1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400
|
<!-- remarks/questions:
- PositionsProperty is meanwhile available in GAP, can be omitted
- is the file tst/probgen.g up to date?
-->
<!-- %W probgen.xml GAP 4 package CTblLib Thomas Breuer -->
<Chapter Label="chap:probgen">
<Heading>&GAP; Computations Concerning Probabilistic Generation of Finite
Simple Groups</Heading>
Date: March 28th, 2012
<P/>
This is a collection of examples showing how
the &GAP; system <Cite Key="GAP"/>
can be used to compute information about the probabilistic generation of
finite almost simple groups.
It includes all examples that were needed for the computational results
in <Cite Key="BGK"/>.
<P/>
The purpose of this writeup is twofold.
On the one hand, the computations are documented this way.
On the other hand, the &GAP; code shown for the examples can be used as
test input for automatic checking of the data and the functions used.
<P/>
A first version of this document, which was based on &GAP; 4.4.10,
had been accessible in the web since April 2006
and is available in the arXiv (no. 0710.3267) since October 2007.
<!-- cite as http://arxiv.org/abs/0710.3267v1 -->
The differences between that document and the current version are as follows.
<List>
<Item>
The format of the &GAP; output was adjusted to the changed behaviour
of &GAP; until version 4.10.
This affects mainly the way how &GAP; records are printed.
</Item>
<Item>
Several computations are now easier because more character tables of
almost simple groups and maximal subgroups of such groups are available
in the &GAP; Character Table Library.
(The more involved computations from the original version have been kept
in the file.)
</Item>
<Item>
The computation of all conjugacy classes of a subgroup of
<M>&POmega;^+(12,3)</M>
has been replaced by the computation of the conjugacy classes of elements
of prime order in this subgroup.
</Item>
<Item>
The irreducible element chosen in the simple group <M>&POmega;^-(10,3)</M> has
order <M>61</M> not <M>122</M>.
</Item>
</List>
<!-- can I insert a table of contents here? -->
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:probgen_overview">
<Heading>Overview</Heading>
The main purpose of this note is to document the &GAP; computations
that were carried out in order to obtain the computational results
in <Cite Key="BGK"/>.
Table I lists the simple groups among these examples.
The first column gives the group names,
the second and third columns contain a plus sign <M>+</M> or a minus sign
<M>-</M>, depending on whether the quantities
<M>&total;(G,s)</M> and <M>∝(G,s)</M>, respectively,
are less than <M>1/3</M>.
The fourth column lists the orders of elements <M>s</M> which either prove
the <M>+</M> signs or cover most of the cases for proving these signs.
The fifth column lists the sections in this note where the example is
treated.
The rows of the table are ordered alphabetically w.r.t. the group names.
<P/>
In order to keep this note self-contained,
we first describe the theory needed,
in Section <Ref Sect="sect:probgen-background"/>.
The translation of the relevant formulae into &GAP; functions
can be found in Section <Ref Sect="sect:probgen-functions"/>.
Then Section <Ref Sect="sect:chartheor"/> describes the computations
that only require (ordinary) character tables in the
&GAP; Character Table Library <Cite Key="CTblLib"/>.
Computations using also the groups are shown in
Section <Ref Sect="sect:hard"/>.
In each of the last two sections, the examples are ordered alphabetically
w.r.t. the names of the simple groups.
<P/>
<Table Align="|l|c|c|r|r|">
<Caption>Table I: Computations needed in <Cite Key="BGK"/></Caption>
<HorLine/>
<Row>
<Item><M>G</M></Item>
<Item><M>&total; < \frac{1}{3}</M></Item>
<Item><M>∝ < \frac{1}{3}</M></Item>
<Item><M>|s|</M></Item>
<Item>see</Item>
</Row>
<HorLine/>
<HorLine/>
<Row>
<Item><M>A_5</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>5</M></Item>
<Item><Ref Subsect="A5"/></Item>
</Row>
<Row>
<Item><M>A_6</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>4</M></Item>
<Item><Ref Subsect="A6"/></Item>
</Row>
<Row>
<Item><M>A_7</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>7</M></Item>
<Item><Ref Subsect="A7"/></Item>
</Row>
<Row>
<Item><M>A_8</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>15</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>A_9</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>9</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>A_{11}</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>11</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>A_{13}</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>13</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>A_{15}</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>15</M></Item>
<Item><Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>A_{17}</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>17</M></Item>
<Item><Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>A_{19}</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>19</M></Item>
<Item><Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>A_{21}</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>21</M></Item>
<Item><Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>A_{23}</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>23</M></Item>
<Item><Ref Subsect="Aodd"/></Item>
</Row>
<Row>
<Item><M>L_3(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>7</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="easyloopaut"/>,</Item>
</Row>
<Row>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item><Ref Subsect="SL"/>, <Ref Subsect="L32"/></Item>
</Row>
<Row>
<Item><M>L_3(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>13</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="easyloopaut"/>,</Item>
</Row>
<Row>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_3(4)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>7</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="easyloopaut"/></Item>
</Row>
<Row>
<Item><M>L_4(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>20</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_4(4)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>85</M></Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_6(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>63</M></Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_6(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>182</M></Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_6(4)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>455</M></Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_6(5)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>1953</M></Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_8(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>255</M></Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<Row>
<Item><M>L_{10}(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>1023</M></Item>
<Item><Ref Subsect="SL"/></Item>
</Row>
<HorLine/>
<Row>
<Item><M>M_{11}</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>11</M></Item>
<Item><Ref Subsect="spreadM11"/></Item>
</Row>
<Row>
<Item><M>M_{12}</M></Item>
<Item><M>-</M></Item>
<Item><M>+</M></Item>
<Item><M>10</M></Item>
<Item><Ref Subsect="probgen:sporaut"/>, <Ref Subsect="spreadM12"/></Item>
</Row>
<HorLine/>
<Row>
<Item><M>O^+_8(2)</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>15</M></Item>
<Item><Ref Subsect="O8p2"/></Item>
</Row>
<Row>
<Item><M>O^+_8(3)</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>20</M></Item>
<Item><Ref Subsect="O8p3"/></Item>
</Row>
<Row>
<Item><M>O^+_8(4)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>65</M></Item>
<Item><Ref Subsect="O8p4"/></Item>
</Row>
<Row>
<Item><M>O^+_{10}(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>45</M></Item>
<Item><Ref Subsect="O10p2"/></Item>
</Row>
<Row>
<Item><M>O^+_{12}(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>85</M></Item>
<Item><Ref Subsect="O12p2"/></Item>
</Row>
<Row>
<Item><M>O^+_{12}(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>205</M></Item>
<Item><Ref Subsect="O12p3"/></Item>
</Row>
<Row>
<Item><M>O^-_8(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>17</M></Item>
<Item><Ref Subsect="easyloop"/></Item>
</Row>
<Row>
<Item><M>O^-_8(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>41</M></Item>
<Item><Ref Subsect="O8m3"/></Item>
</Row>
<Row>
<Item><M>O^-_{10}(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>33</M></Item>
<Item><Ref Subsect="O10m2"/></Item>
</Row>
<Row>
<Item><M>O^-_{10}(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>122</M></Item>
<Item><Ref Subsect="O10m3"/></Item>
</Row>
<Row>
<Item><M>O^-_{12}(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>65</M></Item>
<Item><Ref Subsect="O12m2"/></Item>
</Row>
<Row>
<Item><M>O^-_{14}(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>129</M></Item>
<Item><Ref Subsect="O14m2"/></Item>
</Row>
<Row>
<Item><M>O_7(3)</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>14</M></Item>
<Item><Ref Subsect="O73"/></Item>
</Row>
<HorLine/>
<Row>
<Item><M>S_4(4)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>17</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="easyloopaut"/></Item>
</Row>
<Row>
<Item><M>S_6(2)</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>9</M></Item>
<Item><Ref Subsect="S62"/></Item>
</Row>
<Row>
<Item><M>S_6(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>14</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="easyloopaut"/></Item>
</Row>
<Row>
<Item><M>S_6(4)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>65</M></Item>
<Item><Ref Subsect="S64"/></Item>
</Row>
<Row>
<Item><M>S_8(2)</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>17</M></Item>
<Item><Ref Subsect="S82"/></Item>
</Row>
<Row>
<Item><M>S_8(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>41</M></Item>
<Item><Ref Subsect="S83"/></Item>
</Row>
<HorLine/>
<Row>
<Item><M>U_3(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>6</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="easyloopaut"/></Item>
</Row>
<Row>
<Item><M>U_3(5)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>10</M></Item>
<Item><Ref Subsect="easyloop"/>, <Ref Subsect="easyloopaut"/></Item>
</Row>
<Row>
<Item><M>U_4(2)</M></Item>
<Item><M>-</M></Item>
<Item><M>-</M></Item>
<Item><M>9</M></Item>
<Item><Ref Subsect="U42"/></Item>
</Row>
<Row>
<Item><M>U_4(3)</M></Item>
<Item><M>-</M></Item>
<Item><M>+</M></Item>
<Item><M>7</M></Item>
<Item><Ref Subsect="U43"/></Item>
</Row>
<Row>
<Item><M>U_4(4)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>65</M></Item>
<Item><Ref Subsect="U44"/></Item>
</Row>
<Row>
<Item><M>U_5(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>11</M></Item>
<Item><Ref Subsect="easyloop"/></Item>
</Row>
<Row>
<Item><M>U_6(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>11</M></Item>
<Item><Ref Subsect="U62"/></Item>
</Row>
<Row>
<Item><M>U_6(3)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>122</M></Item>
<Item><Ref Subsect="U63"/></Item>
</Row>
<Row>
<Item><M>U_8(2)</M></Item>
<Item><M>+</M></Item>
<Item> </Item>
<Item><M>129</M></Item>
<Item><Ref Subsect="U82"/></Item>
</Row>
<HorLine/>
</Table>
<P/>
Contrary to <Cite Key="BGK"/>,
&ATLAS; notation is used throughout this note,
because the identifiers used for character tables in the
&GAP; Character Table Library follow mainly the
&ATLAS; <Cite Key="CCN85"/>.
For example, we write
<M>L_d(q)</M> for <M>&PSL;(d,q)</M>,
<M>S_d(q)</M> for <M>&PSp;(d,q)</M>,
<M>U_d(q)</M> for <M>&PSU;(d,q)</M>, and
<M>O^+_{2d}(q)</M>, <M>O^-_{2d}(q)</M>, <M>O_{2d+1}(q)</M> for
<M>&POmega;^+(2d,q)</M>, <M>&POmega;^-(2d,q)</M>, <M>&POmega;(2d+1,q)</M>,
respectively.
<P/>
Furthermore, in the case of classical groups,
the character tables of the (almost) <E>simple</E> groups
are considered
not the tables of the matrix groups (which are in fact often not available
in the &GAP; Character Table Library).
Consequently, also element orders and the description of maximal subgroups
refer to the (almost) simple groups not to the matrix groups.
<P/>
This note contains also several examples that are not needed for the proofs
in <Cite Key="BGK"/>.
Besides several small simple groups <M>G</M> whose character table
is contained in the &GAP; Character Table Library
and for which enough information is available for computing <M>&total;(G)</M>,
in Section <Ref Subsect="easyloop"/>,
a few such examples appear in individual sections.
In the table of contents, the section headers of the latter kind of examples
are marked with an asterisk <M>(\ast)</M>.
<P/>
The examples use the &GAP; Character Table Library,
the &GAP; Library of Tables of Marks,
<!-- %T TODO: cite the package! -->
and the &GAP; interface <Cite Key="AtlasRep"/> to the
&ATLAS; of Group Representations <Cite Key="AGRv3"/>,
so we first load these three packages in the required versions.
The &GAP; output was adjusted to the versions shown below;
in older versions, features necessary for the computations may be missing,
and it may happen that with newer versions, the behaviour is different.
<P/>
<Example><![CDATA[
gap> CompareVersionNumbers( GAPInfo.Version, "4.5.0" );
true
gap> LoadPackage( "ctbllib", "1.2", false );
true
gap> LoadPackage( "tomlib", "1.2", false );
true
gap> LoadPackage( "atlasrep", "1.5", false );
true
]]></Example>
<P/>
Some of the computations in Section <Ref Sect="sect:hard"/>
require about <M>800</M> MB of space (on <M>32</M> bit machines).
Therefore we check whether &GAP; was started with sufficient maximal
memory; the command line option for this is <C>-o 800m</C>.
<P/>
<Example><![CDATA[
gap> max:= GAPInfo.CommandLineOptions.o;;
gap> if not ( ( IsSubset( max, "m" ) and
> Int( Filtered( max, IsDigitChar ) ) >= 800 ) or
> ( IsSubset( max, "g" ) and
> Int( Filtered( max, IsDigitChar ) ) >= 1 ) ) then
> Print( "the maximal allowed memory might be too small\n" );
> fi;
]]></Example>
<P/>
Several computations involve calls to the &GAP; function
<Ref Func="Random" BookName="ref"/>.
In order to make the results of individual examples reproducible,
independent of the rest of the computations,
we reset the relevant random number generators
whenever this is appropriate.
For that, we store the initial states in the variable <C>staterandom</C>,
and provide a function for resetting the random number generators.
(The <Ref Func="Random" BookName="ref"/> calls in the &GAP; library
use the two random number generators
<Ref Var="GlobalRandomSource" BookName="ref"/> and
<Ref Var="GlobalMersenneTwister" BookName="ref"/>.)
<P/>
<Example><![CDATA[
gap> staterandom:= [ State( GlobalRandomSource ),
> State( GlobalMersenneTwister ) ];;
gap> ResetGlobalRandomNumberGenerators:= function()
> Reset( GlobalRandomSource, staterandom[1] );
> Reset( GlobalMersenneTwister, staterandom[2] );
> end;;
]]></Example>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:probgen-background">
<Heading>Prerequisites</Heading>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:Theoretical Background">
<Heading>Theoretical Background</Heading>
Let <M>G</M> be a finite group, <M>S</M> the socle of <M>G</M>,
and denote by <M>G^{\times}</M> the set of nonidentity elements in <M>G</M>.
For <M>s, g \in G^{\times}</M>, let
<M>∝( g, s ):=
|\{ h \in G; S \nsubseteq \langle s^h, g \rangle \}| / |G|</M>,
the proportion of elements in the class <M>s^G</M> which fail to generate
at least <M>S</M> with <M>g</M>;
we set <M>∝( G, s ):= \max\{ ∝( g, s ); g \in G^{\times} \}</M>.
We are interested in finding a class <M>s^G</M> of elements in <M>S</M>
such that <M>∝( G, s ) < 1/3</M> holds.
<P/>
First consider <M>g \in S</M>,
and let <M>&M;(S,s)</M> denote the set of those maximal subgroups of <M>S</M>
that contain <M>s</M>.
We have
<Display Mode="M">
|\{ h \in S; S \nsubseteq \langle s^h, g \rangle \}|
= |\{ h \in S; \langle s, h g h^{-1} \rangle ¬eq; S \}| \\
\leq \sum_{M \in &M;(S,s)} |\{ h \in S; h g h^{-1} \in M \}|
</Display>
Since <M>h g h^{-1} \in M</M> holds if and only if the coset <M>M h</M>
is fixed by <M>g</M> under the permutation action of <M>S</M>
on the right cosets of <M>M</M> in <M>S</M>,
we get that
<M>|\{ h \in S; h g h^{-1} \in M \}| = |C_S(g)| \cdot |g^S \cap M|
= |M| \cdot 1_M^S(g)</M>,
where <M>1_M^S</M> is the permutation character of this action,
of degree <M>|S|/|M|</M>.
Thus
<Display Mode="M">
|\{ h \in S; \langle s, h g h^{-1} \rangle ¬eq; S \}| / |S|
\leq \sum_{M \in &M;(S,s)} 1_M^S(g) / 1_M^S(1) .
</Display>
We abbreviate the right hand side of this inequality by <M>&total;( g, s )</M>,
set <M>&total;( S, s ):= \max\{ &total;( g, s ); g \in S^{\times} \}</M>,
and choose a transversal <M>T</M> of <M>S</M> in <M>G</M>.
Then <M>∝( g, s ) \leq |T|^{-1} \cdot \sum_{t \in T} &total;( g^t, s )</M>
and thus <M>∝( G, s ) \leq &total;( S, s )</M> holds.
<P/>
If <M>S = G</M> and if <M>&M;(G,s)</M> consists of a single maximal subgroup
<M>M</M> of <M>G</M> then equality holds,
i.e., <M>∝( g, s ) = &total;( g, s ) = 1_M^S(g) / 1_M^S(1)</M>.
<P/>
The quantity <M>1_M^S(g) / 1_M^S(1) = |g^S \cap M| / |g^S|</M>
is the proportion of fixed points of <M>g</M> in the permutation action
of <M>S</M> on the right cosets of its subgroup <M>M</M>.
This is called the <E>fixed point ratio</E> of <M>g</M>
w. r. t. <M>S/M</M>, and is denoted as <M>&fpr;(g,S/M)</M>.
<P/>
For a subgroup <M>M</M> of <M>S</M>,
the number <M>n</M> of <M>S</M>-conjugates of <M>M</M>
containing <M>s</M> is equal to <M>|M^S| \cdot |s^S \cap M| / |s^S|</M>.
To see this, consider the set <M>\{ (s^h, M^k); h, k \in S, s^h \in M^k \}</M>,
the cardinality of which can be counted either as
<M>|M^S| \cdot |s^S \cap M|</M> or as <M>|s^S| \cdot n</M>.
So we get <M>n = |M| \cdot 1_M^S(s) / |N_S(M)|</M>.
<P/>
If <M>S</M> is a finite <E>nonabelian simple</E> group
then each maximal subgroup in <M>S</M> is self-normalizing,
and we have <M>n = 1_M^S(s)</M> if <M>M</M> is maximal.
So we can replace the summation over <M>&M;(S,s)</M> by one over a set
<M>&MM;(S,s)</M> of representatives of conjugacy classes
of maximal subgroups of <M>S</M>,
and get that
<Display Mode="M">
&total;( g, s ) = \sum_{M \in &MM;(S,s)}
\frac{1_M^S(s) \cdot 1_M^S(g)}{1_M^S(1)}.
</Display>
Furthermore, we have <M>|&M;(S,s)| = \sum_{M \in &MM;(S,s)} 1_M^S(s)</M>.
<P/>
In the following, we will often deal with the quantities
<M>&total;(S):= \min\{ &total;( S, s ); s \in S^{\times} \}</M> and
<M>&sprtotal;(S):= \lceil 1 / &total;(S) - 1 \rceil</M>.
These values can be computed easily from the primitive
permutation characters of <M>S</M>.
<P/>
Analogously, we set
<M>∝(S):= \min \{ ∝( S, s ); s \in S^{\times} \}</M> and
<M>&sprbound;(S):= \lceil 1 / ∝(S) - 1 \rceil</M>.
Clearly we have <M>∝(S) \leq &total;(S)</M> and
<M>&sprbound;(S) \geq &sprtotal;(S)</M>.
<P/>
One interpretation of <M>&sprbound;(S)</M> is that if this value is
at least <M>k</M>
then it follows that for any <M>g_1, g_2, \ldots, g_k \in S^{\times}</M>,
there is some <M>s \in S</M> such that <M>S = \langle g_i, s \rangle</M>,
for <M>1 \leq i \leq k</M>.
In this case, <M>S</M> is said to have <E>spread</E> at least <M>k</M>.
(Note that the lower bound <M>&sprtotal;(S)</M> for <M>&sprbound;(S)</M>
can be computed from the list of primitive permutation characters of <M>S</M>.)
<P/>
Moreover, <M>&sprbound;(S) \geq k</M> implies that the element <M>s</M>
can be chosen uniformly from a fixed conjugacy class of <M>S</M>.
This is called <E>uniform spread</E> at least <M>k</M>
in <Cite Key="BGK"/>.
<P/>
It is proved in <Cite Key="GK"/> that all finite simple groups
have uniform spread at least <M>1</M>,
that is, for any element <M>x \in S^{\times}</M>,
there is an element <M>y</M> in a prescribed class of <M>S</M>
such that <M>G = \langle x, y \rangle</M> holds.
In <Cite Key="BGK" Where="Corollary 1.3"/>,
it is shown that all finite simple groups have uniform spread at least <M>2</M>,
and the finite simple groups with (uniform) spread exactly <M>2</M> are listed.
<P/>
Concerning the spread, it should be mentioned that the methods used here and
in <Cite Key="BGK"/> are nonconstructive in the sense that they cannot
be used for finding an element <M>s</M> that generates <M>G</M> together
with each of the <M>k</M> prescribed elements <M>g_1, g_2, \ldots, g_k</M>.
<P/>
Now consider <M>g \in G \setminus S</M>.
Since <M>∝( g^k, s ) \geq ∝( g, s )</M> for any positive integer
<M>k</M>,
we can assume that <M>g</M> has prime order <M>p</M>, say.
We set <M>H = \langle S, g \rangle \leq G</M>, with <M>[H:S] = p</M>,
choose a transversal <M>T</M> of <M>H</M> in <M>G</M>,
let <M>&M;^{\prime}(H,s):= &M;(H,s) \setminus \{ S \}</M>,
and let <M>&MM;^{\prime}(H,s)</M> denote a set of representatives of
<M>H</M>-conjugacy classes of these groups.
As above,
<!--
<Display Mode="M">
|\{ h \in H; S \nsubseteq \langle s^h, g \rangle \}| / |H|
= |\{ h \in H; \langle s^h, g \rangle ¬eq; H \}| / |H| \\
\leq \sum_{M \in &M;^{\prime}(H,s)}
|\{ h \in H; h g h^{-1} \in M \}| / |H| \\
= \sum_{M \in &M;^{\prime}(H,s)} 1_M^H(g) / 1_M^H(1) \\
= \sum_{M \in &MM;^{\prime}(H,s)} 1_M^H(g) \cdot 1_M^H(s) / 1_M^H(1)
</Display>
-->
<Table Align="rcl">
<Row>
<Item><M>|\{ h \in H; S \nsubseteq \langle s^h, g \rangle \}| / |H|</M></Item>
<Item><M>=</M></Item>
<Item><M>|\{ h \in H; \langle s^h, g \rangle ¬eq; H \}| / |H|</M></Item>
</Row>
<Row>
<Item> </Item>
<Item><M>\leq</M></Item>
<Item><M>\sum_{M \in &M;^{\prime}(H,s)}
|\{ h \in H; h g h^{-1} \in M \}| / |H|</M></Item>
</Row>
<Row>
<Item> </Item>
<Item><M>=</M></Item>
<Item><M>\sum_{M \in &M;^{\prime}(H,s)} 1_M^H(g) / 1_M^H(1)</M></Item>
</Row>
<Row>
<Item> </Item>
<Item><M>=</M></Item>
<Item><M>\sum_{M \in &MM;^{\prime}(H,s)} 1_M^H(g) \cdot 1_M^H(s) / 1_M^H(1)</M></Item>
</Row>
</Table>
(Note that no summand for <M>M = S</M> occurs,
so each group in <M>&MM;^{\prime}(H,s)</M> is self-normalizing.)
We abbreviate the right hand side by <M>&total;(H,g,s)</M>,
and set <M>&total;^{\prime}( H, s ) =
\max\{ &total;(H,g,s); g \in H \setminus S, |g| = [H:S] \}</M>.
Then we get
<M>∝( g, s ) \leq |T|^{-1} \cdot \sum_{t \in T} &total;(H^t,g^t,s)</M>
and thus
<Display Mode="M">
∝( G, s ) \leq \max\{ ∝( S, s ),
\max\{ &total;^{\prime}( H, s );
S \leq H \leq G, [H:S] \textrm{\ prime} \} \} .
</Display>
For convenience, we set
<M>∝^{\prime}(G,s) = \max\{ ∝(g,s); g \in G \setminus S \}</M>.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="sect:probgen-criteria">
<Heading>Computational Criteria</Heading>
The following criteria will be used when we have to show
the existence or nonexistence of <M>x_1, x_2, \ldots, x_k</M>,
and <M>s \in G</M> with the property
<M>\langle x_i, s \rangle = G</M> for <M>1 \leq i \leq k</M>.
Note that manipulating lists of integers (representing fixed or moved points)
is much more efficient than testing whether certain permutations generate
a given group.
<P/>
Lemma:
<P/>
Let <M>G</M> be a finite group, <M>s \in G^{\times}</M>,
and <M>X = \bigcup_{M \in &M;(G,s)} G/M</M>.
For <M>x_1, x_2, \ldots, x_k \in G</M>,
the conjugate <M>s^{\prime}</M> of <M>s</M> satisfies
<M>\langle x_i, s^{\prime} \rangle = G</M> for <M>1 \leq i \leq k</M>
if and only if
<M>&Fix;_{X}(s^{\prime}) \cap \bigcup_{i=1}^k &Fix;_{X}(x_i) = \emptyset</M>
holds.
<P/>
<E>Proof.</E>
If <M>s^g \in U \leq G</M> for some <M>g \in G</M> then
<M>&Fix;_{X}(U) = \emptyset</M> if and only if <M>U = G</M> holds;
note that <M>&Fix;_{X}(G) = \emptyset</M>,
and <M>&Fix;_{X}(U) = \emptyset</M> implies that <M>U \nsubseteq h^{-1} M h</M>
holds for all <M>h \in G</M> and <M>M \in &M;(G,s)</M>, thus <M>U = G</M>.
Applied to <M>U = \langle x_i, s^{\prime} \rangle</M>,
we get <M>\langle x_i, s^{\prime} \rangle = G</M> if and only if
<M>&Fix;_{X}(s^{\prime}) \cap &Fix;_{X}(x_i) = &Fix;_{X}(U) = \emptyset</M>.
<!-- % weaken this? -->
<!-- % one direction without X being the union of all perm. repr. including s? -->
<P/>
Corollary 1:
<P/>
If <M>&M;(G,s) = \{ M \}</M> in the situation of the above Lemma
then there is a conjugate <M>s^{\prime}</M> of <M>s</M> that satisfies
<M>\langle x_i, s^{\prime} \rangle = G</M> for <M>1 \leq i \leq k</M>
if and only if
<M>\bigcup_{i=1}^k &Fix;_{X}(x_i) ¬eq; X</M>.
<P/>
Corollary 2:
<P/>
Let <M>G</M> be a finite simple group
and let <M>X</M> be a <M>G</M>-set such that each <M>g \in G</M> fixes at least one
point in <M>X</M> but that <M>&Fix;_{X}(G) = \emptyset</M> holds.
If <M>x_1, x_2, \ldots x_k</M> are elements in <M>G</M> such that
<M>\bigcup_{i=1}^k &Fix;_{X}(x_i) = X</M> holds
then for each <M>s \in G</M> there is at least one <M>i</M> with
<M>\langle x_i, s \rangle ¬eq; G</M>.
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:probgen-functions">
<Heading>&GAP; Functions for the Computations</Heading>
After the introduction of general utilities in
Section <Ref Subsect="subsect:utils"/>,
we distinguish two different tasks.
Section <Ref Subsect="subsect:probgen-ctfun"/> introduces functions
that will be used
in the following to compute <M>&total;(g,s)</M> with character-theoretic methods.
Functions for computing <M>∝(g,s)</M> or an upper bound for this value
will be introduced in Section <Ref Subsect="subsect:groups"/>.
<P/>
The &GAP; functions shown in this section
are collected in the file <F>tst/probgen.g</F> that is
distributed with the &GAP; Character Table Library,
see <URL>http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib</URL>.
<P/>
The functions have been designed for the examples in the later sections,
they could be generalized and optimized for other examples.
It is not our aim to provide a package for this functionality.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:utils">
<Heading>General Utilities</Heading>
Let <C>list</C> be a dense list and <C>prop</C> be a unary function that returns
<K>true</K> or <K>false</K> when applied to the entries of <C>list</C>.
<C>PositionsProperty</C> returns the set of positions in <C>list</C> for which
<K>true</K> is returned.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#A PositionsProperty( <list>, <prop> )
##
## Let <list> be a dense list and <prop> be a unary function that returns
## `true' or `false' when applied to the entries of <list>.
## `PositionsProperty' returns the set of positions in <list> for which
## `true' is returned.
##
]]></Ignore>
<Example><![CDATA[
gap> if not IsBound( PositionsProperty ) then
> PositionsProperty:= function( list, prop )
> return Filtered( [ 1 .. Length( list ) ], i -> prop( list[i] ) );
> end;
> fi;
]]></Example>
<P/>
<!--
Let <C>list</C> be a dense list and <C>k</C> be a nonnegative integer.
<C>UnorderedTuplesNoSort</C> returns a list of all unordered <C>k</C>-tuples
with repetitions of elements in <C>list</C>.
The only difference to the &GAP; library function <C>UnorderedTuples</C> is
that the entries in the result of <C>UnorderedTuplesNoSort</C> need not be
sorted.
This is advantageous when the comparison of elements in <C>list</C> is
expensive, e. g., when these elements are conjugacy classes in a group.
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#A UnorderedTuplesNoSort( <list>, <k> )
##
## Let <list> be a dense list and <k> be a nonnegative integer.
## `UnorderedTuplesNoSort' returns a list of all unordered <k>-tuples with
## repetitions of elements in <list>.
## The only difference to the GAP library function `UnorderedTuples' is
## that the entries in the result of `UnorderedTuplesNoSort' need not be
## sorted.
## This is advantageous when the comparison of elements in <list> is
## expensive, e.~g., when these elements are conjugacy classes in a group.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "UnorderedTuplesNoSort", function( list, k )
> return List( UnorderedTuples( [ 1 .. Length( list ) ], k ),
> tuple -> list{ tuple } );
> end );
]]></Example>
-->
The following two functions implement loops over ordered triples
(and quadruples, respectively) in a Cartesian product.
A prescribed function <C>prop</C> is subsequently applied to the triples
(quadruples),
and if the result of this call is <K>true</K> then this triple (quadruple)
is returned immediately;
if none of the calls to <C>prop</C> yields <K>true</K> then <K>fail</K>
is returned.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F TripleWithProperty( <threelists>, <prop> )
#F QuadrupleWithProperty( <fourlists>, <prop> )
##
## Let <threelists> be a list of three lists $l_1, l_2, l_3$,
## and <prop> be a unary function that takes a triple $[ x_1, x_2, x_3 ]$
## with $x_i \in l_i$ as its argument and returns either `true' or `false'.
## `TripleWithProperty' returns a triple for which `prop' returns `true'
## if such a triple exists, and `fail' otherwise.
##
## Analogously, the first argument of `QuadrupleWithProperty' is a list
## <fourlists> of four lists, and the second argument <prop> takes a
## quadruple as its argument.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "TripleWithProperty", function( threelists, prop )
> local i, j, k, test;
>
> for i in threelists[1] do
> for j in threelists[2] do
> for k in threelists[3] do
> test:= [ i, j, k ];
> if prop( test ) then
> return test;
> fi;
> od;
> od;
> od;
>
> return fail;
> end );
gap> BindGlobal( "QuadrupleWithProperty", function( fourlists, prop )
> local i, j, k, l, test;
>
> for i in fourlists[1] do
> for j in fourlists[2] do
> for k in fourlists[3] do
> for l in fourlists[4] do
> test:= [ i, j, k, l ];
> if prop( test ) then
> return test;
> fi;
> od;
> od;
> od;
> od;
>
> return fail;
> end );
]]></Example>
<P/>
Of course one could do better by considering <E>un</E>ordered <M>n</M>-tuples
when several of the argument lists are equal,
and in practice, backtrack searches would often allow one to prune parts
of the search tree in early stages.
