of Certain Isoclini\
c Groups\033[133X\033[101X", "2.2-4", [ 2, 2, 4 ], 157, 52,
"constructing character tables of certain isoclinic groups",
"X80C37276851D5E39" ],
[
"\033[1X\033[33X\033[0;-2YCharacter Tables of Isoclinic Groups of the Struc\
ture \033[22Xp.G.p\033[122X\033[101X\027\033[1X\027 (October 2016)\033[133X\
\033[101X", "2.2-5", [ 2, 2, 5 ], 241, 53,
"character tables of isoclinic groups of the structure p.g.p october 201\
6", "X7AEFFEEC84511FD0" ],
[
"\033[1X\033[33X\033[0;-2YIsoclinic Double Covers of Almost Simple Groups\\
033[133X\033[101X", "2.2-6", [ 2, 2, 6 ], 288, 54,
"isoclinic double covers of almost simple groups", "X78F41D2A78E70BEE" ]
,
[
"\033[1X\033[33X\033[0;-2YCharacters of Normal Subgroups\033[133X\033[101X"
, "2.2-7", [ 2, 2, 7 ], 391, 56, "characters of normal subgroups",
"X834B42A07E98FBC6" ],
[ "\033[1X\033[33X\033[0;-2YThe Constructions\033[133X\033[101X", "2.3",
[ 2, 3, 0 ], 423, 56, "the constructions", "X787F430E7FDB8765" ],
[
"\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22XM.G.A\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.3-1",
[ 2, 3, 1 ], 426, 56,
"character tables of groups of the structure m.g.a",
"X82E75B6880EC9E6C" ],
[
"\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22XG.S_3\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.3-2",
[ 2, 3, 2 ], 498, 57,
"character tables of groups of the structure g.s_3",
"X7CCABDDE864E6300" ],
[
"\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22XG.2^2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.3-3",
[ 2, 3, 3 ], 582, 59,
"character tables of groups of the structure g.2^2",
"X7D3EF3BC83BE05CF" ],
[
"\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22X2^2.G\033[122X\033[101X\027\033[1X\027 (August 2005)\033[133X\033[101X",
"2.3-4", [ 2, 3, 4 ], 660, 60,
"character tables of groups of the structure 2^2.g august 2005",
"X81464C4B8178C85A" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22Xp\033[122X\033[101X\027\033[1X\027-Modula\
r Tables of Extensions by \033[22Xp\033[122X\033[101X\027\033[1X\027-singular \
Automorphisms\033[133X\033[101X", "2.3-5", [ 2, 3, 5 ], 819, 62,
"p-modular tables of extensions by p-singular automorphisms",
"X86CF6A607B0827EE" ],
[
"\033[1X\033[33X\033[0;-2YCharacter Tables of Subdirect Products of Index T\
wo (July 2007)\033[133X\033[101X", "2.3-6", [ 2, 3, 6 ], 844, 63,
"character tables of subdirect products of index two july 2007",
"X788591D78451C024" ],
[
"\033[1X\033[33X\033[0;-2YExamples for the Type \033[22XM.G.A\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.4", [ 2, 4, 0 ], 946, 64,
"examples for the type m.g.a", "X817D2134829FA8FA" ],
[
"\033[1X\033[33X\033[0;-2YCharacter Tables of Dihedral Groups\033[133X\033[\
101X", "2.4-1", [ 2, 4, 1 ], 949, 64, "character tables of dihedral groups",
"X7F2DBAB48437052C" ],
[
"\033[1X\033[33X\033[0;-2YAn \033[22XM.G.A\033[122X\033[101X\027\033[1X\\
027 Type Example with \033[22XM\033[122X\033[101X\027\033[1X\027 noncentral in\
\033[22XM.G\033[122X\033[101X\027\033[1X\027 (May 2004)\033[133X\033[101X",
"2.4-2", [ 2, 4, 2 ], 1037, 66,
"an m.g.a type example with m noncentral in m.g may 2004",
"X7925DBFA7C5986B5" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22XM.G.A\033[122X\033[101X\027\033[1X\027\033[133X\033[10\
1X", "2.4-3", [ 2, 4, 3 ], 1124, 67, "atlas tables of the type m.g.a",
"X7ED45AB379093A70" ],
[
"\033[1X\033[33X\033[0;-2YMore \033[5XAtlas\033[105X\033[101X\027\033[1X\\
027 Tables of the Type \033[22XM.G.A\033[122X\033[101X\027\033[1X\027\033[133X\
\033[101X", "2.4-4", [ 2, 4, 4 ], 1411, 72,
"more atlas tables of the type m.g.a", "X7A236EDE7A7A28F9" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of \033[22X4_2.L_3(4).2_3\\
033[122X\033[101X\027\033[1X\027 and \033[22X12_2.L_3(4).2_3\033[122X\033[101X\
\027\033[1X\027\033[133X\033[101X", "2.4-5", [ 2, 4, 5 ], 1561, 75,
"the character tables of 4_2.l_3 4 .2_3 and 12_2.l_3 4 .2_3",
"X794EC2FD7F69B4E6" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of \033[22X12_1.U_4(3).2_2'\\
033[122X\033[101X\027\033[1X\027 and \033[22X12_2.U_4(3).2_3'\033[122X\033[101\
X\027\033[1X\027 (December\302\2402015)\033[133X\033[101X", "2.4-6",
[ 2, 4, 6 ], 1708, 77,
"the character tables of 12_1.u_4 3 .2_2 and 12_2.u_4 3 .2_3 decembera\
\2402015", "X7E3E748E85AEDDB3" ],
[
"\033[1X\033[33X\033[0;-2YGroups of the Structures \033[22X3.U_3(8).3_1\\
033[122X\033[101X\027\033[1X\027 and \033[22X3.U_3(8).6\033[122X\033[101X\027\
\033[1X\027 (February 2017)\033[133X\033[101X", "2.4-7", [ 2, 4, 7 ], 1767,
78, "groups of the structures 3.u_3 8 .3_1 and 3.u_3 8 .6 february 2017"
, "X8379003582D06130" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X(2^2 \303\227 F_4(\
2)):2 < B\033[122X\033[101X\027\033[1X\027 (March\302\2402003)\033[133X\033[10\
1X", "2.4-8", [ 2, 4, 8 ], 1896, 80,
"the character table of 2^2 a\227 f_4 2 :2 < b marcha\2402003",
"X7B46C77B850D3B4D" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X2.(S_3 \303\227 Fi\
_22.2) < 2.B\033[122X\033[101X\027\033[1X\027 (March\302\2402003)\033[133X\033\
[101X", "2.4-9", [ 2, 4, 9 ], 2010, 82,
"the character table of 2. s_3 a\227 fi_22.2 < 2.b marcha\2402003",
"X8254AA4A843F99BE" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X(2 \303\227 2.Fi_2\
2):2 < Fi_24\033[122X\033[101X\027\033[1X\027 (November\302\2402008)\033[133X\
\033[101X", "2.4-10", [ 2, 4, 10 ], 2188, 85,
"the character table of 2 a\227 2.fi_22 :2 < fi_24 novembera\2402008",
"X7AF125168239D208" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XS_3 \303\227 2.U_4\
(3).2_2 \342\211\244 2.Fi_22\033[122X\033[101X\027\033[1X\027 (September 2002)\
\033[133X\033[101X", "2.4-11", [ 2, 4, 11 ], 2286, 86,
"the character table of s_3 a\227 2.u_4 3 .2_2 a\211\244 2.fi_22 septemb\
er 2002", "X79C93F7D87D9CF1D" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X4.HS.2 \342\211\\
244 HN.2\033[122X\033[101X\027\033[1X\027 (May 2002)\033[133X\033[101X",
"2.4-12", [ 2, 4, 12 ], 2371, 87,
"the character table of 4.hs.2 a\211\244 hn.2 may 2002",
"X83724BCE86FCD77B" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of \033[22X4.A_6.2_3\033[122\
X\033[101X\027\033[1X\027, \033[22X12.A_6.2_3\033[122X\033[101X\027\033[1X\027\
, and \033[22X4.L_2(25).2_3\033[122X\033[101X\027\033[1X\027\033[133X\033[101X\
", "2.4-13", [ 2, 4, 13 ], 2536, 90,
"the character tables of 4.a_6.2_3 12.a_6.2_3 and 4.l_2 25 .2_3",
"X7E9A88DA7CBF6426" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X4.L_2(49).2_3\033[\
122X\033[101X\027\033[1X\027 (December 2020)\033[133X\033[101X", "2.4-14",
[ 2, 4, 14 ], 2917, 96,
"the character table of 4.l_2 49 .2_3 december 2020",
"X7BD79BA37C3E729B" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X4.L_2(81).2_3\033[\
122X\033[101X\027\033[1X\027 (December 2020)\033[133X\033[101X", "2.4-15",
[ 2, 4, 15 ], 2995, 98,
"the character table of 4.l_2 81 .2_3 december 2020",
"X817A961487D2DFD1" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X9.U_3(8).3_3\033[1\
