File: manual.six

package info (click to toggle)
gap-ctbllib 1.3.9-2
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 74,872 kB
  • sloc: xml: 41,268; makefile: 215; javascript: 155
file content (1329 lines) | stat: -rw-r--r-- 70,470 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
#SIXFORMAT  GapDocGAP
HELPBOOKINFOSIXTMP := rec(
encoding := "UTF-8",
bookname := "CTblLibXpls",
entries :=
[ [ "Title page", "0.0", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" 
     ], 
  [ "Copyright", "0.0-1", [ 0, 0, 1 ], 18, 2, "copyright", 
      "X81488B807F2A1CF1" ], 
  [ "Table of Contents", "0.0-2", [ 0, 0, 2 ], 26, 3, "table of contents", 
      "X8537FEB07AF2BEC8" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YMaintenance Issues for the \033[5XGAP\033[105X\\
033[101X\027\033[1X\027 Character Table Library\033[133X\033[101X", "1", 
      [ 1, 0, 0 ], 1, 10, 
      "maintenance issues for the gap character table library", 
      "X8354C98179CDB193" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YDisproving Possible Character Tables (November 20\
06)\033[133X\033[101X", "1.1", [ 1, 1, 0 ], 9, 10, 
      "disproving possible character tables november 2006", 
      "X7ECA800587320C2C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA Perfect Pseudo Character Table (November 2006)\\
033[133X\033[101X", "1.1-1", [ 1, 1, 1 ], 23, 10, 
      "a perfect pseudo character table november 2006", "X795DCCEA7F4D187A" ],
  [ "\033[1X\033[33X\033[0;-2YAn Error in the Character Table of \033[22XE_6(2\
)\033[122X\033[101X\027\033[1X\027 (March 2016)\033[133X\033[101X", "1.1-2", 
      [ 1, 1, 2 ], 208, 13, 
      "an error in the character table of e_6 2 march 2016", 
      "X80F0B4E07B0B2277" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAn Error in a Power Map of the Character Table of\
 \033[22X2.F_4(2).2\033[122X\033[101X\027\033[1X\027 (November 2015)\033[133X\
\033[101X", "1.1-3", [ 1, 1, 3 ], 245, 14, 
      "an error in a power map of the character table of 2.f_4 2 .2 november 2\
015", "X7D7982CD87413F76" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA Character Table with a Wrong Name (May 2017)\\
033[133X\033[101X", "1.1-4", [ 1, 1, 4 ], 304, 15, 
      "a character table with a wrong name may 2017", "X836E4B6184F32EF5" ], 
  [ "\033[1X\033[33X\033[0;-2YSome finite factor groups of perfect space group\
s (February 2014)\033[133X\033[101X", "1.2", [ 1, 2, 0 ], 354, 16, 
      "some finite factor groups of perfect space groups february 2014", 
      "X8159D79C7F071B33" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing the space groups in question\033[133\
X\033[101X", "1.2-1", [ 1, 2, 1 ], 387, 16, 
      "constructing the space groups in question", "X8710D4947AEB366F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing the factor groups in question\033[13\
3X\033[101X", "1.2-2", [ 1, 2, 2 ], 435, 17, 
      "constructing the factor groups in question", "X84E7FE70843422B0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples with point group \033[22XA_5\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-3", [ 1, 2, 3 ], 498, 18, 
      "examples with point group a_5", "X79109A20873E76DA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples with point group \033[22XL_3(2)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-4", [ 1, 2, 4 ], 583, 19, 
      "examples with point group l_3 2", "X83523D1E792F9E01" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExample with point group SL\033[22X_2(7)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-5", [ 1, 2, 5 ], 704, 21, 
      "example with point group sl_2 7", "X7A01A9BC846BE39A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExample with point group \033[22X2^3.L_3(2)\033[1\
22X\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-6", [ 1, 2, 6 ], 768, 
      22, "example with point group 2^3.l_3 2", "X7D3100B58093F37D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples with point group \033[22XA_6\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-7", [ 1, 2, 7 ], 820, 23, 
      "examples with point group a_6", "X80800F3B7D6EF06C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples with point group \033[22XL_2(8)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-8", [ 1, 2, 8 ], 918, 25, 
      "examples with point group l_2 8", "X7D43452C79B0EAE1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExample with point group \033[22XM_11\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-9", [ 1, 2, 9 ], 998, 26, 
      "example with point group m_11", "X8575CE147A9819BF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExample with point group \033[22XU_3(3)\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "1.2-10", [ 1, 2, 10 ], 1031, 27, 
      "example with point group u_3 3", "X7C0201B77DA1682A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples with point group \033[22XU_4(2)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "1.2-11", [ 1, 2, 11 ], 1091, 
      28, "examples with point group u_4 2", "X85D9C329792E58F3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA remark on one of the example groups\033[133X\\
033[101X", "1.2-12", [ 1, 2, 12 ], 1148, 29, 
      "a remark on one of the example groups", "X8635EE0B78A66120" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YGenerality problems (December 2004/October 2015)\\
033[133X\033[101X", "1.3", [ 1, 3, 0 ], 1167, 29, 
      "generality problems december 2004/october 2015", "X8448022280E82C52" ],
  [ "\033[1X\033[33X\033[0;-2YListing possible generality problems\033[133X\
\033[101X", "1.3-1", [ 1, 3, 1 ], 1178, 29, 
      "listing possible generality problems", "X7D1A66C3844D09B1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA generality problem concerning the group \033[22\
XJ_3\033[122X\033[101X\027\033[1X\027 (April 2015)\033[133X\033[101X", 
      "1.3-2", [ 1, 3, 2 ], 1670, 38, 
      "a generality problem concerning the group j_3 april 2015", 
      "X80EB5D827A78975A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA generality problem concerning the group \033[22\
XHN\033[122X\033[101X\027\033[1X\027 (August 2022)\033[133X\033[101X", 
      "1.3-3", [ 1, 3, 3 ], 1806, 40, 
      "a generality problem concerning the group hn august 2022", 
      "X82C37532783168AA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YBrauer Tables that can be derived from Known Tabl\
es\033[133X\033[101X", "1.4", [ 1, 4, 0 ], 1922, 42, 
      "brauer tables that can be derived from known tables", 
      "X7D8C6D1883C9CECA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YBrauer Tables via Construction Information\033[13\
3X\033[101X", "1.4-1", [ 1, 4, 1 ], 1935, 42, 
      "brauer tables via construction information", "X7DF018B77E722CA7" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YLiftable Brauer Characters (May 2017)\033[133X\\
033[101X", "1.4-2", [ 1, 4, 2 ], 1960, 43, 
      "liftable brauer characters may 2017", "X795419A287BD228E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YInformation about certain subgroups of the Monste\
r group\033[133X\033[101X", "1.5", [ 1, 5, 0 ], 2043, 44, 
      "information about certain subgroups of the monster group", 
      "X864EFF897A854F89" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Monster group does not contain subgroups of t\
he type \033[22X2.U_4(2)\033[122X\033[101X\027\033[1X\027 (August 2023)\033[13\
3X\033[101X", "1.5-1", [ 1, 5, 1 ], 2046, 44, 
      "the monster group does not contain subgroups of the type 2.u_4 2 august\
 2023", "X82C7A03684DD7C6E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YPerfect central extensions of \033[22XL_3(4)\033[\
122X\033[101X\027\033[1X\027 (August 2023)\033[133X\033[101X", "1.5-2", 
      [ 1, 5, 2 ], 2093, 45, "perfect central extensions of l_3 4 august 2023"
        , "X87EC0C48866D1BDE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe character table of \033[22X(2 \303\227 O_8^+(\
3)).S_4 \342\211\244 2.B\033[122X\033[101X\027\033[1X\027 (October 2023)\033[1\
33X\033[101X", "1.5-3", [ 1, 5, 3 ], 2264, 47, 
      "the character table of 2 a\227 o_8^+ 3 .s_4 a\211\244 2.b october 2023"
        , "X7F605CA28441687F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YUsing Table Automorphisms for Constructing Charac\
ter Tables in \033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", 
      "2", [ 2, 0, 0 ], 1, 50, 
      "using table automorphisms for constructing character tables in gap", 
      "X7B77FD307F0DE563" ], 
  [ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "2.1", 
      [ 2, 1, 0 ], 13, 50, "overview", "X8389AD927B74BA4A" ], 
  [ "\033[1X\033[33X\033[0;-2YTheoretical Background\033[133X\033[101X", 
      "2.2", [ 2, 2, 0 ], 33, 50, "theoretical background", 
      "X7B6AEBDF7B857E2E" ], 