However, the above loops are not time critical in the examples presented
here, so the possible improvements are not worth the effort for our
purposes.
<P/>
The function <C>PrintFormattedArray</C> prints the matrix <C>array</C>
in a columnwise formatted way.
(The only diference to the &GAP; library function
<Ref Func="PrintArray" BookName="ref"/> is that
<C>PrintFormattedArray</C> chooses each column width according to the entries
only in this column not w.r.t. the whole matrix.)
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F PrintFormattedArray( <array> )
##
## Let <array> be a rectangular table.
## `PrintFormattedArray' prints <array> such that each column is right
## aligned.
## The only difference to the GAP library function `PrintArray'
## is that the latter prints all columns at the same width.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "PrintFormattedArray", function( array )
> local colwidths, n, row;
> array:= List( array, row -> List( row, String ) );
> colwidths:= List( TransposedMat( array ),
> col -> Maximum( List( col, Length ) ) );
> n:= Length( array[1] );
> for row in List( array, row -> List( [ 1 .. n ],
> i -> String( row[i], colwidths[i] ) ) ) do
> Print( " ", JoinStringsWithSeparator( row, " " ), "\n" );
> od;
> end );
]]></Example>
<P/>
Finally, <C>CleanWorkspace</C> is a utility for reducing the space needed.
This is achieved by unbinding those user variables
that are not write protected and are not mentioned in the list
<C>NeededVariables</C> of variable names that are bound now,
and by flushing the caches of tables of marks and character tables.
<!-- %T In a forthcoming version, flushing these caches should become easier. -->
<P/>
<Example><![CDATA[
gap> BindGlobal( "NeededVariables", NamesUserGVars() );
gap> BindGlobal( "CleanWorkspace", function()
> local name, record;
>
> for name in Difference( NamesUserGVars(), NeededVariables ) do
> if not IsReadOnlyGlobal( name ) then
> UnbindGlobal( name );
> fi;
> od;
> for record in [ LIBTOMKNOWN, LIBTABLE ] do
> for name in RecNames( record.LOADSTATUS ) do
> Unbind( record.LOADSTATUS.( name ) );
> Unbind( record.( name ) );
> od;
> od;
> end );
]]></Example>
<P/>
The function <C>PossiblePermutationCharacters</C> takes two ordinary character
tables <C>sub</C> and <C>tbl</C>,
computes the possible class fusions from <C>sub</C> to <C>tbl</C>,
then induces the trivial character of <C>sub</C> to <C>tbl</C>, w.r.t. these fusions,
and returns the set of these class functions.
(So if <C>sub</C> and <C>tbl</C> are the character tables of groups <M>H</M> and <M>G</M>,
respectively, where <M>H</M> is a subgroup of <M>G</M>,
then the result contains the permutation character <M>1_H^G</M>.)
<P/>
Note that the columns of the character tables
in the &GAP; Character Table Library
are not explicitly associated with particular conjugacy classes of the
corresponding groups,
so from the character tables,
we can compute only <E>possible</E> class fusions,
i.e., maps between the columns of two tables that satisfy certain
necessary conditions, see the section about the function
<C>PossibleClassFusions</C> in the &GAP; Reference Manual for details.
There is no problem if the permutation character is uniquely determined
by the character tables, in all other cases we give ad hoc arguments
for resolving the ambiguities.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F PossiblePermutationCharacters( <sub>, <tbl> )
##
## For two ordinary character tables <sub> and <tbl>,
## `PossiblePermutationCharacters' returns the set of all induced class
## functions of the trivial character of <sub> to <tbl>,
## w.r.t.~the possible class fusions from <sub> to <tbl>.
##
]]></Ignore>
<Example><![CDATA[
gap> if not IsBound( PossiblePermutationCharacters ) then
> BindGlobal( "PossiblePermutationCharacters", function( sub, tbl )
> local fus, triv;
>
> fus:= PossibleClassFusions( sub, tbl );
> if fus = fail then
> return fail;
> fi;
> triv:= [ TrivialCharacter( sub ) ];
>
> return Set(
> List( fus, map -> Induced( sub, tbl, triv, map )[1] ) );
> end );
> fi;
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:probgen-ctfun">
<Heading>Character-Theoretic Computations</Heading>
We want to use the &GAP; libraries of character tables
and of tables of marks, and proceed in three steps.
<P/>
First we extract the primitive permutation characters from the library
information if this is available;
for that, we write the function <C>PrimitivePermutationCharacters</C>.
Then the result can be used as the input for the function <C>ApproxP</C>,
which computes the values <M>&total;( g, s )</M>.
Finally,
the functions <C>ProbGenInfoSimple</C> and <C>ProbGenInfoAlmostSimple</C>
compute <M>&sprtotal;( G )</M>.
<P/>
For a group <M>G</M> whose character table <M>T</M> is contained in the &GAP;
character table library, the complete set of primitive permutation
characters can be easily computed if the character tables of all maximal
subgroups and their class fusions into <M>T</M> are known
(in this case, we check whether the attribute
<Ref Attr="Maxes" BookName="ctbllib"/> of <M>T</M> is bound)
or if the table of marks of <M>G</M> and the class fusion from <M>T</M> into this
table of marks are known
(in this case, we check whether the attribute
<Ref Attr="FusionToTom" BookName="ctbllib"/> of <M>T</M> is bound).
If the attribute <Ref Attr="UnderlyingGroup" BookName="ref"/> of <M>T</M>
is bound then this group
can be used to compute the primitive permutation characters.
The latter happens if <M>T</M> was computed from the group object in &GAP;;
for tables in the &GAP; character table library,
this is not the case by default.
<P/>
The &GAP; function <C>PrimitivePermutationCharacters</C> tries to compute
the primitive permutation characters of a group using this information;
it returns the required list of characters if this can be computed this way,
otherwise <K>fail</K> is returned.
(For convenience, we use the &GAP; mechanism of <E>attributes</E>
in order to store the permutation characters in the character table object
once they have been computed.)
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#A PrimitivePermutationCharacters( <tbl> )
##
## For an ordinary character table <tbl> for which either the value of one
## of the attributes `Maxes' or `UnderlyingGroup' is stored or the table of
## marks is contained in the GAP library of tables of marks,
## `PrimitivePermutationCharacters' returns the list of all primitive
## permutation characters of <tbl>.
## Otherwise `fail' is returned.
##
## We use 'InstallOtherMethod' not 'InstallMethod' because another test file
## declares the same attribute and installs the same method.
##
]]></Ignore>
<Example><![CDATA[
gap> DeclareAttribute( "PrimitivePermutationCharacters", IsCharacterTable );
gap> InstallOtherMethod( PrimitivePermutationCharacters,
> [ IsCharacterTable ],
> function( tbl )
> local maxes, tom, G;
>
> if HasMaxes( tbl ) then
> maxes:= List( Maxes( tbl ), CharacterTable );
> if ForAll( maxes, s -> GetFusionMap( s, tbl ) <> fail ) then
> return List( maxes, subtbl -> TrivialCharacter( subtbl )^tbl );
> fi;
> elif HasFusionToTom( tbl ) then
> tom:= TableOfMarks( tbl );
> maxes:= MaximalSubgroupsTom( tom );
> return PermCharsTom( tbl, tom ){ maxes[1] };
> elif HasUnderlyingGroup( tbl ) then
> G:= UnderlyingGroup( tbl );
> return List( MaximalSubgroupClassReps( G ),
> M -> TrivialCharacter( M )^tbl );
> fi;
>
> return fail;
> end );
]]></Example>
<P/>
The function <C>ApproxP</C> takes a list <C>primitives</C>
of primitive permutation characters of a group <M>G</M>, say,
and the position <C>spos</C> of the class <M>s^G</M> in the character table
of <M>G</M>.
<P/>
Assume that the elements in <C>primitives</C> have the form <M>1_M^G</M>,
for suitable maximal subgroups <M>M</M> of <M>G</M>,
and let <M>&MM;</M> be the set of these groups <M>M</M>.
<C>ApproxP</C> returns the class function <M>\psi</M> of <M>G</M>
that is defined by <M>\psi(1) = 0</M> and
<Display Mode="M">
\psi(g) = \sum_{M \in &MM;}
\frac{1_M^G(s) \cdot 1_M^G(g)}{1_M^G(1)}
</Display>
otherwise.
<P/>
If <C>primitives</C> contains all those primitive permutation characters <M>1_M^G</M>
of <M>G</M> (with multiplicity according to the number of conjugacy classes
of these maximal subgroups) that do not vanish at <M>s</M>,
and if all these <M>M</M> are self-normalizing in <M>G</M>
–this holds for example if <M>G</M> is a finite simple group–
then <M>\psi(g) = &total;( g, s )</M> holds.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ApproxP( <primitives>, <spos> )
##
## Let <primitives> be a list of primitive permutation characters of a group
## $G$, say, and <spos> the position of the conjugacy class of the element
## $s \in G$.
## Assume that the elements in <primitives> have the form $1_M^G$,
## for suitable maximal subgroups $M$ of $G$,
## and let $\MM$ be the set of these groups $M$.
## `ApproxP' returns the class function $\psi$ of $G$ that is defined by
## $\psi(1) = 0$ and
## \[
## \psi(g) = \sum_{M \in \MM}
## \frac{1_M^G(s) \cdot 1_M^G(g)}{1_M^G(1)}
## \]
## otherwise.
##
## If <primitives> contains all those primitive permutation characters
## $1_M^G$ of $G$ (with multiplicity according to the number of conjugacy
## classes of these maximal subgroups) that do not vanish at $s$,
## and if all these $M$ are self-normalizing in $G$
## --this holds for example if $G$ is a finite simple group--
## then $\psi(g) = &total;( g, s )$ holds.
##
## The latter is an upper bound for the proportion
## $∝( g, s )$ of elements in the conjugacy class of $s$ that generate
## together with $g$ a proper subgroup of $G$.
##
## Note that if $∝( g, s )$ is less than $1/k$ for all
## $g \in G^{\times}$ then $G$ has spread at least $k$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "ApproxP", function( primitives, spos )
> local sum;
>
> sum:= ShallowCopy( Sum( List( primitives,
> pi -> pi[ spos ] * pi / pi[1] ) ) );
> sum[1]:= 0;
>
> return sum;
> end );
]]></Example>
<P/>
Note that for computations with permutation characters,
it would make the functions more complicated (and not more efficient)
if we would consider only elements <M>g</M> of prime order,
and only one representative of Galois conjugate classes.
<P/>
The next functions needed in this context compute <M>&total;(S)</M> and
<M>&sprtotal;( S )</M>, for a simple group <M>S</M>,
and <M>&total;^{\prime}(G,s)</M> for an almost simple group <M>G</M>
with socle <M>S</M>, respectively.
<P/>
<C>ProbGenInfoSimple</C> takes the character table <C>tbl</C> of <M>S</M>
as its argument.
If the full list of primitive permutation characters of <M>S</M> cannot be
computed with <C>PrimitivePermutationCharacters</C> then the function returns
<K>fail</K>.
Otherwise <C>ProbGenInfoSimple</C> returns a list containing
the identifier of the table,
the value <M>&total;(S)</M>,
the integer <M>&sprtotal;( S )</M>,
a list of &ATLAS; names of representatives of Galois families of those
classes of elements <M>s</M> for which <M>&total;(S) = &total;( S, s )</M> holds,
and the list of the corresponding cardinalities <M>|&M;(S,s)|</M>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ProbGenInfoSimple( <tbl> )
##
## Let <tbl> be the ordinary character table of a finite simple group $S$.
## If the full list of primitive permutation characters of <tbl> cannot be
## computed with `PrimitivePermutationCharacters' then `fail' is returned.
## Otherwise `ProbGenInfoSimple' returns a list of length $5$, containing
## the identifier of <tbl>,
## the value $&total;(S)$,
## the value $\sprtotal( S )$,
## a list of {\ATLAS} names of the classes of elements $s$ for which
## $&total;(S) = &total;( S, s )$ holds,
## and the list of the corresponding cardinalities $|&M;(S,s)|$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "ProbGenInfoSimple", function( tbl )
> local prim, max, min, bound, s;
> prim:= PrimitivePermutationCharacters( tbl );
> if prim = fail then
> return fail;
> fi;
> max:= List( [ 1 .. NrConjugacyClasses( tbl ) ],
> i -> Maximum( ApproxP( prim, i ) ) );
> min:= Minimum( max );
> bound:= Inverse( min );
> if IsInt( bound ) then
> bound:= bound - 1;
> else
> bound:= Int( bound );
> fi;
> s:= PositionsProperty( max, x -> x = min );
> s:= List( Set( s, i -> ClassOrbit( tbl, i ) ), i -> i[1] );
> return [ Identifier( tbl ),
> min,
> bound,
> AtlasClassNames( tbl ){ s },
> Sum( List( prim, pi -> pi{ s } ) ) ];
> end );
]]></Example>
<P/>
<C>ProbGenInfoAlmostSimple</C> takes the character tables <C>tblS</C> and
<C>tblG</C> of <M>S</M> and <M>G</M>,
and a list <C>sposS</C> of class positions (w.r.t. <C>tblS</C>)
as its arguments.
It is assumed that <M>S</M> is simple and has prime index in <M>G</M>.
If <C>PrimitivePermutationCharacters</C> can compute the full list
of primitive permutation characters of <M>G</M> then the function returns
a list containing
the identifier of <C>tblG</C>,
the maximum <M>m</M> of <M>&total;^{\prime}( G, s )</M>,
for <M>s</M> in the classes described by <C>sposS</C>,
a list of &ATLAS; names (in <M>G</M>) of the classes of elements <M>s</M>
for which this maximum is attained,
and the list of the corresponding cardinalities <M>|&M;^{\prime}(G,s)|</M>.
When <C>PrimitivePermutationCharacters</C> returns <K>fail</K>,
also <C>ProbGenInfoAlmostSimple</C> returns <K>fail</K>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ProbGenInfoAlmostSimple( <tblS>, <tblG>, <sposS> )
##
## Let <tblS> be the ordinary character table of a finite simple group $S$,
## <tblG> be the character table of an automorphic extension $G$ of $S$
## in which $S$ has prime index,
## and <sposS> a list of class positions in <tblS>.
##
## If the full list of primitive permutation characters of <tblG> cannot be
## computed with `PrimitivePermutationCharacters' then `fail' is returned.
## Otherwise `ProbGenInfoAlmostSimple' returns a list of length five,
## containing
## the identifier of <tblG>,
## the maximum $m$ of $&total;^{\prime}( G, s )$,
## for $s$ in the classes described by <sposS>,
## a list of {\ATLAS} names (w.r.t. $G$) of the classes of elements $s$
## for which this maximum is attained,
## and the list of the corresponding cardinalities $|\M^{\prime}(G,s)|$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "ProbGenInfoAlmostSimple", function( tblS, tblG, sposS )
> local p, fus, inv, prim, sposG, outer, approx, l, max, min,
> s, cards, i, names;
>
> p:= Size( tblG ) / Size( tblS );
> if not IsPrimeInt( p )
> or Length( ClassPositionsOfNormalSubgroups( tblG ) ) <> 3 then
> return fail;
> fi;
> fus:= GetFusionMap( tblS, tblG );
> if fus = fail then
> return fail;
> fi;
> inv:= InverseMap( fus );
> prim:= PrimitivePermutationCharacters( tblG );
> if prim = fail then
> return fail;
> fi;
> sposG:= Set( fus{ sposS } );
> outer:= Difference( PositionsProperty(
> OrdersClassRepresentatives( tblG ), IsPrimeInt ), fus );
> approx:= List( sposG, i -> ApproxP( prim, i ){ outer } );
> if IsEmpty( outer ) then
> max:= List( approx, x -> 0 );
> else
> max:= List( approx, Maximum );
> fi;
> min:= Minimum( max);
> s:= sposG{ PositionsProperty( max, x -> x = min ) };
> cards:= List( prim, pi -> pi{ s } );
> for i in [ 1 .. Length( prim ) ] do
> # Omit the character that is induced from the simple group.
> if ForAll( prim[i], x -> x = 0 or x = prim[i][1] ) then
> cards[i]:= 0;
> fi;
> od;
> names:= AtlasClassNames( tblG ){ s };
> Perform( names, ConvertToStringRep );
>
> return [ Identifier( tblG ),
> min,
> names,
> Sum( cards ) ];
> end );
]]></Example>
<P/>
The next function computes <M>&total;(G,s)</M> from
the character table <C>tbl</C> of a simple or almost simple group <M>G</M>,
the name <C>sname</C> of the class of <M>s</M> in this table,
the list <C>maxes</C> of the character tables of all subgroups <M>M</M>
with <M>M \in &M;(G,s)</M>,
and the list <C>numpermchars</C> of the numbers of possible permutation characters
induced from <C>maxes</C>.
If the string <C>"outer"</C> is given as an optional argument then <M>G</M> is assumed
to be an automorphic extension of a simple group <M>S</M>, with <M>[G:S]</M> a prime,
and <M>&total;^{\prime}(G,s)</M> is returned.
In both situations,
the result is <K>fail</K> if the numbers of possible permutation characters
induced from <C>maxes</C> do not coincide with the numbers prescribed in
<C>numpermchars</C>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F SigmaFromMaxes( <tbl>, <sname>, <maxes>, <numpermchars> )
#F SigmaFromMaxes( <tbl>, <sname>, <maxes>, <numpermchars>, <choice> )
##
## Let <tbl> be the ordinary character table of a finite almost simple group
## $G$ with socle $S$,
## <sname> be the name of a class in <tbl>,
## <maxes> be a list of character tables of all those maximal subgroups
## of $G$ which contain elements $s$ in the class with the name <sname>.
## Further let <numpermchars> be a list of integers such that the $i$-th
## entry in <maxes> induces `<numpermchars>[i]' different permutation
## characters.
## (So if several classes of maximal subgroups in $G$ induce the same
## permutation character then the table of this subgroup must occur with
## this multiplicity in <maxes>, and the corresponding entries in
## <numpermchars> must be $1$.
## Conversely, if there are $n$ classes of isomorphic maximal subgroups
## which induce $n$ different permutation characters then the table must
## occur only once in <maxes>, and the corresponding multiplicity in
## <numpermchars> must be $n$.)
##
## The return value is `fail' if there is an entry `<maxes>[i]' such that
## `PossiblePermutationCharacters' does not return a list of length
## `<numpermchars>[i]' when its arguments are `<maxes>[i]' and <tbl>.
##
## If the string `"outer"' is entered as the optional argument <choice> then
## $G$ is assumed to be an automorphic extension of $S$,
## with $[G:S]$ a prime,
## and $&total;^{\prime}(G,s)$ is returned.
##
## Otherwise `SigmaFromMaxes' returns $&total;(G,s)$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "SigmaFromMaxes", function( arg )
> local t, sname, maxes, numpermchars, prim, spos, outer;
>
> t:= arg[1];
> sname:= arg[2];
> maxes:= arg[3];
> numpermchars:= arg[4];
> prim:= List( maxes, s -> PossiblePermutationCharacters( s, t ) );
> spos:= Position( AtlasClassNames( t ), sname );
> if ForAny( [ 1 .. Length( maxes ) ],
> i -> Length( prim[i] ) <> numpermchars[i] ) then
> return fail;
> elif Length( arg ) = 5 and arg[5] = "outer" then
> outer:= Difference(
> PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t ) );
> return Maximum( ApproxP( Concatenation( prim ), spos ){ outer } );
> else
> return Maximum( ApproxP( Concatenation( prim ), spos ) );
> fi;
> end );
]]></Example>
<P/>
The following function allows us to extract information about <M>&M;(G,s)</M>
from the character table <C>tbl</C> of <M>G</M> and a list <C>snames</C>
of class positions of <M>s</M>.
If <C>Maxes( tbl )</C> is stored then the names of the character tables of the
subgroups in <M>&M;(G,s)</M> and the number of conjugates are printed,
otherwise <K>fail</K> is printed.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F DisplayProbGenMaxesInfo( <tbl>, <snames> )
##
## For a character table <tbl> with known `Maxes' value and a list <snames>
## of class names in <tbl>,
## `DisplayProbGenMaxesInfo' prints a description of the maximal subgroups
## of <tbl> that contain an element $s$ in the classes with names in the
## list <snames>.
## Printed are the `Identifier' values of the tables of the maximal
## subgroups and the number of conjugate subgroups in this class
## that contain $s$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "DisplayProbGenMaxesInfo", function( tbl, snames )
> local mx, prim, i, spos, nonz, indent, j;
>
> if not HasMaxes( tbl ) then
> Print( Identifier( tbl ), ": fail\n" );
> return;
> fi;
>
> mx:= List( Maxes( tbl ), CharacterTable );
> prim:= List( mx, s -> TrivialCharacter( s )^tbl );
> Assert( 1, SortedList( prim ) =
> SortedList( PrimitivePermutationCharacters( tbl ) ) );
> for i in [ 1 .. Length( prim ) ] do
> # Deal with the case that the subgroup is normal.
> if ForAll( prim[i], x -> x = 0 or x = prim[i][1] ) then
> prim[i]:= prim[i] / prim[i][1];
> fi;
> od;
>
> spos:= List( snames,
> nam -> Position( AtlasClassNames( tbl ), nam ) );
> nonz:= List( spos, x -> PositionsProperty( prim, pi -> pi[x] <> 0 ) );
> for i in [ 1 .. Length( spos ) ] do
> Print( Identifier( tbl ), ", ", snames[i], ": " );
> indent:= ListWithIdenticalEntries(
> Length( Identifier( tbl ) ) + Length( snames[i] ) + 4, ' ' );
> if not IsEmpty( nonz[i] ) then
> Print( Identifier( mx[ nonz[i][1] ] ), " (",
> prim[ nonz[i][1] ][ spos[i] ], ")\n" );
> for j in [ 2 .. Length( nonz[i] ) ] do
> Print( indent, Identifier( mx[ nonz[i][j] ] ), " (",
> prim[ nonz[i][j] ][ spos[i] ], ")\n" );
> od;
> else
> Print( "\n" );
> fi;
> od;
> end );
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:groups">
<Heading>Computations with Groups</Heading>
Here, the task is to compute <M>∝(g,s)</M> or <M>∝(G,s)</M>
using explicit computations with <M>G</M>,
where the character-theoretic bounds are not sufficient.
<P/>
We start with small utilities that make the examples shorter.
<P/>
For a finite solvable group <C>G</C>,
the function <C>PcConjugacyClassReps</C> returns a list of representatives of
the conjugacy classes of <C>G</C>,
which are computed using a polycyclic presentation for <C>G</C>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F PcConjugacyClassReps( <G> )
##
## Let <G> be a finite solvable group.
## `PcConjugacyClassReps' returns a list of representatives of
## the conjugacy classes of <G>,
## which are computed using a polycyclic presentation for <G>.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "PcConjugacyClassReps", function( G )
> local iso;
>
> iso:= IsomorphismPcGroup( G );
> return List( ConjugacyClasses( Image( iso ) ),
> c -> PreImagesRepresentative( iso, Representative( c ) ) );
> end );
]]></Example>
<P/>
For a finite group <C>G</C>, a list <C>primes</C> of prime integers,
and a normal subgroup <C>N</C> of <C>G</C>,
the function <C>ClassesOfPrimeOrder</C> returns a list of those
conjugacy classes of <C>G</C>
that are not contained in <C>N</C> and whose elements' orders occur
in <C>primes</C>.
<P/>
For each prime <M>p</M> in <C>primes</C>,
first class representatives of order <M>p</M>
in a Sylow <M>p</M> subgroup of <C>G</C> are computed,
then the representatives in <C>N</C> are discarded,
and then representatives w. r. t. conjugacy in <C>G</C>
are computed.
<P/>
<!--
% Note that we do not call 'IsConjugate' but create the conjugacy classes
% of the two elements in question, and then ask for equality,
% since the latter is much faster --don't ask why.
% Also, we do not first create the list of conjugacy classes
% of all elements in question, and then compare the classes in this list
% (using the very elegant 'DuplicateFreeList'),
% because then the required memory would be too large:
% There are cases where more than 1000 elements must be processed,
% and the comparison causes the centralizer of the representative
% to be stored in the class object.
-->
(Note that this approach may be inappropriate
for example if a large elementary abelian Sylow <M>p</M> subgroup occurs,
and if the conjugacy tests in <C>G</C> are expensive,
see Section <Ref Subsect="O8p4"/>.)
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ClassesOfPrimeOrder( <G>, <primes>, <N> )
##
## Let <G> be a finite group, <primes> be a list of primes,
## and <N> be a normal subgroup of <G>.
## `ClassesOfPrimeOrder' returns a list of those conjugacy classes of <G>
## that are not contained in <N>
## and whose elements' orders occur in <primes>.
##
## For each prime $p$ in <primes>, first class representatives of order $p$
## in a Sylow $p$ subgroup of <G> are computed,
## then the representatives in <N> are discarded,
## and then representatives w. r. t. conjugacy in <G> are computed.
##
## (Note that this approach may be inappropriate if an elementary abelian
## Sylow $p$ subgroup for a large prime $p$ occurs, and if the conjugacy
## tests in <G> are expensive.)
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "ClassesOfPrimeOrder", function( G, primes, N )
> local ccl, p, syl, Greps, reps, r, cr;
>
> ccl:= [];
> for p in primes do
> syl:= SylowSubgroup( G, p );
> Greps:= [];
> reps:= Filtered( PcConjugacyClassReps( syl ),
> r -> Order( r ) = p and not r in N );
> for r in reps do
> cr:= ConjugacyClass( G, r );
> if ForAll( Greps, c -> c <> cr ) then
> Add( Greps, cr );
> fi;
> od;
> Append( ccl, Greps );
> od;
>
> return ccl;
> end );
]]></Example>
<P/>
The function <C>IsGeneratorsOfTransPermGroup</C> takes a
<E>transitive</E> permutation group <C>G</C> and a list <C>list</C>
of elements in <C>G</C>,
and returns <K>true</K> if the elements in <C>list</C> generate <C>G</C>,
and <K>false</K> otherwise.
The main point is that the return value <K>true</K> requires the group
generated by <C>list</C> to be transitive, and the check for transitivity
is much cheaper than the test whether this group is equal to <C>G</C>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F IsGeneratorsOfTransPermGroup( <G>, <list> )
##
## Let <G> be a finite group that acts *transitively* on its moved points,
## and <list> a list of elements in <G>.
##
## `IsGeneratorsOfTransPermGroup' returns `true' if the elements in <list>
## generate <G>, and `false' otherwise.
## The main point is that the return value `true' requires the group
## generated by `list' to be transitive, and the check for transitivity
## is much cheaper than the test whether this group is equal to `G'.
##
]]></Ignore>
<Example><![CDATA[
gap> if not IsBound( IsGeneratorsOfTransPermGroup) then
> BindGlobal( "IsGeneratorsOfTransPermGroup", function( G, list )
> local S;
>
> if not IsTransitive( G ) then
> Error( "<G> must be transitive on its moved points" );
> fi;
> S:= SubgroupNC( G, list );
>
> return IsTransitive( S, MovedPoints( G ) ) and
> Size( S ) = Size( G );
> end );
> fi;
]]></Example>
<P/>
<C>RatioOfNongenerationTransPermGroup</C> takes a <E>transitive</E> permutation
group <C>G</C> and two elements <C>g</C> and <C>s</C> of <C>G</C>,
and returns the proportion <M>∝(g,s)</M>.
(The function tests the (non)generation only for representatives of
<M>C_G(g)</M>-<M>C_G(s)</M>-double cosets.
Note that for <M>c_1 \in C_G(g)</M>, <M>c_2 \in C_G(s)</M>,
and a representative <M>r \in G</M>,
we have <M>\langle g^{c_1 r c_2}, s \rangle = \langle g^r, s \rangle^{c_2}</M>.)
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F RatioOfNongenerationTransPermGroup( <G>, <g>, <s> )
##
## Let <G> be a finite group that acts *transitively* on its moved points,
## and <g> and <s> be two elements in <G>.
##
## `RatioOfNongenerationTransPermGroup' returns the proportion
## $∝(g,s)$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "RatioOfNongenerationTransPermGroup", function( G, g, s )
> local nongen, pair;
>
> if not IsTransitive( G ) then
> Error( "<G> must be transitive on its moved points" );
> fi;
> nongen:= 0;
> for pair in DoubleCosetRepsAndSizes( G, Centralizer( G, g ),
> Centralizer( G, s ) ) do
> if not IsGeneratorsOfTransPermGroup( G, [ s, g^pair[1] ] ) then
> nongen:= nongen + pair[2];
> fi;
> od;
>
> return nongen / Size( G );
> end );
]]></Example>
<P/>
Let <M>G</M> be a group,
and let <C>groups</C> be a list <M>[ G_1, G_2, \ldots, G_n ]</M>
of permutation groups such that <M>G_i</M> describes the action of <M>G</M>
on a set <M>\Omega_i</M>, say.
Moreover, we require that for <M>1 \leq i, j \leq n</M>,
mapping the <C>GeneratorsOfGroup</C> list of <M>G_i</M> to that of <M>G_j</M>
defines an isomorphism.
<C>DiagonalProductOfPermGroups</C> takes <C>groups</C> as its argument,
and returns the action of <M>G</M> on the disjoint union of
<M>\Omega_1, \Omega_2, \ldots, \Omega_n</M>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F DiagonalProductOfPermGroups( <groups> )
##
## Let $G$ be a group, and let <groups> be a list
## $[ G_1, G_2, \ldots, G_n ]$ of permutation groups such that $G_i$
## describes the action of $G$ on a set $\Omega_i$, say.
## Moreover, we require that for $1 \leq i, j \leq n$,
## mapping the `GeneratorsOfGroup' list of $G_i$ to that of $G_j$
## defines an isomorphism.
##
## `DiagonalProductOfPermGroups' takes `groups' as its argument,
## and returns the action of $G$ on the disjoint union of
## $\Omega_1, \Omega_2, \ldots \Omega_n$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "DiagonalProductOfPermGroups", function( groups )
> local prodgens, deg, i, gens, D, pi;
>
> prodgens:= GeneratorsOfGroup( groups[1] );
> deg:= NrMovedPoints( prodgens );
> for i in [ 2 .. Length( groups ) ] do
> gens:= GeneratorsOfGroup( groups[i] );
> D:= MovedPoints( gens );
> pi:= MappingPermListList( D, [ deg+1 .. deg+Length( D ) ] );
> deg:= deg + Length( D );
> prodgens:= List( [ 1 .. Length( prodgens ) ],
> i -> prodgens[i] * gens[i]^pi );
> od;
>
> return Group( prodgens );
> end );
]]></Example>
<P/>
<!-- %T Add the above function to the AtlasRep package? -->
The following two functions are used to reduce checks of generation
to class representatives of maximal order.