22X\033[101X\027\033[1X\027 (March 2017)\033[133X\033[101X", "2.4-16",
[ 2, 4, 16 ], 3089, 99, "the character table of 9.u_3 8 .3_3 march 2017"
, "X7AF324AF7A54798F" ],
[
"\033[1X\033[33X\033[0;-2YPseudo Character Tables of the Type \033[22XM.G.A\
\033[122X\033[101X\027\033[1X\027 (May 2004)\033[133X\033[101X", "2.4-17",
[ 2, 4, 17 ], 3386, 104,
"pseudo character tables of the type m.g.a may 2004",
"X7E0C603880157C4E" ],
[
"\033[1X\033[33X\033[0;-2YSome Extra-ordinary \033[22Xp\033[122X\033[101X\\
027\033[1X\027-Modular Tables of the Type \033[22XM.G.A\033[122X\033[101X\027\
\033[1X\027 (September 2005)\033[133X\033[101X", "2.4-18", [ 2, 4, 18 ],
3523, 107,
"some extra-ordinary p-modular tables of the type m.g.a september 2005",
"X844185EF7A8F2A99" ],
[
"\033[1X\033[33X\033[0;-2YExamples for the Type \033[22XG.S_3\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.5", [ 2, 5, 0 ], 3706, 110,
"examples for the type g.s_3", "X7F50C782840F06E4" ],
[ "\033[1X\033[33X\033[0;-2YSmall Examples\033[133X\033[101X", "2.5-1",
[ 2, 5, 1 ], 3709, 110, "small examples", "X7F0DC29F874AA09F" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22XG.S_3\033[122X\033[101X\027\033[1X\027\033[133X\033[10\
1X", "2.5-2", [ 2, 5, 2 ], 3803, 111, "atlas tables of the type g.s_3",
"X80F9BC057980A9E9" ],
[
"\033[1X\033[33X\033[0;-2YExamples for the Type \033[22XG.2^2\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.6", [ 2, 6, 0 ], 3993, 115,
"examples for the type g.2^2", "X7EA489E07D7C7D86" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XA_6.2^2\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "2.6-1", [ 2, 6, 1 ], 3996, 115,
"the character table of a_6.2^2", "X8054FDE679053B1C" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22XG.2^2\033[122X\033[101X\027\033[1X\027 \342\200\223 Ea\
sy Cases\033[133X\033[101X", "2.6-2", [ 2, 6, 2 ], 4071, 116,
"atlas tables of the type g.2^2 a\200\223 easy cases",
"X7FEC3AB081487AF2" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XS_4(9).2^2\033[122\
X\033[101X\027\033[1X\027 (September 2011)\033[133X\033[101X", "2.6-3",
[ 2, 6, 3 ], 4351, 121,
"the character table of s_4 9 .2^2 september 2011", "X869B65D3863EDEC3"
],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X2.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (June 2010)\033[133X\033[101X"
, "2.6-4", [ 2, 6, 4 ], 4406, 122,
"the character tables of groups of the type 2.l_3 4 .2^2 june 2010",
"X7B38006380618543" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X6.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (October 2011)\033[133X\033[10\
1X", "2.6-5", [ 2, 6, 5 ], 4628, 126,
"the character tables of groups of the type 6.l_3 4 .2^2 october 2011",
"X79818ABD7E972370" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X2.U_4(3).2^2\033[122X\033[101X\027\033[1X\027 (February 2012)\033[133X\033[1\
01X", "2.6-6", [ 2, 6, 6 ], 4875, 130,
"the character tables of groups of the type 2.u_4 3 .2^2 february 2012",
"X878889308653435F" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X4_1.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (October 2011)\033[133X\033[\
101X", "2.6-7", [ 2, 6, 7 ], 5043, 133,
"the character tables of groups of the type 4_1.l_3 4 .2^2 october 2011"
, "X7DC42AE57E9EED4D" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X4_2.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (October 2011)\033[133X\033[\
101X", "2.6-8", [ 2, 6, 8 ], 5269, 137,
"the character tables of groups of the type 4_2.l_3 4 .2^2 october 2011"
, "X7E9AF180869B4786" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of Aut\033[22X(L_2(81))\033[1\
22X\033[101X\027\033[1X\027\033[133X\033[101X", "2.6-9", [ 2, 6, 9 ], 5504,
141, "the character table of aut l_2 81", "X7EAF9CD07E536120" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XO_8^+(3).2^2_111\\
033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.6-10", [ 2, 6, 10 ],
5559, 142, "the character table of o_8^+ 3 .2^2_111",
"X78AED04685EDCC19" ],
[
"\033[1X\033[33X\033[0;-2YExamples for the Type \033[22X2^2.G\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.7", [ 2, 7, 0 ], 5648, 143,
"examples for the type 2^2.g", "X845BAA2A7FD768B0" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X2^2.Sz(8)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "2.7-1", [ 2, 7, 1 ], 5656, 144,
"the character table of 2^2.sz 8", "X87EEBDB987249117" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22X2^2.G\033[122X\033[101X\027\033[1X\027 (September 2005\
)\033[133X\033[101X", "2.7-2", [ 2, 7, 2 ], 5815, 146,
"atlas tables of the type 2^2.g september 2005", "X83652A0282A64D14" ],
[ "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X2^2.O_8^+(3)\033[\
122X\033[101X\027\033[1X\027 (March 2009)\033[133X\033[101X", "2.7-3",
[ 2, 7, 3 ], 6021, 150, "the character table of 2^2.o_8^+ 3 march 2009",
"X7F63DDF77870F967" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of the Schur Cover of \033[22\
XL_3(4)\033[122X\033[101X\027\033[1X\027 (September 2005)\033[133X\033[101X",
"2.7-4", [ 2, 7, 4 ], 6067, 151,
"the character table of the schur cover of l_3 4 september 2005",
"X86A1607787DE6BB9" ],
[
"\033[1X\033[33X\033[0;-2YExamples of Extensions by \033[22Xp\033[122X\033[\
101X\027\033[1X\027-singular Automorphisms\033[133X\033[101X", "2.8",
[ 2, 8, 0 ], 6202, 153,
"examples of extensions by p-singular automorphisms",
"X8711DBB083655A25" ],
[
"\033[1X\033[33X\033[0;-2YSome \033[22Xp\033[122X\033[101X\027\033[1X\027-M\
odular Tables of Groups of the Type \033[22XM.G.A\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "2.8-1", [ 2, 8, 1 ], 6205, 153,
"some p-modular tables of groups of the type m.g.a",
"X81C08739850E4AAE" ],
[
"\033[1X\033[33X\033[0;-2YSome \033[22Xp\033[122X\033[101X\027\033[1X\027-M\
odular Tables of Groups of the Type \033[22XG.S_3\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "2.8-2", [ 2, 8, 2 ], 6260, 154,
"some p-modular tables of groups of the type g.s_3",
"X7FED618F83ACB7C2" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X2\033[122X\033[101X\027\033[1X\027-Modula\
r Tables of Groups of the Type \033[22XG.2^2\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "2.8-3", [ 2, 8, 3 ], 6327, 155,
"2-modular tables of groups of the type g.2^2", "X7EEF6A7F8683177A" ],
[ "\033[1X\033[33X\033[0;-2YThe \033[22X3\033[122X\033[101X\027\033[1X\027-M\
odular Table of \033[22XU_3(8).3^2\033[122X\033[101X\027\033[1X\027\033[133X\
\033[101X", "2.8-4", [ 2, 8, 4 ], 6375, 156,
"the 3-modular table of u_3 8 .3^2", "X875F8DD77C0997FA" ],
[
"\033[1X\033[33X\033[0;-2YExamples of Subdirect Products of Index Two\033[1\
33X\033[101X", "2.9", [ 2, 9, 0 ], 6415, 157,
"examples of subdirect products of index two", "X7A4D6044865E516B" ],
[
"\033[1X\033[33X\033[0;-2YCertain Dihedral Groups as Subdirect Products of \
Index Two\033[133X\033[101X", "2.9-1", [ 2, 9, 1 ], 6424, 157,
"certain dihedral groups as subdirect products of index two",
"X850FF694801700CF" ],
[
"\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X(D_10 \303\227 HN)\