  [ "\033[1X\033[33X\033[0;-2YCharacter Table Automorphisms\033[133X\033[101X"
        , "2.2-1", [ 2, 2, 1 ], 36, 50, "character table automorphisms", 
      "X78EBF9BA7A34A9C2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YPermutation Equivalence of Character Tables\033[1\
33X\033[101X", "2.2-2", [ 2, 2, 2 ], 67, 51, 
      "permutation equivalence of character tables", "X832525DE7AB34F16" ], 
  [ "\033[1X\033[33X\033[0;-2YClass Fusions\033[133X\033[101X", "2.2-3", 
      [ 2, 2, 3 ], 114, 52, "class fusions", "X7906869F7F190E76" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing Character Tables of Certain Isoclini\
c Groups\033[133X\033[101X", "2.2-4", [ 2, 2, 4 ], 157, 52, 
      "constructing character tables of certain isoclinic groups", 
      "X80C37276851D5E39" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter Tables of Isoclinic Groups of the Struc\
ture \033[22Xp.G.p\033[122X\033[101X\027\033[1X\027 (October 2016)\033[133X\
\033[101X", "2.2-5", [ 2, 2, 5 ], 241, 53, 
      "character tables of isoclinic groups of the structure p.g.p october 201\
6", "X7AEFFEEC84511FD0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YIsoclinic Double Covers of Almost Simple Groups\\
033[133X\033[101X", "2.2-6", [ 2, 2, 6 ], 288, 54, 
      "isoclinic double covers of almost simple groups", "X78F41D2A78E70BEE" ]
    , 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacters of Normal Subgroups\033[133X\033[101X"
        , "2.2-7", [ 2, 2, 7 ], 391, 56, "characters of normal subgroups", 
      "X834B42A07E98FBC6" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Constructions\033[133X\033[101X", "2.3", 
      [ 2, 3, 0 ], 423, 56, "the constructions", "X787F430E7FDB8765" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22XM.G.A\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.3-1", 
      [ 2, 3, 1 ], 426, 56, 
      "character tables of groups of the structure m.g.a", 
      "X82E75B6880EC9E6C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22XG.S_3\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.3-2", 
      [ 2, 3, 2 ], 498, 57, 
      "character tables of groups of the structure g.s_3", 
      "X7CCABDDE864E6300" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22XG.2^2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.3-3", 
      [ 2, 3, 3 ], 582, 59, 
      "character tables of groups of the structure g.2^2", 
      "X7D3EF3BC83BE05CF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter Tables of Groups of the Structure \033[\
22X2^2.G\033[122X\033[101X\027\033[1X\027 (August 2005)\033[133X\033[101X", 
      "2.3-4", [ 2, 3, 4 ], 660, 60, 
      "character tables of groups of the structure 2^2.g august 2005", 
      "X81464C4B8178C85A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22Xp\033[122X\033[101X\027\033[1X\027-Modula\
r Tables of Extensions by \033[22Xp\033[122X\033[101X\027\033[1X\027-singular \
Automorphisms\033[133X\033[101X", "2.3-5", [ 2, 3, 5 ], 819, 62, 
      "p-modular tables of extensions by p-singular automorphisms", 
      "X86CF6A607B0827EE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter Tables of Subdirect Products of Index T\
wo (July 2007)\033[133X\033[101X", "2.3-6", [ 2, 3, 6 ], 844, 63, 
      "character tables of subdirect products of index two july 2007", 
      "X788591D78451C024" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples for the Type \033[22XM.G.A\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.4", [ 2, 4, 0 ], 946, 64, 
      "examples for the type m.g.a", "X817D2134829FA8FA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter Tables of Dihedral Groups\033[133X\033[\
101X", "2.4-1", [ 2, 4, 1 ], 949, 64, "character tables of dihedral groups", 
      "X7F2DBAB48437052C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAn \033[22XM.G.A\033[122X\033[101X\027\033[1X\\
027 Type Example with \033[22XM\033[122X\033[101X\027\033[1X\027 noncentral in\
 \033[22XM.G\033[122X\033[101X\027\033[1X\027 (May 2004)\033[133X\033[101X", 
      "2.4-2", [ 2, 4, 2 ], 1037, 66, 
      "an m.g.a type example with m noncentral in m.g may 2004", 
      "X7925DBFA7C5986B5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22XM.G.A\033[122X\033[101X\027\033[1X\027\033[133X\033[10\
1X", "2.4-3", [ 2, 4, 3 ], 1124, 67, "atlas tables of the type m.g.a", 
      "X7ED45AB379093A70" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YMore \033[5XAtlas\033[105X\033[101X\027\033[1X\\
027 Tables of the Type \033[22XM.G.A\033[122X\033[101X\027\033[1X\027\033[133X\
\033[101X", "2.4-4", [ 2, 4, 4 ], 1411, 72, 
      "more atlas tables of the type m.g.a", "X7A236EDE7A7A28F9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of \033[22X4_2.L_3(4).2_3\\
033[122X\033[101X\027\033[1X\027 and \033[22X12_2.L_3(4).2_3\033[122X\033[101X\
\027\033[1X\027\033[133X\033[101X", "2.4-5", [ 2, 4, 5 ], 1561, 75, 
      "the character tables of 4_2.l_3 4 .2_3 and 12_2.l_3 4 .2_3", 
      "X794EC2FD7F69B4E6" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of \033[22X12_1.U_4(3).2_2'\\
033[122X\033[101X\027\033[1X\027 and \033[22X12_2.U_4(3).2_3'\033[122X\033[101\
X\027\033[1X\027 (December\302\2402015)\033[133X\033[101X", "2.4-6", 
      [ 2, 4, 6 ], 1708, 77, 
      "the character tables of 12_1.u_4 3 .2_2 and 12_2.u_4 3 .2_3 decembera\
\2402015", "X7E3E748E85AEDDB3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YGroups of the Structures \033[22X3.U_3(8).3_1\\
033[122X\033[101X\027\033[1X\027 and \033[22X3.U_3(8).6\033[122X\033[101X\027\
\033[1X\027 (February 2017)\033[133X\033[101X", "2.4-7", [ 2, 4, 7 ], 1767, 
      78, "groups of the structures 3.u_3 8 .3_1 and 3.u_3 8 .6 february 2017"
        , "X8379003582D06130" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X(2^2 \303\227 F_4(\
2)):2 < B\033[122X\033[101X\027\033[1X\027 (March\302\2402003)\033[133X\033[10\
1X", "2.4-8", [ 2, 4, 8 ], 1896, 80, 
      "the character table of 2^2 a\227 f_4 2 :2 < b marcha\2402003", 
      "X7B46C77B850D3B4D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X2.(S_3 \303\227 Fi\
_22.2) < 2.B\033[122X\033[101X\027\033[1X\027 (March\302\2402003)\033[133X\033\
[101X", "2.4-9", [ 2, 4, 9 ], 2010, 82, 
      "the character table of 2. s_3 a\227 fi_22.2 < 2.b marcha\2402003", 
      "X8254AA4A843F99BE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X(2 \303\227 2.Fi_2\
2):2 < Fi_24\033[122X\033[101X\027\033[1X\027 (November\302\2402008)\033[133X\
\033[101X", "2.4-10", [ 2, 4, 10 ], 2188, 85, 
      "the character table of 2 a\227 2.fi_22 :2 < fi_24 novembera\2402008", 
      "X7AF125168239D208" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XS_3 \303\227 2.U_4\
(3).2_2 \342\211\244 2.Fi_22\033[122X\033[101X\027\033[1X\027 (September 2002)\
\033[133X\033[101X", "2.4-11", [ 2, 4, 11 ], 2286, 86, 
      "the character table of s_3 a\227 2.u_4 3 .2_2 a\211\244 2.fi_22 septemb\
er 2002", "X79C93F7D87D9CF1D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X4.HS.2 \342\211\\
244 HN.2\033[122X\033[101X\027\033[1X\027 (May 2002)\033[133X\033[101X", 
      "2.4-12", [ 2, 4, 12 ], 2371, 87, 
      "the character table of 4.hs.2 a\211\244 hn.2 may 2002", 
      "X83724BCE86FCD77B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of \033[22X4.A_6.2_3\033[122\
X\033[101X\027\033[1X\027, \033[22X12.A_6.2_3\033[122X\033[101X\027\033[1X\027\
, and \033[22X4.L_2(25).2_3\033[122X\033[101X\027\033[1X\027\033[133X\033[101X\
", "2.4-13", [ 2, 4, 13 ], 2536, 90, 
      "the character tables of 4.a_6.2_3 12.a_6.2_3 and 4.l_2 25 .2_3", 
      "X7E9A88DA7CBF6426" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X4.L_2(49).2_3\033[\
122X\033[101X\027\033[1X\027 (December 2020)\033[133X\033[101X", "2.4-14", 
      [ 2, 4, 14 ], 2917, 96, 
      "the character table of 4.l_2 49 .2_3 december 2020", 
      "X7BD79BA37C3E729B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X4.L_2(81).2_3\033[\
122X\033[101X\027\033[1X\027 (December 2020)\033[133X\033[101X", "2.4-15", 
      [ 2, 4, 15 ], 2995, 98, 
      "the character table of 4.l_2 81 .2_3 december 2020", 
      "X817A961487D2DFD1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X9.U_3(8).3_3\033[1\
22X\033[101X\027\033[1X\027 (March 2017)\033[133X\033[101X", "2.4-16", 
      [ 2, 4, 16 ], 3089, 99, "the character table of 9.u_3 8 .3_3 march 2017"
        , "X7AF324AF7A54798F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YPseudo Character Tables of the Type \033[22XM.G.A\
\033[122X\033[101X\027\033[1X\027 (May 2004)\033[133X\033[101X", "2.4-17", 
      [ 2, 4, 17 ], 3386, 104, 
      "pseudo character tables of the type m.g.a may 2004", 
      "X7E0C603880157C4E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSome Extra-ordinary \033[22Xp\033[122X\033[101X\\
027\033[1X\027-Modular Tables of the Type \033[22XM.G.A\033[122X\033[101X\027\