Note that if <M>\langle s, g \rangle</M> is a proper subgroup of <M>G</M> then
also <M>\langle s^k, g \rangle</M> is a proper subgroup of <M>G</M>,
so we need not check powers <M>s^k</M> different from <M>s</M>
in this situation.
<P/>
For an ordinary character table <C>tbl</C>,
the function <C>RepresentativesMaximallyCyclicSubgroups</C>
returns a list of class positions, containing one class of generators
for each class of maximally cyclic subgroups.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F RepresentativesMaximallyCyclicSubgroups( <tbl> )
##
## For an ordinary character table <tbl>,
## `RepresentativesMaximallyCyclicSubgroups' returns a list of class
## positions containing exactly one class of generators for each class of
## maximally cyclic subgroups.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "RepresentativesMaximallyCyclicSubgroups", function( tbl )
> local n, result, orders, p, pmap, i, j;
>
> # Initialize.
> n:= NrConjugacyClasses( tbl );
> result:= BlistList( [ 1 .. n ], [ 1 .. n ] );
>
> # Omit powers of smaller order.
> orders:= OrdersClassRepresentatives( tbl );
> for p in PrimeDivisors( Size( tbl ) ) do
> pmap:= PowerMap( tbl, p );
> for i in [ 1 .. n ] do
> if orders[ pmap[i] ] < orders[i] then
> result[ pmap[i] ]:= false;
> fi;
> od;
> od;
>
> # Omit Galois conjugates.
> for i in [ 1 .. n ] do
> if result[i] then
> for j in ClassOrbit( tbl, i ) do
> if i <> j then
> result[j]:= false;
> fi;
> od;
> fi;
> od;
>
> # Return the result.
> return ListBlist( [ 1 .. n ], result );
> end );
]]></Example>
<P/>
Let <C>G</C> be a finite group,
<C>tbl</C> be the ordinary character table of <C>G</C>,
and <C>cols</C> be a list of class positions in <C>tbl</C>,
for example the list returned by <C>RepresentativesMaximallyCyclicSubgroups</C>.
The function <C>ClassesPerhapsCorrespondingToTableColumns</C> returns
the sublist of those conjugacy classes of <C>G</C>
for which the corresponding column in <C>tbl</C>
can be contained in <C>cols</C>, according to element order and class size.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ClassesPerhapsCorrespondingToTableColumns( <G>, <tbl>, <cols> )
##
## For a group <G>, its ordinary character table <tbl>, and a list <cols>
## of class positions in <tbl>,
## `ClassesPerhapsCorrespondingToTableColumns' returns the sublist
## of those conjugacy classes of `G' for which the corresponding column
## in `tbl' can be contained in `cols',
## according to element order and class length.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "ClassesPerhapsCorrespondingToTableColumns",
> function( G, tbl, cols )
> local orders, classes, invariants;
>
> orders:= OrdersClassRepresentatives( tbl );
> classes:= SizesConjugacyClasses( tbl );
> invariants:= List( cols, i -> [ orders[i], classes[i] ] );
>
> return Filtered( ConjugacyClasses( G ),
> c -> [ Order( Representative( c ) ), Size(c) ] in invariants );
> end );
]]></Example>
<P/>
The next function computes,
for a finite group <M>G</M> and subgroups <M>M_1, M_2, \ldots, M_n</M>
of <M>G</M>,
an upper bound for
<M>\max \{ \sum_{i=1}^n &fpr;(g,G/M_i); g \in G \setminus Z(G) \}</M>.
So if the <M>M_i</M> are the groups in <M>&M;(G,s)</M>,
for some <M>s \in G^{\times}</M>,
then we get an upper bound for <M>&total;(G,s)</M>.
<P/>
The idea is that for <M>M \leq G</M> and <M>g \in G</M> of order <M>p</M>,
we have
<Display Mode="M">
&fpr;(g,G/M) = |g^G \cap M| / |g^G|
\leq \sum_{h \in C} |h^M| / |g^G|
= \sum_{h \in C} |h^M| \cdot |C_G(g)| / |G| ,
</Display>
where <M>C</M> is a set of class representatives <M>h \in M</M> of all those
classes that satisfy <M>|h| = p</M> and <M>|C_G(h)| = |C_G(g)|</M>,
and in the case that <M>G</M> is a permutation group additionally that
<M>h</M> and <M>g</M> move the same number of points.
(Note that it is enough to consider elements of <E>prime</E> order.)
<P/>
For computing the maximum of the rightmost term in this inequality,
for <M>g \in G \setminus Z(G)</M>,
we need not determine the <M>G</M>-conjugacy of class representatives
in <M>M</M>.
Of course we pay the price that the result may be larger than the
leftmost term.
However,
if the maximal sum is in fact taken only over a single class representative,
we are sure that equality holds.
Thus we return a list of length two, containing the maximum of the
right hand side of the above inequality and a Boolean value indicating
whether this is equal to <M>\max \{ &fpr;(g,G/M); g \in G \setminus Z(G) \}</M>
or just an upper bound.
<P/>
The arguments for <C>UpperBoundFixedPointRatios</C> are the group <C>G</C>,
a list <C>maxesclasses</C> such that the <M>i</M>-th entry
is a list of conjugacy classes of <M>M_i</M>,
which covers all classes of prime element order in <M>M_i</M>,
and either <K>true</K> or <K>false</K>,
where <K>true</K> means that the <E>exact</E> value
of <M>&total;(G,s)</M> is computed, not just an upper bound;
this can be much more expensive because of the conjugacy tests in <M>G</M>
that may be necessary.
(We try to reduce the number of conjugacy tests in this case,
the second half of the code is not completely straightforward.
The special treatment of conjugacy checks for elements with the same sets
of fixed points is essential in the computation of <M>&total;^{\prime}(G,s)</M>
for <M>G = &PGL;(6,4)</M>;
the critical input line is <C>ApproxPForOuterClassesInGL( 6, 4 )</C>,
see Section <Ref Subsect="SLaut"/>.
Currently the standard &GAP; conjugacy test for
an element of order three and its inverse in <M>G \setminus G^{\prime}</M>
requires hours of CPU time, whereas the check for existence of a conjugating
element in the stabilizer of the common set of fixed points of the two
elements is almost free of charge.)
<P/>
<C>UpperBoundFixedPointRatios</C> can be used to compute
<M>&total;^{\prime}(G,s)</M>
in the case that <M>G</M> is an automorphic extension of a simple group
<M>S</M>,
with <M>[G:S] = p</M> a prime;
if <M>&M;^{\prime}(G,s) = \{ M_1, M_2, \ldots, M_n \}</M> then
the <M>i</M>-th entry of <C>maxesclasses</C> must contain only
the classes of element order <M>p</M> in <M>M_i \setminus (M_i \cap S)</M>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F UpperBoundFixedPointRatios( <G>, <maxesclasses>, <truetest> )
##
## Let <G> be a finite group, and <maxesclasses> be a list
## $[ l_1, l_2, ..., l_n ]$ such that each $l_i$ is a list of conjugacy
## classes of maximal subgroups $M_i$ of <G>, such that all classes of
## prime element order in $M_i$ are contained in $l_i$,
## and such that the $M_i$ are all those maximal subgroups of <G>
## (in particular, \emph{not} only conjugacy class representatives of
## subgroups) that contain a fixed element $s \in G$.
##
## `UpperBoundFixedPointRatios' returns a list $[ x, y ]$, where
## \[
## x = \max_{1 \not= p \mid |G|} \max_{g \in G \setminus Z(G), |g|=p}
## \sum_{i=1}^n \sum_{h \in S(i,p,g)} |h^{M_i}| / |g^G|,
## \]
## and $S(i,p,g)$ is a set of representatives $h$ of all those classes in
## $l_i$ that satisfy $|h| = p$ and $|C_G(h)| = |C_G(g)|$,
## and in the case that $G$ is a permutation group additionally that
## $h$ and $g$ move the same number of points.
## Since $S(i,p,g) \supseteq g^G \cap M_i$ holds,
## $x$ is an upper bound for $&total;(G,s)$.
##
## The second entry is `true' if the first value is in fact equal to
## $\max_{g \in G \setminus Z(G)} &fpr;(g,G/M}$, and `false' otherwise.
##
## The third argument <truetest> must be `true' or `false',
## where `true' means that the exact value of $&total;(G,s)$ is computed
## not just an upper bound; this can be much more expensive.
## (We try to reduce the number of conjugacy tests in this case,
## the second half of the code is not completely straightforward.)
##
## If $G$ is an automorphic extension of a simple group $S$,
## with $[G:S] = p$ a prime, then `UpperBoundFixedPointRatios' can be used
## to compute $&total;^{\prime}(G,s)$,
## by choosing $M_i$ the maximal subgroups of $G$ containing $s$,
## except $S$, such that $l_i$ contains only the classes of element order
## $p$ in $M_i \setminus (M_i \cap S)$.
##
## Note that in the case $n = 1$, we have $&total;(G,s) = ∝(G,s)$,
## so in this case the second entry `true' means that the first entry is
## equal to $\max_{g \in G \setminus Z(G)} &fpr;(g,G/M_1}$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "UpperBoundFixedPointRatios",
> function( G, maxesclasses, truetest )
> local myIsConjugate, invs, info, c, r, o, inv, pos, sums, max, maxpos,
> maxlen, reps, split, i, found, j;
>
> myIsConjugate:= function( G, x, y )
> local movx, movy;
>
> movx:= MovedPoints( x );
> movy:= MovedPoints( y );
> if movx = movy then
> G:= Stabilizer( G, movx, OnSets );
> fi;
> return IsConjugate( G, x, y );
> end;
>
> invs:= [];
> info:= [];
>
> # First distribute the classes according to invariants.
> for c in Concatenation( maxesclasses ) do
> r:= Representative( c );
> o:= Order( r );
> # Take only prime order representatives.
> if IsPrimeInt( o ) then
> inv:= [ o, Size( Centralizer( G, r ) ) ];
> # Omit classes that are central in `G'.
> if inv[2] <> Size( G ) then
> if IsPerm( r ) then
> Add( inv, NrMovedPoints( r ) );
> fi;
> pos:= First( [ 1 .. Length( invs ) ], i -> inv = invs[i] );
> if pos = fail then
> # This class is not `G'-conjugate to any of the previous ones.
> Add( invs, inv );
> Add( info, [ [ r, Size( c ) * inv[2] ] ] );
> else
> # This class may be conjugate to an earlier one.
> Add( info[ pos ], [ r, Size( c ) * inv[2] ] );
> fi;
> fi;
> fi;
> od;
>
> if info = [] then
> return [ 0, true ];
> fi;
>
> repeat
> # Compute the contributions of the classes with the same invariants.
> sums:= List( info, x -> Sum( List( x, y -> y[2] ) ) );
> max:= Maximum( sums );
> maxpos:= Filtered( [ 1 .. Length( info ) ], i -> sums[i] = max );
> maxlen:= List( maxpos, i -> Length( info[i] ) );
>
> # Split the sets with the same invariants if necessary
> # and if we want to compute the exact value.
> if truetest and not 1 in maxlen then
> # Make one conjugacy test.
> pos:= Position( maxlen, Minimum( maxlen ) );
> reps:= info[ maxpos[ pos ] ];
> if myIsConjugate( G, reps[1][1], reps[2][1] ) then
> # Fuse the two classes.
> reps[1][2]:= reps[1][2] + reps[2][2];
> reps[2]:= reps[ Length( reps ) ];
> Unbind( reps[ Length( reps ) ] );
> else
> # Split the list. This may require additional conjugacy tests.
> Unbind( info[ maxpos[ pos ] ] );
> split:= [ reps[1], reps[2] ];
> for i in [ 3 .. Length( reps ) ] do
> found:= false;
> for j in split do
> if myIsConjugate( G, reps[i][1], j[1] ) then
> j[2]:= reps[i][2] + j[2];
> found:= true;
> break;
> fi;
> od;
> if not found then
> Add( split, reps[i] );
> fi;
> od;
>
> info:= Compacted( Concatenation( info,
> List( split, x -> [ x ] ) ) );
> fi;
> fi;
> until 1 in maxlen or not truetest;
>
> return [ max / Size( G ), 1 in maxlen ];
> end );
]]></Example>
<P/>
<!-- % possible improvement: -->
<!-- % in the case of a permutation group, -->
<!-- % consider the number of moved points distributed to the orbits of the group -->
Suppose that <M>C_1, C_2, C_3</M> are conjugacy classes in <M>G</M>,
and that we have to prove,
for each <M>(x_1, x_2, x_3) \in C_1 \times C_2 \times C_3</M>,
the existence of an element <M>s</M> in a prescribed class <M>C</M>
of <M>G</M> such that
<M>\langle x_1, s \rangle = \langle x_2, s \rangle = \langle x_2, s \rangle = G</M>
holds.
<P/>
We have to check only representatives under the conjugation action of <M>G</M>
on <M>C_1 \times C_2 \times C_3</M>.
For each representative,
we try a prescribed number of random elements in <M>C</M>.
If this is successful then we are done.
The following two functions implement this idea.
<P/>
For a group <M>G</M> and a list <M>[ g_1, g_2, \ldots, g_n ]</M>
of elements in <M>G</M>,
<C>OrbitRepresentativesProductOfClasses</C> returns a list
<M>R(G, g_1, g_2, \ldots, g_n)</M> of representatives of <M>G</M>-orbits
on the Cartesian product <M>g_1^G \times g_2^G \times \cdots \times g_n^G</M>.
<P/>
The idea behind this function is to choose <M>R(G, g_1) = \{ ( g_1 ) \}</M>
in the case <M>n = 1</M>,
and, for <M>n > 1</M>,
<Display Mode="M">
R(G, g_1, g_2, \ldots, g_n) = \{ (h_1, h_2, \ldots, h_n) \mid
(h_1, h_2, \ldots, h_{n-1}) \in R(G, g_1, g_2, \ldots, g_{n-1}), \\
h_n = g_n^d, \textrm{\ for\ } d \in D \} ,
</Display>
where <M>D</M> is a set of representatives of double cosets
<M>C_G(g_n) \setminus G / \cap_{i=1}^{n-1} C_G(h_i)</M>.
<P/>
<!-- % For a proof, show inductively that two such representatives lie in -->
<!-- % different <M>G</M>-orbits, -->
<!-- % and that each element in the product of classes lies in the <M>G</M>-orbit -->
<!-- % of one representative. -->
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F OrbitRepresentativesProductOfClasses( <G>, <classreps> )
##
## For a finite group <G> and a list
## $<classreps> = [ g_1, g_2, \ldots, g_n ]$ of elements in <G>,
## `OrbitRepresentativesProductOfClasses' returns a list of representatives
## of <G>-orbits on the Cartesian product
## $g_1^{<G>} \times g_2^{<G>} \times \cdots \times g_n^{<G>}$.
##
## The idea behind this function is to choose $R(<G>, g_1) = \{ ( g_1 ) \}$
## in the case $n = 1$,
## and, for $n > 1$,
## \[
## R(<G>, g_1, g_2, \ldots, g_n) = \{ (h_1, h_2, \ldots, h_n);
## (h_1, h_2, \ldots, h_{n-1}) \in R(<G>, g_1, g_2, \ldots, g_{n-1}),
## k_n = g_n^d, \textrm{\ for\ } d \in D \} ,
## \]
## where $D$ is a set of representatives of double cosets
## $C_{<G>}(g_n) \setminus <G> / \cap_{i=1}^{n-1} C_{<G>}(h_i)$.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "OrbitRepresentativesProductOfClasses",
> function( G, classreps )
> local cents, n, orbreps;
>
> cents:= List( classreps, x -> Centralizer( G, x ) );
> n:= Length( classreps );
>
> orbreps:= function( reps, intersect, pos )
> if pos > n then
> return [ reps ];
> fi;
> return Concatenation( List(
> DoubleCosetRepsAndSizes( G, cents[ pos ], intersect ),
> r -> orbreps( Concatenation( reps, [ classreps[ pos ]^r[1] ] ),
> Intersection( intersect, cents[ pos ]^r[1] ), pos+1 ) ) );
> end;
>
> return orbreps( [ classreps[1] ], cents[1], 2 );
> end );
]]></Example>
<P/>
<!-- %T implement an iterator for orbit representatives on a direct product!! -->
The function <C>RandomCheckUniformSpread</C> takes
a transitive permutation group <M>G</M>,
a list of class representatives <M>g_i \in G</M>, an element <M>s \in G</M>,
and a positive integer <M>N</M>.
The return value is <K>true</K> if for each representative of <M>G</M>-orbits
on the product of the classes <M>g_i^G</M>,
a good conjugate of <M>s</M> is found in at most <M>N</M> random tests.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F RandomCheckUniformSpread( <G>, <classreps>, <s>, <N> )
##
## Let <G> be a finite permutation group that is transitive on its moved
## points,
## <classreps> be a list of elements in <G>,
## <s> be an element in <G>,
## and <N> be a positive integer.
##
## `RandomCheckUniformSpread' computes representatives $X$ of <G>-orbits
## on the Cartesian product of the conjugacy classes of <classreps>;
## for each of them, up to <N> random conjugates $s^{\prime}$ of <s> are
## checked whether $s^{\prime}$ generates <G> with each element in the
## $n$-tuple of elements in $X$.
## If such an element $s^{\prime}$ is found this way, for all $X$,
## the function returns `true',
## otherwise a representative $X$ is returned for which no good conjugate
## of <s> is found.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "RandomCheckUniformSpread", function( G, classreps, s, try )
> local elms, found, i, conj;
>
> if not IsTransitive( G, MovedPoints( G ) ) then
> Error( "<G> must be transitive on its moved points" );
> fi;
>
> # Compute orbit representatives of G on the direct product,
> # and try to find a good conjugate of s for each representative.
> for elms in OrbitRepresentativesProductOfClasses( G, classreps ) do
> found:= false;
> for i in [ 1 .. try ] do
> conj:= s^Random( G );
> if ForAll( elms,
> x -> IsGeneratorsOfTransPermGroup( G, [ x, conj ] ) ) then
> found:= true;
> break;
> fi;
> od;
> if not found then
> return elms;
> fi;
> od;
>
> return true;
> end );
]]></Example>
<P/>
Of course this approach is not suitable for <E>dis</E>proving the existence
of <M>s</M>,
but it is much cheaper than an exhaustive search in the class <M>C</M>.
(Typically, <M>|C|</M> is large whereas the <M>|C_i|</M> are small.)
<P/>
<!-- % (Note that for the case <M>C_1 = C_2</M>, in general fewer orbit representatives -->
<!-- % would suffice, since we need to consider only representatives under the -->
<!-- % <M>G</M>-action on <E>un</E>ordered pairs of elements in <M>C_1 \times C_1</M>.) -->
<P/>
<!-- % deterministic approach under special conditions: -->
<!-- % -->
<!-- % # G must be defined on the diagonal product of prim. reps. on the -->
<!-- % # cosets of maxes cont. s -->
<!-- % # -->
<!-- % # improve: compute in small perm. rep., -->
<!-- % # form intersections in big repres. -->
<!-- % CheckUniformSpread3:= function( G, C1, C2, C3, sorb ) -->
<!-- % local x1, fix1, Cx1, n, x2, Cx2, fix2, x3, fix3, set; -->
<!-- % # Compute orbit representatives of <M>G</M> on <M>C_1 \times C_2 \times C_3</M>. -->
<!-- % x1:= Representative( C1 ); -->
<!-- % fix1:= Difference( MovedPoints( G ), MovedPoints( x1 ) ); -->
<!-- % Cx1:= Centralizer( G, x1 ); -->
<!-- % n:= Size( G ); -->
<!-- % # Try to find a conjugate of <M>s</M> for each representative. -->
<!-- % for x2 in List( OrbitsDomain( Cx1, Elements( C2 ) ), -->
<!-- % Representative ) do -->
<!-- % Cx2:= Centralizer( Cx1, x2 ); -->
<!-- % fix2:= Difference( MovedPoints( G ), MovedPoints( x2 ) ); -->
<!-- % for x3 in List( OrbitsDomain( Cx2, Elements( C3 ) ), -->
<!-- % Representative ) do -->
<!-- % # ... -->
<!-- % fix3:= Difference( MovedPoints( G ), MovedPoints( x3 ) ); -->
<!-- % set:= Union( fix1, fix2, fix3 ); -->
<!-- % if ForAll( sorb, x -> not IsEmpty( Intersection( x, set ) ) ) then -->
<!-- % return [ x1, x2, x3 ]; -->
<!-- % fi; -->
<!-- % od; -->
<!-- % od; -->
<!-- % return true; -->
<!-- % end;; -->
<P/>
The following function can be used to verify that a given <M>n</M>-tuple
<M>(x_1, x_2, \ldots, x_n)</M> of elements in a group <M>G</M> has the property
that for all elements <M>g \in G</M>, at least one <M>x_i</M> satisfies
<M>\langle x_i, g \rangle</M>.
The arguments are a transitive permutation group <M>G</M>,
a list of class representatives in <M>G</M>, and the <M>n</M>-tuple in question.
The return value is a conjugate <M>g</M> of the given representatives
that has the property if such an element exists,
and <K>fail</K> otherwise.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F CommonGeneratorWithGivenElements( <G>, <classreps>, <tuple> )
##
## Let <G> be a finite group,
## and <classreps> and <tuple> be lists of elements in <G>.
## `CommonGeneratorWithGivenElements' returns an element $g$ in the
## <G>-conjugacy class of one of the elements in <classreps> with the
## property that each element in <tuple> together with $g$ generates <G>,
## if such an element $g$ exists.
## Otherwise `fail' is returned.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "CommonGeneratorWithGivenElements",
> function( G, classreps, tuple )
> local inter, rep, repcen, pair;
>
> if not IsTransitive( G, MovedPoints( G ) ) then
> Error( "<G> must be transitive on its moved points" );
> fi;
>
> inter:= Intersection( List( tuple, x -> Centralizer( G, x ) ) );
> for rep in classreps do
> repcen:= Centralizer( G, rep );
> for pair in DoubleCosetRepsAndSizes( G, repcen, inter ) do
> if ForAll( tuple,
> x -> IsGeneratorsOfTransPermGroup( G, [ x, rep^pair[1] ] ) ) then
> return rep;
> fi;
> od;
> od;
>
> return fail;
> end );
]]></Example>
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:chartheor">
<Heading>Character-Theoretic Computations</Heading>
In this section, we apply the functions introduced in
Section <Ref Subsect="subsect:probgen-ctfun"/>
to the character tables of simple groups
that are available in the &GAP; Character Table Library.
<P/>
Our first examples are the sporadic simple groups,
in Section <Ref Subsect="subsect:spor"/>,
then their automorphism groups are considered
in Section <Ref Subsect="probgen:sporaut"/>.
<P/>
Then we consider those other simple groups for which &GAP; provides
enough information for automatically computing an upper bound on
<M>&total;(G,s)</M> –see Section <Ref Subsect="easyloop"/>–
and their automorphic extensions
–see Section <Ref Subsect="easyloopaut"/>.
<P/>
After that, individual groups are considered.
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:spor">
<Heading>Sporadic Simple Groups</Heading>
The &GAP; Character Table Library contains the tables of maximal subgroups
of all sporadic simple groups except <M>B</M> and <M>M</M>,
so all primitive permutation characters can be computed via the function
<C>PrimitivePermutationCharacters</C> for <M>24</M> of the <M>26</M>
sporadic simple groups.
<P/>
<Example><![CDATA[
gap> sporinfo:= [];;
gap> spornames:= AllCharacterTableNames( IsSporadicSimple, true,
> IsDuplicateTable, false );;
gap> for tbl in List( spornames, CharacterTable ) do
> info:= ProbGenInfoSimple( tbl );
> if info <> fail then
> Add( sporinfo, info );
> fi;
> od;
]]></Example>
<P/>
We show the result as a formatted table.
<P/>
<Example><![CDATA[
gap> PrintFormattedArray( sporinfo );
Co1 421/1545600 3671 [ "35A" ] [ 4 ]
Co2 1/270 269 [ "23A" ] [ 1 ]
Co3 64/6325 98 [ "21A" ] [ 4 ]
F3+ 1/269631216855 269631216854 [ "29A" ] [ 1 ]
Fi22 43/585 13 [ "16A" ] [ 7 ]
Fi23 2651/2416635 911 [ "23A" ] [ 2 ]
HN 4/34375 8593 [ "19A" ] [ 1 ]
HS 64/1155 18 [ "15A" ] [ 2 ]
He 3/595 198 [ "14C" ] [ 3 ]
J1 1/77 76 [ "19A" ] [ 1 ]
J2 5/28 5 [ "10C" ] [ 3 ]
J3 2/153 76 [ "19A" ] [ 2 ]
J4 1/1647124116 1647124115 [ "29A" ] [ 1 ]
Ly 1/35049375 35049374 [ "37A" ] [ 1 ]
M11 1/3 2 [ "11A" ] [ 1 ]
M12 1/3 2 [ "10A" ] [ 3 ]
M22 1/21 20 [ "11A" ] [ 1 ]
M23 1/8064 8063 [ "23A" ] [ 1 ]
M24 108/1265 11 [ "21A" ] [ 2 ]
McL 317/22275 70 [ "15A", "30A" ] [ 3, 3 ]
ON 10/30723 3072 [ "31A" ] [ 2 ]
Ru 1/2880 2879 [ "29A" ] [ 1 ]
Suz 141/5720 40 [ "14A" ] [ 3 ]
Th 2/267995 133997 [ "27A", "27B" ] [ 2, 2 ]
]]></Example>
<P/>
We see that in all these cases, <M>&total;(G) < 1/2</M> and thus
<M>&sprbound;( G ) \geq 2</M>,
and all sporadic simple groups <M>G</M> except <M>G = M_{11}</M> and <M>G = M_{12}</M>
satisfy <M>&total;(G) < 1/3</M>.
See <Ref Subsect="spreadM11"/> and <Ref Subsect="spreadM12"/> for a proof that also these
two groups have uniform spread at least three.
<P/>
The structures and multiplicities of the maximal subgroups containing <M>s</M>
are as follows.
<P/>
<Example><![CDATA[
gap> for entry in sporinfo do
> DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[4] );
> od;
Co1, 35A: (A5xJ2):2 (1)
(A6xU3(3)):2 (2)
(A7xL2(7)):2 (1)
Co2, 23A: M23 (1)
Co3, 21A: U3(5).3.2 (2)
L3(4).D12 (1)
s3xpsl(2,8).3 (1)
F3+, 29A: 29:14 (1)
Fi22, 16A: 2^10:m22 (1)
(2x2^(1+8)):U4(2):2 (1)
2F4(2)' (4)
2^(5+8):(S3xA6) (1)
Fi23, 23A: 2..11.m23 (1)
L2(23) (1)
HN, 19A: U3(8).3_1 (1)
HS, 15A: A8.2 (1)
5:4xa5 (1)
He, 14C: 2^1+6.psl(3,2) (1)
7^2:2psl(2,7) (1)
7^(1+2):(S3x3) (1)
J1, 19A: 19:6 (1)
J2, 10C: 2^1+4b:a5 (1)
a5xd10 (1)
5^2:D12 (1)
J3, 19A: L2(19) (1)
J3M3 (1)
J4, 29A: frob (1)
Ly, 37A: 37:18 (1)
M11, 11A: L2(11) (1)
M12, 10A: A6.2^2 (1)
M12M4 (1)
2xS5 (1)
M22, 11A: L2(11) (1)
M23, 23A: 23:11 (1)
M24, 21A: L3(4).3.2_2 (1)
2^6:(psl(3,2)xs3) (1)
McL, 15A: 3^(1+4):2S5 (1)
2.A8 (1)
5^(1+2):3:8 (1)
McL, 30A: 3^(1+4):2S5 (1)
2.A8 (1)
5^(1+2):3:8 (1)
ON, 31A: L2(31) (1)
ONM8 (1)
Ru, 29A: L2(29) (1)
Suz, 14A: J2.2 (2)
(a4xpsl(3,4)):2 (1)
Th, 27A: ThN3B (1)
ThM7 (1)
Th, 27B: ThN3B (1)
ThM7 (1)
]]></Example>
<P/>
For the remaining two sporadic simple groups, <M>B</M> and <M>M</M>,
we choose suitable elements <M>s</M>.
If <M>G = B</M> and <M>s \in G</M> is of order <M>47</M> then,
by <Cite Key="Wil99"/>,
<M>&M;(G,s) = \{ 47:23 \}</M>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "B" ), "47A",
> [ CharacterTable( "47:23" ) ], [ 1 ] );
1/174702778623598780219392000000
]]></Example>
<P/>
If <M>G = M</M> and <M>s \in G</M> is of order <M>59</M> then, by <Cite Key="HW04"/>,
<M>&M;(G,s) = \{ L_2(59) \}</M>.
In this case, the permutation character is not uniquely determined by the
character tables, but all possibilities lead to the same value for
<M>&total;(G)</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "M" );;
gap> s:= CharacterTable( "L2(59)" );;
gap> pi:= PossiblePermutationCharacters( s, t );;
gap> Length( pi );
5
gap> spos:= Position( OrdersClassRepresentatives( t ), 59 );
152
gap> Set( pi, x -> Maximum( ApproxP( [ x ], spos ) ) );
[ 1/3385007637938037777290625 ]
]]></Example>
<P/>
Essentially the same approach is taken in <Cite Key="GM01"/>.
However, there <M>s</M> is restricted to classes of prime order.
Thus the results in the above table are better for <M>J_2</M>, <M>HS</M>, <M>M_{24}</M>,
<M>McL</M>, <M>He</M>, <M>Suz</M>, <M>Co_3</M>, <M>Fi_{22}</M>, <M>Ly</M>, <M>Th</M>, <M>Co_1</M>, and <M>J_4</M>.
Besides that, the value <M>10\,999</M> claimed in <Cite Key="GM01"/>
for <M>&sprtotal;( HN )</M> is not correct.
<P/>
<!-- % And they do not write how they obtain their results, -->
<!-- % presumably they also rely on the character table data plus the fusions. -->
<!-- % In fact, this information is the largest part of the result, -->
<!-- % since a few lines of &GAP; code suffice for the computations. -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="probgen:sporaut">
<Heading>Automorphism Groups of Sporadic Simple Groups</Heading>
Next we consider the automorphism groups of the sporadic simple groups.