.2 < M\033[122X\033[101X\027\033[1X\027 (June 2008)\033[133X\033[101X",
"2.9-2", [ 2, 9, 2 ], 6451, 158,
"the character table of d_10 a\227 hn .2 < m june 2008",
"X80C5D6FA83D7E2CF" ],
[
"\033[1X\033[33X\033[0;-2YA Counterexample (August 2015)\033[133X\033[101X"
, "2.9-3", [ 2, 9, 3 ], 6531, 159, "a counterexample august 2015",
"X85EECFD47EC252A2" ],
[
"\033[1X\033[33X\033[0;-2YConstructing Character Tables of Central Extensio\
ns in \033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "3",
[ 3, 0, 0 ], 1, 161,
"constructing character tables of central extensions in gap",
"X7A80D5ED7D6E57B7" ],
[ "\033[1X\033[33X\033[0;-2YCoprime Central Extensions\033[133X\033[101X",
"3.1", [ 3, 1, 0 ], 16, 161, "coprime central extensions",
"X87B17873861E2F64" ],
[ "\033[1X\033[33X\033[0;-2YThe Character Table Head\033[133X\033[101X",
"3.1-1", [ 3, 1, 1 ], 36, 161, "the character table head",
"X85CB2671851D1206" ],
[ "\033[1X\033[33X\033[0;-2YThe Irreducible Characters\033[133X\033[101X",
"3.1-2", [ 3, 1, 2 ], 88, 162, "the irreducible characters",
"X7D8F6E5D7D632046" ],
[ "\033[1X\033[33X\033[0;-2YOrdering of Conjugacy Classes\033[133X\033[101X"
, "3.1-3", [ 3, 1, 3 ], 141, 163, "ordering of conjugacy classes",
"X867D16E07D36560F" ],
[
"\033[1X\033[33X\033[0;-2YCompatibility with Smaller Factor Groups\033[133X\
\033[101X", "3.1-4", [ 3, 1, 4 ], 182, 164,
"compatibility with smaller factor groups", "X813B9F5180A45077" ],
[ "\033[1X\033[33X\033[0;-2YExamples\033[133X\033[101X", "3.2",
[ 3, 2, 0 ], 254, 165, "examples", "X7A489A5D79DA9E5C" ],
[
"\033[1X\033[33X\033[0;-2YCentral Extensions of Simple \033[5XAtlas\033[105\
X\033[101X\027\033[1X\027 Groups\033[133X\033[101X", "3.2-1", [ 3, 2, 1 ],
265, 165, "central extensions of simple atlas groups",
"X861B5C3F7B1F6AB7" ],
[
"\033[1X\033[33X\033[0;-2YCentral Extensions of Other \033[5XAtlas\033[105X\
\033[101X\027\033[1X\027 Groups\033[133X\033[101X", "3.2-2", [ 3, 2, 2 ],
368, 167, "central extensions of other atlas groups",
"X799ADD5487613BA2" ],
[
"\033[1X\033[33X\033[0;-2YCompatible Central Extensions of Maximal Subgroup\
s\033[133X\033[101X", "3.2-3", [ 3, 2, 3 ], 459, 168,
"compatible central extensions of maximal subgroups",
"X861F558380FE4812" ],
[
"\033[1X\033[33X\033[0;-2YThe \033[10X2B\033[110X\033[101X\027\033[1X\027 C\
entralizer in \033[22X3.Fi_24'\033[122X\033[101X\027\033[1X\027 (January 2004)\
\033[133X\033[101X", "3.2-4", [ 3, 2, 4 ], 511, 169,
"the 2b centralizer in 3.fi_24 january 2004", "X7C73944579D6EE73" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Compu\
tations Concerning Hamiltonian Cycles in the Generating Graphs of Finite Group\
s\033[133X\033[101X", "4", [ 4, 0, 0 ], 1, 171,
"gap computations concerning hamiltonian cycles in the generating graphs\
of finite groups", "X7D5919C182B1A462" ],
[ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "4.1",
[ 4, 1, 0 ], 49, 172, "overview", "X8389AD927B74BA4A" ],
[ "\033[1X\033[33X\033[0;-2YTheoretical Background\033[133X\033[101X",
"4.2", [ 4, 2, 0 ], 75, 172, "theoretical background",
"X7B6AEBDF7B857E2E" ],
[
"\033[1X\033[33X\033[0;-2YCharacter-Theoretic Lower Bounds for Vertex Degre\
es\033[133X\033[101X", "4.2-1", [ 4, 2, 1 ], 122, 173,
"character-theoretic lower bounds for vertex degrees",
"X7AD3962D7AE4ADFB" ],
[ "\033[1X\033[33X\033[0;-2YChecking the Criteria\033[133X\033[101X",
"4.2-2", [ 4, 2, 2 ], 190, 174, "checking the criteria",
"X825776BA8687E475" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Funct\
ions for the Computations\033[133X\033[101X", "4.3", [ 4, 3, 0 ], 254, 175,
"gap functions for the computations", "X7B56BE5384BAD54E" ],
[
"\033[1X\033[33X\033[0;-2YComputing Vertex Degrees from the Group\033[133X\\
033[101X", "4.3-1", [ 4, 3, 1 ], 264, 175,
"computing vertex degrees from the group", "X802B2ED2802334B0" ],
[
"\033[1X\033[33X\033[0;-2YComputing Lower Bounds for Vertex Degrees\033[133\
X\033[101X", "4.3-2", [ 4, 3, 2 ], 399, 177,
"computing lower bounds for vertex degrees", "X87FE2DDD7F086D2F" ],
[
"\033[1X\033[33X\033[0;-2YEvaluating the (Lower Bounds for the) Vertex Degr\
ees\033[133X\033[101X", "4.3-3", [ 4, 3, 3 ], 499, 179,
"evaluating the lower bounds for the vertex degrees",
"X8677A8B1788ACD2C" ],
[
"\033[1X\033[33X\033[0;-2YCharacter-Theoretic Computations\033[133X\033[101\
X", "4.4", [ 4, 4, 0 ], 651, 181, "character-theoretic computations",
"X7A221012861440E2" ],
[
"\033[1X\033[33X\033[0;-2YSporadic Simple Groups, except the Monster\033[13\
3X\033[101X", "4.4-1", [ 4, 4, 1 ], 681, 182,
"sporadic simple groups except the monster", "X78EFD6898145F244" ],
[ "\033[1X\033[33X\033[0;-2YThe Monster\033[133X\033[101X", "4.4-2",
[ 4, 4, 2 ], 709, 182, "the monster", "X867D338F7F453092" ],
[
"\033[1X\033[33X\033[0;-2YNonsimple Automorphism Groups of Sporadic Simple \
Groups\033[133X\033[101X", "4.4-3", [ 4, 4, 3 ], 926, 186,
"nonsimple automorphism groups of sporadic simple groups",
"X7DC6DFCC83502CC3" ],
[
"\033[1X\033[33X\033[0;-2YAlternating and Symmetric Groups \033[22XA_n\033[\
122X\033[101X\027\033[1X\027, \033[22XS_n\033[122X\033[101X\027\033[1X\027, fo\
r \033[22X5 \342\211\244 n \342\211\244 13\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "4.4-4", [ 4, 4, 4 ], 961, 186,
"alternating and symmetric groups a_n s_n for 5 a\211\244 n a\211\244 13\
", "X8130C9CB7A33140F" ],
[ "\033[1X\033[33X\033[0;-2YComputations With Groups\033[133X\033[101X",
"4.5", [ 4, 5, 0 ], 1009, 187, "computations with groups",
"X83DACCF07EF62FAE" ],
[
"\033[1X\033[33X\033[0;-2YNonabelian Simple Groups of Order up to \033[22X1\
0^7\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "4.5-1",
[ 4, 5, 1 ], 1048, 188, "nonabelian simple groups of order up to 10^7",
"X7B9ADC91802EE09F" ],
[
"\033[1X\033[33X\033[0;-2YNonsimple Groups with Nonsolvable Socle of Order \
at most \033[22X10^6\033[122X\033[101X\027\033[1X\027\033[133X\033[101X",
"4.5-2", [ 4, 5, 2 ], 1146, 189,
"nonsimple groups with nonsolvable socle of order at most 10^6",
"X8033892B7FD6E62B" ],
[
"\033[1X\033[33X\033[0;-2YThe Groups \033[22XPSL(2,q)\033[122X\033[101X\\
027\033[1X\027\033[133X\033[101X", "4.6", [ 4, 6, 0 ], 1296, 192,
"the groups psl 2 q", "X84E62545802FAB30" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Compu\
tations with \033[22XO_8^+(5).S_3\033[122X\033[101X\027\033[1X\027 and \033[22\
XO_8^+(2).S_3\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "5",
[ 5, 0, 0 ], 1, 196,
"gap computations with o_8^+ 5 .s_3 and o_8^+ 2 .s_3",
"X8703EFEE81DDE3DD" ],
[ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "5.1",
[ 5, 1, 0 ], 14, 196, "overview", "X8389AD927B74BA4A" ],
[
"\033[1X\033[33X\033[0;-2YConstructing Representations of \033[22XM.2\033[1\
22X\033[101X\027\033[1X\027 and \033[22XS.2\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "5.2", [ 5, 2, 0 ], 58, 197,
"constructing representations of m.2 and s.2", "X85FF559084C08F0F" ],
[
"\033[1X\033[33X\033[0;-2YA Matrix Representation of the Weyl Group of Type\
\033[22XE_8\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "5.2-1",