\033[1X\027 (September 2005)\033[133X\033[101X", "2.4-18", [ 2, 4, 18 ], 
      3523, 107, 
      "some extra-ordinary p-modular tables of the type m.g.a september 2005",
      "X844185EF7A8F2A99" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples for the Type \033[22XG.S_3\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.5", [ 2, 5, 0 ], 3706, 110, 
      "examples for the type g.s_3", "X7F50C782840F06E4" ], 
  [ "\033[1X\033[33X\033[0;-2YSmall Examples\033[133X\033[101X", "2.5-1", 
      [ 2, 5, 1 ], 3709, 110, "small examples", "X7F0DC29F874AA09F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22XG.S_3\033[122X\033[101X\027\033[1X\027\033[133X\033[10\
1X", "2.5-2", [ 2, 5, 2 ], 3803, 111, "atlas tables of the type g.s_3", 
      "X80F9BC057980A9E9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples for the Type \033[22XG.2^2\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.6", [ 2, 6, 0 ], 3993, 115, 
      "examples for the type g.2^2", "X7EA489E07D7C7D86" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XA_6.2^2\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "2.6-1", [ 2, 6, 1 ], 3996, 115, 
      "the character table of a_6.2^2", "X8054FDE679053B1C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22XG.2^2\033[122X\033[101X\027\033[1X\027 \342\200\223 Ea\
sy Cases\033[133X\033[101X", "2.6-2", [ 2, 6, 2 ], 4071, 116, 
      "atlas tables of the type g.2^2 a\200\223 easy cases", 
      "X7FEC3AB081487AF2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XS_4(9).2^2\033[122\
X\033[101X\027\033[1X\027 (September 2011)\033[133X\033[101X", "2.6-3", 
      [ 2, 6, 3 ], 4351, 121, 
      "the character table of s_4 9 .2^2 september 2011", "X869B65D3863EDEC3" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X2.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (June 2010)\033[133X\033[101X"
        , "2.6-4", [ 2, 6, 4 ], 4406, 122, 
      "the character tables of groups of the type 2.l_3 4 .2^2 june 2010", 
      "X7B38006380618543" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X6.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (October 2011)\033[133X\033[10\
1X", "2.6-5", [ 2, 6, 5 ], 4628, 126, 
      "the character tables of groups of the type 6.l_3 4 .2^2 october 2011", 
      "X79818ABD7E972370" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X2.U_4(3).2^2\033[122X\033[101X\027\033[1X\027 (February 2012)\033[133X\033[1\
01X", "2.6-6", [ 2, 6, 6 ], 4875, 130, 
      "the character tables of groups of the type 2.u_4 3 .2^2 february 2012",
      "X878889308653435F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X4_1.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (October 2011)\033[133X\033[\
101X", "2.6-7", [ 2, 6, 7 ], 5043, 133, 
      "the character tables of groups of the type 4_1.l_3 4 .2^2 october 2011"
        , "X7DC42AE57E9EED4D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Tables of Groups of the Type \033[2\
2X4_2.L_3(4).2^2\033[122X\033[101X\027\033[1X\027 (October 2011)\033[133X\033[\
101X", "2.6-8", [ 2, 6, 8 ], 5269, 137, 
      "the character tables of groups of the type 4_2.l_3 4 .2^2 october 2011"
        , "X7E9AF180869B4786" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of Aut\033[22X(L_2(81))\033[1\
22X\033[101X\027\033[1X\027\033[133X\033[101X", "2.6-9", [ 2, 6, 9 ], 5504, 
      141, "the character table of aut l_2 81", "X7EAF9CD07E536120" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22XO_8^+(3).2^2_111\\
033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "2.6-10", [ 2, 6, 10 ], 
      5559, 142, "the character table of o_8^+ 3 .2^2_111", 
      "X78AED04685EDCC19" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples for the Type \033[22X2^2.G\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "2.7", [ 2, 7, 0 ], 5648, 143, 
      "examples for the type 2^2.g", "X845BAA2A7FD768B0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X2^2.Sz(8)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "2.7-1", [ 2, 7, 1 ], 5656, 144, 
      "the character table of 2^2.sz 8", "X87EEBDB987249117" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XAtlas\033[105X\033[101X\027\033[1X\027 Tab\
les of the Type \033[22X2^2.G\033[122X\033[101X\027\033[1X\027 (September 2005\
)\033[133X\033[101X", "2.7-2", [ 2, 7, 2 ], 5815, 146, 
      "atlas tables of the type 2^2.g september 2005", "X83652A0282A64D14" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X2^2.O_8^+(3)\033[\
122X\033[101X\027\033[1X\027 (March 2009)\033[133X\033[101X", "2.7-3", 
      [ 2, 7, 3 ], 6021, 150, "the character table of 2^2.o_8^+ 3 march 2009",
      "X7F63DDF77870F967" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of the Schur Cover of \033[22\
XL_3(4)\033[122X\033[101X\027\033[1X\027 (September 2005)\033[133X\033[101X", 
      "2.7-4", [ 2, 7, 4 ], 6067, 151, 
      "the character table of the schur cover of l_3 4 september 2005", 
      "X86A1607787DE6BB9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples of Extensions by \033[22Xp\033[122X\033[\
101X\027\033[1X\027-singular Automorphisms\033[133X\033[101X", "2.8", 
      [ 2, 8, 0 ], 6202, 153, 
      "examples of extensions by p-singular automorphisms", 
      "X8711DBB083655A25" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSome \033[22Xp\033[122X\033[101X\027\033[1X\027-M\
odular Tables of Groups of the Type \033[22XM.G.A\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "2.8-1", [ 2, 8, 1 ], 6205, 153, 
      "some p-modular tables of groups of the type m.g.a", 
      "X81C08739850E4AAE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSome \033[22Xp\033[122X\033[101X\027\033[1X\027-M\
odular Tables of Groups of the Type \033[22XG.S_3\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "2.8-2", [ 2, 8, 2 ], 6260, 154, 
      "some p-modular tables of groups of the type g.s_3", 
      "X7FED618F83ACB7C2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X2\033[122X\033[101X\027\033[1X\027-Modula\
r Tables of Groups of the Type \033[22XG.2^2\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "2.8-3", [ 2, 8, 3 ], 6327, 155, 
      "2-modular tables of groups of the type g.2^2", "X7EEF6A7F8683177A" ], 
  [ "\033[1X\033[33X\033[0;-2YThe \033[22X3\033[122X\033[101X\027\033[1X\027-M\
odular Table of \033[22XU_3(8).3^2\033[122X\033[101X\027\033[1X\027\033[133X\
\033[101X", "2.8-4", [ 2, 8, 4 ], 6375, 156, 
      "the 3-modular table of u_3 8 .3^2", "X875F8DD77C0997FA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YExamples of Subdirect Products of Index Two\033[1\
33X\033[101X", "2.9", [ 2, 9, 0 ], 6415, 157, 
      "examples of subdirect products of index two", "X7A4D6044865E516B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCertain Dihedral Groups as Subdirect Products of \
Index Two\033[133X\033[101X", "2.9-1", [ 2, 9, 1 ], 6424, 157, 
      "certain dihedral groups as subdirect products of index two", 
      "X850FF694801700CF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Character Table of \033[22X(D_10 \303\227 HN)\
.2 < M\033[122X\033[101X\027\033[1X\027 (June 2008)\033[133X\033[101X", 
      "2.9-2", [ 2, 9, 2 ], 6451, 158, 
      "the character table of d_10 a\227 hn .2 < m june 2008", 
      "X80C5D6FA83D7E2CF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA Counterexample (August 2015)\033[133X\033[101X"
        , "2.9-3", [ 2, 9, 3 ], 6531, 159, "a counterexample august 2015", 
      "X85EECFD47EC252A2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing Character Tables of Central Extensio\
ns in \033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "3", 
      [ 3, 0, 0 ], 1, 161, 
      "constructing character tables of central extensions in gap", 
      "X7A80D5ED7D6E57B7" ], 
  [ "\033[1X\033[33X\033[0;-2YCoprime Central Extensions\033[133X\033[101X", 
      "3.1", [ 3, 1, 0 ], 16, 161, "coprime central extensions", 
      "X87B17873861E2F64" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Character Table Head\033[133X\033[101X", 
      "3.1-1", [ 3, 1, 1 ], 36, 161, "the character table head", 
      "X85CB2671851D1206" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Irreducible Characters\033[133X\033[101X", 
      "3.1-2", [ 3, 1, 2 ], 88, 162, "the irreducible characters", 
      "X7D8F6E5D7D632046" ], 
  [ "\033[1X\033[33X\033[0;-2YOrdering of Conjugacy Classes\033[133X\033[101X"
        , "3.1-3", [ 3, 1, 3 ], 141, 163, "ordering of conjugacy classes", 
      "X867D16E07D36560F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCompatibility with Smaller Factor Groups\033[133X\
\033[101X", "3.1-4", [ 3, 1, 4 ], 182, 164, 
      "compatibility with smaller factor groups", "X813B9F5180A45077" ], 
  [ "\033[1X\033[33X\033[0;-2YExamples\033[133X\033[101X", "3.2", 