There are exactly <M>12</M> cases where nontrivial outer automorphisms exist,
and then the simple group <M>S</M> has index <M>2</M>
in its automorphism group <M>G</M>.
<P/>
<Example><![CDATA[
gap> sporautnames:= AllCharacterTableNames( IsSporadicSimple, true,
> IsDuplicateTable, false,
> OfThose, AutomorphismGroup );;
gap> sporautnames:= Difference( sporautnames, spornames );
[ "F3+.2", "Fi22.2", "HN.2", "HS.2", "He.2", "J2.2", "J3.2", "M12.2",
"M22.2", "McL.2", "ON.2", "Suz.2" ]
]]></Example>
<P/>
First we compute the values <M>&total;^{\prime}(G,s)</M>,
for the same <M>s \in S</M> that were chosen for the simple group <M>S</M>
in Section <Ref Subsect="subsect:spor"/>.
<P/>
For six of the groups <M>G</M> in question,
the character tables of all maximal subgroups are available in the &GAP;
Character Table Library.
In these cases, the values <M>&total;^{\prime}( G, s )</M>
can be computed using <C>ProbGenInfoAlmostSimple</C>.
<P/>
<E>(The above statement can meanwhile be replaced by the statement that
the character tables of all maximal subgroups are available for all twelve
groups.
We show the table results for all these groups but keep the individual
computations from the original computations.)</E>
<P/>
<Example><![CDATA[
gap> sporautinfo:= [];;
gap> fails:= [];;
gap> for name in sporautnames do
> tbl:= CharacterTable( name{ [ 1 .. Position( name, '.' ) - 1 ] } );
> tblG:= CharacterTable( name );
> info:= ProbGenInfoSimple( tbl );
> info:= ProbGenInfoAlmostSimple( tbl, tblG,
> List( info[4], x -> Position( AtlasClassNames( tbl ), x ) ) );
> if info = fail then
> Add( fails, name );
> else
> Add( sporautinfo, info );
> fi;
> od;
gap> PrintFormattedArray( sporautinfo );
F3+.2 0 [ "29AB" ] [ 1 ]
Fi22.2 251/3861 [ "16AB" ] [ 7 ]
HN.2 1/6875 [ "19AB" ] [ 1 ]
HS.2 36/275 [ "15A" ] [ 2 ]
He.2 37/9520 [ "14CD" ] [ 3 ]
J2.2 1/15 [ "10CD" ] [ 3 ]
J3.2 1/1080 [ "19AB" ] [ 1 ]
M12.2 4/99 [ "10A" ] [ 1 ]
M22.2 1/21 [ "11AB" ] [ 1 ]
McL.2 1/63 [ "15AB", "30AB" ] [ 3, 3 ]
ON.2 1/84672 [ "31AB" ] [ 1 ]
Suz.2 661/46332 [ "14A" ] [ 3 ]
]]></Example>
<P/>
Note that for <M>S = McL</M>,
the bound <M>&total;^{\prime}(G,s)</M> for <M>G = S.2</M>
(in the second column) is worse than the bound for the simple group <M>S</M>.
<P/>
The structures and multiplicities of the maximal subgroups containing <M>s</M>
are as follows.
<P/>
<Example><![CDATA[
gap> for entry in sporautinfo do
> DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[3] );
> od;
F3+.2, 29AB: F3+ (1)
frob (1)
Fi22.2, 16AB: Fi22 (1)
Fi22.2M4 (1)
(2x2^(1+8)):(U4(2):2x2) (1)
2F4(2)'.2 (4)
2^(5+8):(S3xS6) (1)
HN.2, 19AB: HN (1)
U3(8).6 (1)
HS.2, 15A: HS (1)
S8x2 (1)
5:4xS5 (1)
He.2, 14CD: He (1)
2^(1+6)_+.L3(2).2 (1)
7^2:2.L2(7).2 (1)
7^(1+2):(S3x6) (1)
J2.2, 10CD: J2 (1)
2^(1+4).S5 (1)
(A5xD10).2 (1)
5^2:(4xS3) (1)
J3.2, 19AB: J3 (1)
19:18 (1)
M12.2, 10A: M12 (1)
(2^2xA5):2 (1)
M22.2, 11AB: M22 (1)
L2(11).2 (1)
McL.2, 15AB: McL (1)
3^(1+4):4S5 (1)
Isoclinic(2.A8.2) (1)
5^(1+2):(24:2) (1)
McL.2, 30AB: McL (1)
3^(1+4):4S5 (1)
Isoclinic(2.A8.2) (1)
5^(1+2):(24:2) (1)
ON.2, 31AB: ON (1)
31:30 (1)
Suz.2, 14A: Suz (1)
J2.2x2 (2)
(A4xL3(4):2_3):2 (1)
]]></Example>
<P/>
Note that the maximal subgroups <M>L_2(19)</M> of <M>J_3</M> do not extend
to <M>J_3.2</M> and that a class of maximal subgroups of the type
<M>19:18</M> appears in <M>J_3.2</M>
whose intersection with <M>J_3</M> is not maximal in <M>J_3</M>.
Similarly, the maximal subgroups <M>A_6.2^2</M> of <M>M_{12}</M> do not extend
to <M>M_{12}.2</M>.
<P/>
For the other six groups, we use individual computations.
<P/>
In the case <M>S = Fi_{24}^{\prime}</M>,
the unique maximal subgroup <M>29:14</M> that contains an element <M>s</M>
of order <M>29</M> extends to a group of the type
<M>29:28</M> in <M>Fi_{24}</M>,
which is a nonsplit extension of <M>29:14</M>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "Fi24'.2" ), "29AB",
> [ CharacterTable( "29:28" ) ], [ 1 ], "outer" );
0
]]></Example>
<P/>
In the case <M>S = Fi_{22}</M>, there are four classes of maximal subgroups
that contain <M>s</M> of order <M>16</M>.
They extend to <M>G = Fi_{22}.2</M>,
and none of the <E>novelties</E> in <M>G</M> (i. e., subgroups of <M>G</M> that are
maximal in <M>G</M> but whose intersections with <M>S</M> are not maximal in <M>S</M>)
contains <M>s</M>, cf. <Cite Key="CCN85" Where="p. 163"/>.
<P/>
<Example><![CDATA[
gap> 16 in OrdersClassRepresentatives( CharacterTable( "U4(2).2" ) );
false
gap> 16 in OrdersClassRepresentatives( CharacterTable( "G2(3).2" ) );
false
]]></Example>
<P/>
The character tables of three of the four extensions are available in the
&GAP; Character Table Library.
The permutation character on the cosets of the fourth extension can be
obtained as the extension of the permutation character of <M>S</M> on the
cosets of its maximal subgroup of the type <M>2^{5+8}:(S_3 \times A_6)</M>.
<P/>
<Example><![CDATA[
gap> t2:= CharacterTable( "Fi22.2" );;
gap> prim:= List( [ "Fi22.2M4", "(2x2^(1+8)):(U4(2):2x2)", "2F4(2)" ],
> n -> PossiblePermutationCharacters( CharacterTable( n ), t2 ) );;
gap> t:= CharacterTable( "Fi22" );;
gap> pi:= PossiblePermutationCharacters(
> CharacterTable( "2^(5+8):(S3xA6)" ), t );
[ Character( CharacterTable( "Fi22" ),
[ 3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133,
37, 69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13,
5, 1, 0, 0, 0, 8, 4, 0, 0, 9, 3, 15, 3, 1, 1, 1, 1, 3, 3, 1, 0,
0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2 ] ) ]
gap> torso:= CompositionMaps( pi[1], InverseMap( GetFusionMap( t, t2 ) ) );
[ 3648645, 56133, 10629, 2245, 567, 729, 405, 81, 549, 165, 133, 37,
69, 20, 27, 81, 9, 39, 81, 19, 1, 13, 33, 13, 1, 0, 13, 13, 5, 1,
0, 0, 0, 8, 4, 0, 9, 3, 15, 3, 1, 1, 1, 3, 3, 1, 0, 0, 2, 1, 0, 0,
0, 0, 0, 0, 1, 1, 2 ]
gap> ext:= PermChars( t2, rec( torso:= torso ) );;
gap> Add( prim, ext );
gap> prim:= Concatenation( prim );; Length( prim );
4
gap> spos:= Position( OrdersClassRepresentatives( t2 ), 16 );;
gap> List( prim, x -> x[ spos ] );
[ 1, 1, 4, 1 ]
gap> sigma:= ApproxP( prim, spos );;
gap> Maximum( sigma{ Difference( PositionsProperty(
> OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
251/3861
]]></Example>
<P/>
In the case <M>S = HN</M>, the unique maximal subgroup <M>U_3(8).3</M>
that contains the fixed element <M>s</M> of order <M>19</M>
extends to a group of the type <M>U_3(8).6</M> in <M>HN.2</M>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "HN.2" ), "19AB",
> [ CharacterTable( "U3(8).6" ) ], [ 1 ], "outer" );
1/6875
]]></Example>
<P/>
In the case <M>S = HS</M>, there are two classes of maximal subgroups
that contain <M>s</M> of order <M>15</M>.
They extend to <M>G = HS.2</M>,
and none of the novelties in <M>G</M> contains <M>s</M>
(cf. <Cite Key="CCN85" Where="p. 80"/>).
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "HS.2" ), "15A",
> [ CharacterTable( "S8x2" ),
> CharacterTable( "5:4" ) * CharacterTable( "A5.2" ) ], [ 1, 1 ],
> "outer" );
36/275
]]></Example>
<P/>
In the case <M>S = He</M>, there are three classes of maximal subgroups
that contain <M>s</M> in the class <C>14C</C>.
They extend to <M>G = He.2</M>,
and none of the novelties in <M>G</M> contains <M>s</M>
(cf. <Cite Key="CCN85" Where="p. 104"/>).
We compute the extensions of the corresponding primitive permutation
characters of <M>S</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "He" );;
gap> t2:= CharacterTable( "He.2" );;
gap> prim:= PrimitivePermutationCharacters( t );;
gap> spos:= Position( AtlasClassNames( t ), "14C" );;
gap> prim:= Filtered( prim, x -> x[ spos ] <> 0 );;
gap> map:= InverseMap( GetFusionMap( t, t2 ) );;
gap> torso:= List( prim, pi -> CompositionMaps( pi, map ) );
[ [ 187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0, 0,
1, 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0 ],
[ 652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0, 0,
0, 1, 0, 0, 1, 1, 2, 0 ] ]
gap> ext:= List( torso, x -> PermChars( t2, rec( torso:= x ) ) );
[ [ Character( CharacterTable( "He.2" ),
[ 187425, 945, 449, 0, 21, 21, 25, 25, 0, 0, 5, 0, 0, 7, 1, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 315, 15, 0, 0, 3, 7, 7, 3, 0,
0, 0, 1, 1, 0, 1, 1, 0, 0, 0 ] ) ],
[ Character( CharacterTable( "He.2" ),
[ 244800, 0, 64, 0, 84, 0, 0, 16, 0, 0, 4, 24, 45, 3, 4, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 360, 0, 0, 0, 6, 0, 0, 0, 0, 0,
3, 2, 2, 0, 0, 0, 0, 0, 0 ] ) ],
[ Character( CharacterTable( "He.2" ),
[ 652800, 0, 512, 120, 72, 0, 0, 0, 0, 0, 8, 8, 22, 1, 0, 0, 0,
0, 0, 1, 0, 0, 1, 1, 2, 0, 480, 0, 120, 0, 12, 0, 0, 0, 0,
0, 4, 0, 0, 0, 0, 0, 0, 1, 1 ] ) ] ]
gap> spos:= Position( AtlasClassNames( t2 ), "14CD" );;
gap> sigma:= ApproxP( Concatenation( ext ), spos );;
gap> Maximum( sigma{ Difference( PositionsProperty(
> OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
37/9520
]]></Example>
<P/>
In the case <M>S = O'N</M>, the two classes of maximal subgroups of the type
<M>L_2(31)</M> do not extend to <M>G = O'N.2</M>, and a class of novelties of the
structure <M>31:30</M> appears (see <Cite Key="CCN85" Where="p. 132"/>).
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "ON.2" ), "31AB",
> [ CharacterTable( "P:Q", [ 31, 30 ] ) ], [ 1 ], "outer" );
1/84672
]]></Example>
<P/>
Now we consider also <M>&total;(G,\hat{s})</M>,
for suitable <M>\hat{s} \in G \setminus S</M>;
this yields lower bounds for the spread of the nonsimple groups <M>G</M>.
(These results are shown in the last two columns of <Cite Key="BGK" Where="Table 9"/>.)
<P/>
As above, we use the known character tables of the maximal subgroups
in order to compute the optimal choice for <M>\hat{s} \in G \setminus S</M>.
(We may use the function <C>ProbGenInfoSimple</C> although the groups are not
simple; all we need is that the relevant maximal subgroups are
self-normalizing.)
<P/>
<Example><![CDATA[
gap> sporautinfo2:= [];;
gap> for name in List( sporautinfo, x -> x[1] ) do
> Add( sporautinfo2, ProbGenInfoSimple( CharacterTable( name ) ) );
> od;
gap> PrintFormattedArray( sporautinfo2 );
F3+.2 19/5684 299 [ "42E" ] [ 10 ]
Fi22.2 1165/20592 17 [ "24G" ] [ 3 ]
HN.2 1/1425 1424 [ "24B" ] [ 4 ]
HS.2 21/550 26 [ "20C" ] [ 4 ]
He.2 33/4165 126 [ "24A" ] [ 2 ]
J2.2 1/15 14 [ "14A" ] [ 1 ]
J3.2 77/10260 133 [ "34A" ] [ 1 ]
M12.2 113/495 4 [ "12B" ] [ 3 ]
M22.2 8/33 4 [ "10A" ] [ 4 ]
McL.2 1/135 134 [ "22A" ] [ 1 ]
ON.2 61/109368 1792 [ "22A", "38A" ] [ 1, 1 ]
Suz.2 1/351 350 [ "28A" ] [ 1 ]
gap> for entry in sporautinfo2 do
> DisplayProbGenMaxesInfo( CharacterTable( entry[1] ), entry[4] );
> od;
F3+.2, 42E: 2^12.M24 (2)
2^2.U6(2):S3x2 (1)
2^(3+12).(L3(2)xS6) (2)
(S3xS3xG2(3)):2 (1)
S6xL2(8):3 (1)
7:6xS7 (1)
7^(1+2)_+:(6xS3).2 (2)
Fi22.2, 24G: Fi22.2M4 (1)
2^(5+8):(S3xS6) (1)
3^5:(2xU4(2).2) (1)
HN.2, 24B: 2^(1+8)_+.(A5xA5).2^2 (1)
5^2.5.5^2.4S5 (2)
HN.2M13 (1)
HS.2, 20C: (2xA6.2^2).2 (1)
HS.2N5 (2)
5:4xS5 (1)
He.2, 24A: 2^(1+6)_+.L3(2).2 (1)
S4xL3(2).2 (1)
J2.2, 14A: L3(2).2x2 (1)
J3.2, 34A: L2(17)x2 (1)
M12.2, 12B: L2(11).2 (1)
2^3.(S4x2) (1)
3^(1+2):D8 (1)
M22.2, 10A: M22.2M4 (1)
A6.2^2 (1)
L2(11).2 (2)
McL.2, 22A: 2xM11 (1)
ON.2, 22A: J1x2 (1)
ON.2, 38A: J1x2 (1)
Suz.2, 28A: (A4xL3(4):2_3):2 (1)
]]></Example>
<P/>
In the other six cases,
we do not have the complete lists of primitive permutation characters,
so we choose a suitable element <M>\hat{s}</M> for each group.
It is sufficient to prescribe <M>|\hat{s}|</M>, as follows.
<P/>
<Example><![CDATA[
gap> sporautchoices:= [
> [ "Fi22", "Fi22.2", 42 ],
> [ "Fi24'", "Fi24'.2", 46 ],
> [ "He", "He.2", 42 ],
> [ "HN", "HN.2", 44 ],
> [ "HS", "HS.2", 30 ],
> [ "ON", "ON.2", 38 ], ];;
]]></Example>
<P/>
First we list the maximal subgroups of the corresponding simple groups
that contain the square of <M>\hat{s}</M>.
<P/>
<Example><![CDATA[
gap> for triple in sporautchoices do
> tbl:= CharacterTable( triple[1] );
> tbl2:= CharacterTable( triple[2] );
> spos2:= PowerMap( tbl2, 2,
> Position( OrdersClassRepresentatives( tbl2 ), triple[3] ) );
> spos:= Position( GetFusionMap( tbl, tbl2 ), spos2 );
> DisplayProbGenMaxesInfo( tbl, AtlasClassNames( tbl ){ [ spos ] } );
> od;
Fi22, 21A: O8+(2).3.2 (1)
S3xU4(3).2_2 (1)
A10.2 (1)
A10.2 (1)
F3+, 23A: Fi23 (1)
F3+M7 (1)
He, 21B: 3.A7.2 (1)
7^(1+2):(S3x3) (1)
7:3xpsl(3,2) (2)
HN, 22A: 2.HS.2 (1)
HS, 15A: A8.2 (1)
5:4xa5 (1)
ON, 19B: L3(7).2 (1)
ONM2 (1)
J1 (1)
]]></Example>
<P/>
According to <Cite Key="CCN85"/>, exactly
the following maximal subgroups of the simple group <M>S</M> in the above list
do <E>not</E> extend to <M>&Aut;(S)</M>:
The two <M>S_{10}</M> type subgroups of <M>Fi_{22}</M>
and the two <M>L_3(7).2</M> type subgroups of <M>O'N</M>.
<P/>
Furthermore, the following maximal subgroups of <M>&Aut;(S)</M> with the property
that the intersection with <M>S</M> is not maximal in <M>S</M> have to be considered
whether they contain <M>s^{\prime}</M>:
<M>G_2(3).2</M> and <M>3^5:(2 \times U_4(2).2)</M> in <M>Fi_{22}.2</M>.
(Note that the order of the <M>7^{1+2}_+:(3 \times D_{16})</M> type subgroup in
<M>O'N.2</M> is obviously not divisible by <M>19</M>.)
<P/>
<Example><![CDATA[
gap> 42 in OrdersClassRepresentatives( CharacterTable( "G2(3).2" ) );
false
gap> Size( CharacterTable( "U4(2)" ) ) mod 7 = 0;
false
]]></Example>
<P/>
So we take the extensions of the above maximal subgroups,
as described in <Cite Key="CCN85"/>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "Fi22.2" ), "42A",
> [ CharacterTable( "O8+(2).3.2" ) * CharacterTable( "Cyclic", 2 ),
> CharacterTable( "S3" ) * CharacterTable( "U4(3).(2^2)_{122}" ) ],
> [ 1, 1 ] );
163/1170
gap> SigmaFromMaxes( CharacterTable( "Fi24'.2" ), "46A",
> [ CharacterTable( "Fi23" ) * CharacterTable( "Cyclic", 2 ),
> CharacterTable( "2^12.M24" ) ],
> [ 1, 1 ] );
566/5481
gap> SigmaFromMaxes( CharacterTable( "He.2" ), "42A",
> [ CharacterTable( "3.A7.2" ) * CharacterTable( "Cyclic", 2 ),
> CharacterTable( "7^(1+2):(S3x6)" ),
> CharacterTable( "7:6" ) * CharacterTable( "L3(2)" ) ],
> [ 1, 1, 1 ] );
1/119
gap> SigmaFromMaxes( CharacterTable( "HN.2" ), "44A",
> [ CharacterTable( "4.HS.2" ) ],
> [ 1 ] );
997/192375
gap> SigmaFromMaxes( CharacterTable( "HS.2" ), "30A",
> [ CharacterTable( "S8" ) * CharacterTable( "C2" ),
> CharacterTable( "5:4" ) * CharacterTable( "S5" ) ],
> [ 1, 1 ] );
36/275
gap> SigmaFromMaxes( CharacterTable( "ON.2" ), "38A",
> [ CharacterTable( "J1" ) * CharacterTable( "C2" ) ],
> [ 1 ] );
61/109368
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="easyloop">
<Heading>Other Simple Groups – Easy Cases</Heading>
We are interested in simple groups <M>G</M> for which <C>ProbGenInfoSimple</C>
does not guarantee <M>&sprtotal;(G) \geq 3</M>.
So we examine the remaining tables of simple groups in the &GAP;
Character Table Library,
and distinguish the following three cases:
Either <C>ProbGenInfoSimple</C> yields the lower bound at least three,
or a smaller bound,
or the computation of a lower bound fails because not enough information
is available to compute the primitive permutation characters.
<P/>
<Example><![CDATA[
gap> names:= AllCharacterTableNames( IsSimple, true, IsAbelian, false,
> IsDuplicateTable, false );;
gap> names:= Difference( names, spornames );;
gap> fails:= [];;
gap> lessthan3:= [];;
gap> atleast3:= [];;
gap> for name in names do
> tbl:= CharacterTable( name );
> info:= ProbGenInfoSimple( tbl );
> if info = fail then
> Add( fails, name );
> elif info[3] < 3 then
> Add( lessthan3, info );
> else
> Add( atleast3, info );
> fi;
> od;
]]></Example>
<P/>
For the following simple groups,
(currently) not enough information is available
in the &GAP; Character Table Library and in the &GAP; Library of Tables
of Marks,
for computing a lower bound for <M>&total;(G)</M>.
Some of these groups will be dealt with in later sections,
and for the other groups, the bounds derived with theoretical arguments
in <Cite Key="BGK"/> are sufficient,
so we need no &GAP; computations for them.
<P/>
<Example><![CDATA[
gap> fails;
[ "2E6(2)", "2F4(8)", "3D4(3)", "3D4(4)", "A14", "A15", "A16", "A17",
"A18", "A19", "E6(2)", "L4(4)", "L4(5)", "L4(9)", "L5(3)", "L8(2)",
"O10+(2)", "O10+(3)", "O10-(2)", "O10-(3)", "O12+(2)", "O12+(3)",
"O12-(2)", "O12-(3)", "O7(5)", "O8+(7)", "O8-(3)", "O9(3)",
"R(27)", "S10(2)", "S12(2)", "S4(7)", "S4(8)", "S4(9)", "S6(4)",
"S6(5)", "S8(3)", "U4(4)", "U4(5)", "U5(3)", "U5(4)", "U6(4)",
"U7(2)" ]
]]></Example>
<P/>
The following simple groups appear in <Cite Key="BGK" Where="Table 1–6"/>.
More detailed computations can be found in the sections <Ref Subsect="A5"/>,
<Ref Subsect="A6"/>, <Ref Subsect="A7"/>, <Ref Subsect="O8p2"/>, <Ref Subsect="O8p3"/>, <Ref Subsect="S62"/>, <Ref Subsect="U42"/>, <Ref Subsect="U43"/>.
<P/>
<Example><![CDATA[
gap> PrintFormattedArray( lessthan3 );
A5 1/3 2 [ "5A" ] [ 1 ]
A6 2/3 1 [ "5A" ] [ 2 ]
A7 2/5 2 [ "7A" ] [ 2 ]
O7(3) 199/351 1 [ "14A" ] [ 3 ]
O8+(2) 334/315 0 [ "15A", "15B", "15C" ] [ 7, 7, 7 ]
O8+(3) 863/1820 2 [ "20A", "20B", "20C" ] [ 8, 8, 8 ]
S6(2) 4/7 1 [ "9A" ] [ 4 ]
S8(2) 8/15 1 [ "17A" ] [ 3 ]
U4(2) 21/40 1 [ "12A" ] [ 2 ]
U4(3) 53/135 2 [ "7A" ] [ 7 ]
]]></Example>
<P/>
For the following simple groups <M>G</M>,
the inequality <M>&total;(G) < 1/3</M> follows from the loop above.
The columns show the name of <M>G</M>, the values <M>&total;(G)</M> and <M>&sprtotal;(G)</M>,
the class names of <M>s</M> for which these values are attained,
and <M>|&M;(G,s)|</M>.
<P/>
(We increase the line length for this table.
Even with this width,
the entry for the group <M>L_7(2)</M> would not fit on one screen line,
we show it separately below.)
<P/>
<Example><![CDATA[
gap> oldsize:= SizeScreen();;
gap> SizeScreen( [ 80 ] );;
gap> PrintFormattedArray( Filtered( atleast3, l -> l[1] <> "L7(2)" ) );
2F4(2)' 118/1755 14 [ "16A" ] [ 2 ]
3D4(2) 1/5292 5291 [ "13A" ] [ 1 ]
A10 3/10 3 [ "21A" ] [ 1 ]
A11 2/105 52 [ "11A" ] [ 2 ]
A12 2/9 4 [ "35A" ] [ 1 ]
A13 4/1155 288 [ "13A" ] [ 5 ]
A8 3/14 4 [ "15A" ] [ 1 ]
A9 9/35 3 [ "9A", "9B" ] [ 4, 4 ]
F4(2) 9/595 66 [ "13A" ] [ 5 ]
G2(3) 1/7 6 [ "13A" ] [ 3 ]
G2(4) 1/21 20 [ "13A" ] [ 2 ]
G2(5) 1/31 30 [ "7A", "21A" ] [ 10, 1 ]
L2(101) 1/101 100 [ "51A", "17A" ] [ 1, 1 ]
L2(103) 53/5253 99 [ "52A", "26A", "13A" ] [ 1, 1, 1 ]
L2(107) 55/5671 103 [ "54A", "27A", "18A", "9A", "6A" ] [ 1, 1, 1, 1, 1 ]
L2(109) 1/109 108 [ "55A", "11A" ] [ 1, 1 ]
L2(11) 7/55 7 [ "6A" ] [ 1 ]
L2(113) 1/113 112 [ "57A", "19A" ] [ 1, 1 ]
L2(121) 1/121 120 [ "61A" ] [ 1 ]
L2(125) 1/125 124 [ "63A", "21A", "9A", "7A" ] [ 1, 1, 1, 1 ]
L2(13) 1/13 12 [ "7A" ] [ 1 ]
L2(16) 1/15 14 [ "17A" ] [ 1 ]
L2(17) 1/17 16 [ "9A" ] [ 1 ]
L2(19) 11/171 15 [ "10A" ] [ 1 ]
L2(23) 13/253 19 [ "6A", "12A" ] [ 1, 1 ]
L2(25) 1/25 24 [ "13A" ] [ 1 ]
L2(27) 5/117 23 [ "7A", "14A" ] [ 1, 1 ]
L2(29) 1/29 28 [ "15A" ] [ 1 ]
L2(31) 17/465 27 [ "8A", "16A" ] [ 1, 1 ]
L2(32) 1/31 30 [ "3A", "11A", "33A" ] [ 1, 1, 1 ]
L2(37) 1/37 36 [ "19A" ] [ 1 ]
L2(41) 1/41 40 [ "21A", "7A" ] [ 1, 1 ]
L2(43) 23/903 39 [ "22A", "11A" ] [ 1, 1 ]
L2(47) 25/1081 43 [ "24A", "12A", "8A", "6A" ] [ 1, 1, 1, 1 ]
L2(49) 1/49 48 [ "25A" ] [ 1 ]
L2(53) 1/53 52 [ "27A", "9A" ] [ 1, 1 ]
L2(59) 31/1711 55 [ "30A", "15A", "10A", "6A" ] [ 1, 1, 1, 1 ]
L2(61) 1/61 60 [ "31A" ] [ 1 ]
L2(64) 1/63 62 [ "65A", "13A" ] [ 1, 1 ]
L2(67) 35/2211 63 [ "34A", "17A" ] [ 1, 1 ]
L2(71) 37/2485 67 [ "36A", "18A", "12A", "9A", "6A" ] [ 1, 1, 1, 1, 1 ]
L2(73) 1/73 72 [ "37A" ] [ 1 ]
L2(79) 41/3081 75 [ "40A", "20A", "10A", "8A" ] [ 1, 1, 1, 1 ]
L2(8) 1/7 6 [ "3A", "9A" ] [ 1, 1 ]
L2(81) 1/81 80 [ "41A" ] [ 1 ]
L2(83) 43/3403 79 [ "42A", "21A", "14A", "7A", "6A" ] [ 1, 1, 1, 1, 1 ]
L2(89) 1/89 88 [ "45A", "15A", "9A" ] [ 1, 1, 1 ]
L2(97) 1/97 96 [ "49A", "7A" ] [ 1, 1 ]
L3(11) 1/6655 6654 [ "19A", "133A" ] [ 1, 1 ]
L3(2) 1/4 3 [ "7A" ] [ 1 ]
L3(3) 1/24 23 [ "13A" ] [ 1 ]
L3(4) 1/5 4 [ "7A" ] [ 3 ]
L3(5) 1/250 249 [ "31A" ] [ 1 ]
L3(7) 1/1372 1371 [ "19A" ] [ 1 ]
L3(8) 1/1792 1791 [ "73A" ] [ 1 ]
L3(9) 1/2880 2879 [ "91A" ] [ 1 ]
L4(3) 53/1053 19 [ "20A" ] [ 1 ]
L5(2) 1/5376 5375 [ "31A" ] [ 1 ]
L6(2) 365/55552 152 [ "21A", "63A" ] [ 2, 2 ]
O8-(2) 1/63 62 [ "17A" ] [ 1 ]
S4(4) 4/15 3 [ "17A" ] [ 2 ]
S4(5) 1/5 4 [ "13A" ] [ 1 ]
S6(3) 1/117 116 [ "14A" ] [ 2 ]
Sz(32) 1/1271 1270 [ "5A", "25A" ] [ 1, 1 ]
Sz(8) 1/91 90 [ "5A" ] [ 1 ]
U3(11) 1/6655 6654 [ "37A" ] [ 1 ]
U3(3) 16/63 3 [ "6A", "12A" ] [ 2, 2 ]
U3(4) 1/160 159 [ "13A" ] [ 1 ]
U3(5) 46/525 11 [ "10A" ] [ 2 ]
U3(7) 1/1372 1371 [ "43A" ] [ 1 ]
U3(8) 1/1792 1791 [ "19A" ] [ 1 ]
U3(9) 1/3600 3599 [ "73A" ] [ 1 ]
U5(2) 1/54 53 [ "11A" ] [ 1 ]
U6(2) 5/21 4 [ "11A" ] [ 4 ]
gap> SizeScreen( oldsize );;
gap> First( atleast3, l -> l[1] = "L7(2)" );
[ "L7(2)", 1/4388290560, 4388290559, [ "127A" ], [ 1 ] ]
]]></Example>
<P/>
It should be mentioned that <Cite Key="BW1"/> states the following
lower bounds for the uniform spread of the groups <M>L_2(q)</M>.
<P/>
<Table Align="|l|l|">
<Row>
<Item><M>q-2</M></Item>
<Item>if <M>4 \leq q</M> is even,</Item>
</Row>
<Row>
<Item><M>q-1</M></Item>
<Item>if <M>11 \leq q \equiv 1 \pmod{4}</M>,</Item>
</Row>
<Row>
<Item><M>q-4</M></Item>
<Item>if <M>11 \leq q \equiv -1 \pmod{4}</M>.</Item>
</Row>
</Table>
<P/>
These bounds appear in the third column of the above table.