[ 5, 2, 1 ], 61, 197,
"a matrix representation of the weyl group of type e_8",
"X7FEE53AB845B9327" ],
[
"\033[1X\033[33X\033[0;-2YEmbedding the Weyl group of Type \033[22XE_8\033[\
122X\033[101X\027\033[1X\027 into GO\033[22X^+(8,5)\033[122X\033[101X\027\033[\
1X\027\033[133X\033[101X", "5.2-2", [ 5, 2, 2 ], 97, 197,
"embedding the weyl group of type e_8 into go^+ 8 5",
"X7C8AA7747F160F8A" ],
[
"\033[1X\033[33X\033[0;-2YCompatible Generators of \033[22XM\033[122X\033[1\
01X\027\033[1X\027, \033[22XM.2\033[122X\033[101X\027\033[1X\027, \033[22XS\
\033[122X\033[101X\027\033[1X\027, and \033[22XS.2\033[122X\033[101X\027\033[1\
X\027\033[133X\033[101X", "5.2-3", [ 5, 2, 3 ], 142, 198,
"compatible generators of m m.2 s and s.2", "X83E3E79F8724C365" ],
[
"\033[1X\033[33X\033[0;-2YConstructing Representations of \033[22XM.3\033[1\
22X\033[101X\027\033[1X\027 and \033[22XS.3\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "5.3", [ 5, 3, 0 ], 204, 199,
"constructing representations of m.3 and s.3", "X83F897DD7C48511C" ],
[
"\033[1X\033[33X\033[0;-2YThe Action of \033[22XM.3\033[122X\033[101X\027\\
033[1X\027 on \033[22XM\033[122X\033[101X\027\033[1X\027\033[133X\033[101X",
"5.3-1", [ 5, 3, 1 ], 207, 199, "the action of m.3 on m",
"X7B7561D0855EC4F1" ],
[
"\033[1X\033[33X\033[0;-2YThe Action of \033[22XS.3\033[122X\033[101X\027\\
033[1X\027 on \033[22XS\033[122X\033[101X\027\033[1X\027\033[133X\033[101X",
"5.3-2", [ 5, 3, 2 ], 283, 200, "the action of s.3 on s",
"X8246803779EB8FEE" ],
[
"\033[1X\033[33X\033[0;-2YConstructing Compatible Generators of \033[22XH\\
033[122X\033[101X\027\033[1X\027 and \033[22XG\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "5.4", [ 5, 4, 0 ], 358, 202,
"constructing compatible generators of h and g", "X816AFA187E95C018" ],
[ "\033[1X\033[33X\033[0;-2YApplication: Regular Orbits of \033[22XH\033[122\
X\033[101X\027\033[1X\027 on \033[22XG/H\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "5.5", [ 5, 5, 0 ], 412, 202,
"application: regular orbits of h on g/h", "X83F0387D789709D1" ],
[
"\033[1X\033[33X\033[0;-2YAppendix: The Permutation Character \033[22X(1_H^\
G)_H\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "5.6", [ 5, 6, 0 ],
436, 203, "appendix: the permutation character 1_h^g _h",
"X7F0C266082BE1578" ],
[ "\033[1X\033[33X\033[0;-2YAppendix: The Data File\033[133X\033[101X",
"5.7", [ 5, 7, 0 ], 634, 206, "appendix: the data file",
"X7F3A630780F8E262" ],
[
"\033[1X\033[33X\033[0;-2YSolvable Subgroups of Maximal Order in Sporadic S\
imple Groups\033[133X\033[101X", "6", [ 6, 0, 0 ], 1, 208,
"solvable subgroups of maximal order in sporadic simple groups",
"X7EF73AA88384B5F3" ],
[ "\033[1X\033[33X\033[0;-2YThe Result\033[133X\033[101X", "6.1",
[ 6, 1, 0 ], 36, 208, "the result", "X7F817DC57A69CF0D" ],
[ "\033[1X\033[33X\033[0;-2YThe Approach\033[133X\033[101X", "6.2",
[ 6, 2, 0 ], 229, 212, "the approach", "X876F77197B2FB84A" ],
[ "\033[1X\033[33X\033[0;-2YUse the Table of Marks\033[133X\033[101X",
"6.2-1", [ 6, 2, 1 ], 251, 212, "use the table of marks",
"X792957AB7B24C5E0" ],
[
"\033[1X\033[33X\033[0;-2YUse Information from the Character Table Library\\
033[133X\033[101X", "6.2-2", [ 6, 2, 2 ], 307, 213,
"use information from the character table library", "X7B39A4467A1CCF8A"
],
[
"\033[1X\033[33X\033[0;-2YCases where the Table of Marks is available in \\
033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "6.3",
[ 6, 3, 0 ], 383, 214,
"cases where the table of marks is available in gap",
"X834298A87BF43AAF" ],
[
"\033[1X\033[33X\033[0;-2YCases where the Table of Marks is not available i\
n \033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "6.4",
[ 6, 4, 0 ], 486, 216,
"cases where the table of marks is not available in gap",
"X85559C0F7AA73E48" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Ru\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-1", [ 6, 4, 1 ], 493, 216, "g = ru",
"X7E393459822E78B5" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Suz\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-2", [ 6, 4, 2 ], 539, 217, "g = suz",
"X7AFF09337CCB7745" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = ON\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-3", [ 6, 4, 3 ], 575, 218, "g = on",
"X7969AE067D3862A3" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Co_2\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-4", [ 6, 4, 4 ], 608, 218, "g = co_2",
"X84921B85845EDA31" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Fi_22\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-5", [ 6, 4, 5 ], 669, 219, "g = fi_22",
"X7D777A0D82BE8498" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = HN\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-6", [ 6, 4, 6 ], 708, 220, "g = hn",
"X7D9DB76A861A6F62" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Ly\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-7", [ 6, 4, 7 ], 739, 220, "g = ly",
"X83E6436678AF562C" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Th\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-8", [ 6, 4, 8 ], 773, 221, "g = th",
"X7D6CF8EC812EF6FB" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Fi_23\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-9", [ 6, 4, 9 ], 805, 221, "g = fi_23",
"X7A07090483C935DC" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Co_1\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-10", [ 6, 4, 10 ], 834, 222, "g = co_1",
"X7D028E9E7CB62A4F" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = J_4\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-11", [ 6, 4, 11 ], 873, 222, "g = j_4",
"X84208AB781344A9D" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = Fi_24^'\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-12", [ 6, 4, 12 ], 933, 223, "g = fi_24^",
"X7BC589718203F125" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = B\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-13", [ 6, 4, 13 ], 972, 224, "g = b",
"X7EDF990985573EB6" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG = M\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-14", [ 6, 4, 14 ], 1264, 228, "g = m",
"X87D468D07D7237CB" ],
[ "\033[1X\033[33X\033[0;-2YProof of the Corollary\033[133X\033[101X",
"6.5", [ 6, 5, 0 ], 1546, 233, "proof of the corollary",
"X7CD8E04C7F32AD56" ],
[
"\033[1X\033[33X\033[0;-2YLarge Nilpotent Subgroups of Sporadic Simple Grou\
ps\033[133X\033[101X", "7", [ 7, 0, 0 ], 1, 234,
"large nilpotent subgroups of sporadic simple groups",
"X8102827B85FE3BCA" ],
[ "\033[1X\033[33X\033[0;-2YThe Result\033[133X\033[101X", "7.1",
[ 7, 1, 0 ], 13, 234, "the result", "X7F817DC57A69CF0D" ],
[ "\033[1X\033[33X\033[0;-2YThe Proof\033[133X\033[101X", "7.2",
[ 7, 2, 0 ], 127, 236, "the proof", "X787B841383A16711" ],
[
"\033[1X\033[33X\033[0;-2YAlternative: Use \033[5XGAP\033[105X\033[101X\\
027\033[1X\027's Tables of Marks\033[133X\033[101X", "7.3", [ 7, 3, 0 ], 331,
239, "alternative: use gaps tables of marks", "X798EACC07F6C36D9" ],
[