      [ 3, 2, 0 ], 254, 165, "examples", "X7A489A5D79DA9E5C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCentral Extensions of Simple \033[5XAtlas\033[105\
X\033[101X\027\033[1X\027 Groups\033[133X\033[101X", "3.2-1", [ 3, 2, 1 ], 
      265, 165, "central extensions of simple atlas groups", 
      "X861B5C3F7B1F6AB7" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCentral Extensions of Other \033[5XAtlas\033[105X\
\033[101X\027\033[1X\027 Groups\033[133X\033[101X", "3.2-2", [ 3, 2, 2 ], 
      368, 167, "central extensions of other atlas groups", 
      "X799ADD5487613BA2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCompatible Central Extensions of Maximal Subgroup\
s\033[133X\033[101X", "3.2-3", [ 3, 2, 3 ], 459, 168, 
      "compatible central extensions of maximal subgroups", 
      "X861F558380FE4812" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe \033[10X2B\033[110X\033[101X\027\033[1X\027 C\
entralizer in \033[22X3.Fi_24'\033[122X\033[101X\027\033[1X\027 (January 2004)\
\033[133X\033[101X", "3.2-4", [ 3, 2, 4 ], 511, 169, 
      "the 2b centralizer in 3.fi_24 january 2004", "X7C73944579D6EE73" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Compu\
tations Concerning Hamiltonian Cycles in the Generating Graphs of Finite Group\
s\033[133X\033[101X", "4", [ 4, 0, 0 ], 1, 171, 
      "gap computations concerning hamiltonian cycles in the generating graphs\
 of finite groups", "X7D5919C182B1A462" ], 
  [ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "4.1", 
      [ 4, 1, 0 ], 49, 172, "overview", "X8389AD927B74BA4A" ], 
  [ "\033[1X\033[33X\033[0;-2YTheoretical Background\033[133X\033[101X", 
      "4.2", [ 4, 2, 0 ], 75, 172, "theoretical background", 
      "X7B6AEBDF7B857E2E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter-Theoretic Lower Bounds for Vertex Degre\
es\033[133X\033[101X", "4.2-1", [ 4, 2, 1 ], 122, 173, 
      "character-theoretic lower bounds for vertex degrees", 
      "X7AD3962D7AE4ADFB" ], 
  [ "\033[1X\033[33X\033[0;-2YChecking the Criteria\033[133X\033[101X", 
      "4.2-2", [ 4, 2, 2 ], 190, 174, "checking the criteria", 
      "X825776BA8687E475" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Funct\
ions for the Computations\033[133X\033[101X", "4.3", [ 4, 3, 0 ], 254, 175, 
      "gap functions for the computations", "X7B56BE5384BAD54E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputing Vertex Degrees from the Group\033[133X\\
033[101X", "4.3-1", [ 4, 3, 1 ], 264, 175, 
      "computing vertex degrees from the group", "X802B2ED2802334B0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputing Lower Bounds for Vertex Degrees\033[133\
X\033[101X", "4.3-2", [ 4, 3, 2 ], 399, 177, 
      "computing lower bounds for vertex degrees", "X87FE2DDD7F086D2F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YEvaluating the (Lower Bounds for the) Vertex Degr\
ees\033[133X\033[101X", "4.3-3", [ 4, 3, 3 ], 499, 179, 
      "evaluating the lower bounds for the vertex degrees", 
      "X8677A8B1788ACD2C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter-Theoretic Computations\033[133X\033[101\
X", "4.4", [ 4, 4, 0 ], 651, 181, "character-theoretic computations", 
      "X7A221012861440E2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSporadic Simple Groups, except the Monster\033[13\
3X\033[101X", "4.4-1", [ 4, 4, 1 ], 681, 182, 
      "sporadic simple groups except the monster", "X78EFD6898145F244" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Monster\033[133X\033[101X", "4.4-2", 
      [ 4, 4, 2 ], 709, 182, "the monster", "X867D338F7F453092" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YNonsimple Automorphism Groups of Sporadic Simple \
Groups\033[133X\033[101X", "4.4-3", [ 4, 4, 3 ], 926, 186, 
      "nonsimple automorphism groups of sporadic simple groups", 
      "X7DC6DFCC83502CC3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAlternating and Symmetric Groups \033[22XA_n\033[\
122X\033[101X\027\033[1X\027, \033[22XS_n\033[122X\033[101X\027\033[1X\027, fo\
r \033[22X5 \342\211\244 n \342\211\244 13\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "4.4-4", [ 4, 4, 4 ], 961, 186, 
      "alternating and symmetric groups a_n s_n for 5 a\211\244 n a\211\244 13\
", "X8130C9CB7A33140F" ], 
  [ "\033[1X\033[33X\033[0;-2YComputations With Groups\033[133X\033[101X", 
      "4.5", [ 4, 5, 0 ], 1009, 187, "computations with groups", 
      "X83DACCF07EF62FAE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YNonabelian Simple Groups of Order up to \033[22X1\
0^7\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "4.5-1", 
      [ 4, 5, 1 ], 1048, 188, "nonabelian simple groups of order up to 10^7", 
      "X7B9ADC91802EE09F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YNonsimple Groups with Nonsolvable Socle of Order \
at most \033[22X10^6\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", 
      "4.5-2", [ 4, 5, 2 ], 1146, 189, 
      "nonsimple groups with nonsolvable socle of order at most 10^6", 
      "X8033892B7FD6E62B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Groups \033[22XPSL(2,q)\033[122X\033[101X\\
027\033[1X\027\033[133X\033[101X", "4.6", [ 4, 6, 0 ], 1296, 192, 
      "the groups psl 2 q", "X84E62545802FAB30" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Compu\
tations with \033[22XO_8^+(5).S_3\033[122X\033[101X\027\033[1X\027 and \033[22\
XO_8^+(2).S_3\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "5", 
      [ 5, 0, 0 ], 1, 196, 
      "gap computations with o_8^+ 5 .s_3 and o_8^+ 2 .s_3", 
      "X8703EFEE81DDE3DD" ], 
  [ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "5.1", 
      [ 5, 1, 0 ], 14, 196, "overview", "X8389AD927B74BA4A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing Representations of \033[22XM.2\033[1\
22X\033[101X\027\033[1X\027 and \033[22XS.2\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "5.2", [ 5, 2, 0 ], 58, 197, 
      "constructing representations of m.2 and s.2", "X85FF559084C08F0F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA Matrix Representation of the Weyl Group of Type\
 \033[22XE_8\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "5.2-1", 
      [ 5, 2, 1 ], 61, 197, 
      "a matrix representation of the weyl group of type e_8", 
      "X7FEE53AB845B9327" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YEmbedding the Weyl group of Type \033[22XE_8\033[\
122X\033[101X\027\033[1X\027 into GO\033[22X^+(8,5)\033[122X\033[101X\027\033[\
1X\027\033[133X\033[101X", "5.2-2", [ 5, 2, 2 ], 97, 197, 
      "embedding the weyl group of type e_8 into go^+ 8 5", 
      "X7C8AA7747F160F8A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCompatible Generators of \033[22XM\033[122X\033[1\
01X\027\033[1X\027, \033[22XM.2\033[122X\033[101X\027\033[1X\027, \033[22XS\
\033[122X\033[101X\027\033[1X\027, and \033[22XS.2\033[122X\033[101X\027\033[1\
X\027\033[133X\033[101X", "5.2-3", [ 5, 2, 3 ], 142, 198, 
      "compatible generators of m m.2 s and s.2", "X83E3E79F8724C365" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing Representations of \033[22XM.3\033[1\
22X\033[101X\027\033[1X\027 and \033[22XS.3\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "5.3", [ 5, 3, 0 ], 204, 199, 
      "constructing representations of m.3 and s.3", "X83F897DD7C48511C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Action of \033[22XM.3\033[122X\033[101X\027\\
033[1X\027 on \033[22XM\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", 
      "5.3-1", [ 5, 3, 1 ], 207, 199, "the action of m.3 on m", 
      "X7B7561D0855EC4F1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Action of \033[22XS.3\033[122X\033[101X\027\\
033[1X\027 on \033[22XS\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", 
      "5.3-2", [ 5, 3, 2 ], 283, 200, "the action of s.3 on s", 
      "X8246803779EB8FEE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing Compatible Generators of \033[22XH\\
033[122X\033[101X\027\033[1X\027 and \033[22XG\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "5.4", [ 5, 4, 0 ], 358, 202, 
      "constructing compatible generators of h and g", "X816AFA187E95C018" ], 
  [ "\033[1X\033[33X\033[0;-2YApplication: Regular Orbits of \033[22XH\033[122\
X\033[101X\027\033[1X\027 on \033[22XG/H\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "5.5", [ 5, 5, 0 ], 412, 202, 
      "application: regular orbits of h on g/h", "X83F0387D789709D1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAppendix: The Permutation Character \033[22X(1_H^\
G)_H\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "5.6", [ 5, 6, 0 ], 
      436, 203, "appendix: the permutation character 1_h^g _h", 
      "X7F0C266082BE1578" ], 
  [ "\033[1X\033[33X\033[0;-2YAppendix: The Data File\033[133X\033[101X", 
      "5.7", [ 5, 7, 0 ], 634, 206, "appendix: the data file", 