Furthermore, <Cite Key="BW1"/> states that the (uniform) spread
of alternating groups of even degree at least <M>8</M> is exactly <M>4</M>.
<P/>
For the sake of completeness,
Table II gives an overview of the
sets <M>&M;(G,s)</M> for those cases in the above list
that are needed in <Cite Key="BGK"/>
but that do not require a further discussion here.
The structure of the maximal subgroups and the order of <M>s</M> in the table
refer to the matrix groups not to the simple groups.
The number of the subgroups has been shown above,
the structure follows from <Cite Key="CCN85"/>.
<P/>
<Table Align="|l|l|r|r|">
<Caption>Table II: Maximal subgroups/></Caption>
<HorLine/>
<Row>
<Item><M>G</M></Item>
<Item><M>&M;(G,s)</M></Item>
<Item><M>|s|</M></Item>
<Item>see <Cite Key="CCN85"/></Item>
</Row>
<HorLine/>
<HorLine/>
<Row>
<Item><M>&SL;(3,4) = 3.L_3(4)</M></Item>
<Item><M>3 \times L_3(2), 3 \times L_3(2), 3 \times L_3(2)</M></Item>
<Item><M>21</M></Item>
<Item>p. 23</Item>
</Row>
<HorLine/>
<Row>
<Item><M>\Omega^-(8,2) = O^-_8(2)</M></Item>
<Item><M>\Omega^-(4,4).2 = L_2(16).2</M></Item>
<Item><M>17</M></Item>
<Item>p. 89</Item>
</Row>
<HorLine/>
<Row>
<Item><M>&Sp;(4,4) = S_4(4)</M></Item>
<Item><M>\Omega^-(4,4).2 = L_2(16).2, &Sp;(2,16).2 = L_2(16).2</M></Item>
<Item><M>17</M></Item>
<Item>p. 44</Item>
</Row>
<Row>
<Item><M>&Sp;(6,3) = 2.S_6(3)</M></Item>
<Item><M>(4 \times U_3(3)).2, &Sp;(2,17).3 = 2.L_2(27).3</M></Item>
<Item><M>28</M></Item>
<Item>p. 113</Item>
</Row>
<HorLine/>
<Row>
<Item><M>&SU;(3,3) = U_3(3)</M></Item>
<Item><M>3^{1+2}_+:8, &GU;(2,3) = 4.S_4</M></Item>
<Item><M>6</M></Item>
<Item>p. 14</Item>
</Row>
<Row>
<Item><M>&SU;(3,5) = 3.U_3(5)</M></Item>
<Item><M>3 \times 5^{1+2}_+:8, &GU;(2,5) = 3 \times 2S_5</M></Item>
<Item><M>30</M></Item>
<Item>p. 34</Item>
</Row>
<Row>
<Item><M>&SU;(5,2) = U_5(2)</M></Item>
<Item><M>L_2(11)</M></Item>
<Item><M>11</M></Item>
<Item>p. 73</Item>
</Row>
<HorLine/>
</Table>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="easyloopaut">
<Heading>Automorphism Groups of other Simple Groups – Easy Cases</Heading>
We deal with automorphic extensions of those simple groups that are
listed in Table I and that have been treated
successfully in Section <Ref Subsect="easyloop"/>.
<P/>
For the following groups, <C>ProbGenInfoAlmostSimple</C> can be used
because &GAP; can compute their primitive permutation characters.
<P/>
<Example><![CDATA[
gap> list:= [
> [ "A5", "A5.2" ],
> [ "A6", "A6.2_1" ],
> [ "A6", "A6.2_2" ],
> [ "A6", "A6.2_3" ],
> [ "A7", "A7.2" ],
> [ "A8", "A8.2" ],
> [ "A9", "A9.2" ],
> [ "A11", "A11.2" ],
> [ "L3(2)", "L3(2).2" ],
> [ "L3(3)", "L3(3).2" ],
> [ "L3(4)", "L3(4).2_1" ],
> [ "L3(4)", "L3(4).2_2" ],
> [ "L3(4)", "L3(4).2_3" ],
> [ "L3(4)", "L3(4).3" ],
> [ "S4(4)", "S4(4).2" ],
> [ "U3(3)", "U3(3).2" ],
> [ "U3(5)", "U3(5).2" ],
> [ "U3(5)", "U3(5).3" ],
> [ "U4(2)", "U4(2).2" ],
> [ "U4(3)", "U4(3).2_1" ],
> [ "U4(3)", "U4(3).2_3" ],
> ];;
gap> autinfo:= [];;
gap> fails:= [];;
gap> for pair in list do
> tbl:= CharacterTable( pair[1] );
> tblG:= CharacterTable( pair[2] );
> info:= ProbGenInfoSimple( tbl );
> spos:= List( info[4], x -> Position( AtlasClassNames( tbl ), x ) );
> Add( autinfo, ProbGenInfoAlmostSimple( tbl, tblG, spos ) );
> od;
gap> PrintFormattedArray( autinfo );
A5.2 0 [ "5AB" ] [ 1 ]
A6.2_1 2/3 [ "5AB" ] [ 2 ]
A6.2_2 1/6 [ "5A" ] [ 1 ]
A6.2_3 0 [ "5AB" ] [ 1 ]
A7.2 1/15 [ "7AB" ] [ 1 ]
A8.2 13/28 [ "15AB" ] [ 1 ]
A9.2 1/4 [ "9AB" ] [ 1 ]
A11.2 1/945 [ "11AB" ] [ 1 ]
L3(2).2 1/4 [ "7AB" ] [ 1 ]
L3(3).2 1/18 [ "13AB" ] [ 1 ]
L3(4).2_1 3/10 [ "7AB" ] [ 3 ]
L3(4).2_2 11/60 [ "7A" ] [ 1 ]
L3(4).2_3 1/12 [ "7AB" ] [ 1 ]
L3(4).3 1/64 [ "7A" ] [ 1 ]
S4(4).2 0 [ "17AB" ] [ 2 ]
U3(3).2 2/7 [ "6A", "12AB" ] [ 2, 2 ]
U3(5).2 2/21 [ "10A" ] [ 2 ]
U3(5).3 46/525 [ "10A" ] [ 2 ]
U4(2).2 16/45 [ "12AB" ] [ 2 ]
U4(3).2_1 76/135 [ "7A" ] [ 3 ]
U4(3).2_3 31/162 [ "7AB" ] [ 3 ]
]]></Example>
<P/>
We see that from this list,
the two groups <M>A_6.2_1 = S_6</M> and <M>U_4(3).2_1</M> require further computations
(see Sections <Ref Subsect="A6"/> and <Ref Subsect="U43"/>, respectively)
because the bound in the second column is larger than <M>1/2</M>.
<P/>
Also <M>U_4(2)</M> is not done by the above,
because in <Cite Key="BGK" Where="Table 4"/>,
an element <M>s</M> of order <M>9</M> is chosen
for the simple group, see Section <Ref Subsect="U42"/>.
<P/>
Finally, we deal with automorphic extensions of the groups <M>L_4(3)</M>,
<M>O_8^-(2)</M>, <M>S_6(3)</M>, and <M>U_5(2)</M>.
<P/>
For <M>S = L_4(3)</M> and <M>s \in S</M> of order <M>20</M>,
we have <M>&M;(S,s) = \{ (4 \times A_6):2 \}</M>,
the subgroup has index <M>2\,106</M>, see <Cite Key="CCN85" Where="p. 69"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "L4(3)" );;
gap> prim:= PrimitivePermutationCharacters( t );;
gap> spos:= Position( AtlasClassNames( t ), "20A" );;
gap> prim:= Filtered( prim, x -> x[ spos ] <> 0 );
[ Character( CharacterTable( "L4(3)" ),
[ 2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0, 0,
1, 1, 1, 0, 0, 0, 0, 0, 1, 1 ] ) ]
]]></Example>
<P/>
For the three automorphic extensions of the structure <M>G = S.2</M>,
we compute the extensions of the permutation character,
and the bounds <M>&total;^{\prime}(G,s)</M>.
<P/>
<Example><![CDATA[
gap> for name in [ "L4(3).2_1", "L4(3).2_2", "L4(3).2_3" ] do
> t2:= CharacterTable( name );
> map:= InverseMap( GetFusionMap( t, t2 ) );
> torso:= List( prim, pi -> CompositionMaps( pi, map ) );
> ext:= Concatenation( List( torso,
> x -> PermChars( t2, rec( torso:= x ) ) ) );
> sigma:= ApproxP( ext, Position( OrdersClassRepresentatives( t2 ), 20 ) );
> max:= Maximum( sigma{ Difference( PositionsProperty(
> OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
> Print( name, ":\n", ext, "\n", max, "\n" );
> od;
L4(3).2_1:
[ Character( CharacterTable( "L4(3).2_1" ),
[ 2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0,
0, 0, 0, 0, 1, 1, 0, 4, 0, 0, 6, 6, 6, 6, 2, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1 ] ) ]
0
L4(3).2_2:
[ Character( CharacterTable( "L4(3).2_2" ),
[ 2106, 106, 42, 0, 27, 27, 0, 46, 6, 6, 1, 7, 7, 0, 3, 3, 0, 0,
0, 1, 1, 1, 0, 0, 0, 1, 306, 306, 42, 6, 10, 10, 0, 0, 15, 15,
3, 3, 3, 3, 0, 0, 1, 1, 0, 1, 1, 0, 0 ] ) ]
17/117
L4(3).2_3:
[ Character( CharacterTable( "L4(3).2_3" ),
[ 2106, 106, 42, 0, 27, 0, 46, 6, 6, 1, 7, 0, 3, 0, 0, 1, 1, 0,
0, 0, 1, 36, 0, 0, 6, 6, 2, 2, 2, 1, 1, 0, 0, 0 ] ) ]
2/117
]]></Example>
<P/>
For <M>S = O_8^-(2)</M> and <M>s \in S</M> of order <M>17</M>,
we have <M>&M;(S,s) = \{ L_2(16).2 \}</M>,
the subgroup extends to <M>L_2(16).4</M> in <M>S.2</M>, see <Cite Key="CCN85" Where="p. 89"/>.
This is a non-split extension, so <M>&total;^{\prime}(S.2,s) = 0</M> holds.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "O8-(2).2" ), "17AB",
> [ CharacterTable( "L2(16).4" ) ], [ 1 ], "outer" );
0
]]></Example>
<P/>
For <M>S = S_6(3)</M> and <M>s \in S</M> irreducible of order <M>14</M>,
we have <M>&M;(S,s) = \{ (2 \times U_3(3)).2, L_2(27).3 \}</M>.
In <M>G = S.2</M>, the subgroups extend to <M>(4 \times U_3(3)).2</M> and <M>L_2(27).6</M>,
respectively, see <Cite Key="CCN85" Where="p. 113"/>.
In order to show that <M>&total;^{\prime}(G,s) = 7/3240</M> holds,
we compute the primitive permutation characters of <M>S</M>
(cf. Section <Ref Subsect="easyloop"/>) and the unique extensions to <M>G</M>
of those which are nonzero on <M>s</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S6(3)" );;
gap> t2:= CharacterTable( "S6(3).2" );;
gap> prim:= PrimitivePermutationCharacters( t );;
gap> spos:= Position( AtlasClassNames( t ), "14A" );;
gap> prim:= Filtered( prim, x -> x[ spos ] <> 0 );;
gap> map:= InverseMap( GetFusionMap( t, t2 ) );;
gap> torso:= List( prim, pi -> CompositionMaps( pi, map ) );;
gap> ext:= List( torso, pi -> PermChars( t2, rec( torso:= pi ) ) );
[ [ Character( CharacterTable( "S6(3).2" ),
[ 155520, 0, 288, 0, 0, 0, 216, 54, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 144, 288, 0, 0, 0,
6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,
0 ] ) ],
[ Character( CharacterTable( "S6(3).2" ),
[ 189540, 1620, 568, 0, 486, 0, 0, 27, 540, 84, 24, 0, 0, 0, 0,
0, 54, 0, 0, 10, 0, 7, 1, 6, 6, 0, 0, 0, 0, 0, 0, 18, 0, 0,
0, 6, 12, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 234, 64,
30, 8, 0, 3, 90, 6, 0, 4, 10, 6, 0, 2, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 0, 0 ] ) ] ]
gap> spos:= Position( AtlasClassNames( t2 ), "14A" );;
gap> sigma:= ApproxP( Concatenation( ext ), spos );;
gap> Maximum( sigma{ Difference(
> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
7/3240
]]></Example>
<P/>
For <M>S = U_5(2)</M> and <M>s \in S</M> of order <M>11</M>,
we have <M>&M;(S,s) = \{ L_2(11) \}</M>,
the subgroup extends to <M>L_2(11).2</M> in <M>S.2</M>,
see <Cite Key="CCN85" Where="p. 73"/>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "U5(2).2" ), "11AB",
> [ CharacterTable( "L2(11).2" ) ], [ 1 ], "outer" );
1/288
]]></Example>
<P/>
Here we clean the workspace for the first time.
This may save more than <M>100</M> megabytes, due to the fact that the caches
for tables of marks and character tables are flushed.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O8m3">
<Heading><M>O_8^-(3)</M></Heading>
We show that <M>S = O_8^-(3) = \Omega^-(8,3)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of order <M>41</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>L_2(81).2_1 = \Omega^-(4,9).2</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 1/567</M>.
</Item>
</List>
<P/>
The only maximal subgroups of <M>S</M> containing elements of order <M>41</M>
have the type <M>L_2(81).2_1</M>,
and there is one class of these subgroups,
see <Cite Key="CCN85" Where="p. 141"/>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "O8-(3)" ), "41A",
> [ CharacterTable( "L2(81).2_1" ) ], [ 1 ] );
1/567
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O10p2">
<Heading><M>O_{10}^+(2)</M></Heading>
We show that <M>S = O_{10}^+(2) = \Omega^+(10,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
Ford<M>s \in S</M> of order <M>45</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>(A_5 \times U_4(2)).2 = (\Omega^-(4,2) \times \Omega^-(6,2)).2</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 43/4\,216</M>.
</Item>
<Mark>(c)</Mark>
<Item>
For <M>s</M> as in (a),
the maximal subgroup in (a) extends to <M>S_5 \times U_4(2).2</M>
in <M>G = &Aut;(S) = S.2</M>,
and <M>&total;^{\prime}(G,s) = 23/248</M>.
</Item>
</List>
<P/>
The only maximal subgroups of <M>S</M> containing elements of order <M>45</M>
are one class of groups
<M>H = (A_5 \times U_4(2)):2</M>,
see <Cite Key="CCN85" Where="p. 146"/>.
(Note that none of the groups <M>S_8(2)</M>, <M>O_8^+(2)</M>, <M>L_5(2)</M>,
<M>O_8^-(2)</M>, and <M>A_8</M> contains elements of order <M>45</M>.)
<M>H</M> extends to subgroups of the type <M>H.2 = S_5 \times U_4(2):2</M>
in <M>G</M>,
so we can compute <M>1_H^S = (1_{H.2}^G)_S</M>.
<P/>
<Example><![CDATA[
gap> ForAny( [ "S8(2)", "O8+(2)", "L5(2)", "O8-(2)", "A8" ],
> x -> 45 in OrdersClassRepresentatives( CharacterTable( x ) ) );
false
gap> t:= CharacterTable( "O10+(2)" );;
gap> t2:= CharacterTable( "O10+(2).2" );;
gap> s2:= CharacterTable( "A5.2" ) * CharacterTable( "U4(2).2" );
CharacterTable( "A5.2xU4(2).2" )
gap> pi:= PossiblePermutationCharacters( s2, t2 );;
gap> spos:= Position( OrdersClassRepresentatives( t2 ), 45 );;
gap> approx:= ApproxP( pi, spos );;
gap> Maximum( approx{ ClassPositionsOfDerivedSubgroup( t2 ) } );
43/4216
]]></Example>
<P/>
Statement (c) follows from considering the outer classes
of prime element order.
<P/>
<Example><![CDATA[
gap> Maximum( approx{ Difference(
> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
23/248
]]></Example>
<P/>
Alternatively, we can use <C>SigmaFromMaxes</C>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( t2, "45AB", [ s2 ], [ 1 ], "outer" );
23/248
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O10m2">
<Heading><M>O_{10}^-(2)</M></Heading>
We show that <M>S = O_{10}^-(2) = \Omega^-(10,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of order <M>33</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>3 \times U_5(2) = &GU;(5,2)</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 1/119</M>.
</Item>
<Mark>(c)</Mark>
<Item>
For <M>s</M> as in (a),
the maximal subgroup in (a) extends to <M>(3 \times U_5(2)).2</M>
in <M>G</M>,
and <M>&total;^{\prime}(G,s) = 1/595</M>.
</Item>
</List>
<P/>
The only maximal subgroups of <M>S</M> containing elements of order <M>11</M>
have the types <M>A_{12}</M> and <M>3 \times U_5(2)</M>,
see <Cite Key="CCN85" Where="p. 147"/>.
So <M>3 \times U_5(2)</M> is the unique class of subgroups containing elements
of order <M>33</M>.
This shows statement (a),
and statement (b) follows using <C>SigmaFromMaxes</C>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "O10-(2)" ), "33A",
> [ CharacterTable( "Cyclic", 3 ) * CharacterTable( "U5(2)" ) ], [ 1 ] );
1/119
]]></Example>
<P/>
The structure of the maximal subgroup of <M>G</M> follows
from <Cite Key="CCN85" Where="p. 147"/>.
We create its character table with a generic construction
that is based on the fact that the outer automorphism acts nontrivially on
the two direct factors; this determines the character table uniquely.
(See <Cite Key="Auto"/> for details.)
<P/>
<Example><![CDATA[
gap> tblG:= CharacterTable( "U5(2)" );;
gap> tblMG:= CharacterTable( "Cyclic", 3 ) * tblG;;
gap> tblGA:= CharacterTable( "U5(2).2" );;
gap> acts:= PossibleActionsForTypeMGA( tblMG, tblG, tblGA );;
gap> poss:= Concatenation( List( acts, pi ->
> PossibleCharacterTablesOfTypeMGA( tblMG, tblG, tblGA, pi,
> "(3xU5(2)).2" ) ) );
[ rec(
MGfusMGA := [ 1, 2, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 12,
13, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 21, 21,
22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29,
30, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 31, 32, 33, 35, 34, 37, 36, 38, 39, 40, 41,
42, 43, 45, 44, 47, 46, 49, 48, 51, 50, 52, 54, 53, 56, 55,
57, 58, 60, 59, 62, 61, 64, 63, 66, 65, 68, 67, 69, 71, 70,
73, 72, 75, 74, 77, 76 ],
table := CharacterTable( "(3xU5(2)).2" ) ) ]
]]></Example>
<P/>
Now statement (c) follows using <C>SigmaFromMaxes</C>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "O10-(2).2" ), "33AB",
> [ poss[1].table ], [ 1 ], "outer" );
1/595
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O12p2">
<Heading><M>O_{12}^+(2)</M></Heading>
We show that <M>S = O_{12}^+(2) = \Omega^+(12,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of the type <M>4^- \perp 8^-</M>
(i. e., <M>s</M> decomposes the natural <M>12</M>-dimensional module
for <M>&GO;^+_{12}(2) = S.2</M> into an orthogonal sum of two irreducible
modules of the dimensions <M>4</M> and <M>8</M>, respectively)
and of order <M>85</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>G_8 = (\Omega^-(4,2) \times \Omega^-(8,2)).2</M> and
two groups of the type <M>L_4(4).2^2 = \Omega^+(6,4).2^2</M>
that are conjugate in <M>G = &Aut;(S) = S.2 = &SO;^+(12,2)</M>
but <E>not</E> conjugate in <M>S</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 7\,675/1\,031\,184</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>&total;^{\prime}(G,s) = 73/1\,008</M>.
</Item>
</List>
<P/>
The element <M>s</M> is a ppd<M>(12,2;8)</M>-element in the sense of <Cite Key="GPPS"/>,
so the maximal subgroups of <M>S</M> that contain <M>s</M> are among the nine
cases (2.1)–(2.9) listed in this paper;
in the notation of this paper,
we have <M>q = 2</M>, <M>d = 12</M>, <M>e = 8</M>, and <M>r = 17</M>.
Case (2.1) does not occur for orthogonal groups and <M>q = 2</M>,
according to <Cite Key="KlL90"/>;
case (2.2) contributes a unique maximal subgroup,
the stabilizer <M>G_8</M> of the orthogonal decomposition;
the cases (2.3), (2.4) (a), (2.5), and (2.6) (a) do not occur
because <M>r ¬eq; e+1</M> in our situation;
case (2.4) (b) describes extension field type subgroups that are contained
in <M>&GammaL;(6,4)</M>,
which yields the candidates <M>&GU;(6,2).2 \cong 3.U_6(2).S_3</M>
–but <M>3.U_6(2).3</M> does not contain elements of order <M>85</M>–
and <M>\Omega^+(6,4).2^2 \cong L_4(4).2^2</M>
(two classes by <Cite Key="KlL90" Where="Prop. 4.3.14"/>);
the cases (2.6) (b)–(c) and (2.8) do not occur
because they require <M>d \leq 8</M>;
case (2.7) does not occur
because <Cite Key="GPPS" Where="Table 5"/> contains no entry for
<M>r = 2e+1 = 17</M>;
finally, case (2.9) does not occur
because it requires <M>e \in \{ d-1, d \}</M>
in the case <M>r = 2e+1</M>.
<P/>
So we need the permutation characters of the actions on the cosets of
<M>L_4(4).2^2</M> (two classes) and <M>G_8</M>.
According to <Cite Key="KlL90" Where="Prop. 4.1.6"/>,
<M>G_8</M> has the structure <M>(\Omega^-(4,2) \times \Omega^-(8,2)).2</M>.
<P/>
Newer versions of the &GAP; Character Table Library contain the
character table of <M>S</M>,
but it is still easier to work with the table of <M>G</M>,
which was already available at the times when the first version
of these examples was created.
<P/>
The two classes of <M>L_4(4).2^2</M> type subgroups in <M>S</M> are fused in <M>G</M>.
This can be seen from the fact that inducing the trivial character of
a subgroup <M>H_1 = L_4(4).2^2</M> of <M>S</M> to <M>G</M> yields a character <M>\psi</M>
whose values are not all even;
note that if <M>H_1</M> would extend in <M>G</M> to a subgroup of twice the size
of <M>H_1</M> then <M>\psi</M> would be induced from a degree two character
of this subgroup whose values are all even,
and induction preserves this property.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "O12+(2).2" );;
gap> h1:= CharacterTable( "L4(4).2^2" );;
gap> psi:= PossiblePermutationCharacters( h1, t );;
gap> Length( psi );
1
gap> ForAny( psi[1], IsOddInt );
true
]]></Example>
<P/>
The fixed element <M>s</M> of order <M>85</M> is contained in a member of each
of the two conjugacy classes of the type <M>L_4(4).2^2</M> in <M>S</M>,
since <M>S</M> contains only one class of subgroups of the order <M>85</M>;
note that the order of the Sylow <M>17</M> centralizer (in both <M>S</M> and <M>G</M>)
is not divisible by <M>25</M>.
<P/>
<Example><![CDATA[
gap> SizesCentralizers( t ){ PositionsProperty(
> OrdersClassRepresentatives( t ), x -> x = 17 ) } / 25;
[ 408/5, 408/5 ]
]]></Example>
<P/>
This implies that the restriction of <M>\psi</M> to <M>S</M>
is the sum <M>\psi_S = \pi_1 + \pi_2</M>, say,
of the first two interesting permutation characters of <M>S</M>.
<P/>
The subgroup <M>G_8</M> of <M>S</M> extends to a group of the structure
<M>H_2 = \Omega^-(4,2).2 \times \Omega^-(8,2).2</M> in <M>G</M>,
inducing the trivial characters of <M>H_2</M> to <M>G</M> yields
a permutation character <M>\varphi</M> of <M>G</M> whose restriction to <M>S</M>
is the third permutation character <M>\varphi_S = \pi_3</M>, say.
<P/>
<Example><![CDATA[
gap> h2:= CharacterTable( "S5" ) * CharacterTable( "O8-(2).2" );;
gap> phi:= PossiblePermutationCharacters( h2, t );;
gap> Length( phi );
1
]]></Example>
<P/>
We have <M>\pi_1(1) = \pi_2(1)</M> and <M>\pi_1(s) = \pi_2(s)</M>,
the latter again because <M>S</M> contains only one class of subgroups
of order <M>85</M>.
<P/>
Now statement (a) follows from the fact that <M>\pi_i(s) = 1</M> holds
for <M>1 \leq i \leq 3</M>.
<P/>
<Example><![CDATA[
gap> prim:= Concatenation( psi, phi );;
gap> spos:= Position( OrdersClassRepresentatives( t ), 85 );
213
gap> List( prim, x -> x[ spos ] );
[ 2, 1 ]
]]></Example>
<P/>
For statement (b), we compute <M>&total;(S,s)</M>.
Note that we have to consider only classes inside <M>S = G^{\prime}</M>,
and that
<Display Mode="M">
&total;( g, s )
= \sum_{i=1}^3 \frac{\pi_i(s) \cdot \pi_i(g)}{\pi_i(1)}
= \frac{\psi(s) \cdot \psi(g)}{\psi(1)}
+ \frac{\varphi(s) \cdot \varphi(g)}{\varphi(1)}
</Display>
holds for <M>g \in S^{\times}</M>,
so the characters <M>\psi</M> and <M>\varphi</M> are sufficient.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( prim, spos );;
gap> Maximum( approx{ ClassPositionsOfDerivedSubgroup( t ) } );
7675/1031184
]]></Example>
<P/>
Statement (c) follows from considering the outer involution classes.
Note that by <Cite Key="BGK" Where="Remark after Proposition 5.14"/>,
only the subgroup <M>H_2</M> need to be considered,
no novelties appear.
<P/>
<Example><![CDATA[
gap> Maximum( approx{ Difference(
> PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t ) ) } );
73/1008
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O12m2">
<Heading><M>O_{12}^-(2)</M></Heading>
We show that <M>S = O_{12}^-(2) = \Omega^-(12,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> irreducible of order <M>2^6+1 = 65</M>,
<!-- For <M>q = 2</M>, <M>m = 6</M>, we have <M>S = \Omega^-(2m,q)</M>
and <M>|s| = (q^m+1)/\gcd(2,q-1)</M>. -->
<M>&M;(S,s)</M> consists of two groups of the types
<M>U_4(4).2 = \Omega^-(6,4).2</M> and <M>L_2(64).3 = \Omega^-(4,8).3</M>,
respectively.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 1/1\,023</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>&total;^{\prime}(&Aut;(S),s) = 1/347\,820</M>.
</Item>
</List>
<P/>
By <Cite Key="Be00"/>,
<M>&M;(S,s)</M> consists of extension field subgroups,
which have the structures <M>U_4(4).2</M> and <M>L_2(64).3</M>, respectively,
and by <Cite Key="KlL90" Where="Prop. 4.3.16"/>,
there is just one class of each of these types.
<P/>
Newer versions of the &GAP; Character Table Library contain the
character table of <M>S</M>,
but using this table for the computations is not easier than
using the table of <M>G = &Aut;(S) = O_{12}^-(2).2</M>,
which was already available at the times when the first version
of these examples was created.
So we compute the permutation characters <M>\pi_1, \pi_2</M> of the extensions
of the groups in <M>&M;(S,s)</M> to <M>G</M>
–these maximal subgroups have the structures <M>U_4(4).4</M> and
<M>L_2(64).6</M>, respectively–
and compute the fixed point ratios of the restrictions to <M>S</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "O12-(2).2" );;
gap> s1:= CharacterTable( "U4(4).4" );;
gap> pi1:= PossiblePermutationCharacters( s1, t );;
gap> s2:= CharacterTable( "L2(64).6" );;
gap> pi2:= PossiblePermutationCharacters( s2, t );;
gap> prim:= Concatenation( pi1, pi2 );; Length( prim );
2
]]></Example>
<P/>
Now statement (a) follows from the fact
that <M>\pi_1(s) = \pi_2(s) = 1</M> holds.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 65 );;
gap> List( prim, x -> x[ spos ] );
[ 1, 1 ]
]]></Example>
<P/>
For statement (b), we compute <M>&total;(S,s)</M>;
note that we have to consider only classes inside <M>S = G^{\prime}</M>.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( prim, spos );;
gap> Maximum( approx{ ClassPositionsOfDerivedSubgroup( t ) } );
1/1023
]]></Example>
<P/>
Statement (c) follows from the values on the outer involution classes.
<P/>
<Example><![CDATA[
gap> Maximum( approx{ Difference(
> PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t ) ) } );
1/347820
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="S64">
<Heading><M>S_6(4)</M></Heading>
We show that <M>S = S_6(4) = &Sp;(6,4)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> irreducible of order <M>65</M>,
<M>&M;(S,s)</M> consists of two groups of the types
<M>U_4(4).2 = \Omega^-(6,4).2</M> and <M>L_2(64).3 = &Sp;(2,64).3</M>,
respectively.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 16/63</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>&total;^{\prime}(&Aut;(S),s) = 0</M>.
</Item>
</List>
<P/>
By <Cite Key="Be00"/>, the element <M>s</M> is contained in maximal
subgroups of the given types,
and by <Cite Key="KlL90" Where="Prop. 4.3.10, 4.8.6"/>,
there is exactly one class of these subgroups.
<P/>
The character tables of these two subgroups are currently not contained
in the &GAP; Character Table Library.
We compute the permutation character induced from the first subgroup
as the unique character of the right degree that is combinatorially
possible (cf. <Cite Key="BP98copy"/>).
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S6(4)" );;
gap> degree:= Size( t ) / ( 2 * Size( CharacterTable( "U4(4)" ) ) );;
gap> pi1:= PermChars( t, rec( torso:= [ degree ] ) );;
gap> Length( pi1 );
1
]]></Example>
<P/>
The index of the second subgroup is too large for this simpleminded
approach;
therefore, we first restrict the set of possible irreducible constituents
of the permutation character to those of <M>1_H^G</M>,
where <M>H</M> is the derived subgroup of <M>L_2(64).3</M>,
for which the character table is available.