"\033[1X\033[33X\033[0;-2YPermutation Characters in \033[5XGAP\033[105X\\
033[101X\027\033[1X\027\033[133X\033[101X", "8", [ 8, 0, 0 ], 1, 242,
"permutation characters in gap", "X7A7EEBE9858333E1" ],
[
"\033[1X\033[33X\033[0;-2YSome Computations with \033[22XM_24\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "8.1", [ 8, 1, 0 ], 38, 242,
"some computations with m_24", "X86A1325B82E5AECD" ],
[
"\033[1X\033[33X\033[0;-2YAll Possible Permutation Characters of \033[22XM_\
11\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "8.2", [ 8, 2, 0 ],
200, 245, "all possible permutation characters of m_11",
"X79C9051F805851DB" ],
[
"\033[1X\033[33X\033[0;-2YThe Action of \033[22XU_6(2)\033[122X\033[101X\\
027\033[1X\027 on the Cosets of \033[22XM_22\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "8.3", [ 8, 3, 0 ], 316, 247,
"the action of u_6 2 on the cosets of m_22", "X81A5FC968782CFC3" ],
[
"\033[1X\033[33X\033[0;-2YDegree \033[22X20736\033[122X\033[101X\027\033[1X\
\027 Permutation Characters of \033[22XU_6(2)\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "8.4", [ 8, 4, 0 ], 403, 249,
"degree 20736 permutation characters of u_6 2", "X7EE1811C8496C428" ],
[ "\033[1X\033[33X\033[0;-2YDegree \033[22X57572775\033[122X\033[101X\027\
\033[1X\027 Permutation Characters of \033[22XO_8^+(3)\033[122X\033[101X\027\
\033[1X\027\033[133X\033[101X", "8.5", [ 8, 5, 0 ], 462, 250,
"degree 57572775 permutation characters of o_8^+ 3",
"X7DC6A6E785A347C8" ],
[
"\033[1X\033[33X\033[0;-2YThe Action of \033[22XO_7(3).2\033[122X\033[101X\\
027\033[1X\027 on the Cosets of \033[22X2^7.S_7\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "8.6", [ 8, 6, 0 ], 562, 251,
"the action of o_7 3 .2 on the cosets of 2^7.s_7", "X792D2C2380591D8D" ]
,
[
"\033[1X\033[33X\033[0;-2YThe Action of \033[22XO_8^+(3).2_1\033[122X\033[1\
01X\027\033[1X\027 on the Cosets of \033[22X2^7.A_8\033[122X\033[101X\027\033[\
1X\027\033[133X\033[101X", "8.7", [ 8, 7, 0 ], 655, 253,
"the action of o_8^+ 3 .2_1 on the cosets of 2^7.a_8",
"X875B361C8512939F" ],
[
"\033[1X\033[33X\033[0;-2YThe Action of \033[22XS_4(4).4\033[122X\033[101X\\
027\033[1X\027 on the Cosets of \033[22X5^2.[2^5]\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "8.8", [ 8, 8, 0 ], 794, 256,
"the action of s_4 4 .4 on the cosets of 5^2.[2^5]",
"X7B1DFAF98182CFF4" ],
[
"\033[1X\033[33X\033[0;-2YThe Action of \033[22XCo_1\033[122X\033[101X\027\\
033[1X\027 on the Cosets of Involution Centralizers\033[133X\033[101X",
"8.9", [ 8, 9, 0 ], 848, 256,
"the action of co_1 on the cosets of involution centralizers",
"X7F04F0C684AA8B30" ],
[
"\033[1X\033[33X\033[0;-2YThe Multiplicity Free Permutation Characters of \\
033[22XG_2(3)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "8.10",
[ 8, 10, 0 ], 982, 259,
"the multiplicity free permutation characters of g_2 3",
"X8230719D8538384B" ],
[
"\033[1X\033[33X\033[0;-2YDegree \033[22X11200\033[122X\033[101X\027\033[1X\
\027 Permutation Characters of \033[22XO_8^+(2)\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "8.11", [ 8, 11, 0 ], 1041, 260,
"degree 11200 permutation characters of o_8^+ 2", "X7E3E326C7CB0E2CD" ],
[ "\033[1X\033[33X\033[0;-2YA Proof of Nonexistence of a Certain Subgroup\
\033[133X\033[101X", "8.12", [ 8, 12, 0 ], 1086, 261,
"a proof of nonexistence of a certain subgroup", "X7D8572E68194CBB9" ],
[ "\033[1X\033[33X\033[0;-2YA Permutation Character of the Lyons group\033[1\
33X\033[101X", "8.13", [ 8, 13, 0 ], 1217, 263,
"a permutation character of the lyons group", "X8068E9DA7CD03BF2" ],
[
"\033[1X\033[33X\033[0;-2YIdentifying two subgroups of Aut\033[22X(U_3(5))\\
033[122X\033[101X\027\033[1X\027 (October\302\2402001)\033[133X\033[101X",
"8.14", [ 8, 14, 0 ], 1359, 265,
"identifying two subgroups of aut u_3 5 octobera\2402001",
"X87D6C1A67CC7EE0A" ],
[
"\033[1X\033[33X\033[0;-2YA Permutation Character of Aut\033[22X(O_8^+(2))\\
033[122X\033[101X\027\033[1X\027 (October\302\2402001)\033[133X\033[101X",
"8.15", [ 8, 15, 0 ], 1462, 267,
"a permutation character of aut o_8^+ 2 octobera\2402001",
"X793669787CF73A55" ],
[
"\033[1X\033[33X\033[0;-2YFour Primitive Permutation Characters of the Mons\
ter Group\033[133X\033[101X", "8.16", [ 8, 16, 0 ], 1523, 268,
"four primitive permutation characters of the monster group",
"X8337F3C682B6BE63" ],
[
"\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^2.2^11.2^22.(S_3 \303\227 \
M_24)\033[122X\033[101X\027\033[1X\027 (June\302\2402009)\033[133X\033[101X",
"8.16-1", [ 8, 16, 1 ], 1591, 269,
"the subgroup 2^2.2^11.2^22. s_3 a\227 m_24 junea\2402009",
"X78A8A1248336DD26" ],
[
"\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^3.2^6.2^12.2^18.(L_3(2) \\
303\227 3.S_6)\033[122X\033[101X\027\033[1X\027 (September\302\2402009)\033[13\
3X\033[101X", "8.16-2", [ 8, 16, 2 ], 1767, 272,
"the subgroup 2^3.2^6.2^12.2^18. l_3 2 a\227 3.s_6 septembera\2402009",
"X79E9247182B20474" ],
[
"\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^5.2^10.2^20.(S_3 \303\227 \
L_5(2))\033[122X\033[101X\027\033[1X\027 (October\302\2402009)\033[133X\033[10\
1X", "8.16-3", [ 8, 16, 3 ], 2032, 276,
"the subgroup 2^5.2^10.2^20. s_3 a\227 l_5 2 octobera\2402009",
"X7BC36C597E542DEE" ],
[
"\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^{10+16}.O_10^+(2)\033[122X\
\033[101X\027\033[1X\027 (November\302\2402009)\033[133X\033[101X", "8.16-4",
[ 8, 16, 4 ], 2296, 281,
"the subgroup 2^{10+16}.o_10^+ 2 novembera\2402009",
"X7F2ABD3E7AFF5F6E" ],
[
"\033[1X\033[33X\033[0;-2YA permutation character of the Baby Monster (June\
\302\2402012)\033[133X\033[101X", "8.17", [ 8, 17, 0 ], 2665, 287,
"a permutation character of the baby monster junea\2402012",
"X87D11B097D95D027" ],
[
"\033[1X\033[33X\033[0;-2YA permutation character of \033[22X2.B\033[122X\\
033[101X\027\033[1X\027 (October\302\2402017)\033[133X\033[101X", "8.18",
[ 8, 18, 0 ], 2769, 289,
"a permutation character of 2.b octobera\2402017", "X86827FA97D27F3A2" ]
,
[
"\033[1X\033[33X\033[0;-2YGeneration of sporadic simple groups by \033[22X\\
317\200\033[122X\033[101X\027\033[1X\027- and \033[22X\317\200'\033[122X\033[1\
01X\027\033[1X\027-subgroups (December\302\2402021)\033[133X\033[101X",
"8.19", [ 8, 19, 0 ], 2939, 292,
"generation of sporadic simple groups by i\200- and i\200-subgroups dece\
mbera\2402021", "X849F0EA6807C9B19" ],
[
"\033[1X\033[33X\033[0;-2YAmbiguous Class Fusions in the \033[5XGAP\033[105\
X\033[101X\027\033[1X\027 Character Table Library\033[133X\033[101X", "9",
[ 9, 0, 0 ], 1, 302,
"ambiguous class fusions in the gap character table library",
"X7A03A83E87FB1189" ],
[
"\033[1X\033[33X\033[0;-2YSome \033[5XGAP\033[105X\033[101X\027\033[1X\027 \
Utilities\033[133X\033[101X", "9.1", [ 9, 1, 0 ], 30, 302,
"some gap utilities", "X784492877DB04FE9" ],
[
"\033[1X\033[33X\033[0;-2YFusions Determined by Factorization through Inter\
mediate Subgroups\033[133X\033[101X", "9.2", [ 9, 2, 0 ], 57, 303,
"fusions determined by factorization through intermediate subgroups",