      "X7F3A630780F8E262" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSolvable Subgroups of Maximal Order in Sporadic S\
imple Groups\033[133X\033[101X", "6", [ 6, 0, 0 ], 1, 208, 
      "solvable subgroups of maximal order in sporadic simple groups", 
      "X7EF73AA88384B5F3" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Result\033[133X\033[101X", "6.1", 
      [ 6, 1, 0 ], 36, 208, "the result", "X7F817DC57A69CF0D" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Approach\033[133X\033[101X", "6.2", 
      [ 6, 2, 0 ], 229, 212, "the approach", "X876F77197B2FB84A" ], 
  [ "\033[1X\033[33X\033[0;-2YUse the Table of Marks\033[133X\033[101X", 
      "6.2-1", [ 6, 2, 1 ], 251, 212, "use the table of marks", 
      "X792957AB7B24C5E0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YUse Information from the Character Table Library\\
033[133X\033[101X", "6.2-2", [ 6, 2, 2 ], 307, 213, 
      "use information from the character table library", "X7B39A4467A1CCF8A" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCases where the Table of Marks is available in \\
033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "6.3", 
      [ 6, 3, 0 ], 383, 214, 
      "cases where the table of marks is available in gap", 
      "X834298A87BF43AAF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCases where the Table of Marks is not available i\
n \033[5XGAP\033[105X\033[101X\027\033[1X\027\033[133X\033[101X", "6.4", 
      [ 6, 4, 0 ], 486, 216, 
      "cases where the table of marks is not available in gap", 
      "X85559C0F7AA73E48" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Ru\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-1", [ 6, 4, 1 ], 493, 216, "g = ru", 
      "X7E393459822E78B5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Suz\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-2", [ 6, 4, 2 ], 539, 217, "g = suz", 
      "X7AFF09337CCB7745" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = ON\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-3", [ 6, 4, 3 ], 575, 218, "g = on", 
      "X7969AE067D3862A3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Co_2\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-4", [ 6, 4, 4 ], 608, 218, "g = co_2", 
      "X84921B85845EDA31" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Fi_22\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-5", [ 6, 4, 5 ], 669, 219, "g = fi_22", 
      "X7D777A0D82BE8498" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = HN\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-6", [ 6, 4, 6 ], 708, 220, "g = hn", 
      "X7D9DB76A861A6F62" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Ly\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-7", [ 6, 4, 7 ], 739, 220, "g = ly", 
      "X83E6436678AF562C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Th\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-8", [ 6, 4, 8 ], 773, 221, "g = th", 
      "X7D6CF8EC812EF6FB" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Fi_23\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-9", [ 6, 4, 9 ], 805, 221, "g = fi_23", 
      "X7A07090483C935DC" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Co_1\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-10", [ 6, 4, 10 ], 834, 222, "g = co_1", 
      "X7D028E9E7CB62A4F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = J_4\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-11", [ 6, 4, 11 ], 873, 222, "g = j_4", 
      "X84208AB781344A9D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = Fi_24^'\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "6.4-12", [ 6, 4, 12 ], 933, 223, "g = fi_24^", 
      "X7BC589718203F125" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = B\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-13", [ 6, 4, 13 ], 972, 224, "g = b", 
      "X7EDF990985573EB6" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG = M\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "6.4-14", [ 6, 4, 14 ], 1264, 228, "g = m", 
      "X87D468D07D7237CB" ], 
  [ "\033[1X\033[33X\033[0;-2YProof of the Corollary\033[133X\033[101X", 
      "6.5", [ 6, 5, 0 ], 1546, 233, "proof of the corollary", 
      "X7CD8E04C7F32AD56" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YLarge Nilpotent Subgroups of Sporadic Simple Grou\
ps\033[133X\033[101X", "7", [ 7, 0, 0 ], 1, 234, 
      "large nilpotent subgroups of sporadic simple groups", 
      "X8102827B85FE3BCA" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Result\033[133X\033[101X", "7.1", 
      [ 7, 1, 0 ], 13, 234, "the result", "X7F817DC57A69CF0D" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Proof\033[133X\033[101X", "7.2", 
      [ 7, 2, 0 ], 127, 236, "the proof", "X787B841383A16711" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAlternative: Use \033[5XGAP\033[105X\033[101X\\
027\033[1X\027's Tables of Marks\033[133X\033[101X", "7.3", [ 7, 3, 0 ], 331, 
      239, "alternative: use gaps tables of marks", "X798EACC07F6C36D9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YPermutation Characters in \033[5XGAP\033[105X\\
033[101X\027\033[1X\027\033[133X\033[101X", "8", [ 8, 0, 0 ], 1, 242, 
      "permutation characters in gap", "X7A7EEBE9858333E1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSome Computations with \033[22XM_24\033[122X\033[\
101X\027\033[1X\027\033[133X\033[101X", "8.1", [ 8, 1, 0 ], 38, 242, 
      "some computations with m_24", "X86A1325B82E5AECD" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAll Possible Permutation Characters of \033[22XM_\
11\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "8.2", [ 8, 2, 0 ], 
      200, 245, "all possible permutation characters of m_11", 
      "X79C9051F805851DB" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Action of \033[22XU_6(2)\033[122X\033[101X\\
027\033[1X\027 on the Cosets of \033[22XM_22\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "8.3", [ 8, 3, 0 ], 316, 247, 
      "the action of u_6 2 on the cosets of m_22", "X81A5FC968782CFC3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YDegree \033[22X20736\033[122X\033[101X\027\033[1X\
\027 Permutation Characters of \033[22XU_6(2)\033[122X\033[101X\027\033[1X\027\
\033[133X\033[101X", "8.4", [ 8, 4, 0 ], 403, 249, 
      "degree 20736 permutation characters of u_6 2", "X7EE1811C8496C428" ], 
  [ "\033[1X\033[33X\033[0;-2YDegree \033[22X57572775\033[122X\033[101X\027\
\033[1X\027 Permutation Characters of \033[22XO_8^+(3)\033[122X\033[101X\027\
\033[1X\027\033[133X\033[101X", "8.5", [ 8, 5, 0 ], 462, 250, 
      "degree 57572775 permutation characters of o_8^+ 3", 
      "X7DC6A6E785A347C8" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Action of \033[22XO_7(3).2\033[122X\033[101X\\
027\033[1X\027 on the Cosets of \033[22X2^7.S_7\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "8.6", [ 8, 6, 0 ], 562, 251, 
      "the action of o_7 3 .2 on the cosets of 2^7.s_7", "X792D2C2380591D8D" ]
    , 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Action of \033[22XO_8^+(3).2_1\033[122X\033[1\
01X\027\033[1X\027 on the Cosets of \033[22X2^7.A_8\033[122X\033[101X\027\033[\
1X\027\033[133X\033[101X", "8.7", [ 8, 7, 0 ], 655, 253, 
      "the action of o_8^+ 3 .2_1 on the cosets of 2^7.a_8", 
      "X875B361C8512939F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Action of \033[22XS_4(4).4\033[122X\033[101X\\
027\033[1X\027 on the Cosets of \033[22X5^2.[2^5]\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "8.8", [ 8, 8, 0 ], 794, 256, 
      "the action of s_4 4 .4 on the cosets of 5^2.[2^5]", 
      "X7B1DFAF98182CFF4" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Action of \033[22XCo_1\033[122X\033[101X\027\\
033[1X\027 on the Cosets of Involution Centralizers\033[133X\033[101X", 
      "8.9", [ 8, 9, 0 ], 848, 256, 
      "the action of co_1 on the cosets of involution centralizers", 
      "X7F04F0C684AA8B30" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Multiplicity Free Permutation Characters of \\
033[22XG_2(3)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "8.10", 
      [ 8, 10, 0 ], 982, 259, 
      "the multiplicity free permutation characters of g_2 3", 
      "X8230719D8538384B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YDegree \033[22X11200\033[122X\033[101X\027\033[1X\
\027 Permutation Characters of \033[22XO_8^+(2)\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "8.11", [ 8, 11, 0 ], 1041, 260, 
      "degree 11200 permutation characters of o_8^+ 2", "X7E3E326C7CB0E2CD" ],
  [ "\033[1X\033[33X\033[0;-2YA Proof of Nonexistence of a Certain Subgroup\
\033[133X\033[101X", "8.12", [ 8, 12, 0 ], 1086, 261, 
      "a proof of nonexistence of a certain subgroup", "X7D8572E68194CBB9" ], 