<P/>
<Example><![CDATA[
gap> CharacterTable( "L2(64).3" ); CharacterTable( "U4(4).2" );
fail
fail
gap> s:= CharacterTable( "L2(64)" );;
gap> subpi:= PossiblePermutationCharacters( s, t );;
gap> Length( subpi );
1
gap> scp:= MatScalarProducts( t, Irr( t ), subpi );;
gap> nonzero:= PositionsProperty( scp[1], x -> x <> 0 );
[ 1, 11, 13, 14, 17, 18, 32, 33, 56, 58, 59, 73, 74, 77, 78, 79, 80,
93, 95, 96, 103, 116, 117, 119, 120 ]
gap> const:= RationalizedMat( Irr( t ){ nonzero } );;
gap> degree:= Size( t ) / ( 3 * Size( s ) );
5222400
gap> pi2:= PermChars( t, rec( torso:= [ degree ], chars:= const ) );;
gap> Length( pi2 );
1
gap> prim:= Concatenation( pi1, pi2 );;
]]></Example>
<P/>
Now statement (a) follows from the fact
that <M>\pi_1(s) = \pi_2(s) = 1</M> holds.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 65 );;
gap> List( prim, x -> x[ spos ] );
[ 1, 1 ]
]]></Example>
<P/>
For statement (b), we compute <M>&total;(G,s)</M>.
<P/>
<Example><![CDATA[
gap> Maximum( ApproxP( prim, spos ) );
16/63
]]></Example>
<P/>
In order to prove statement (c), we have to consider only the extensions
of the above permutation characters of <M>S</M> to <M>&Aut;(S) \cong S.2</M>
(cf. <Cite Key="BGK" Where="Section 2.2"/>).
<P/>
<Example><![CDATA[
gap> t2:= CharacterTable( "S6(4).2" );;
gap> tfust2:= GetFusionMap( t, t2 );;
gap> cand:= List( prim, x -> CompositionMaps( x, InverseMap( tfust2 ) ) );;
gap> ext:= List( cand, pi -> PermChars( t2, rec( torso:= pi ) ) );
[ [ Character( CharacterTable( "S6(4).2" ),
[ 2016, 512, 96, 128, 32, 120, 0, 6, 16, 40, 24, 0, 8, 136, 1,
6, 6, 1, 32, 0, 8, 6, 2, 0, 2, 0, 0, 4, 0, 16, 32, 1, 8, 2,
6, 2, 1, 2, 4, 0, 0, 1, 6, 0, 1, 10, 0, 1, 1, 0, 10, 10, 4,
0, 1, 0, 2, 0, 2, 1, 2, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0,
0, 0, 0, 32, 0, 0, 8, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 8, 0,
0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 0, 0 ] ) ],
[ Character( CharacterTable( "S6(4).2" ),
[ 5222400, 0, 0, 0, 1280, 0, 960, 120, 0, 0, 0, 0, 0, 0, 1600,
0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 1, 0, 0, 15, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 960, 0, 0, 0, 16, 0, 24, 12, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 0, 0 ] ) ] ]
gap> spos2:= Position( OrdersClassRepresentatives( t2 ), 65 );;
gap> sigma:= ApproxP( Concatenation( ext ), spos2 );;
gap> Maximum( approx{ Difference(
> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
0
]]></Example>
<P/>
For the simple group, we can <E>alternatively</E> consider a reducible
element <M>s: 2 \perp 4</M> of order <M>85</M>,
which is a multiple of the primitive prime divisor <M>r = 17</M> of <M>4^4-1</M>.
So we have <M>e = 4</M>, <M>d = 6</M>, and <M>q = 4</M>, in the terminology of <Cite Key="GPPS"/>.
Then <M>&M;(S,s)</M> consists of two groups, of the types
<M>\Omega^+(6,4).2 \cong L_4(4).2_2</M> and <M>&Sp;(2,4) \times &Sp;(4,4)</M>.
This can be shown by
checking <Cite Key="GPPS" Where="Ex. 2.1–2.9"/>.
Ex. 2.1 yields the candidates <M>\Omega^{\pm}(6,4).2</M>,
but only <M>\Omega^+(6,4).2</M> contains elements of order <M>85</M>.
<!-- % Note that <M>S_6(2)</M> does not occur! -->
Ex. 2.2 yields the stabilizer of a two-dimensional subspace,
which has the structure <M>&Sp;(2,4) \times &Sp;(4,4)</M>, by <Cite Key="KlL90"/>.
All other cases except Ex. 2.4 (b) are excluded by the fact that <M>r = 4e+1</M>,
and Ex. 2.4 (b) does not apply because <M>d/\gcd(d,e)</M> is odd.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "S6(4)" ), "85A",
> [ CharacterTable( "L4(4).2_2" ),
> CharacterTable( "A5" ) * CharacterTable( "S4(4)" ) ], [ 1, 1 ] );
142/455
]]></Example>
<P/>
This bound is not as good as the one obtained from the irreducible
element of order <M>65</M> used above.
<P/>
<Example><![CDATA[
gap> 16/63 < 142/455;
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="S65">
<Heading><M>\ast</M> <M>S_6(5)</M></Heading>
We show that <M>S = S_6(5) = &PSp;(6,5)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of the type <M>2 \perp 4</M>
(i. e., the preimage of <M>s</M> in <M>&Sp;(6,5) = 2.G</M> decomposes
the natural <M>6</M>-dimensional module for
<M>&Sp;(6,5)</M> into an orthogonal sum of two irreducible modules
of the dimensions <M>2</M> and <M>4</M>, respectively)
and of order <M>78</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>G_2 = 2.(&PSp;(2,5) \times &PSp;(4,5))</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 9/217</M>.
</Item>
</List>
<P/>
The order of <M>s</M> is a multiple of the primitive prime divisor <M>r = 13</M>
of <M>5^4-1</M>,
so we have <M>e = 4</M>, <M>d = 6</M>, and <M>q = 5</M>, in the terminology of <Cite Key="GPPS"/>.
We check <Cite Key="GPPS" Where="Ex. 2.1–2.9"/>.
Ex. 2.1 does not apply because the classes <M>C_5</M> and <M>C_8</M>
are empty by <Cite Key="KlL90" Where="Table 3.5.C"/>,
Ex. 2.2 yields exactly the stabilizer <M>G_2</M> of a <M>2</M>-dimensional subspace,
Ex. 2.4 (b) does not apply because <M>d/\gcd(d,e)</M> is odd,
and all other cases are excluded by the fact that <M>r = 3e+1</M>.
<P/>
The group <M>G_2</M> has the structure <M>2.(&PSp;(2,5) \times &PSp;(4,5))</M>,
which is a central product of <M>&Sp;(2,5) \cong 2.A_5</M> and <M>&Sp;(4,5) = 2.S_4(5)</M>
(see <Cite Key="KlL90" Where="Prop. 4.1.3"/>).
The character table of <M>G_2</M> can be derived from that of the direct product
of <M>2.A_5</M> and <M>2.S_4(5)</M>,
by factoring out the diagonal central subgroup of order two.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S6(5)" );;
gap> s1:= CharacterTable( "2.A5" );;
gap> s2:= CharacterTable( "2.S4(5)" );;
gap> dp:= s1 * s2;
CharacterTable( "2.A5x2.S4(5)" )
gap> c:= Difference( ClassPositionsOfCentre( dp ), Union(
> GetFusionMap( s1, dp ), GetFusionMap( s2, dp ) ) );
[ 62 ]
gap> s:= dp / c;
CharacterTable( "2.A5x2.S4(5)/[ 1, 62 ]" )
]]></Example>
<P/>
Now we compute <M>&total;(S,s)</M>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( t, "78A", [ s ], [ 1 ] );
9/217
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="S83">
<Heading><M>S_8(3)</M></Heading>
We show that <M>S = S_8(3) = &PSp;(8,3)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> irreducible of order <M>41</M>,
<M>&M;(S,s)</M> consists of one group <M>M</M> of the type
<M>S_4(9).2 = &PSp;(4,9).2</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 1/546</M>.
</Item>
<Mark>(c)</Mark>
<Item>
The preimage of <M>s</M> in the matrix group <M>2.S_8(3) = &Sp;(8,3)</M>
can be chosen of order <M>82</M>,
and the preimage of <M>M</M> is <M>2.S_4(9).2 = &Sp;(4,9).2</M>.
</Item>
</List>
<P/>
By <Cite Key="Be00"/>,
the only maximal subgroups of <M>S</M> that contain irreducible
elements of order <M>(3^4+1)/2 = 41</M> are of extension field type,
and by <Cite Key="KlL90" Where="Prop. 4.3.10"/>,
these groups have the structure <M>S_4(9).2</M>
and there is exactly one class of these groups.
<P/>
The group <M>U = S_4(9)</M> has three nontrivial outer automorphisms,
the character table of the subgroup <M>U.2</M> in question has the identifier
<C>"S4(9).2_1"</C>,
which follows from the fact that the extensions of <M>U</M> by the other two
outer automorphisms do not admit a class fusion into <M>S</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S8(3)" );;
gap> pi:= List( [ "S4(9).2_1", "S4(9).2_2", "S4(9).2_3" ],
> name -> PossiblePermutationCharacters(
> CharacterTable( name ), t ) );;
gap> List( pi, Length );
[ 1, 0, 0 ]
]]></Example>
<P/>
Now statement (a) follows from the fact
that <M>(1_{U.2})^S(s) = 1</M> holds.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 41 );;
gap> pi[1][1][ spos ];
1
]]></Example>
<P/>
Now we compute <M>&total;(S,s)</M> in order to show statement (b).
<P/>
<Example><![CDATA[
gap> Maximum( ApproxP( pi[1], spos ) );
1/546
]]></Example>
<P/>
Statement (c) is clear from the description of extension field type
subgroups in <Cite Key="KlL90"/>.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="U44">
<Heading><M>U_4(4)</M></Heading>
We show that <M>S = U_4(4) = &SU;(4,4)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of the type <M>1 \perp 3</M>
(i. e., <M>s</M> decomposes the natural <M>4</M>-dimensional module
for <M>&SU;(4,4)</M> into an orthogonal sum of two irreducible modules
of the dimensions <M>1</M> and <M>3</M>, respectively)
and of order <M>4^3+1 = 65</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>G_1 = 5 \times U_3(4) = &GU;(3,4)</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 209/3\,264</M>.
</Item>
</List>
<P/>
By <Cite Key="MSW94"/>,
the only maximal subgroups of <M>S</M> that contain <M>s</M>
are one class of stabilizers <M>H \cong 5 \times U_3(4)</M>
of this decomposition,
and clearly there is only one such group containing <M>s</M>.
<P/>
Note that <M>H</M> has index <M>3\,264</M> in <M>S</M>,
since <M>S</M> has two orbits on the <M>1</M>-dimensional subspaces,
of lengths <M>1\,105</M> and <M>3\,264</M>, respectively,
and elements of order <M>13 = 65/5</M> lie in the stabilizers of points
in the latter orbit.
<P/>
<Example><![CDATA[
gap> g:= SU(4,4);;
gap> orbs:= OrbitsDomain( g, NormedRowVectors( GF(16)^4 ), OnLines );;
gap> orblen:= List( orbs, Length );
[ 1105, 3264 ]
gap> List( orblen, x -> x mod 13 );
[ 0, 1 ]
]]></Example>
<P/>
We compute the permutation character <M>1_{G_1}^S</M>;
there is exactly one combinatorially possible permutation character
of degree <M>3\,264</M> (cf. <Cite Key="BP98copy"/>).
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "U4(4)" );;
gap> pi:= PermChars( t, rec( torso:= [ orblen[2] ] ) );;
gap> Length( pi );
1
]]></Example>
<P/>
Now we compute <M>&total;(S,s)</M>.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 65 );;
gap> Maximum( ApproxP( pi, spos ) );
209/3264
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="U62">
<Heading><M>U_6(2)</M></Heading>
We show that <M>S = U_6(2) = &PSU;(6,2)</M> satisfies the following.
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of order <M>11</M>,
<M>&M;(S,s)</M> consists of one group of the type <M>U_5(2) = &SU;(5,2)</M>
and three groups of the type <M>M_{22}</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 5/21</M>.
</Item>
<Mark>(c)</Mark>
<Item>
The preimage of <M>s</M> in the matrix group <M>&SU;(6,2) = 3.U_6(2)</M>
can be chosen of order <M>33</M>,
and the preimages of the groups in <M>&M;(S,s)</M> have the structures
<M>3 \times U_5(2) \cong &GU;(5,2)</M> and <M>3.M_{22}</M>, respectively.
</Item>
<Mark>(d)</Mark>
<Item>
With <M>s</M> as in (a),
the automorphic extensions <M>S.2</M>, <M>S.3</M> of <M>S</M>
satisfy <M>&total;^{\prime}(S.2,s) = 5/96</M> and
<M>&total;^{\prime}(S.3,s) = 59/224</M>.
</Item>
</List>
<P/>
According to the list of maximal subgroups of <M>S</M>
in <Cite Key="CCN85" Where="p. 115"/>,
<M>s</M> is contained exactly in maximal subgroups of the types <M>U_5(2)</M>
(one class) and <M>M_{22}</M> (three classes).
<P/>
The permutation character of the action on the cosets of <M>U_5(2)</M> type
subgroups is uniquely determined by the character tables.
We get three possibilities for the permutation character on the cosets of
<M>M_{22}</M> type subgroups; they correspond to the three classes of such
subgroups, because each of these classes contains elements in exactly one
of the conjugacy classes <C>4C</C>, <C>4D</C>, and <C>4E</C> of elements in
<M>S</M>, and these classes are fused under the outer automorphism of <M>S</M>
of order three.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "U6(2)" );;
gap> s1:= CharacterTable( "U5(2)" );;
gap> pi1:= PossiblePermutationCharacters( s1, t );;
gap> Length( pi1 );
1
gap> s2:= CharacterTable( "M22" );;
gap> pi2:= PossiblePermutationCharacters( s2, t );
[ Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 0, 48, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 0, 48, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ), Character( CharacterTable( "U6(2)" ),
[ 20736, 0, 384, 0, 0, 0, 54, 0, 0, 48, 0, 0, 0, 16, 6, 0, 0, 0, 0,
0, 0, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0 ] ) ]
gap> imgs:= Set( pi2, x -> Position( x, 48 ) );
[ 10, 11, 12 ]
gap> AtlasClassNames( t ){ imgs };
[ "4C", "4D", "4E" ]
gap> GetFusionMap( t, CharacterTable( "U6(2).3" ) ){ imgs };
[ 10, 10, 10 ]
gap> prim:= Concatenation( pi1, pi2 );;
]]></Example>
<P/>
Now statement (a) follows from the fact that the permutation characters
have the value <M>1</M> on <M>s</M>.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 11 );;
gap> List( prim, x -> x[ spos ] );
[ 1, 1, 1, 1 ]
]]></Example>
<P/>
For statement (b), we compute <M>&total;(S,s)</M>.
<P/>
<Example><![CDATA[
gap> Maximum( ApproxP( prim, spos ) );
5/21
]]></Example>
<P/>
Statement (c) follows from <Cite Key="CCN85"/>,
plus the information that <M>3.U_6(2)</M> does not contain groups of the structure
<M>3 \times M_{22}</M>.
<P/>
<Example><![CDATA[
gap> PossibleClassFusions(
> CharacterTable( "Cyclic", 3 ) * CharacterTable( "M22" ),
> CharacterTable( "3.U6(2)" ) );
[ ]
]]></Example>
<P/>
For statement (d), we need that the relevant maximal subgroups of
<M>S.2</M> are <M>U_5(2).2</M> and one subgroup <M>M_{22}.2</M>,
and that the relevant maximal subgroup of <M>S.3</M> is <M>U_5(2) \times 3</M>,
see <Cite Key="CCN85" Where="p. 115"/>.
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "U6(2).2" ), "11AB",
> [ CharacterTable( "U5(2).2" ), CharacterTable( "M22.2" ) ],
> [ 1, 1 ], "outer" );
5/96
gap> SigmaFromMaxes( CharacterTable( "U6(2).3" ), "11A",
> [ CharacterTable( "U5(2)" ) * CharacterTable( "Cyclic", 3 ) ],
> [ 1 ], "outer" );
59/224
]]></Example>
</Subsection>
</Section>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Section Label="sect:hard">
<Heading>Computations using Groups</Heading>
Before we start the computations using groups, we clean the workspace.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="Aodd">
<Heading><M>A_{2m+1}</M>, <M>2 \leq m \leq 11</M></Heading>
For alternating groups of odd degree <M>n = 2m+1</M>,
we choose <M>s</M> to be an <M>n</M>-cycle.
The interesting cases
in <Cite Key="BGK" Where="Proposition 6.7"/> are
<M>5 \leq n \leq 23</M>.
<P/>
In each case, we compute representatives of the maximal subgroups of <M>A_n</M>,
consider only those that contain an <M>n</M>-cycle, and then compute the
permutation characters.
Additionally, we show also the names that are used for the subgroups in
the &GAP; Library of Transitive Groups,
see <Cite Key="HulpkeTG"/>
and the documentation of this library in the &GAP; Reference Manual.
<P/>
<Example><![CDATA[
gap> PrimitivesInfoForOddDegreeAlternatingGroup:= function( n )
> local G, max, cycle, spos, prim, nonz;
>
> G:= AlternatingGroup( n );
>
> # Compute representatives of the classes of maximal subgroups.
> max:= MaximalSubgroupClassReps( G );
>
> # Omit subgroups that cannot contain an `n'-cycle.
> max:= Filtered( max, m -> IsTransitive( m, [ 1 .. n ] ) );
>
> # Compute the permutation characters.
> cycle:= [];
> cycle[ n-1 ]:= 1;
> spos:= PositionProperty( ConjugacyClasses( CharacterTable( G ) ),
> c -> CycleStructurePerm( Representative( c ) ) = cycle );
> prim:= List( max, m -> TrivialCharacter( m )^G );
> nonz:= PositionsProperty( prim, x -> x[ spos ] <> 0 );
>
> # Compute the subgroup names and the multiplicities.
> return rec( spos := spos,
> prim := prim{ nonz },
> grps := List( max{ nonz },
> m -> TransitiveGroup( n,
> TransitiveIdentification( m ) ) ),
> mult := List( prim{ nonz }, x -> x[ spos ] ) );
> end;;
]]></Example>
<P/>
The sets <M>&MM;(s)</M> and the values <M>&total;(A_n,s)</M> are as follows.
For each degree in question, the first list shows names for representatives
of the conjugacy classes of maximal subgroups containing a fixed <M>n</M>-cycle,
and the second list shows the number of conjugates in each class.
<P/>
<Example><![CDATA[
gap> for n in [ 5, 7 .. 23 ] do
> prim:= PrimitivesInfoForOddDegreeAlternatingGroup( n );
> bound:= Maximum( ApproxP( prim.prim, prim.spos ) );
> Print( n, ": ", prim.grps, ", ", prim.mult, ", ", bound, "\n" );
> od;
5: [ D(5) = 5:2 ], [ 1 ], 1/3
7: [ L(7) = L(3,2), L(7) = L(3,2) ], [ 1, 1 ], 2/5
9: [ 1/2[S(3)^3]S(3), L(9):3=P|L(2,8) ], [ 1, 3 ], 9/35
11: [ M(11), M(11) ], [ 1, 1 ], 2/105
13: [ F_78(13)=13:6, L(13)=PSL(3,3), L(13)=PSL(3,3) ], [ 1, 2, 2 ], 4/
1155
15: [ 1/2[S(3)^5]S(5), 1/2[S(5)^3]S(3), L(15)=A_8(15)=PSL(4,2),
L(15)=A_8(15)=PSL(4,2) ], [ 1, 1, 1, 1 ], 29/273
17: [ L(17):4=PYL(2,16), L(17):4=PYL(2,16) ], [ 1, 1 ], 2/135135
19: [ F_171(19)=19:9 ], [ 1 ], 1/6098892800
21: [ t21n150, t21n161, t21n91 ], [ 1, 1, 2 ], 29/285
23: [ M(23), M(23) ], [ 1, 1 ], 2/130945815
]]></Example>
<P/>
In the above output, a subgroup printed as
<C>1/2[S(</C><M>n_1</M><C>)^</C><M>n_2</M><C>]S(</C><M>n_2</M><C>)</C>,
<C>1/2[S(</C><M>n_1</M><C>)^</C><M>n_2</M><C>]S(</C><M>n_2</M><C>)</C>,
where <M>n = n_1 n_2</M> holds, denotes the intersection of <M>A_n</M> with the
wreath product
<M>S_{n_1} \wr S_{n_2} \leq S_n</M>.
(Note that the &ATLAS; denotes the subgroup <C>1/2[S(3)^3]S(3)</C>
of <M>A_9</M> as <M>3^3:S_4</M>.)
The groups printed as <C>P|L(2,8)</C> and <C>PYL(2,16)</C> denote
<M>&PGammaL;(2,8)</M> and <M>&PGammaL;(2,16)</M>, respectively.
And the three subgroups of <M>A_{21}</M> have the structures
<M>(S_3 \wr S_7) \cap A_{21}</M>, <M>(S_7 \wr S_3) \cap A_{21}</M>,
and <M>&PGL;(3,4)</M>, respectively.
<P/>
Note that <M>A_9</M> contains two conjugacy classes of maximal subgroups of
the type <M>&PGammaL;(2,8) \cong L_2(8):3</M>, and that each <M>9</M>-cycle in <M>A_9</M>
is contained in exactly three <E>conjugate</E> subgroups of this type.
For <M>n \in \{ 13, 15, 17 \}</M>, <M>A_n</M> contains two conjugacy classes of
isomorphic maximal subgroups of linear type, and each <M>n</M>-cycle is contained
in subgroups from each class.
Finally, <M>A_{21}</M> contains only one class of maximal subgroups of linear type.
<P/>
For the two groups <M>A_5</M> and <M>A_7</M>,
the values computed above are not sufficient.
See Section <Ref Subsect="A5"/> and <Ref Subsect="A7"/> for a further treatment.
<P/>
The above computations look like a brute-force approach,
but note that the computation of the maximal subgroups of alternating
and symmetric groups in &GAP; uses the classification of these
subgroups, and also the conjugacy classes of elements in alternating and
symmetric groups can be computed cheaply.
<P/>
Alternative (character-theoretic) computations
for <M>n \in \{ 5, 7, 9, 11, 13 \}</M> were shown in Section <Ref Subsect="easyloop"/>.
(A hand calculation for the case <M>n = 19</M> can be found in <Cite Key="BW1"/>.)
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="A5">
<Heading><M>A_5</M></Heading>
We show that <M>S = A_5</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 1/3</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>5</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>5</M>,
<M>&M;(S,s)</M> consists of one group of the type <M>D_{10}</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 1/3</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>5</M>.
</Item>
<Mark>(d)</Mark>
<Item>
Each element in <M>S</M> together with one of
<M>(1,2)(3,4)</M>, <M>(1,3)(2,4)</M>, <M>(1,4)(2,3)</M>
generates a proper subgroup of <M>S</M>.
</Item>
<Mark>(e)</Mark>
<Item>
Both the spread and the uniform spread of <M>S</M> is exactly two
(see <Cite Key="BW1"/>),
with <M>s</M> of order <M>5</M>.
</Item>
</List>
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "A5" );;
gap> ProbGenInfoSimple( t );
[ "A5", 1/3, 2, [ "5A" ], [ 1 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the primitive permutation characters,
and the fact that the unique class of maximal subgroups that contain
elements of order <M>5</M> consists of groups of the structure <M>D_{10}</M>,
see <Cite Key="CCN85" Where="p. 2"/>.
<P/>
<Example><![CDATA[
gap> OrdersClassRepresentatives( t );
[ 1, 2, 3, 5, 5 ]
gap> PrimitivePermutationCharacters( t );
[ Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ),
Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ) ]
]]></Example>
<P/>
For statement (c),
we compute that for all nonidentity elements <M>s \in S</M>
and involutions <M>g \in S</M>,
<M>∝(g,s) \geq 1/3</M> holds,
with equality if and only if <M>s</M> has order <M>5</M>.
We actually compute, for class representatives <M>s</M>,
the proportion of involutions <M>g</M> such that
<M>\langle g, s \rangle ¬eq; S</M> holds.
<P/>
<Example><![CDATA[
gap> g:= AlternatingGroup( 5 );;
gap> inv:= g.1^2 * g.2;
(1,4)(2,5)
gap> cclreps:= List( ConjugacyClasses( g ), Representative );;
gap> SortParallel( List( cclreps, Order ), cclreps );
gap> List( cclreps, Order );
[ 1, 2, 3, 5, 5 ]
gap> Size( ConjugacyClass( g, inv ) );
15
gap> prop:= List( cclreps,
> r -> RatioOfNongenerationTransPermGroup( g, inv, r ) );
[ 1, 1, 3/5, 1/3, 1/3 ]
gap> Minimum( prop );
1/3
]]></Example>
<P/>
Statement (d) follows by explicit computations.
<P/>
<Example><![CDATA[
gap> triple:= [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;
gap> CommonGeneratorWithGivenElements( g, cclreps, triple );
fail
]]></Example>
<P/>
As for statement (e),
we know from (a) that the uniform spread of <M>S</M>
is at least two, and from (d) that the spread is less than three.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="A6">
<Heading><M>A_6</M></Heading>
We show that <M>S = A_6</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 2/3</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>5</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s</M> of order <M>5</M>,
<M>&M;(S,s)</M> consists of two nonconjugate groups of the type <M>A_5</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 5/9</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>5</M>.
</Item>
<Mark>(d)</Mark>
<Item>
Each element in <M>S</M> together with one of
<M>(1,2)(3,4)</M>, <M>(1,3)(2,4)</M>, <M>(1,4)(2,3)</M>
generates a proper subgroup of <M>S</M>.
</Item>
<Mark>(e)</Mark>
<Item>
Both the spread and the uniform spread of <M>S</M> is exactly two
(see <Cite Key="BW1"/>),
with <M>s</M> of order <M>4</M>.
</Item>
<Mark>(f)</Mark>
<Item>
For <M>x</M>, <M>y \in S_6^{\times}</M>, there is <M>s \in S_6</M>
such that <M>S \subseteq \langle x, s \rangle \cap \langle y, s \rangle</M>.
It is <E>not</E> possible to find <M>s \in S</M> with this property,
or <M>s</M> in a prescribed conjugacy class of <M>S_6</M>.
</Item>
<Mark>(g)</Mark>
<Item>
<M>&total;( &PGL;(2,9) ) = 1/6</M> and <M>&total;( M_{10} ) = 1/9</M>,
with <M>s</M> of order <M>10</M> and <M>8</M>, respectively.
</Item>
</List>
<P/>
(Note that in this example, the optimal choice of <M>s</M> for <M>∝(S)</M> cannot be
used to obtain the result on the exact spread.)
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "A6" );;
gap> ProbGenInfoSimple( t );
[ "A6", 2/3, 1, [ "5A" ], [ 2 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the two classes of maximal subgroups that contain
elements of order <M>5</M> consist of groups of the structure <M>A_5</M>,
see <Cite Key="CCN85" Where="p. 4"/>.
<P/>
<Example><![CDATA[
gap> OrdersClassRepresentatives( t );
[ 1, 2, 3, 3, 4, 5, 5 ]
gap> prim:= PrimitivePermutationCharacters( t );
[ Character( CharacterTable( "A6" ), [ 6, 2, 3, 0, 0, 1, 1 ] ),
Character( CharacterTable( "A6" ), [ 6, 2, 0, 3, 0, 1, 1 ] ),
Character( CharacterTable( "A6" ), [ 10, 2, 1, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A6" ), [ 15, 3, 3, 0, 1, 0, 0 ] ),
Character( CharacterTable( "A6" ), [ 15, 3, 0, 3, 1, 0, 0 ] ) ]
]]></Example>
<P/>
For statement (c),
we first compute that for all nonidentity elements <M>s \in S</M>
and involutions <M>g \in S</M>,
<M>∝(g,s) \geq 5/9</M> holds,
with equality if and only if <M>s</M> has order <M>5</M>.
We actually compute, for class representatives <M>s</M>,
the proportion of involutions <M>g</M> such that
<M>\langle g, s \rangle ¬eq; S</M> holds.
<P/>
<Example><![CDATA[
gap> S:= AlternatingGroup( 6 );;
gap> inv:= (S.1*S.2)^2;
(1,3)(2,5)
gap> cclreps:= List( ConjugacyClasses( S ), Representative );;
gap> SortParallel( List( cclreps, Order ), cclreps );
gap> List( cclreps, Order );
[ 1, 2, 3, 3, 4, 5, 5 ]
gap> C:= ConjugacyClass( S, inv );;
gap> Size( C );
45
gap> prop:= List( cclreps,
> r -> RatioOfNongenerationTransPermGroup( S, inv, r ) );
[ 1, 1, 1, 1, 29/45, 5/9, 5/9 ]
gap> Minimum( prop );
5/9
]]></Example>
<P/>
Now statement (c) follows from the fact that for <M>g \in S</M> of order larger
than two, <M>&total;(S,g) \leq 1/2 < 5/9</M> holds.
<P/>
<Example><![CDATA[
gap> ApproxP( prim, 6 );
[ 0, 2/3, 1/2, 1/2, 0, 1/3, 1/3 ]
]]></Example>
<P/>
Statement (d) follows by explicit computations.
<P/>
<Example><![CDATA[
gap> triple:= [ (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) ];;
gap> CommonGeneratorWithGivenElements( S, cclreps, triple );
fail
]]></Example>
<P/>
An alternative triple to that in statement (d) is the one given
in <Cite Key="BW1"/>.
<P/>
<Example><![CDATA[
gap> triple:= [ (1,3)(2,4), (1,5)(2,6), (3,6)(4,5) ];;
gap> CommonGeneratorWithGivenElements( S, cclreps, triple );
fail
]]></Example>
<P/>
Of course we can also construct such a triple, as follows.
<P/>
<Example><![CDATA[
gap> TripleWithProperty( [ [ inv ], C, C ],
> l -> ForAll( S, elm ->
> ForAny( l, x -> not IsGeneratorsOfTransPermGroup( S, [ elm, x ] ) ) ) );
[ (1,3)(2,5), (1,3)(2,6), (1,3)(2,4) ]
]]></Example>
<P/>
For statement (e), we use the random approach described in
Section <Ref Subsect="subsect:groups"/>.
<P/>
<Example><![CDATA[
gap> s:= (1,2,3,4)(5,6);;
gap> reps:= Filtered( cclreps, x -> Order( x ) > 1 );;
gap> ResetGlobalRandomNumberGenerators();
gap> for pair in UnorderedTuples( reps, 2 ) do
> if RandomCheckUniformSpread( S, pair, s, 40 ) <> true then
> Print( "#E nongeneration!\n" );
> fi;
> od;
]]></Example>
<P/>
We get no output, so a suitable element of order <M>4</M> works in all cases.
Note that we cannot use an element of order <M>5</M>,
because it fixes a point in the natural permutation representation,
and we may take <M>x_1 = (1,2,3)</M> and <M>x_2 = (4,5,6)</M>.
With this argument, only elements of order <M>4</M> and double <M>3</M>-cycles
are possible choices for <M>s</M>, and the latter are excluded by the fact
that an outer automorphism maps the class of double <M>s</M>-cycles in <M>A_6</M>
to the class of <M>3</M>-cycles.
So no element in <M>A_6</M> of order different from <M>4</M> works.
<P/>
Next we show statement (f).