"X7EA839057D3AD3B4" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XCo_3N5 \342\206\222 Co_3\033[122X\033[101\
X\027\033[1X\027 (September 2002)\033[133X\033[101X", "9.2-1", [ 9, 2, 1 ],
63, 303, "co_3n5 a\206\222 co_3 september 2002", "X78DCEEFD85FF1EE2" ],
[ "\033[1X\033[33X\033[0;-2Y\033[22X31:15 \342\206\222 B\033[122X\033[101X\
\027\033[1X\027 (March 2003)\033[133X\033[101X", "9.2-2", [ 9, 2, 2 ], 139,
304, "31:15 a\206\222 b march 2003", "X86BCEA907EC4C833" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XSuzN3 \342\206\222 Suz\033[122X\033[101X\\
027\033[1X\027 (September 2002)\033[133X\033[101X", "9.2-3", [ 9, 2, 3 ],
170, 305, "suzn3 a\206\222 suz september 2002", "X7C719F527831F35A" ],
[ "\033[1X\033[33X\033[0;-2Y\033[22XF_{3+}N5 \342\206\222 F_{3+}\033[122X\
\033[101X\027\033[1X\027 (March 2002)\033[133X\033[101X", "9.2-4",
[ 9, 2, 4 ], 227, 306, "f_{3+}n5 a\206\222 f_{3+} march 2002",
"X828879F481EF30DD" ],
[
"\033[1X\033[33X\033[0;-2YFusions Determined Using Commutative Diagrams Inv\
olving Smaller Subgroups\033[133X\033[101X", "9.3", [ 9, 3, 0 ], 298, 307,
"fusions determined using commutative diagrams involving smaller subgrou\
ps", "X7981579278F81AC6" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XBN7 \342\206\222 B\033[122X\033[101X\027\\
033[1X\027 (March 2002)\033[133X\033[101X", "9.3-1", [ 9, 3, 1 ], 320, 307,
"bn7 a\206\222 b march 2002", "X7F5186E28201B027" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X(A_4 \303\227 O_8^+(2).3).2 \342\206\222 \
Fi_24^'\033[122X\033[101X\027\033[1X\027 (November 2002)\033[133X\033[101X",
"9.3-2", [ 9, 3, 2 ], 387, 308,
"a_4 a\227 o_8^+ 2 .3 .2 a\206\222 fi_24^ november 2002",
"X79710B137B5BB1B8" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XA_6 \303\227 L_2(8).3 \342\206\222 Fi_24^\
'\033[122X\033[101X\027\033[1X\027 (November 2002)\033[133X\033[101X",
"9.3-3", [ 9, 3, 3 ], 453, 309,
"a_6 a\227 l_2 8 .3 a\206\222 fi_24^ november 2002",
"X85822C647B29117B" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X(3^2:D_8 \303\227 U_4(3).2^2).2 \342\206\\
222 B\033[122X\033[101X\027\033[1X\027 (June 2007)\033[133X\033[101X",
"9.3-4", [ 9, 3, 4 ], 512, 310,
"3^2:d_8 a\227 u_4 3 .2^2 .2 a\206\222 b june 2007",
"X81A607758682D9A9" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X7^1+4:(3 \303\227 2.S_7) \342\206\222 M\\
033[122X\033[101X\027\033[1X\027 (May 2009)\033[133X\033[101X", "9.3-5",
[ 9, 3, 5 ], 624, 312, "7^1+4: 3 a\227 2.s_7 a\206\222 m may 2009",
"X7962DD4387D63675" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X3^7.O_7(3):2 \342\206\222 Fi_24\033[122X\\
033[101X\027\033[1X\027 (November 2010)\033[133X\033[101X", "9.3-6",
[ 9, 3, 6 ], 714, 313, "3^7.o_7 3 :2 a\206\222 fi_24 november 2010",
"X860B6C30812DE3FC" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X^2E_6(2)N3C \342\206\222 ^2E_6(2)\033[122\
X\033[101X\027\033[1X\027 (January 2019)\033[133X\033[101X", "9.3-7",
[ 9, 3, 7 ], 832, 315, "^2e_6 2 n3c a\206\222 ^2e_6 2 january 2019",
"X7C3AC42F8342EE2E" ],
[
"\033[1X\033[33X\033[0;-2YFusions Determined Using Commutative Diagrams Inv\
olving Factor Groups\033[133X\033[101X", "9.4", [ 9, 4, 0 ], 983, 318,
"fusions determined using commutative diagrams involving factor groups",
"X84F966E2824F5D52" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X3.A_7 \342\206\222 3.Suz\033[122X\033[101\
X\027\033[1X\027 (December 2010)\033[133X\033[101X", "9.4-1", [ 9, 4, 1 ],
986, 318, "3.a_7 a\206\222 3.suz december 2010", "X7F2B104686509CAA" ],
[ "\033[1X\033[33X\033[0;-2Y\033[22XS_6 \342\206\222 U_4(2)\033[122X\033[101\
X\027\033[1X\027 (September 2011)\033[133X\033[101X", "9.4-2", [ 9, 4, 2 ],
1063, 319, "s_6 a\206\222 u_4 2 september 2011", "X82FB71647D37F4FD" ],
[ "\033[1X\033[33X\033[0;-2YFusions Determined Using Commutative Diagrams In\
volving Automorphic Extensions\033[133X\033[101X", "9.5", [ 9, 5, 0 ], 1135,
320,
"fusions determined using commutative diagrams involving automorphic ext\
ensions", "X7CFBC41B818A318C" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_3(8).3_1 \342\206\222 ^2E_6(2)\033[122X\
\033[101X\027\033[1X\027 (December 2010)\033[133X\033[101X", "9.5-1",
[ 9, 5, 1 ], 1139, 320, "u_3 8 .3_1 a\206\222 ^2e_6 2 december 2010",
"X7E91F8707BA93081" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_3(4).2_1 \342\206\222 U_6(2)\033[122X\\
033[101X\027\033[1X\027 (December 2010)\033[133X\033[101X", "9.5-2",
[ 9, 5, 2 ], 1238, 322, "l_3 4 .2_1 a\206\222 u_6 2 december 2010",
"X81B37EF378E89E00" ],
[
"\033[1X\033[33X\033[0;-2YConditions Imposed by Brauer Tables\033[133X\033[\
101X", "9.6", [ 9, 6, 0 ], 1336, 324, "conditions imposed by brauer tables",
"X85E2A6F480026C95" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(16).4 \342\206\222 J_3.2\033[122X\\
033[101X\027\033[1X\027 (January\302\2402004)\033[133X\033[101X", "9.6-1",
[ 9, 6, 1 ], 1347, 324, "l_2 16 .4 a\206\222 j_3.2 januarya\2402004",
"X7ACC7F588213D5D5" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(17) \342\206\222 S_8(2)\033[122X\033[\
101X\027\033[1X\027 (July 2004)\033[133X\033[101X", "9.6-2", [ 9, 6, 2 ],
1433, 325, "l_2 17 a\206\222 s_8 2 july 2004", "X7ACB86CB82ED49D1" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(19) \342\206\222 J_3\033[122X\033[101\
X\027\033[1X\027 (April 2003)\033[133X\033[101X", "9.6-3", [ 9, 6, 3 ], 1459,
326, "l_2 19 a\206\222 j_3 april 2003", "X7DED4C437D479226" ],
[
"\033[1X\033[33X\033[0;-2YFusions Determined by Information about the Group\
s\033[133X\033[101X", "9.7", [ 9, 7, 0 ], 1618, 328,
"fusions determined by information about the groups",
"X8225D9FA80A7D20F" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_3(3).2 \342\206\222 Fi_24^'\033[122X\\
033[101X\027\033[1X\027 (November 2002)\033[133X\033[101X", "9.7-1",
[ 9, 7, 1 ], 1635, 329, "u_3 3 .2 a\206\222 fi_24^ november 2002",
"X7AE2962E82B4C814" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(13).2 \342\206\222 Fi_24^'\033[122X\\
033[101X\027\033[1X\027 (September 2002)\033[133X\033[101X", "9.7-2",
[ 9, 7, 2 ], 1748, 330, "l_2 13 .2 a\206\222 fi_24^ september 2002",
"X83061094871EE241" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XM_11 \342\206\222 B\033[122X\033[101X\\
027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-3", [ 9, 7, 3 ], 1834,
332, "m_11 a\206\222 b april 2009", "X7E9C203C7C4D709D" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(11):2 \342\206\222 B\033[122X\033[101\
X\027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-4", [ 9, 7, 4 ], 1892,
333, "l_2 11 :2 a\206\222 b april 2009", "X85821D748716DC7E" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_3(3) \342\206\222 B\033[122X\033[101X\\
027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-5", [ 9, 7, 5 ], 1939,
334, "l_3 3 a\206\222 b april 2009", "X828D81487F57D612" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(17).2 \342\206\222 B\033[122X\033[101\
X\027\033[1X\027 (March 2004)\033[133X\033[101X", "9.7-6", [ 9, 7, 6 ], 1995,