  [ "\033[1X\033[33X\033[0;-2YA Permutation Character of the Lyons group\033[1\
33X\033[101X", "8.13", [ 8, 13, 0 ], 1217, 263, 
      "a permutation character of the lyons group", "X8068E9DA7CD03BF2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YIdentifying two subgroups of Aut\033[22X(U_3(5))\\
033[122X\033[101X\027\033[1X\027 (October\302\2402001)\033[133X\033[101X", 
      "8.14", [ 8, 14, 0 ], 1359, 265, 
      "identifying two subgroups of aut u_3 5 octobera\2402001", 
      "X87D6C1A67CC7EE0A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA Permutation Character of Aut\033[22X(O_8^+(2))\\
033[122X\033[101X\027\033[1X\027 (October\302\2402001)\033[133X\033[101X", 
      "8.15", [ 8, 15, 0 ], 1462, 267, 
      "a permutation character of aut o_8^+ 2 octobera\2402001", 
      "X793669787CF73A55" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFour Primitive Permutation Characters of the Mons\
ter Group\033[133X\033[101X", "8.16", [ 8, 16, 0 ], 1523, 268, 
      "four primitive permutation characters of the monster group", 
      "X8337F3C682B6BE63" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^2.2^11.2^22.(S_3 \303\227 \
M_24)\033[122X\033[101X\027\033[1X\027 (June\302\2402009)\033[133X\033[101X", 
      "8.16-1", [ 8, 16, 1 ], 1591, 269, 
      "the subgroup 2^2.2^11.2^22. s_3 a\227 m_24 junea\2402009", 
      "X78A8A1248336DD26" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^3.2^6.2^12.2^18.(L_3(2) \\
303\227 3.S_6)\033[122X\033[101X\027\033[1X\027 (September\302\2402009)\033[13\
3X\033[101X", "8.16-2", [ 8, 16, 2 ], 1767, 272, 
      "the subgroup 2^3.2^6.2^12.2^18. l_3 2 a\227 3.s_6 septembera\2402009", 
      "X79E9247182B20474" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^5.2^10.2^20.(S_3 \303\227 \
L_5(2))\033[122X\033[101X\027\033[1X\027 (October\302\2402009)\033[133X\033[10\
1X", "8.16-3", [ 8, 16, 3 ], 2032, 276, 
      "the subgroup 2^5.2^10.2^20. s_3 a\227 l_5 2 octobera\2402009", 
      "X7BC36C597E542DEE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Subgroup \033[22X2^{10+16}.O_10^+(2)\033[122X\
\033[101X\027\033[1X\027 (November\302\2402009)\033[133X\033[101X", "8.16-4", 
      [ 8, 16, 4 ], 2296, 281, 
      "the subgroup 2^{10+16}.o_10^+ 2 novembera\2402009", 
      "X7F2ABD3E7AFF5F6E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA permutation character of the Baby Monster (June\
\302\2402012)\033[133X\033[101X", "8.17", [ 8, 17, 0 ], 2665, 287, 
      "a permutation character of the baby monster junea\2402012", 
      "X87D11B097D95D027" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA permutation character of \033[22X2.B\033[122X\\
033[101X\027\033[1X\027 (October\302\2402017)\033[133X\033[101X", "8.18", 
      [ 8, 18, 0 ], 2769, 289, 
      "a permutation character of 2.b octobera\2402017", "X86827FA97D27F3A2" ]
    , 
  [ 
      "\033[1X\033[33X\033[0;-2YGeneration of sporadic simple groups by \033[22X\\
317\200\033[122X\033[101X\027\033[1X\027- and \033[22X\317\200'\033[122X\033[1\
01X\027\033[1X\027-subgroups (December\302\2402021)\033[133X\033[101X", 
      "8.19", [ 8, 19, 0 ], 2939, 292, 
      "generation of sporadic simple groups by i\200- and i\200-subgroups dece\
mbera\2402021", "X849F0EA6807C9B19" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAmbiguous Class Fusions in the \033[5XGAP\033[105\
X\033[101X\027\033[1X\027 Character Table Library\033[133X\033[101X", "9", 
      [ 9, 0, 0 ], 1, 302, 
      "ambiguous class fusions in the gap character table library", 
      "X7A03A83E87FB1189" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSome \033[5XGAP\033[105X\033[101X\027\033[1X\027 \
Utilities\033[133X\033[101X", "9.1", [ 9, 1, 0 ], 30, 302, 
      "some gap utilities", "X784492877DB04FE9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFusions Determined by Factorization through Inter\
mediate Subgroups\033[133X\033[101X", "9.2", [ 9, 2, 0 ], 57, 303, 
      "fusions determined by factorization through intermediate subgroups", 
      "X7EA839057D3AD3B4" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XCo_3N5 \342\206\222 Co_3\033[122X\033[101\
X\027\033[1X\027 (September 2002)\033[133X\033[101X", "9.2-1", [ 9, 2, 1 ], 
      63, 303, "co_3n5 a\206\222 co_3 september 2002", "X78DCEEFD85FF1EE2" ], 
  [ "\033[1X\033[33X\033[0;-2Y\033[22X31:15 \342\206\222 B\033[122X\033[101X\
\027\033[1X\027 (March 2003)\033[133X\033[101X", "9.2-2", [ 9, 2, 2 ], 139, 
      304, "31:15 a\206\222 b march 2003", "X86BCEA907EC4C833" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XSuzN3 \342\206\222 Suz\033[122X\033[101X\\
027\033[1X\027 (September 2002)\033[133X\033[101X", "9.2-3", [ 9, 2, 3 ], 
      170, 305, "suzn3 a\206\222 suz september 2002", "X7C719F527831F35A" ], 
  [ "\033[1X\033[33X\033[0;-2Y\033[22XF_{3+}N5 \342\206\222 F_{3+}\033[122X\
\033[101X\027\033[1X\027 (March 2002)\033[133X\033[101X", "9.2-4", 
      [ 9, 2, 4 ], 227, 306, "f_{3+}n5 a\206\222 f_{3+} march 2002", 
      "X828879F481EF30DD" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFusions Determined Using Commutative Diagrams Inv\
olving Smaller Subgroups\033[133X\033[101X", "9.3", [ 9, 3, 0 ], 298, 307, 
      "fusions determined using commutative diagrams involving smaller subgrou\
ps", "X7981579278F81AC6" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XBN7 \342\206\222 B\033[122X\033[101X\027\\
033[1X\027 (March 2002)\033[133X\033[101X", "9.3-1", [ 9, 3, 1 ], 320, 307, 
      "bn7 a\206\222 b march 2002", "X7F5186E28201B027" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X(A_4 \303\227 O_8^+(2).3).2 \342\206\222 \
Fi_24^'\033[122X\033[101X\027\033[1X\027 (November 2002)\033[133X\033[101X", 
      "9.3-2", [ 9, 3, 2 ], 387, 308, 
      "a_4 a\227 o_8^+ 2 .3 .2 a\206\222 fi_24^ november 2002", 
      "X79710B137B5BB1B8" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XA_6 \303\227 L_2(8).3 \342\206\222 Fi_24^\
'\033[122X\033[101X\027\033[1X\027 (November 2002)\033[133X\033[101X", 
      "9.3-3", [ 9, 3, 3 ], 453, 309, 
      "a_6 a\227 l_2 8 .3 a\206\222 fi_24^ november 2002", 
      "X85822C647B29117B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X(3^2:D_8 \303\227 U_4(3).2^2).2 \342\206\\
222 B\033[122X\033[101X\027\033[1X\027 (June 2007)\033[133X\033[101X", 
      "9.3-4", [ 9, 3, 4 ], 512, 310, 
      "3^2:d_8 a\227 u_4 3 .2^2 .2 a\206\222 b june 2007", 
      "X81A607758682D9A9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X7^1+4:(3 \303\227 2.S_7) \342\206\222 M\\
033[122X\033[101X\027\033[1X\027 (May 2009)\033[133X\033[101X", "9.3-5", 
      [ 9, 3, 5 ], 624, 312, "7^1+4: 3 a\227 2.s_7 a\206\222 m may 2009", 
      "X7962DD4387D63675" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X3^7.O_7(3):2 \342\206\222 Fi_24\033[122X\\
033[101X\027\033[1X\027 (November 2010)\033[133X\033[101X", "9.3-6", 
      [ 9, 3, 6 ], 714, 313, "3^7.o_7 3 :2 a\206\222 fi_24 november 2010", 
      "X860B6C30812DE3FC" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X^2E_6(2)N3C \342\206\222 ^2E_6(2)\033[122\
X\033[101X\027\033[1X\027 (January 2019)\033[133X\033[101X", "9.3-7", 
      [ 9, 3, 7 ], 832, 315, "^2e_6 2 n3c a\206\222 ^2e_6 2 january 2019", 
      "X7C3AC42F8342EE2E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFusions Determined Using Commutative Diagrams Inv\
olving Factor Groups\033[133X\033[101X", "9.4", [ 9, 4, 0 ], 983, 318, 
      "fusions determined using commutative diagrams involving factor groups",
      "X84F966E2824F5D52" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X3.A_7 \342\206\222 3.Suz\033[122X\033[101\
X\027\033[1X\027 (December 2010)\033[133X\033[101X", "9.4-1", [ 9, 4, 1 ], 
      986, 318, "3.a_7 a\206\222 3.suz december 2010", "X7F2B104686509CAA" ], 
  [ "\033[1X\033[33X\033[0;-2Y\033[22XS_6 \342\206\222 U_4(2)\033[122X\033[101\
X\027\033[1X\027 (September 2011)\033[133X\033[101X", "9.4-2", [ 9, 4, 2 ], 
      1063, 319, "s_6 a\206\222 u_4 2 september 2011", "X82FB71647D37F4FD" ], 
  [ "\033[1X\033[33X\033[0;-2YFusions Determined Using Commutative Diagrams In\
volving Automorphic Extensions\033[133X\033[101X", "9.5", [ 9, 5, 0 ], 1135, 
      320, 
      "fusions determined using commutative diagrams involving automorphic ext\
ensions", "X7CFBC41B818A318C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_3(8).3_1 \342\206\222 ^2E_6(2)\033[122X\
\033[101X\027\033[1X\027 (December 2010)\033[133X\033[101X", "9.5-1", 
      [ 9, 5, 1 ], 1139, 320, "u_3 8 .3_1 a\206\222 ^2e_6 2 december 2010", 
      "X7E91F8707BA93081" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_3(4).2_1 \342\206\222 U_6(2)\033[122X\\
033[101X\027\033[1X\027 (December 2010)\033[133X\033[101X", "9.5-2", 
      [ 9, 5, 2 ], 1238, 322, "l_3 4 .2_1 a\206\222 u_6 2 december 2010", 
      "X81B37EF378E89E00" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConditions Imposed by Brauer Tables\033[133X\033[\