Already in <M>A_6.2_1 = S_6</M>, elements <M>s</M> of order <M>4</M> do in general not work
because they do not generate with transpositions.
<P/>
<Example><![CDATA[
gap> G:= SymmetricGroup( 6 );;
gap> RatioOfNongenerationTransPermGroup( G, s, (1,2) );
1
]]></Example>
<P/>
Also, choosing <M>s</M> from a prescribed conjugacy class of <M>S_6</M> (that is,
also <M>s</M> outside <M>A_6</M> is allowed) with the property that
<M>A_6 \subseteq \langle x, s \rangle \cap \langle y, s \rangle</M>
is not possible.
Note that only <M>6</M>-cycles are possible for <M>s</M> if <M>x</M> and <M>y</M> are commuting
transpositions, and –applying the outer automorphism–
no <M>6</M>-cycle works for two commuting fixed-point free involutions.
(The group is small enough for a brute force test.)
<P/>
<Example><![CDATA[
gap> goods:= Filtered( Elements( G ),
> s -> IsGeneratorsOfTransPermGroup( G, [ s, (1,2) ] ) and
> IsGeneratorsOfTransPermGroup( G, [ s, (3,4) ] ) );;
gap> Collected( List( goods, CycleStructurePerm ) );
[ [ [ ,,,, 1 ], 24 ] ]
gap> goods:= Filtered( Elements( G ),
> s -> IsGeneratorsOfTransPermGroup( G, [ s, (1,2)(3,4)(5,6) ] ) and
> IsGeneratorsOfTransPermGroup( G, [ s, (1,3)(2,4)(5,6) ] ) );;
gap> Collected( List( goods, CycleStructurePerm ) );
[ [ [ 1, 1 ], 24 ] ]
]]></Example>
<P/>
However, for each pair of nonidentity element <M>x</M>, <M>y \in S_6</M>,
there is <M>s \in S_6</M> such that
<M>\langle x, s \rangle</M> and <M>\langle y, s \rangle</M> both contain <M>A_6</M>.
(If <M>s</M> works for the pair <M>(x,y)</M> then <M>s^g</M> works for <M>(x^g,y^g)</M>,
so it is sufficient to consider only orbit representatives <M>(x,y)</M> under
the conjugation action of <M>G</M> on pairs.
Thus we check conjugacy class representatives <M>x</M> and, for fixed <M>x</M>,
representatives of orbits of <M>C_G(x)</M> on the classes <M>y^G</M>,
i. e., representatives of <M>C_G(y)</M>-<M>C_G(x)</M>-double cosets in <M>G</M>.
Moreover, clearly we can restrict the checks to elements <M>x</M>, <M>y</M> of
prime order.)
<P/>
<Example><![CDATA[
gap> Sgens:= GeneratorsOfGroup( S );;
gap> primord:= Filtered( List( ConjugacyClasses( G ), Representative ),
> x -> IsPrimeInt( Order( x ) ) );;
gap> for x in primord do
> for y in primord do
> for pair in DoubleCosetRepsAndSizes( G, Centralizer( G, y ),
> Centralizer( G, x ) ) do
> if not ForAny( G, s -> IsSubset( Group( x,s ), S ) and
> IsSubset( Group( y^pair[1], s ), S ) ) then
> Error( [ x, y ] );
> fi;
> od;
> od;
> od;
]]></Example>
<P/>
In other words, the spread of <M>S_6</M> is <M>2</M> but the uniform spread of <M>S_6</M>
is not <M>2</M> but only <M>1</M>.
<P/>
We cannot always find <M>s \in A_6</M> with the required property:
If <M>x</M> is a transposition then any <M>s</M> with <M>S \subseteq\langle x, s \rangle</M>
must be a <M>5</M>-cycle.
<P/>
<Example><![CDATA[
gap> filt:= Filtered( S, s -> IsSubset( Group( (1,2), s ), S ) );;
gap> Collected( List( filt, Order ) );
[ [ 5, 48 ] ]
]]></Example>
<P/>
Moreover, clearly such <M>s</M> fixes one of the moved points of <M>x</M>,
so we may prescribe a transposition <M>y ¬eq; x</M>
that commutes with <M>x</M>,
it satisfies <M>S \nsubseteq\langle y, s \rangle</M>.
<P/>
For the other two automorphic extensions <M>A_6.2_2 = &PGL;(2,9)</M>
and <M>A_6.2_3 = M_{10}</M>,
we compute the character-theoretic bounds <M>&total;(A_6.2_2) = 1/6</M>
and <M>&total;(A_6.2_3) = 1/9</M>,
which shows statement (g).
<P/>
<Example><![CDATA[
gap> ProbGenInfoSimple( CharacterTable( "A6.2_2" ) );
[ "A6.2_2", 1/6, 5, [ "10A" ], [ 1 ] ]
gap> ProbGenInfoSimple( CharacterTable( "A6.2_3" ) );
[ "A6.2_3", 1/9, 8, [ "8C" ], [ 1 ] ]
]]></Example>
<P/>
Note that <M>&total;^{\prime}( &PGL;(2,9), s ) = 1/6</M>,
with <M>s</M> of order <M>5</M>,
and <M>&total;^{\prime}( M_{10}, s ) = 0</M> for any <M>s \in A_6</M>
since <M>M_{10}</M> is a non-split extension of <M>A_6</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "A6" );;
gap> t2:= CharacterTable( "A6.2_2" );;
gap> spos:= PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 5 );;
gap> ProbGenInfoAlmostSimple( t, t2, spos );
[ "A6.2_2", 1/6, [ "5A", "5B" ], [ 1, 1 ] ]
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="A7">
<Heading><M>A_7</M></Heading>
We show that <M>S = A_7</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 2/5</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>7</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s</M> of order <M>7</M>,
<M>&M;(S,s)</M> consists of two nonconjugate subgroups of the type <M>L_2(7)</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 2/5</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>7</M>.
</Item>
<Mark>(d)</Mark>
<Item>
The uniform spread of <M>S</M> is exactly three,
with <M>s</M> of order <M>7</M>.
</Item>
</List>
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "A7" );;
gap> ProbGenInfoSimple( t );
[ "A7", 2/5, 2, [ "7A" ], [ 2 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the two classes of maximal subgroups that contain
elements of order <M>7</M> consist of groups of the structure <M>L_2(7)</M>,
see <Cite Key="CCN85" Where="p. 10"/>.
<P/>
<Example><![CDATA[
gap> OrdersClassRepresentatives( t );
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
gap> prim:= PrimitivePermutationCharacters( t );
[ Character( CharacterTable( "A7" ), [ 7, 3, 4, 1, 1, 2, 0, 0, 0 ] ),
Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
Character( CharacterTable( "A7" ), [ 21, 5, 6, 0, 1, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A7" ), [ 35, 7, 5, 2, 1, 0, 1, 0, 0 ] )
]
]]></Example>
<P/>
For statement (c), we compute that for all nonidentity elements <M>s \in S</M>
and involutions <M>g \in S</M>,
<M>∝(g,s) \geq 2/5</M> holds,
with equality if and only if <M>s</M> has order <M>7</M>.
We actually compute, for class representatives <M>s</M>,
the proportion of involutions <M>g</M> such that
<M>\langle g, s \rangle ¬eq; S</M> holds.
<P/>
<Example><![CDATA[
gap> g:= AlternatingGroup( 7 );;
gap> inv:= (g.1^3*g.2)^3;
(2,6)(3,7)
gap> ccl:= List( ConjugacyClasses( g ), Representative );;
gap> SortParallel( List( ccl, Order ), ccl );
gap> List( ccl, Order );
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
gap> Size( ConjugacyClass( g, inv ) );
105
gap> prop:= List( ccl, r -> RatioOfNongenerationTransPermGroup( g, inv, r ) );
[ 1, 1, 1, 1, 89/105, 17/21, 19/35, 2/5, 2/5 ]
gap> Minimum( prop );
2/5
]]></Example>
<P/>
For statement (d),
we use the random approach described in
Section <Ref Subsect="subsect:groups"/>.
By the character-theoretic bounds, it suffices to consider triples
of elements in the classes <C>2A</C> or <C>3B</C>.
<P/>
<Example><![CDATA[
gap> OrdersClassRepresentatives( t );
[ 1, 2, 3, 3, 4, 5, 6, 7, 7 ]
gap> spos:= Position( OrdersClassRepresentatives( t ), 7 );;
gap> SizesCentralizers( t );
[ 2520, 24, 36, 9, 4, 5, 12, 7, 7 ]
gap> ApproxP( prim, spos );
[ 0, 2/5, 0, 2/5, 2/15, 0, 0, 2/15, 2/15 ]
gap> s:= (1,2,3,4,5,6,7);;
gap> 3B:= (1,2,3)(4,5,6);;
gap> C3B:= ConjugacyClass( g, 3B );;
gap> Size( C3B );
280
gap> ResetGlobalRandomNumberGenerators();
gap> for triple in UnorderedTuples( [ inv, 3B ], 3 ) do
> if RandomCheckUniformSpread( g, triple, s, 80 ) <> true then
> Print( "#E nongeneration!\n" );
> fi;
> od;
]]></Example>
<P/>
We get no output, so the uniform spread of <M>S</M> is at least three.
<P/>
Alternatively,
we can use the lemma from Section <Ref Subsect="sect:probgen-criteria"/>;
this approach is technically more involved but faster.
We work with the diagonal product of the two degree <M>15</M> representations
of <M>S</M>,
which is constructed from the information stored in the &GAP; Library
of Tables of Marks.
<P/>
<Example><![CDATA[
gap> tom:= TableOfMarks( "A7" );;
gap> a7:= UnderlyingGroup( tom );;
gap> tommaxes:= MaximalSubgroupsTom( tom );
[ [ 39, 38, 37, 36, 35 ], [ 7, 15, 15, 21, 35 ] ]
gap> index15:= List( tommaxes[1]{ [ 2, 3 ] },
> i -> RepresentativeTom( tom, i ) );
[ Group([ (1,3)(2,7), (1,5,7)(3,4,6) ]),
Group([ (1,4)(2,3), (2,4,6)(3,5,7) ]) ]
gap> deg15:= List( index15, s -> RightTransversal( a7, s ) );;
gap> reps:= List( deg15, l -> Action( a7, l, OnRight ) );
[ Group([ (1,5,7)(2,9,10)(3,11,4)(6,12,8)(13,14,15), (1,8,15,5,12)
(2,13,11,3,10)(4,14,9,7,6) ]),
Group([ (1,2,3)(4,6,5)(7,8,9)(10,12,11)(13,15,14), (1,12,3,13,10)
(2,9,15,4,11)(5,6,14,7,8) ]) ]
gap> g:= DiagonalProductOfPermGroups( reps );;
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g );
> until Order( s ) = 7;
gap> NrMovedPoints( s );
28
gap> mpg:= MovedPoints( g );;
gap> fixs:= Difference( mpg, MovedPoints( s ) );;
gap> orb_s:= Orbit( g, fixs, OnSets );;
gap> Length( orb_s );
120
gap> SizesCentralizers( t );
[ 2520, 24, 36, 9, 4, 5, 12, 7, 7 ]
gap> repeat 2a:= Random( g ); until Order( 2a ) = 2;
gap> repeat 3b:= Random( g );
> until Order( 3b ) = 3 and Size( Centralizer( g, 3b ) ) = 9;
gap> orb2a:= Orbit( g, Difference( mpg, MovedPoints( 2a ) ), OnSets );;
gap> orb3b:= Orbit( g, Difference( mpg, MovedPoints( 3b ) ), OnSets );;
gap> orb2aor3b:= Union( orb2a, orb3b );;
gap> TripleWithProperty( [ [ orb2a[1], orb3b[1] ], orb2aor3b, orb2aor3b ],
> l -> ForAll( orb_s,
> f -> not IsEmpty( Intersection( Union( l ), f ) ) ) );
fail
]]></Example>
<P/>
It remains to show that for any choice of <M>s \in S</M>,
a quadruple of elements in <M>S^{\times}</M> exists such that <M>s</M> generates
a proper subgroup of <M>S</M> together with at least one of these elements.
<P/>
First we observe (without using &GAP;) that there is a pair of <M>3</M>-cycles
whose fixed points cover the seven points of the natural permutation
representation.
This implies the statement for all elements <M>s \in S</M>
that fix a point in this representation.
So it remains to consider elements <M>s</M> of the orders six and seven.
<P/>
For the order seven element, the above setup and
the lemma from Section <Ref Subsect="sect:probgen-criteria"/>
can be used.
<P/>
<Example><![CDATA[
gap> QuadrupleWithProperty( [ [ orb2a[1] ], orb2a, orb2a, orb2a ],
> l -> ForAll( orb_s,
> f -> not IsEmpty( Intersection( Union( l ), f ) ) ) );
[ [ 2, 5, 12, 18, 19, 26 ], [ 7, 8, 9, 16, 21, 25 ],
[ 1, 6, 10, 17, 20, 27 ], [ 13, 14, 15, 28, 29, 30 ] ]
]]></Example>
<P/>
For the order six element, we use the diagonal product of the
primitive permutation representations of the degrees <M>21</M> and <M>35</M>.
<P/>
<Example><![CDATA[
gap> has6A:= List( tommaxes[1]{ [ 4, 5 ] },
> i -> RepresentativeTom( tom, i ) );
[ Group([ (1,2)(3,7), (2,6,5,4)(3,7) ]),
Group([ (2,3)(5,7), (1,2)(4,5,6,7), (2,3)(5,6) ]) ]
gap> trans:= List( has6A, s -> RightTransversal( a7, s ) );;
gap> reps:= List( trans, l -> Action( a7, l, OnRight ) );
[ Group([ (1,16,12)(2,17,13)(3,18,11)(4,19,14)(15,20,21), (1,4,7,9,10)
(2,5,8,3,6)(11,12,15,14,13)(16,20,19,17,18) ]),
Group([ (2,16,6)(3,17,7)(4,18,8)(5,19,9)(10,20,26)(11,21,27)
(12,22,28)(13,23,29)(14,24,30)(15,25,31), (1,2,3,4,5)
(6,10,13,15,9)(7,11,14,8,12)(16,20,23,25,19)(17,21,24,18,22)
(26,32,35,31,28)(27,33,29,34,30) ]) ]
gap> g:= DiagonalProductOfPermGroups( reps );;
gap> repeat s:= Random( g );
> until Order( s ) = 6;
gap> NrMovedPoints( s );
53
gap> mpg:= MovedPoints( g );;
gap> fixs:= Difference( mpg, MovedPoints( s ) );;
gap> orb_s:= Orbit( g, fixs, OnSets );;
gap> Length( orb_s );
105
gap> repeat 3a:= Random( g );
> until Order( 3a ) = 3 and Size( Centralizer( g, 3a ) ) = 36;
gap> orb3a:= Orbit( g, Difference( mpg, MovedPoints( 3a ) ), OnSets );;
gap> Length( orb3a );
35
gap> TripleWithProperty( [ [ orb3a[1] ], orb3a, orb3a ],
> l -> ForAll( orb_s,
> f -> not IsEmpty( Intersection( Union( l ), f ) ) ) );
[ [ 1, 4, 6, 12, 14, 15, 34, 37, 40, 43, 49 ],
[ 1, 4, 6, 16, 19, 20, 27, 30, 33, 44, 49 ],
[ 2, 3, 4, 5, 7, 9, 26, 47, 48, 50, 53 ] ]
]]></Example>
<P/>
So we have found not only a quadruple but even a triple of <M>3</M>-cycles
that excludes candidates <M>s</M> of order six.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="SL">
<Heading><M>L_d(q)</M></Heading>
In the treatment of small dimensional linear groups <M>S = &SL;(d,q)</M>,
<Cite Key="BGK"/> uses a Singer element <M>s</M> of order <M>(q^d-1)/(q-1)</M>.
(So the order of the corresponding element in
<M>&PSL;(d,q) = (q^d-1)/[(q-1) \gcd(d,q-1)]</M>.)
By <Cite Key="Be00"/>, <M>&M;(S,s)</M> consists of extension field type subgroups,
except in the cases <M>d = 2</M>, <M>q \in \{ 2, 5, 7, 9 \}</M>, and <M>(d,q) = (3,4)</M>.
These subgroups have the structure <M>&GL;(d/p,q^p):\alpha_q \cap S</M>,
for prime divisors <M>p</M> of <M>d</M>,
where <M>\alpha_q</M> denotes the Frobenius automorphism that acts on
matrices by raising each entry to the <M>q</M>-th power.
(If <M>q</M> is a prime then we have <M>&GL;(d/p,q^p):\alpha_q = &GammaL;(d/p,q^p)</M>.)
Since <M>s</M> acts irreducibly,
it is contained in at most one conjugate of each class of
extension field type subgroups
(cf. <Cite Key="BGK" Where="Lemma 2.12"/>).
<P/>
First we write a &GAP; function <C>RelativeSigmaL</C> that takes
a positive integer <M>d</M> and a basis <M>B</M> of the field
extension of degree <M>n</M> over the field with <M>q</M> elements,
and returns the group <M>&GL;(d,q^n):\alpha_q</M>,
as a subgroup of <M>&GL;(dn,q)</M>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F RelativeSigmaL( <d>, <B> )
##
## Let <d> be a positive integer and <B> a basis for a field extension
## of degree $n$, say, over the field $F$ with $q$ elements.
## `RelativeSigmaL' returns a group of $<d> n \times <d> n$ matrices
## over $F$, which is the intersection of $&SL;(<d> n, q)$ and the split
## extension of an extension field type subgroup isomorphic with
## $&GL;(<d>, q^n)$ by the Frobenius automorphism that maps each matrix
## entry to its $q$-th power.
##
## (If $q$ is a prime then the return value is isomorphic with the
## semilinear group $\SigmaL(<d>, q^n)$.)
##
]]></Ignore>
<Example><![CDATA[
gap> RelativeSigmaL:= function( d, B )
> local n, F, q, glgens, diag, pi, frob, i;
>
> n:= Length( B );
> F:= LeftActingDomain( UnderlyingLeftModule( B ) );
> q:= Size( F );
>
> # Create the generating matrices inside the linear subgroup.
> glgens:= List( GeneratorsOfGroup( SL( d, q^n ) ),
> m -> BlownUpMat( B, m ) );
>
> # Create the matrix of a diagonal part that maps to determinant 1.
> diag:= IdentityMat( d*n, F );
> diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n)^(q-1) ] ] );
> Add( glgens, diag );
>
> # Create the matrix that realizes the Frobenius action,
> # and adjust the determinant.
> pi:= List( B, b -> Coefficients( B, b^q ) );
> frob:= NullMat( d*n, d*n, F );
> for i in [ 0 .. d-1 ] do
> frob{ [ 1 .. n ] + i*n }{ [ 1 .. n ] + i*n }:= pi;
> od;
> diag:= IdentityMat( d*n, F );
> diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n) ] ] );
> diag:= diag^LogFFE( Inverse( Determinant( frob ) ), Determinant( diag ) );
>
> # Return the result.
> return Group( Concatenation( glgens, [ diag * frob ] ) );
> end;;
]]></Example>
<P/>
The next function computes <M>&total;(&SL;(d,q),s)</M>,
by computing the sum of <M>&fpr;(g,S/(&GL;(d/p,q^p):\alpha_q \cap S))</M>,
for prime divisors <M>p</M> of <M>d</M>, and taking the maximum over
<M>g \in S^{\times}</M>.
The computations take place in a permutation representation of <M>&PSL;(d,q)</M>.
<P/>
<!-- % (Note that &GAP; knows special methods for computing class representatives -->
<!-- % of the matrix groups <M>&SL;(d,q)</M>, -->
<!-- % but currently there are no special methods for checking whether two elements -->
<!-- % in <M>&SL;(d,g)</M> are conjugate.) -->
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ApproxPForSL( <d>, <q> )
##
## For a positive integer <d> and a prime power <q>,
## `ApproxPForSL' returns $[ &M;(G,s), &total;( G, s ) ]$,
## where $G = &PSL;( <d>, <q> )$, $s \in G$ is the image of a Singer cycle
## in $&SL;(d,q)$,
## and $&M;(G,s)$ is the list of names of those maximal subgroups of $G$
## that contain $s$.
##
]]></Ignore>
<Example><![CDATA[
gap> ApproxPForSL:= function( d, q )
> local G, epi, PG, primes, maxes, names, ccl;
>
> # Check whether this is an admissible case (see [Be00]).
> if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then
> return fail;
> fi;
>
> # Create the group SL(d,q), and the map to PSL(d,q).
> G:= SL( d, q );
> epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );
> PG:= ImagesSource( epi );
>
> # Create the subgroups corresponding to the prime divisors of `d'.
> primes:= PrimeDivisors( d );
> maxes:= List( primes, p -> RelativeSigmaL( d/p,
> Basis( AsField( GF(q), GF(q^p) ) ) ) );
> names:= List( primes, p -> Concatenation( "GL(", String( d/p ), ",",
> String( q^p ), ").", String( p ) ) );
> if 2 < q then
> names:= List( names, name -> Concatenation( name, " cap G" ) );
> fi;
>
> # Compute the conjugacy classes of prime order elements in the maxes.
> # (In order to avoid computing all conjugacy classes of these subgroups,
> # we work in Sylow subgroups.)
> ccl:= List( List( maxes, x -> ImagesSet( epi, x ) ),
> M -> ClassesOfPrimeOrder( M, PrimeDivisors( Size( M ) ),
> TrivialSubgroup( M ) ) );
>
> return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];
> end;;
]]></Example>
<P/>
<!-- % Improve this as soon as special conjugacy tests for SL are installed? -->
We apply this function to the cases that are interesting
in <Cite Key="BGK" Where="Section 5.12"/>.
<P/>
<Example><![CDATA[
gap> pairs:= [ [ 3, 2 ], [ 3, 3 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ],
> [ 6, 2 ], [ 6, 3 ], [ 6, 4 ], [ 6, 5 ], [ 8, 2 ], [ 10, 2 ] ];;
gap> array:= [];;
gap> for pair in pairs do
> d:= pair[1]; q:= pair[2];
> approx:= ApproxPForSL( d, q );
> Add( array, [ Concatenation( "SL(", String(d), ",", String(q), ")" ),
> (q^d-1)/(q-1),
> approx[1], approx[2] ] );
> od;
gap> oldsize:= SizeScreen();;
gap> SizeScreen( [ 80 ] );;
gap> PrintFormattedArray( array );
SL(3,2) 7 [ "GL(1,8).3" ] 1/4
SL(3,3) 13 [ "GL(1,27).3 cap G" ] 1/24
SL(4,2) 15 [ "GL(2,4).2" ] 3/14
SL(4,3) 40 [ "GL(2,9).2 cap G" ] 53/1053
SL(4,4) 85 [ "GL(2,16).2 cap G" ] 1/108
SL(6,2) 63 [ "GL(3,4).2", "GL(2,8).3" ] 365/55552
SL(6,3) 364 [ "GL(3,9).2 cap G", "GL(2,27).3 cap G" ] 22843/123845436
SL(6,4) 1365 [ "GL(3,16).2 cap G", "GL(2,64).3 cap G" ] 1/85932
SL(6,5) 3906 [ "GL(3,25).2 cap G", "GL(2,125).3 cap G" ] 1/484220
SL(8,2) 255 [ "GL(4,4).2" ] 1/7874
SL(10,2) 1023 [ "GL(5,4).2", "GL(2,32).5" ] 1/129794
gap> SizeScreen( oldsize );;
]]></Example>
<!-- %T the most expensive call is SL(6,5), -->
<!-- %T and conjugacy tests for elements of order 31 are hard there -->
<P/>
The only missing case for <Cite Key="BGK"/> is <M>S = L_3(4)</M>,
for which <M>&M;(S,s)</M> consists of three groups of the type <M>L_3(2)</M>
(see <Cite Key="CCN85" Where="p. 23"/>).
The group <M>L_3(4)</M> has been considered already in Section <Ref Subsect="easyloop"/>,
where <M>&total;(S,s) = 1/5</M> has been proved.
Also the cases <M>&SL;(3,3)</M>, <M>&SL;(4,2) \cong A_8</M>, and <M>&SL;(4,3)</M> have been
handled there.
<P/>
An alternative character-theoretic proof for <M>S = L_6(2)</M> looks as follows.
In this case, the subgroups in <M>&M;(S,s)</M> have the types
<M>&GammaL;(3,4) \cong &GL;(3,4).2 \cong 3.L_3(4).3.2_2</M>
and <M>&GammaL;(2,8) \cong &GL;(2,8).3 \cong (7 \times L_2(8)).3</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "L6(2)" );;
gap> s1:= CharacterTable( "3.L3(4).3.2_2" );;
gap> s2:= CharacterTable( "(7xL2(8)).3" );;
gap> SigmaFromMaxes( t, "63A", [ s1, s2 ], [ 1, 1 ] );
365/55552
]]></Example>
<!-- %T add L4(4): GL(2,16).2 cap G is (15xL2(16)).2 cap G -->
<!-- %T L6(3): GL(3,9).2 cap G is ... -->
<!-- %T GL(2,27).3 cap G is ... -->
<!-- %T L8(2): GL(4,4).2 is (3xL4(4)).2 -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="subsect:Ldq-with-prime-d">
<Heading><M>\ast</M> <M>L_d(q)</M> with prime <M>d</M></Heading>
For <M>S = &SL;(d,q)</M> with <E>prime</E> dimension <M>d</M>,
and <M>s \in S</M> a Singer cycle,
we have <M>&M;(S,s) = \{ M \}</M>,
where <M>M = N_S(\langle s \rangle) \cong &GammaL;(1,q^d) \cap S</M>.
So
<Display Mode="M">
&total;(g,s) = &fpr;(g,S/M) = |g^S \cap M|/|g^S|
< |M|/|g^S| \leq (q^d-1) \cdot d/|g^S|
</Display>
holds for any <M>g \in S \setminus Z(S)</M>,
which implies
<M>&total;( S, s ) < \max\{ (q^d-1) \cdot d/|g^S|; g \in S \setminus Z(S) \}</M>.
The right hand side of this inequality is returned by the following function.
In <Cite Key="BGK" Where="Lemma 3.8"/>,
the global upper bound <M>1/q^d</M> is derived for primes <M>d \geq 5</M>.
<P/>
<Example><![CDATA[
gap> UpperBoundForSL:= function( d, q )
> local G, Msize, ccl;
>
> if not IsPrimeInt( d ) then
> Error( "<d> must be a prime" );
> fi;
>
> G:= SL( d, q );
> Msize:= (q^d-1) * d;
> ccl:= Filtered( ConjugacyClasses( G ),
> c -> Msize mod Order( Representative( c ) ) = 0
> and Size( c ) <> 1 );
>
> return Msize / Minimum( List( ccl, Size ) );
> end;;
]]></Example>
<P/>
The interesting values are <M>(d,q)</M> with <M>d \in \{ 5, 7, 11 \}</M> and
<M>q \in \{ 2, 3, 4 \}</M>, and perhaps also <M>(d,q) \in \{ (3,2), (3,3) \}</M>.
(Here we exclude <M>&SL;(11,4)</M> because writing down the conjugacy classes
of this group would exceed the permitted memory.)
<!-- %T what would help here: for example a conjugacy classes iterator -->
<P/>
<Example><![CDATA[
gap> NrConjugacyClasses( SL(11,4) );
1397660
gap> pairs:= [ [ 3, 2 ], [ 3, 3 ], [ 5, 2 ], [ 5, 3 ], [ 5, 4 ],
> [ 7, 2 ], [ 7, 3 ], [ 7, 4 ],
> [ 11, 2 ], [ 11, 3 ] ];;
gap> array:= [];;
gap> for pair in pairs do
> d:= pair[1]; q:= pair[2];
> approx:= UpperBoundForSL( d, q );
> Add( array, [ Concatenation( "SL(", String(d), ",", String(q), ")" ),
> (q^d-1)/(q-1),
> approx ] );
> od;
gap> PrintFormattedArray( array );
SL(3,2) 7 7/8
SL(3,3) 13 3/4
SL(5,2) 31 31/64512
SL(5,3) 121 10/81
SL(5,4) 341 15/256
SL(7,2) 127 7/9142272
SL(7,3) 1093 14/729
SL(7,4) 5461 21/4096
SL(11,2) 2047 2047/34112245508649716682268134604800
SL(11,3) 88573 22/59049
]]></Example>
<P/>
The exact values are clearly better than the above bounds.
We compute them for <M>L_5(2)</M> and <M>L_7(2)</M>.
In the latter case, the class fusion of the <M>127:7</M> type subgroup <M>M</M>
is not uniquely determined by the character tables;
here we use the additional information that the elements of order <M>7</M> in <M>M</M>
have centralizer order <M>49</M> in <M>L_7(2)</M>.
<!-- %T show this!! -->
(See Section <Ref Subsect="easyloop"/> for the examples with <M>d = 3</M>.)
<P/>
<Example><![CDATA[
gap> SigmaFromMaxes( CharacterTable( "L5(2)" ), "31A",
> [ CharacterTable( "31:5" ) ], [ 1 ] );
1/5376
gap> t:= CharacterTable( "L7(2)" );;
gap> s:= CharacterTable( "P:Q", [ 127, 7 ] );;
gap> pi:= PossiblePermutationCharacters( s, t );;
gap> Length( pi );
2
gap> ord7:= PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 7 );
[ 38, 45, 76, 77, 83 ]
gap> sizes:= SizesCentralizers( t ){ ord7 };
[ 141120, 141120, 3528, 3528, 49 ]
gap> List( pi, x -> x[83] );
[ 42, 0 ]
gap> spos:= Position( OrdersClassRepresentatives( t ), 127 );;
gap> Maximum( ApproxP( pi{ [ 1 ] }, spos ) );
1/4388290560
]]></Example>
<!-- %T add also L5(3); currently 121:5 causes problems!! -->
<!-- %T handle the others with ApproxPForSL? -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="SLaut">
<Heading>Automorphic Extensions of <M>L_d(q)</M></Heading>
For the following values of <M>d</M> and <M>q</M>,
automorphic extensions <M>G</M> of <M>L_d(q)</M> had to be checked
for <Cite Key="BGK" Where="Section 5.12"/>.
<Display Mode="M">
(d,q) \in \{ (3,4), (6,2), (6,3), (6,4), (6,5), (10,2) \}
</Display>
The first case has been treated in Section <Ref Subsect="easyloopaut"/>.
For the other cases, we compute <M>&total;^{\prime}(G,s)</M> below.
<P/>
In any case, the extension by a <E>graph</E> automorphism occurs,
which can be described by mapping each matrix in <M>&SL;(d,q)</M> to its inverse
transpose.
If <M>q > 2</M>, also extensions by <E>diagonal</E> automorphisms occur,
which are induced by conjugation with elements in <M>&GL;(d,q)</M>.
If <M>q</M> is nonprime then also extensions by <E>field</E> automorphisms occur,
which can be described by powering the matrix entries by roots of <M>q</M>.