334, "l_2 17 .2 a\206\222 b march 2004", "X7B4E13337D66020F" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(49).2_3 \342\206\222 B\033[122X\033[1\
01X\027\033[1X\027 (June 2006)\033[133X\033[101X", "9.7-7", [ 9, 7, 7 ],
2032, 335, "l_2 49 .2_3 a\206\222 b june 2006", "X8528432A84851F7B" ],
[ "\033[1X\033[33X\033[0;-2Y\033[22X2^3.L_3(2) \342\206\222 G_2(5)\033[122X\
\033[101X\027\033[1X\027 (January\302\2402004)\033[133X\033[101X", "9.7-8",
[ 9, 7, 8 ], 2172, 337, "2^3.l_3 2 a\206\222 g_2 5 januarya\2402004",
"X7EAD52AA7A28D956" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X5^{1+4}.2^{1+4}.A_5.4 \342\206\222 B\033[\
122X\033[101X\027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-9",
[ 9, 7, 9 ], 2216, 338, "5^{1+4}.2^{1+4}.a_5.4 a\206\222 b april 2009",
"X79617107849A6CEA" ],
[
"\033[1X\033[33X\033[0;-2YThe fusion from the character table of \033[22X7^\
2:2L_2(7).2\033[122X\033[101X\027\033[1X\027 into the table of marks (January\
\302\2402004)\033[133X\033[101X", "9.7-10", [ 9, 7, 10 ], 2269, 339,
"the fusion from the character table of 7^2:2l_2 7 .2 into the table of \
marks januarya\2402004", "X85C48EEB7B711C09" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X3 \303\227 U_4(2) \342\206\222 3_1.U_4(3)\
\033[122X\033[101X\027\033[1X\027 (March 2010)\033[133X\033[101X", "9.7-11",
[ 9, 7, 11 ], 2429, 342, "3 a\227 u_4 2 a\206\222 3_1.u_4 3 march 2010",
"X7B1C689C7EFD07CB" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X2.3^4.2^3.S_4 \342\206\222 2.A12\033[122X\
\033[101X\027\033[1X\027 (September 2011)\033[133X\033[101X", "9.7-12",
[ 9, 7, 12 ], 2589, 344, "2.3^4.2^3.s_4 a\206\222 2.a12 september 2011",
"X7A94F78C792122D5" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X127:7 \342\206\222 L_7(2)\033[122X\033[10\
1X\027\033[1X\027 (January 2012)\033[133X\033[101X", "9.7-13", [ 9, 7, 13 ],
2700, 346, "127:7 a\206\222 l_7 2 january 2012", "X7E2AF30C7E8F89F9" ],
[ "\033[1X\033[33X\033[0;-2Y\033[22XL_2(59) \342\206\222 M\033[122X\033[101X\
\027\033[1X\027 (May 2009)\033[133X\033[101X", "9.7-14", [ 9, 7, 14 ], 2755,
347, "l_2 59 a\206\222 m may 2009", "X7E7B2AD67ACD27AE" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(71) \342\206\222 M\033[122X\033[101X\\
027\033[1X\027 (May 2009)\033[133X\033[101X", "9.7-15", [ 9, 7, 15 ], 2813,
348, "l_2 71 a\206\222 m may 2009", "X8409DA2E83A41ABE" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_2(41) \342\206\222 M\033[122X\033[101X\\
027\033[1X\027 (April 2012)\033[133X\033[101X", "9.7-16", [ 9, 7, 16 ], 2878,
349, "l_2 41 a\206\222 m april 2012", "X78B3B1BE7A2CA4D1" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 compu\
tations needed in the proof of [DNT13, Theorem 6.1 (ii)]\033[133X\033[101X",
"10", [ 10, 0, 0 ], 1, 351,
"gap computations needed in the proof of [dnt13 theorem 6.1 ii ]",
"X831E9D0A7A2DBC72" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 Sz(8)\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^12\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.1", [ 10, 1, 0 ], 35, 351, "g/n a\211\205 sz 8 and n = 2^12",
"X82BDD020860C6E95" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 M_22\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^10\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.2", [ 10, 2, 0 ], 161, 353, "g/n a\211\205 m_22 and n = 2^10"
, "X7C01350E8217B0B1" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 J_2\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^12\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.3", [ 10, 3, 0 ], 290, 356, "g/n a\211\205 j_2 and n = 2^12",
"X7E356703856DF22E" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 J_2\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 5^14\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.4", [ 10, 4, 0 ], 396, 357, "g/n a\211\205 j_2 and n = 5^14",
"X797E2EDB78F05F6E" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 J_2\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^28\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.5", [ 10, 5, 0 ], 543, 360, "g/n a\211\205 j_2 and n = 2^28",
"X828AECAE82B0CEB6" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 ^3D_4(2)\033[122X\033[10\
1X\027\033[1X\027 and \033[22X|N| = 2^26\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "10.6", [ 10, 6, 0 ], 616, 361,
"g/n a\211\205 ^3d_4 2 and n = 2^26", "X81AB173981E3EED7" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 ^3D_4(2)\033[122X\033[10\
1X\027\033[1X\027 and \033[22X|N| = 3^25\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "10.7", [ 10, 7, 0 ], 748, 364,
"g/n a\211\205 ^3d_4 2 and n = 3^25", "X83B044547B96B7A5" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Compu\
tations Concerning Probabilistic Generation of Finite Simple Groups\033[133X\
\033[101X", "11", [ 11, 0, 0 ], 1, 365,
"gap computations concerning probabilistic generation of finite simple g\
roups", "X7BE9906583D0FCEC" ],
[ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "11.1",
[ 11, 1, 0 ], 38, 365, "overview", "X8389AD927B74BA4A" ],
[ "\033[1X\033[33X\033[0;-2YPrerequisites\033[133X\033[101X", "11.2",
[ 11, 2, 0 ], 199, 369, "prerequisites", "X7B4649CF7B7CFAA1" ],
[ "\033[1X\033[33X\033[0;-2YTheoretical Background\033[133X\033[101X",
"11.2-1", [ 11, 2, 1 ], 202, 369, "theoretical background",
"X7B6AEBDF7B857E2E" ],
[ "\033[1X\033[33X\033[0;-2YComputational Criteria\033[133X\033[101X",
"11.2-2", [ 11, 2, 2 ], 305, 370, "computational criteria",
"X79D7312484E78274" ],
[
"\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Funct\
ions for the Computations\033[133X\033[101X", "11.3", [ 11, 3, 0 ], 339, 371,
"gap functions for the computations", "X7B56BE5384BAD54E" ],
[ "\033[1X\033[33X\033[0;-2YGeneral Utilities\033[133X\033[101X", "11.3-1",
[ 11, 3, 1 ], 356, 371, "general utilities", "X806328747D1D4ECC" ],
[
"\033[1X\033[33X\033[0;-2YCharacter-Theoretic Computations\033[133X\033[101\
X", "11.3-2", [ 11, 3, 2 ], 499, 373, "character-theoretic computations",
"X7A221012861440E2" ],
[ "\033[1X\033[33X\033[0;-2YComputations with Groups\033[133X\033[101X",
"11.3-3", [ 11, 3, 3 ], 770, 378, "computations with groups",
"X83DACCF07EF62FAE" ],
[
"\033[1X\033[33X\033[0;-2YCharacter-Theoretic Computations\033[133X\033[101\
X", "11.4", [ 11, 4, 0 ], 1224, 386, "character-theoretic computations",
"X7A221012861440E2" ],
[ "\033[1X\033[33X\033[0;-2YSporadic Simple Groups\033[133X\033[101X",
"11.4-1", [ 11, 4, 1 ], 1240, 386, "sporadic simple groups",
"X86CE51E180A3D4ED" ],
[
"\033[1X\033[33X\033[0;-2YAutomorphism Groups of Sporadic Simple Groups\\
033[133X\033[101X", "11.4-2", [ 11, 4, 2 ], 1387, 388,
"automorphism groups of sporadic simple groups", "X84E9D10F80A74A53" ],
[ "\033[1X\033[33X\033[0;-2YOther Simple Groups \342\200\223 Easy Cases\033[\
133X\033[101X", "11.4-3", [ 11, 4, 3 ], 1790, 395,
"other simple groups a\200\223 easy cases", "X80DA58F187CDCF5F" ],
[
"\033[1X\033[33X\033[0;-2YAutomorphism Groups of other Simple Groups \342\\
200\223 Easy Cases\033[133X\033[101X", "11.4-4", [ 11, 4, 4 ], 1985, 399,
"automorphism groups of other simple groups a\200\223 easy cases",