101X", "9.6", [ 9, 6, 0 ], 1336, 324, "conditions imposed by brauer tables", 
      "X85E2A6F480026C95" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(16).4 \342\206\222 J_3.2\033[122X\\
033[101X\027\033[1X\027 (January\302\2402004)\033[133X\033[101X", "9.6-1", 
      [ 9, 6, 1 ], 1347, 324, "l_2 16 .4 a\206\222 j_3.2 januarya\2402004", 
      "X7ACC7F588213D5D5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(17) \342\206\222 S_8(2)\033[122X\033[\
101X\027\033[1X\027 (July 2004)\033[133X\033[101X", "9.6-2", [ 9, 6, 2 ], 
      1433, 325, "l_2 17 a\206\222 s_8 2 july 2004", "X7ACB86CB82ED49D1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(19) \342\206\222 J_3\033[122X\033[101\
X\027\033[1X\027 (April 2003)\033[133X\033[101X", "9.6-3", [ 9, 6, 3 ], 1459, 
      326, "l_2 19 a\206\222 j_3 april 2003", "X7DED4C437D479226" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFusions Determined by Information about the Group\
s\033[133X\033[101X", "9.7", [ 9, 7, 0 ], 1618, 328, 
      "fusions determined by information about the groups", 
      "X8225D9FA80A7D20F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_3(3).2 \342\206\222 Fi_24^'\033[122X\\
033[101X\027\033[1X\027 (November 2002)\033[133X\033[101X", "9.7-1", 
      [ 9, 7, 1 ], 1635, 329, "u_3 3 .2 a\206\222 fi_24^ november 2002", 
      "X7AE2962E82B4C814" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(13).2 \342\206\222 Fi_24^'\033[122X\\
033[101X\027\033[1X\027 (September 2002)\033[133X\033[101X", "9.7-2", 
      [ 9, 7, 2 ], 1748, 330, "l_2 13 .2 a\206\222 fi_24^ september 2002", 
      "X83061094871EE241" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XM_11 \342\206\222 B\033[122X\033[101X\\
027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-3", [ 9, 7, 3 ], 1834, 
      332, "m_11 a\206\222 b april 2009", "X7E9C203C7C4D709D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(11):2 \342\206\222 B\033[122X\033[101\
X\027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-4", [ 9, 7, 4 ], 1892, 
      333, "l_2 11 :2 a\206\222 b april 2009", "X85821D748716DC7E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_3(3) \342\206\222 B\033[122X\033[101X\\
027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-5", [ 9, 7, 5 ], 1939, 
      334, "l_3 3 a\206\222 b april 2009", "X828D81487F57D612" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(17).2 \342\206\222 B\033[122X\033[101\
X\027\033[1X\027 (March 2004)\033[133X\033[101X", "9.7-6", [ 9, 7, 6 ], 1995, 
      334, "l_2 17 .2 a\206\222 b march 2004", "X7B4E13337D66020F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(49).2_3 \342\206\222 B\033[122X\033[1\
01X\027\033[1X\027 (June 2006)\033[133X\033[101X", "9.7-7", [ 9, 7, 7 ], 
      2032, 335, "l_2 49 .2_3 a\206\222 b june 2006", "X8528432A84851F7B" ], 
  [ "\033[1X\033[33X\033[0;-2Y\033[22X2^3.L_3(2) \342\206\222 G_2(5)\033[122X\
\033[101X\027\033[1X\027 (January\302\2402004)\033[133X\033[101X", "9.7-8", 
      [ 9, 7, 8 ], 2172, 337, "2^3.l_3 2 a\206\222 g_2 5 januarya\2402004", 
      "X7EAD52AA7A28D956" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X5^{1+4}.2^{1+4}.A_5.4 \342\206\222 B\033[\
122X\033[101X\027\033[1X\027 (April 2009)\033[133X\033[101X", "9.7-9", 
      [ 9, 7, 9 ], 2216, 338, "5^{1+4}.2^{1+4}.a_5.4 a\206\222 b april 2009", 
      "X79617107849A6CEA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe fusion from the character table of \033[22X7^\
2:2L_2(7).2\033[122X\033[101X\027\033[1X\027 into the table of marks (January\
\302\2402004)\033[133X\033[101X", "9.7-10", [ 9, 7, 10 ], 2269, 339, 
      "the fusion from the character table of 7^2:2l_2 7 .2 into the table of \
marks januarya\2402004", "X85C48EEB7B711C09" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X3 \303\227 U_4(2) \342\206\222 3_1.U_4(3)\
\033[122X\033[101X\027\033[1X\027 (March 2010)\033[133X\033[101X", "9.7-11", 
      [ 9, 7, 11 ], 2429, 342, "3 a\227 u_4 2 a\206\222 3_1.u_4 3 march 2010",
      "X7B1C689C7EFD07CB" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X2.3^4.2^3.S_4 \342\206\222 2.A12\033[122X\
\033[101X\027\033[1X\027 (September 2011)\033[133X\033[101X", "9.7-12", 
      [ 9, 7, 12 ], 2589, 344, "2.3^4.2^3.s_4 a\206\222 2.a12 september 2011",
      "X7A94F78C792122D5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X127:7 \342\206\222 L_7(2)\033[122X\033[10\
1X\027\033[1X\027 (January 2012)\033[133X\033[101X", "9.7-13", [ 9, 7, 13 ], 
      2700, 346, "127:7 a\206\222 l_7 2 january 2012", "X7E2AF30C7E8F89F9" ], 
  [ "\033[1X\033[33X\033[0;-2Y\033[22XL_2(59) \342\206\222 M\033[122X\033[101X\
\027\033[1X\027 (May 2009)\033[133X\033[101X", "9.7-14", [ 9, 7, 14 ], 2755, 
      347, "l_2 59 a\206\222 m may 2009", "X7E7B2AD67ACD27AE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(71) \342\206\222 M\033[122X\033[101X\\
027\033[1X\027 (May 2009)\033[133X\033[101X", "9.7-15", [ 9, 7, 15 ], 2813, 
      348, "l_2 71 a\206\222 m may 2009", "X8409DA2E83A41ABE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_2(41) \342\206\222 M\033[122X\033[101X\\
027\033[1X\027 (April 2012)\033[133X\033[101X", "9.7-16", [ 9, 7, 16 ], 2878, 
      349, "l_2 41 a\206\222 m april 2012", "X78B3B1BE7A2CA4D1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 compu\
tations needed in the proof of [DNT13, Theorem 6.1 (ii)]\033[133X\033[101X", 
      "10", [ 10, 0, 0 ], 1, 351, 
      "gap computations needed in the proof of [dnt13 theorem 6.1 ii ]", 
      "X831E9D0A7A2DBC72" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 Sz(8)\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^12\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.1", [ 10, 1, 0 ], 35, 351, "g/n a\211\205 sz 8 and n = 2^12",
      "X82BDD020860C6E95" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 M_22\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^10\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.2", [ 10, 2, 0 ], 161, 353, "g/n a\211\205 m_22 and n = 2^10"
        , "X7C01350E8217B0B1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 J_2\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^12\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.3", [ 10, 3, 0 ], 290, 356, "g/n a\211\205 j_2 and n = 2^12",
      "X7E356703856DF22E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 J_2\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 5^14\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.4", [ 10, 4, 0 ], 396, 357, "g/n a\211\205 j_2 and n = 5^14",
      "X797E2EDB78F05F6E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 J_2\033[122X\033[101X\\
027\033[1X\027 and \033[22X|N| = 2^28\033[122X\033[101X\027\033[1X\027\033[133\
X\033[101X", "10.5", [ 10, 5, 0 ], 543, 360, "g/n a\211\205 j_2 and n = 2^28",
      "X828AECAE82B0CEB6" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 ^3D_4(2)\033[122X\033[10\
1X\027\033[1X\027 and \033[22X|N| = 2^26\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "10.6", [ 10, 6, 0 ], 616, 361, 
      "g/n a\211\205 ^3d_4 2 and n = 2^26", "X81AB173981E3EED7" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XG/N \342\211\205 ^3D_4(2)\033[122X\033[10\
1X\027\033[1X\027 and \033[22X|N| = 3^25\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "10.7", [ 10, 7, 0 ], 748, 364, 
      "g/n a\211\205 ^3d_4 2 and n = 3^25", "X83B044547B96B7A5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Compu\
tations Concerning Probabilistic Generation of Finite Simple Groups\033[133X\
\033[101X", "11", [ 11, 0, 0 ], 1, 365, 
      "gap computations concerning probabilistic generation of finite simple g\
roups", "X7BE9906583D0FCEC" ], 
  [ "\033[1X\033[33X\033[0;-2YOverview\033[133X\033[101X", "11.1", 
      [ 11, 1, 0 ], 38, 365, "overview", "X8389AD927B74BA4A" ], 
  [ "\033[1X\033[33X\033[0;-2YPrerequisites\033[133X\033[101X", "11.2", 
      [ 11, 2, 0 ], 199, 369, "prerequisites", "X7B4649CF7B7CFAA1" ], 
  [ "\033[1X\033[33X\033[0;-2YTheoretical Background\033[133X\033[101X", 
      "11.2-1", [ 11, 2, 1 ], 202, 369, "theoretical background", 
      "X7B6AEBDF7B857E2E" ], 
  [ "\033[1X\033[33X\033[0;-2YComputational Criteria\033[133X\033[101X", 
      "11.2-2", [ 11, 2, 2 ], 305, 370, "computational criteria", 
      "X79D7312484E78274" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[5XGAP\033[105X\033[101X\027\033[1X\027 Funct\
ions for the Computations\033[133X\033[101X", "11.3", [ 11, 3, 0 ], 339, 371, 
      "gap functions for the computations", "X7B56BE5384BAD54E" ], 
  [ "\033[1X\033[33X\033[0;-2YGeneral Utilities\033[133X\033[101X", "11.3-1", 
      [ 11, 3, 1 ], 356, 371, "general utilities", "X806328747D1D4ECC" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter-Theoretic Computations\033[133X\033[101\
X", "11.3-2", [ 11, 3, 2 ], 499, 373, "character-theoretic computations", 
      "X7A221012861440E2" ], 
  [ "\033[1X\033[33X\033[0;-2YComputations with Groups\033[133X\033[101X", 
      "11.3-3", [ 11, 3, 3 ], 770, 378, "computations with groups", 
      "X83DACCF07EF62FAE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCharacter-Theoretic Computations\033[133X\033[101\
X", "11.4", [ 11, 4, 0 ], 1224, 386, "character-theoretic computations", 
      "X7A221012861440E2" ], 
  [ "\033[1X\033[33X\033[0;-2YSporadic Simple Groups\033[133X\033[101X", 
      "11.4-1", [ 11, 4, 1 ], 1240, 386, "sporadic simple groups", 
      "X86CE51E180A3D4ED" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAutomorphism Groups of Sporadic Simple Groups\\
033[133X\033[101X", "11.4-2", [ 11, 4, 2 ], 1387, 388, 
      "automorphism groups of sporadic simple groups", "X84E9D10F80A74A53" ], 
  [ "\033[1X\033[33X\033[0;-2YOther Simple Groups \342\200\223 Easy Cases\033[\
133X\033[101X", "11.4-3", [ 11, 4, 3 ], 1790, 395, 
      "other simple groups a\200\223 easy cases", "X80DA58F187CDCF5F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAutomorphism Groups of other Simple Groups \342\\
200\223 Easy Cases\033[133X\033[101X", "11.4-4", [ 11, 4, 4 ], 1985, 399, 
      "automorphism groups of other simple groups a\200\223 easy cases", 
      "X7B1E26D586337487" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_8^-(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-5", [ 11, 4, 5 ], 2172, 402, "o_8^- 3", 
      "X78B856907ED13545" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_10^+(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-6", [ 11, 4, 6 ], 2194, 402, "o_10^+ 2", 
      "X84AB334886DCA746" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_10^-(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-7", [ 11, 4, 7 ], 2248, 403, "o_10^- 2", 
      "X84E3E4837BB93977" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_12^+(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-8", [ 11, 4, 8 ], 2311, 404, "o_12^+ 2", 
      "X8307367E7C7C3BCE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_12^-(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.4-9", [ 11, 4, 9 ], 2437, 406, "o_12^- 2", 
      "X834FE1B58119A5FF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XS_6(4)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-10", [ 11, 4, 10 ], 2502, 407, "s_6 4", 
      "X7C5980A385C088FA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XS_6(5)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X"
        , "11.4-11", [ 11, 4, 11 ], 2633, 409, "a\210\227a\240s_6 5", 
      "X829EDF7F7C0BCB8E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XS_8(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-12", [ 11, 4, 12 ], 2682, 410, "s_8 3", 
      "X85162B297E4B67EB" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_4(4)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-13", [ 11, 4, 13 ], 2735, 411, "u_4 4", 
      "X8495C2BF7B6EFFEF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_6(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.4-14", [ 11, 4, 14 ], 2785, 411, "u_6 2", 
      "X7A3BB5AA83A2BDF3" ], 
  [ "\033[1X\033[33X\033[0;-2YComputations using Groups\033[133X\033[101X", 
      "11.5", [ 11, 5, 0 ], 2886, 413, "computations using groups", 
      "X8237B8617D6F6027" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XA_2m+1\033[122X\033[101X\027\033[1X\027, \
\033[22X2 \342\211\244 m \342\211\244 11\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-1", [ 11, 5, 1 ], 2895, 413, 
      "a_2m+1 2 a\211\244 m a\211\244 11", "X815320787B601000" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XA_5\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-2", [ 11, 5, 2 ], 2990, 415, "a_5", "X7B5321337B28100B" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XA_6\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-3", [ 11, 5, 3 ], 3069, 416, "a_6", "X82C3B4287B0C7BEE" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XA_7\033[122X\033[101X\027\033[1X\027\033[\
133X\033[101X", "11.5-4", [ 11, 5, 4 ], 3300, 420, "a_7", "X85B3C7217B105D4D" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_d(q)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-5", [ 11, 5, 5 ], 3501, 423, "l_d q", 
      "X84EA645A82E2BAFB" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XL_d(q)\033[122X\033[101X\027\033[1X\027 with prime \033[22\
Xd\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "11.5-6", 
      [ 11, 5, 6 ], 3641, 425, "a\210\227a\240l_d q with prime d", 
      "X855460BE787188B9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAutomorphic Extensions of \033[22XL_d(q)\033[122X\
\033[101X\027\033[1X\027\033[133X\033[101X", "11.5-7", [ 11, 5, 7 ], 3732, 
      427, "automorphic extensions of l_d q", "X7EA88CEF81962F3F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XL_3(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-8", [ 11, 5, 8 ], 4157, 434, "l_3 2", 
      "X7C8806DB8588BB51" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XM_11\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-9", [ 11, 5, 9 ], 4346, 437, "m_11", 
      "X7B7061917ED3714D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XM_12\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-10", [ 11, 5, 10 ], 4490, 439, "m_12", 
      "X82E0F48A7FF82BB3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_7(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-11", [ 11, 5, 11 ], 4603, 441, "o_7 3", 
      "X7FF2E8F27FBEB65C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_8^+(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-12", [ 11, 5, 12 ], 4916, 446, "o_8^+ 2", 
      "X7F80F2527C424AA4" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_8^+(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-13", [ 11, 5, 13 ], 5278, 452, "o_8^+ 3", 
      "X78F0815B86253A1F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO^+_8(4)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-14", [ 11, 5, 14 ], 6091, 465, "o^+_8 4", 
      "X85BACC4A83F73392" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XO_9(3)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X"
        , "11.5-15", [ 11, 5, 15 ], 6300, 468, "a\210\227a\240o_9 3", 
      "X86EC26F78609618E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_10^-(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-16", [ 11, 5, 16 ], 6417, 470, "o_10^- 3", 
      "X8393978A8773997E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_14^-(2)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-17", [ 11, 5, 17 ], 6550, 472, "o_14^- 2", 
      "X7BBBEEEF834F1002" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XO_12^+(3)\033[122X\033[101X\027\033[1X\\
027\033[133X\033[101X", "11.5-18", [ 11, 5, 18 ], 6651, 474, "o_12^+ 3", 
      "X8477457780B69BC7" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XS_4(8)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X"
        , "11.5-19", [ 11, 5, 19 ], 6784, 476, "a\210\227a\240s_4 8", 
      "X854D85F287767342" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XS_6(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-20", [ 11, 5, 20 ], 6895, 478, "s_6 2", 
      "X82CFBAF07D3487A0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XS_8(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-21", [ 11, 5, 21 ], 7083, 481, "s_8 2", 
      "X826658207D9D6570" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22X\342\210\227\033[122X\033[101X\027\033[1X\
\027\302\240\033[22XS_10(2)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X\
", "11.5-22", [ 11, 5, 22 ], 7165, 482, "a\210\227a\240s_10 2", 
      "X82A6496887F80843" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_4(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-23", [ 11, 5, 23 ], 7228, 483, "u_4 2", 
      "X7A03F8EC839AF0B5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_4(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-24", [ 11, 5, 24 ], 7411, 486, "u_4 3", 
      "X7D738BE5804CF22E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_6(3)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-25", [ 11, 5, 25 ], 7588, 489, "u_6 3", 
      "X7D4BC6A38074BF68" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y\033[22XU_8(2)\033[122X\033[101X\027\033[1X\027\\
033[133X\033[101X", "11.5-26", [ 11, 5, 26 ], 7643, 490, "u_8 2", 
      "X7A92577A830B5F23" ], 
  [ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 492, "bibliography", 
      "X7A6F98FD85F02BFE" ], 
  [ "References", "bib", [ "Bib", 0, 0 ], 1, 492, "references", 
      "X7A6F98FD85F02BFE" ], 
  [ "Index", "ind", [ "Ind", 0, 0 ], 1, 497, "index", "X83A0356F839C696F" ], 
  [ "CTblLibXpls", "0.0", [ 0, 0, 0 ], 1, 1, "ctbllibxpls", 
      "X7D2C85EC87DD46E5" ] ]
);