"X7B1E26D586337487" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_8^-(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-5", [ 11, 4, 5 ], 2172, 402, "o_8^- 3",
"X78B856907ED13545" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_10^+(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-6", [ 11, 4, 6 ], 2194, 402, "o_10^+ 2",
"X84AB334886DCA746" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_10^-(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-7", [ 11, 4, 7 ], 2248, 403, "o_10^- 2",
"X84E3E4837BB93977" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_12^+(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-8", [ 11, 4, 8 ], 2311, 404, "o_12^+ 2",
"X8307367E7C7C3BCE" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_12^-(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-9", [ 11, 4, 9 ], 2437, 406, "o_12^- 2",
"X834FE1B58119A5FF" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XS_6(4)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-10", [ 11, 4, 10 ], 2502, 407, "s_6 4",
"X7C5980A385C088FA" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XS_6(5)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X"
, "11.4-11", [ 11, 4, 11 ], 2633, 409, "a\210\227a\240s_6 5",
"X829EDF7F7C0BCB8E" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XS_8(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-12", [ 11, 4, 12 ], 2682, 410, "s_8 3",
"X85162B297E4B67EB" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_4(4)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-13", [ 11, 4, 13 ], 2735, 411, "u_4 4",
"X8495C2BF7B6EFFEF" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_6(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-14", [ 11, 4, 14 ], 2785, 411, "u_6 2",
"X7A3BB5AA83A2BDF3" ],
[ "\033[1X\033[33X\033[0;-2YComputations using Groups\033[133X\033[101X",
"11.5", [ 11, 5, 0 ], 2886, 413, "computations using groups",
"X8237B8617D6F6027" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XA_2m+1\033[122X\033[101X\027\033[1X\027, \
\033[22X2 \342\211\244 m \342\211\244 11\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-1", [ 11, 5, 1 ], 2895, 413,
"a_2m+1 2 a\211\244 m a\211\244 11", "X815320787B601000" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XA_5\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-2", [ 11, 5, 2 ], 2990, 415, "a_5", "X7B5321337B28100B"
],
[
"\033[1X\033[33X\033[0;-2Y\033[22XA_6\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-3", [ 11, 5, 3 ], 3069, 416, "a_6", "X82C3B4287B0C7BEE"
],
[
"\033[1X\033[33X\033[0;-2Y\033[22XA_7\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-4", [ 11, 5, 4 ], 3300, 420, "a_7", "X85B3C7217B105D4D"
],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_d(q)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-5", [ 11, 5, 5 ], 3501, 423, "l_d q",
"X84EA645A82E2BAFB" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XL_d(q)\033[122X\033[101X\027\033[1X\027 with prime \033[22\
Xd\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "11.5-6",
[ 11, 5, 6 ], 3641, 425, "a\210\227a\240l_d q with prime d",
"X855460BE787188B9" ],
[
"\033[1X\033[33X\033[0;-2YAutomorphic Extensions of \033[22XL_d(q)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "11.5-7", [ 11, 5, 7 ], 3732,
427, "automorphic extensions of l_d q", "X7EA88CEF81962F3F" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XL_3(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-8", [ 11, 5, 8 ], 4157, 434, "l_3 2",
"X7C8806DB8588BB51" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XM_11\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-9", [ 11, 5, 9 ], 4346, 437, "m_11",
"X7B7061917ED3714D" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XM_12\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-10", [ 11, 5, 10 ], 4490, 439, "m_12",
"X82E0F48A7FF82BB3" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_7(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-11", [ 11, 5, 11 ], 4603, 441, "o_7 3",
"X7FF2E8F27FBEB65C" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_8^+(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-12", [ 11, 5, 12 ], 4916, 446, "o_8^+ 2",
"X7F80F2527C424AA4" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_8^+(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-13", [ 11, 5, 13 ], 5278, 452, "o_8^+ 3",
"X78F0815B86253A1F" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO^+_8(4)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-14", [ 11, 5, 14 ], 6091, 465, "o^+_8 4",
"X85BACC4A83F73392" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XO_9(3)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X"
, "11.5-15", [ 11, 5, 15 ], 6300, 468, "a\210\227a\240o_9 3",
"X86EC26F78609618E" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_10^-(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-16", [ 11, 5, 16 ], 6417, 470, "o_10^- 3",
"X8393978A8773997E" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_14^-(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-17", [ 11, 5, 17 ], 6550, 472, "o_14^- 2",
"X7BBBEEEF834F1002" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XO_12^+(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-18", [ 11, 5, 18 ], 6651, 474, "o_12^+ 3",
"X8477457780B69BC7" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XS_4(8)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X"
, "11.5-19", [ 11, 5, 19 ], 6784, 476, "a\210\227a\240s_4 8",
"X854D85F287767342" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XS_6(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-20", [ 11, 5, 20 ], 6895, 478, "s_6 2",
"X82CFBAF07D3487A0" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XS_8(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-21", [ 11, 5, 21 ], 7083, 481, "s_8 2",
"X826658207D9D6570" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XS_10(2)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X\
", "11.5-22", [ 11, 5, 22 ], 7165, 482, "a\210\227a\240s_10 2",
"X82A6496887F80843" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_4(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-23", [ 11, 5, 23 ], 7228, 483, "u_4 2",
"X7A03F8EC839AF0B5" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_4(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-24", [ 11, 5, 24 ], 7411, 486, "u_4 3",
"X7D738BE5804CF22E" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_6(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-25", [ 11, 5, 25 ], 7588, 489, "u_6 3",
"X7D4BC6A38074BF68" ],
[
"\033[1X\033[33X\033[0;-2Y\033[22XU_8(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-26", [ 11, 5, 26 ], 7643, 490, "u_8 2",
"X7A92577A830B5F23" ],
[ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 492, "bibliography",
"X7A6F98FD85F02BFE" ],
[ "References", "bib", [ "Bib", 0, 0 ], 1, 492, "references",
"X7A6F98FD85F02BFE" ],
[ "Index", "ind", [ "Ind", 0, 0 ], 1, 497, "index", "X83A0356F839C696F" ],
[ "CTblLibXpls", "0.0", [ 0, 0, 0 ], 1, 1, "ctbllibxpls",
"X7D2C85EC87DD46E5" ] ]
);
|