Finally, products (of prime order) of these three kinds of automorphisms
have to be considered.
<P/>
We start with the extension <M>G</M> of <M>S = &SL;(d,q)</M> by a graph automorphism.
<M>G</M> can be embedded into <M>&GL;(2d,q)</M> by representing the matrix <M>A \in S</M>
as a block diagonal matrix with diagonal blocks equal to <M>A</M> and <M>A^{-tr}</M>,
and representing the graph automorphism by a permutation matrix that
interchanges the two blocks.
In order to construct the field extension type subgroups of <M>G</M>,
we have to choose the basis of the field extension in such a way that the
subgroup is normalized by the permutation matrix;
a sufficient condition is that the matrices of the <M>&F;_q</M>-linear mappings
induced by the basis elements are symmetric.
<P/>
(We do not give a function that computes a basis with this property from
the parameters <M>d</M> and <M>q</M>.
Instead, we only write down the bases that we will need.)
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F SymmetricBasis( <q>, <n> )
##
## For a positive integer <n> and a prime power <q>,
## `SymmetricBasis' returns a basis $B$ for the `GF(<q>)'-vector space
## `GF(<q>^<n>)' with the property that $`BlownUpMat'( B, x )$
## is symmetric for each element $x$ in `GF(<q>^<n>)'.
##
]]></Ignore>
<Example><![CDATA[
gap> SymmetricBasis:= function( q, n )
> local vectors, B, issymmetric;
>
> if q = 2 and n = 2 then
> vectors:= [ Z(2)^0, Z(2^2) ];
> elif q = 2 and n = 3 then
> vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];
> elif q = 2 and n = 5 then
> vectors:= [ Z(2)^0, Z(2^5), Z(2^5)^4, Z(2^5)^25, Z(2^5)^26 ];
> elif q = 3 and n = 2 then
> vectors:= [ Z(3)^0, Z(3^2) ];
> elif q = 3 and n = 3 then
> vectors:= [ Z(3)^0, Z(3^3)^2, Z(3^3)^7 ];
> elif q = 4 and n = 2 then
> vectors:= [ Z(2)^0, Z(2^4)^3 ];
> elif q = 4 and n = 3 then
> vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];
> elif q = 5 and n = 2 then
> vectors:= [ Z(5)^0, Z(5^2)^2 ];
> elif q = 5 and n = 3 then
> vectors:= [ Z(5)^0, Z(5^3)^9, Z(5^3)^27 ];
> else
> Error( "sorry, no basis for <q> and <n> stored" );
> fi;
>
> B:= Basis( AsField( GF(q), GF(q^n) ), vectors );
>
> # Check that the basis really has the required property.
> issymmetric:= M -> M = TransposedMat( M );
> if not ForAll( B, b -> issymmetric( BlownUpMat( B, [ [ b ] ] ) ) ) then
> Error( "wrong basis!" );
> fi;
>
> # Return the result.
> return B;
> end;;
]]></Example>
<P/>
<!--
SymmetricBasis:= function( F )
local B, subfield, elms, choices, index, issymmetric, pos, i;
subfield:= Elements( LeftActingDomain( F ) );
elms:= ShallowCopy( Elements( F ) );
RemoveSet( elms, Zero( F ) );
choices:= [];
while not IsEmpty( elms ) do
Add( choices, elms[1] );
SubtractSet( elms, subfield * elms[1] );
od;
index:= Reversed( [ 1 .. Dimension( F ) ] );
index[1]:= index[2];
issymmetric:= ( M -> M = List( TransposedMat( M ) ) );
repeat
pos:= 1;
while index[ pos ] = Length( choices ) - pos + 1 do
pos:= pos + 1;
od;
for i in [ 1 .. pos ] do
index[i]:= index[ pos ] + pos + 1 - i;
od;
B:= Basis( F, choices{ Reversed( index ) } );
until B <> fail
and ForAll( B, b -> issymmetric( BlownUpMat( B, [[b]] ) ) );
return B;
end;
-->
In later examples, we will need similar embeddings of matrices.
Therefore, we provide a more general function <C>EmbeddedMatrix</C>
that takes a field <C>F</C>, a matrix <C>mat</C>, and a function <C>func</C>,
and returns a block diagonal matrix over <C>F</C> whose diagonal blocks are
<C>mat</C> and <C>func( mat )</C>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F EmbeddedMatrix( <F>, <mat>, <func> )
##
## For a field <F>, a matrix <mat> and a function <func> that takes a matrix
## and returns a matrix of the same shape,
## `EmbeddedMatrix' returns a block diagonal matrix over the field <F>
## whose diagonal blocks are <mat> and `<func>( <mat> )'.
##
]]></Ignore>
<Example><![CDATA[
gap> BindGlobal( "EmbeddedMatrix", function( F, mat, func )
> local d, result;
>
> d:= Length( mat );
> result:= NullMat( 2*d, 2*d, F );
> result{ [ 1 .. d ] }{ [ 1 .. d ] }:= mat;
> result{ [ d+1 .. 2*d ] }{ [ d+1 .. 2*d ] }:= func( mat );
>
> return result;
> end );
]]></Example>
<P/>
The following function is similar to <C>ApproxPForSL</C>,
the differences are that the group <M>G</M> in question is not <M>&SL;(d,q)</M> but
the extension of this group by a graph automorphism,
and that <M>&total;^{\prime}(G,s)</M> is computed not <M>&total;(G,s)</M>.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ApproxPForOuterClassesInExtensionOfSLByGraphAut( <d>, <q> )
##
## For a positive integer <d> and a prime power <q>,
## `ApproxPForOuterClassesInExtensionOfSLByGraphAut' returns
## $[ &M;(G,s), &total;^{\prime}( G, s ) ]$,
## where $G$ is $&PSL;( <d>, <q> )$ extended by a graph automorphism,
## $s \in G$ is the image of a Singer cycle in $&SL;(d,q)$,
## and $&M;(G,s)$ is the list of names of those maximal subgroups of
## $&PGL;( <d>, <q> )$ that contain $s$.
##
]]></Ignore>
<Example><![CDATA[
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut:= function( d, q )
> local embedG, swap, G, orb, epi, PG, Gprime, primes, maxes, ccl, names;
>
> # Check whether this is an admissible case (see [Be00],
> # note that a graph automorphism exists only for `d > 2').
> if d = 2 or ( d = 3 and q = 4 ) then
> return fail;
> fi;
>
> # Provide a function that constructs a block diagonal matrix.
> embedG:= mat -> EmbeddedMatrix( GF( q ), mat,
> M -> TransposedMat( M^-1 ) );
>
> # Create the matrix that exchanges the two blocks.
> swap:= NullMat( 2*d, 2*d, GF(q) );
> swap{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );
> swap{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );
>
> # Create the group SL(d,q).2, and the map to the projective group.
> G:= ClosureGroupDefault( Group( List( GeneratorsOfGroup( SL( d, q ) ),
> embedG ) ),
> swap );
> orb:= Orbit( G, One( G )[1], OnLines );
> epi:= ActionHomomorphism( G, orb, OnLines );
> PG:= ImagesSource( epi );
> Gprime:= DerivedSubgroup( PG );
>
> # Create the subgroups corresponding to the prime divisors of `d'.
> primes:= PrimeDivisors( d );
> maxes:= List( primes,
> p -> ClosureGroupDefault( Group( List( GeneratorsOfGroup(
> RelativeSigmaL( d/p, SymmetricBasis( q, p ) ) ),
> embedG ) ),
> swap ) );
>
> # Compute conjugacy classes of outer involutions in the maxes.
> # (In order to avoid computing all conjugacy classes of these subgroups,
> # we work in the Sylow $2$ subgroups.)
> maxes:= List( maxes, M -> ImagesSet( epi, M ) );
> ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );
> names:= List( primes, p -> Concatenation( "GL(", String( d/p ), ",",
> String( q^p ), ").", String( p ) ) );
>
> return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];
> end;;
]]></Example>
<P/>
And these are the results for the groups we are interested in
(and others).
<P/>
<Example><![CDATA[
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 4, 3 );
[ [ "GL(2,9).2" ], 17/117 ]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 4, 4 );
[ [ "GL(2,16).2" ], 73/1008 ]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 2 );
[ [ "GL(3,4).2", "GL(2,8).3" ], 41/1984 ]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 3 );
[ [ "GL(3,9).2", "GL(2,27).3" ], 541/352836 ]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 4 );
[ [ "GL(3,16).2", "GL(2,64).3" ], 3265/12570624 ]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 6, 5 );
[ [ "GL(3,25).2", "GL(2,125).3" ], 13001/195250000 ]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 8, 2 );
[ [ "GL(4,4).2" ], 367/1007872 ]
gap> ApproxPForOuterClassesInExtensionOfSLByGraphAut( 10, 2 );
[ [ "GL(5,4).2", "GL(2,32).5" ], 609281/476346056704 ]
]]></Example>
<P/>
Now we consider diagonal automorphisms.
We modify the approach for <M>&SL;(d,q)</M> by constructing the field extension
type subgroups of <M>&GL;(d,q) \ldots</M>
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F RelativeGammaL( <d>, <B> )
##
## Let the arguments be as for `RelativeSigmaL'.
## Then `RelativeGammaL' returns the extension field type subgroup of
## $&GL;(d,q)$ that corresponds to the subgroup of $&SL;(d,q)$ returned by
## `RelativeSigmaL'.
##
]]></Ignore>
<Example><![CDATA[
gap> RelativeGammaL:= function( d, B )
> local n, F, q, diag;
>
> n:= Length( B );
> F:= LeftActingDomain( UnderlyingLeftModule( B ) );
> q:= Size( F );
> diag:= IdentityMat( d * n, F );
> diag{[ 1 .. n ]}{[ 1 .. n ]}:= BlownUpMat( B, [ [ Z(q^n) ] ] );
> return ClosureGroup( RelativeSigmaL( d, B ), diag );
> end;;
]]></Example>
<P/>
<M>\ldots</M>
and counting the elements of prime order outside the simple group.
<P/>
<Ignore Remark="gapfilecomments"><![CDATA[
#############################################################################
##
#F ApproxPForOuterClassesInGL( <d>, <q> )
##
## Let the arguments be as for `ApproxPForSL'.
## Then `ApproxPForOuterClassesInGL' returns the list of names of the
## extension field type subgroups of $&GL;(<d>,<q>)$,
## and $&total;^{\prime}(&GL;(<d>,<q>),s)$,
## for a Singer cycle $s \in &SL;(d,q)$.
##
]]></Ignore>
<Example><![CDATA[
gap> ApproxPForOuterClassesInGL:= function( d, q )
> local G, epi, PG, Gprime, primes, maxes, names;
>
> # Check whether this is an admissible case (see [Be00]).
> if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then
> return fail;
> fi;
>
> # Create the group GL(d,q), and the map to PGL(d,q).
> G:= GL( d, q );
> epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );
> PG:= ImagesSource( epi );
> Gprime:= ImagesSet( epi, SL( d, q ) );
>
> # Create the subgroups corresponding to the prime divisors of `d'.
> primes:= PrimeDivisors( d );
> maxes:= List( primes, p -> RelativeGammaL( d/p,
> Basis( AsField( GF(q), GF(q^p) ) ) ) );
> maxes:= List( maxes, M -> ImagesSet( epi, M ) );
> names:= List( primes, p -> Concatenation( "M(", String( d/p ), ",",
> String( q^p ), ")" ) );
>
> return [ names,
> UpperBoundFixedPointRatios( PG, List( maxes,
> M -> ClassesOfPrimeOrder( M,
> PrimeDivisors( Index( PG, Gprime ) ), Gprime ) ),
> true )[1] ];
> end;;
]]></Example>
<P/>
Here are the required results.
<P/>
<Example><![CDATA[
gap> ApproxPForOuterClassesInGL( 6, 3 );
[ [ "M(3,9)", "M(2,27)" ], 41/882090 ]
gap> ApproxPForOuterClassesInGL( 4, 3 );
[ [ "M(2,9)" ], 0 ]
gap> ApproxPForOuterClassesInGL( 6, 4 );
[ [ "M(3,16)", "M(2,64)" ], 1/87296 ]
gap> ApproxPForOuterClassesInGL( 6, 5 );
[ [ "M(3,25)", "M(2,125)" ], 821563/756593750000 ]
]]></Example>
<P/>
(Note that the extension field type subgroup in <M>&PGL;(4,3) = L_4(3).2_1</M>
is a <E>non-split</E> extension of its intersection with <M>L_4(3)</M>,
hence the zero value.)
<P/>
<!-- % Compared to an earlier version of <C>UpperBoundFixedPointRatios</C>, -->
<!-- % the following simpleminded function was faster. -->
<!-- % ApproxPForGroup:= function( G, Gccl, maxesclasses ) -->
<!-- % local approx, list, c, r, img; -->
<!-- % -->
<!-- % approx:= List( Gccl, x -> 0 ); -->
<!-- % for list in maxesclasses do -->
<!-- % for c in list do -->
<!-- % r:= Representative( c ); -->
<!-- % if IsPrimeInt( Order( r ) ) then -->
<!-- % img:= PositionProperty( Gccl, -->
<!-- % c -> Order( r ) = Order( Representative( c ) ) -->
<!-- % and r in c ); -->
<!-- % approx[ img ]:= approx[ img ] + Size( c ); -->
<!-- % fi; -->
<!-- % od; -->
<!-- % od; -->
<!-- % -->
<!-- % return List( [ 1 .. Length( Gccl ) ], i -> approx[i] / Size( Gccl[i] ) ); -->
<!-- % end;; -->
<P/>
Concerning extensions by Frobenius automorphisms,
only the case <M>(d,q) = (6,4)</M> is interesting in <Cite Key="BGK"/>.
In fact, we would not need to compute anything for the extension <M>G</M> of
<M>S = &SL;(6,4)</M> by the Frobenius map that squares each matrix entry.
This is because <M>&M;^{\prime}(G,s)</M> consists of the normalizers
of the two subgroups of the types <M>&SL;(3,16)</M> and <M>&SL;(2,64)</M>,
and the former maximal subgroup is a <E>non-split</E> extension of its
intersection with <M>S</M>,
<!-- % Note that <M>G</M> contains the extension of <M>&SL;(3,16)</M> by a Frobenius map -->
<!-- % of order four, and <M>S</M> contains the extension by the square of this map. -->
<!-- % (Note that we cannot find such an extension field type subgroup that is -->
<!-- % invariant under the involution that describes the Frobenius action, -->
<!-- % i.e., we cannot find a basis of <C>GF(16)/GF(4)</C> such that the blown up -->
<!-- % matrices have the property that their Frobenius images are also blown up -->
<!-- % matrices.) -->
so only one maximal subgroup can contribute to <M>&total;^{\prime}(G,s)</M>,
which is thus smaller than <M>1/2</M>,
by <Cite Key="BGK" Where="Prop. 2.6"/>.
<P/>
However, it is easy enough to compute the exact value of
<M>&total;^{\prime}(G,s)</M>.
We work with the projective action of <M>S</M> on its natural module,
and compute the permutation induced by the Frobenius map as the
Frobenius action on the normed row vectors.
<P/>
<Example><![CDATA[
gap> matgrp:= SL(6,4);;
gap> dom:= NormedRowVectors( GF(4)^6 );;
gap> Gprime:= Action( matgrp, dom, OnLines );;
gap> pi:= PermList( List( dom, v -> Position( dom, List( v, x -> x^2 ) ) ) );;
gap> G:= ClosureGroup( Gprime, pi );;
]]></Example>
<P/>
Then we compute the maximal subgroups, the classes of outer involutions,
and the bound, similar to the situation with graph automorphisms.
<!-- % Note that each RelativeSigmaL is contained in Gprime!! -->
<P/>
<Example><![CDATA[
gap> maxes:= List( [ 2, 3 ], p -> Normalizer( G,
> Action( RelativeSigmaL( 6/p,
> Basis( AsField( GF(4), GF(4^p) ) ) ), dom, OnLines ) ) );;
gap> ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;
gap> List( ccl, Length );
[ 0, 1 ]
gap> UpperBoundFixedPointRatios( G, ccl, true );
[ 1/34467840, true ]
]]></Example>
<P/>
For <M>(d,q) = (6,4)</M>,
we have to consider also the extension <M>G</M> of <M>S = &SL;(6,4)</M>
by the product <M>\alpha</M> of the Frobenius map and the graph automorphism.
We use the same approach as for the graph automorphism,
i. e., we embed <M>&SL;(6,4)</M> into a <M>12</M>-dimensional group of <M>6 \times 6</M>
block matrices,
where the second block is the image of the first block under <M>\alpha</M>,
and describe <M>\alpha</M> by the transposition of the two blocks.
<P/>
First we construct the projective actions of <M>S</M> and <M>G</M> on an orbit of
<M>1</M>-spaces.
<P/>
<Example><![CDATA[
gap> embedFG:= function( F, mat )
> return EmbeddedMatrix( F, mat,
> M -> List( TransposedMat( M^-1 ),
> row -> List( row, x -> x^2 ) ) );
> end;;
gap> d:= 6;; q:= 4;;
gap> alpha:= NullMat( 2*d, 2*d, GF(q) );;
gap> alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;
gap> alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;
gap> Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ),
> mat -> embedFG( GF(q), mat ) ) );;
gap> G:= ClosureGroupDefault( Gprime, alpha );;
gap> orb:= Orbit( G, One( G )[1], OnLines );;
gap> G:= Action( G, orb, OnLines );;
gap> Gprime:= Action( Gprime, orb, OnLines );;
]]></Example>
<P/>
Next we construct the maximal subgroups, the classes of outer involutions,
and the bound.
<P/>
<Example><![CDATA[
gap> maxes:= List( PrimeDivisors( d ), p -> Group( List( GeneratorsOfGroup(
> RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),
> mat -> embedFG( GF(q), mat ) ) ) );;
gap> maxes:= List( maxes, x -> Action( x, orb, OnLines ) );;
gap> maxes:= List( maxes, x -> Normalizer( G, x ) );;
gap> ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;
gap> List( ccl, Length );
[ 0, 1 ]
gap> UpperBoundFixedPointRatios( G, ccl, true );
[ 1/10792960, true ]
]]></Example>
<P/>
The only missing cases are the extensions of <M>&SL;(6,3)</M> and <M>&SL;(6,5)</M>
by the involutory outer automorphism that acts as the product of a diagonal
and a graph automorphism.
<P/>
In the case <M>S = &SL;(6,3)</M>, we can directly write down the extension <M>G</M>.
<P/>
<Example><![CDATA[
gap> d:= 6;; q:= 3;;
gap> diag:= IdentityMat( d, GF(q) );;
gap> diag[1][1]:= Z(q);;
gap> embedDG:= mat -> EmbeddedMatrix( GF(q), mat,
> M -> TransposedMat( M^-1 )^diag );;
gap> Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ), embedDG ) );;
gap> alpha:= NullMat( 2*d, 2*d, GF(q) );;
gap> alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;
gap> alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;
gap> G:= ClosureGroupDefault( Gprime, alpha );;
]]></Example>
<P/>
The maximal subgroups are constructed as the normalizers in <M>G</M> of the
extension field type subgroups in <M>S</M>.
We work with a permutation representation of <M>G</M>.
<P/>
<Example><![CDATA[
gap> maxes:= List( PrimeDivisors( d ), p -> Group( List( GeneratorsOfGroup(
> RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),
> embedDG ) ) );;
gap> orb:= Orbit( G, One( G )[1], OnLines );;
gap> G:= Action( G, orb, OnLines );;
gap> Gprime:= Action( Gprime, orb, OnLines );;
gap> maxes:= List( maxes, M -> Normalizer( G, Action( M, orb, OnLines ) ) );;
gap> ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;
gap> List( ccl, Length );
[ 1, 1 ]
gap> UpperBoundFixedPointRatios( G, ccl, true );
[ 25/352836, true ]
]]></Example>
<P/>
For <M>S = &SL;(6,5)</M>, this approach does not work because we cannot
realize the diagonal involution by an involutory matrix.
Instead, we consider the extension of <M>&GL;(6,5) \cong 2.(2 \times L_6(5)).2</M>
by the graph automorphism <M>\alpha</M>, which can be embedded into <M>&GL;(12,5)</M>.
<P/>
<Example><![CDATA[
gap> d:= 6;; q:= 5;;
gap> embedG:= mat -> EmbeddedMatrix( GF(q),
> mat, M -> TransposedMat( M^-1 ) );;
gap> Gprime:= Group( List( GeneratorsOfGroup( SL(d,q) ), embedG ) );;
gap> maxes:= List( PrimeDivisors( d ), p -> Group( List( GeneratorsOfGroup(
> RelativeSigmaL( d/p, Basis( AsField( GF(q), GF(q^p) ) ) ) ),
> embedG ) ) );;
gap> diag:= IdentityMat( d, GF(q) );;
gap> diag[1][1]:= Z(q);;
gap> diag:= embedG( diag );;
gap> alpha:= NullMat( 2*d, 2*d, GF(q) );;
gap> alpha{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );;
gap> alpha{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );;
gap> G:= ClosureGroupDefault( Gprime, alpha * diag );;
]]></Example>
<P/>
Now we switch to the permutation action of this group on the <M>1</M>-dimensional
subspaces, thus factoring out the cyclic normal subgroup of order four.
In this action, the involutory diagonal automorphism is represented by an
involution, and we can proceed as above.
<P/>
<Example><![CDATA[
gap> orb:= Orbit( G, One( G )[1], OnLines );;
gap> Gprime:= Action( Gprime, orb, OnLines );;
gap> G:= Action( G, orb, OnLines );;
gap> maxes:= List( maxes, M -> Action( M, orb, OnLines ) );;
gap> extmaxes:= List( maxes, M -> Normalizer( G, M ) );;
gap> ccl:= List( extmaxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;
gap> List( ccl, Length );
[ 2, 1 ]
gap> UpperBoundFixedPointRatios( G, ccl, true );
[ 3863/6052750000, true ]
]]></Example>
<P/>
In the same way,
we can recheck the values for the extensions of <M>&SL;(6,5)</M>
by the diagonal or by the graph automorphism.
<P/>
<Example><![CDATA[
gap> diag:= Permutation( diag, orb, OnLines );;
gap> G:= ClosureGroupDefault( Gprime, diag );;
gap> extmaxes:= List( maxes, M -> Normalizer( G, M ) );;
gap> ccl:= List( extmaxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;
gap> List( ccl, Length );
[ 3, 1 ]
gap> UpperBoundFixedPointRatios( G, ccl, true );
[ 821563/756593750000, true ]
gap> alpha:= Permutation( alpha, orb, OnLines );;
gap> G:= ClosureGroupDefault( Gprime, alpha );;
gap> extmaxes:= List( maxes, M -> Normalizer( G, M ) );;
gap> ccl:= List( extmaxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );;
gap> List( ccl, Length );
[ 2, 2 ]
gap> UpperBoundFixedPointRatios( G, ccl, true );
[ 13001/195250000, true ]
]]></Example>
<!--
% alternatively:
% character-theoretic proof for the extension of <M>L_6(2)</M> by the graph
% automorphism
%
% For <M>S = L_6(2)</M> and <M>s \in S</M> of order <M>63</M>,
% we have <M>&M;(S,s) = \{ &GammaL;(3,4), &GammaL;(2,8) \}</M>,
% these subgroups have the structures <M>&GL;(3,4).2 \cong 3.L_3(4).S_3</M>
% and <M>&GL;(2,8).3 \cong (7 \times L_2(8)).3</M>.
gap> t:= CharacterTable( "L6(2)" );;
gap> s1:= CharacterTable( "3.L3(4).3.2_2" );;
gap> s2:= CharacterTable( "(7xL2(8)).3" );;
gap> prim:= List( [ s1, s2 ], s -> PossiblePermutationCharacters( s, t ) );
[ [ Character( CharacterTable( "L6(2)" ), [ 55552, 0, 128, 256, 337, 112, 22,
0, 0, 16, 0, 16, 2, 17, 0, 0, 8, 2, 4, 28, 28, 0, 0, 0, 0, 4, 1, 0,
1, 0, 0, 4, 4, 0, 0, 2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1 ] ) ],
[ Character( CharacterTable( "L6(2)" ), [ 1904640, 0, 0, 512, 960, 0, 120,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 73, 73, 24, 24, 3, 0, 0, 15, 0,
0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1 ] ) ] ]
The permutation characters extend to <M>&Aut;(S) \cong S.2</M>. -->
gap> t2:= CharacterTable( "L6(2).2" );;
gap> map:= InverseMap( GetFusionMap( t, t2 ) );;
gap> torso:= List( Concatenation( prim ), pi -> CompositionMaps( pi, map ) );;
gap> ext:= List( torso, x -> PermChars( t2, rec( torso:= x ) ) );
[ [ Character( CharacterTable( "L6(2).2" ), [ 55552, 0, 128, 256, 337, 112,
22, 0, 0, 16, 0, 16, 2, 17, 0, 0, 8, 2, 4, 28, 0, 0, 0, 4, 1, 0, 1,
0, 0, 4, 0, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1120, 192, 32,
0, 0, 40, 13, 0, 4, 6, 0, 4, 4, 4, 0, 2, 8, 5, 0, 2, 0, 0, 0, 0, 1,
0, 1, 0 ] ) ],
[ Character( CharacterTable( "L6(2).2" ), [ 1904640, 0, 0, 512, 960, 0,
120, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 73, 24, 3, 0, 0, 15, 0, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 960, 960, 0, 0,
0, 0, 24, 0, 12, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3,
0, 0, 0 ] ) ] ]
gap> sigma:= ApproxP( Concatenation( ext ),
> Position( OrdersClassRepresentatives( t2 ), 63 ) );;
gap> Maximum( sigma{ Difference( PositionsProperty(
> OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
41/1984
-->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="L32">
<Heading><M>L_3(2)</M></Heading>
We show that <M>S = L_3(2) = &SL;(3,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 1/4</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>7</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s</M> of order <M>7</M>,
<M>&M;(S,s)</M> consists of one group of the type <M>7:3</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 1/4</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>7</M>.
</Item>
<Mark>(d)</Mark>
<Item>
The uniform spread of <M>S</M> is at exactly three,
with <M>s</M> of order <M>7</M>,
and the spread of <M>S</M> is exactly four.
(This had been left open in <Cite Key="BW1"/>.)
</Item>
</List>
<P/>
(Note that in this example, the spread and the uniform spread differ.)
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "L3(2)" );;
gap> ProbGenInfoSimple( t );
[ "L3(2)", 1/4, 3, [ "7A" ], [ 1 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the unique class of maximal subgroups that contain
elements of order <M>7</M> consists of groups of the structure <M>7:3</M>,
see <Cite Key="CCN85" Where="p. 3"/>.
<P/>
<Example><![CDATA[
gap> OrdersClassRepresentatives( t );
[ 1, 2, 3, 4, 7, 7 ]
gap> PrimitivePermutationCharacters( t );
[ Character( CharacterTable( "L3(2)" ), [ 7, 3, 1, 1, 0, 0 ] ),
Character( CharacterTable( "L3(2)" ), [ 7, 3, 1, 1, 0, 0 ] ),
Character( CharacterTable( "L3(2)" ), [ 8, 0, 2, 0, 1, 1 ] ) ]
]]></Example>
<P/>
For the other statements, we will use the primitive permutation
representations on <M>7</M> and <M>8</M> points of <M>S</M>
(computed from the &GAP; Library of Tables of Marks),
and their diagonal products of the degrees <M>14</M> and <M>15</M>.
<P/>
<Example><![CDATA[
gap> tom:= TableOfMarks( "L3(2)" );;
gap> g:= UnderlyingGroup( tom );
Group([ (2,4)(5,7), (1,2,3)(4,5,6) ])
gap> mx:= MaximalSubgroupsTom( tom );
[ [ 14, 13, 12 ], [ 7, 7, 8 ] ]
gap> maxes:= List( mx[1], i -> RepresentativeTom( tom, i ) );;
gap> tr:= List( maxes, s -> RightTransversal( g, s ) );;
gap> acts:= List( tr, x -> Action( g, x, OnRight ) );;
gap> g7:= acts[1];
Group([ (3,4)(6,7), (1,3,2)(4,6,5) ])
gap> g8:= acts[3];
Group([ (1,6)(2,5)(3,8)(4,7), (1,7,3)(2,5,8) ])
gap> g14:= DiagonalProductOfPermGroups( acts{ [ 1, 2 ] } );
Group([ (3,4)(6,7)(11,13)(12,14), (1,3,2)(4,6,5)(8,11,9)(10,12,13) ])
gap> g15:= DiagonalProductOfPermGroups( acts{ [ 2, 3 ] } );
Group([ (4,6)(5,7)(8,13)(9,12)(10,15)(11,14), (1,4,2)(3,5,6)(8,14,10)
(9,12,15) ])
]]></Example>
<P/>
First we compute that for all nonidentity elements <M>s \in S</M>
and order three elements <M>g \in S</M>,
<M>∝(g,s) \geq 1/4</M> holds,
with equality if and only if <M>s</M> has order <M>7</M>;
this implies statement (c).
We actually compute, for class representatives <M>s</M>,
the proportion of order three elements <M>g</M> such that
<M>\langle g, s \rangle ¬eq; S</M> holds.
<P/>
<Example><![CDATA[
gap> ccl:= List( ConjugacyClasses( g7 ), Representative );;
gap> SortParallel( List( ccl, Order ), ccl );
gap> List( ccl, Order );
[ 1, 2, 3, 4, 7, 7 ]
gap> Size( ConjugacyClass( g7, ccl[3] ) );
56
gap> prop:= List( ccl,
> r -> RatioOfNongenerationTransPermGroup( g7, ccl[3], r ) );
[ 1, 5/7, 19/28, 2/7, 1/4, 1/4 ]
gap> Minimum( prop );
1/4
]]></Example>
<P/>
Now we show that the uniform spread of <M>S</M> is less than four.
In any of the primitive permutation representations of degree seven,
we find three involutions whose sets of fixed points cover the
seven points.
The elements <M>s</M> of order different from <M>7</M> in <M>S</M> fix a point in this
representation, so each such <M>s</M> generates a proper subgroup of <M>S</M>
together with one of the three involutions.
<P/>
<Example><![CDATA[
gap> x:= g7.1;
(3,4)(6,7)
gap> fix:= Difference( MovedPoints( g7 ), MovedPoints( x ) );
[ 1, 2, 5 ]
gap> orb:= Orbit( g7, fix, OnSets );
[ [ 1, 2, 5 ], [ 1, 3, 4 ], [ 2, 3, 6 ], [ 2, 4, 7 ], [ 1, 6, 7 ],
[ 3, 5, 7 ], [ 4, 5, 6 ] ]
gap> Union( orb{ [ 1, 2, 5 ] } ) = [ 1 .. 7 ];
true
]]></Example>
<P/>
So we still have to exclude elements <M>s</M> of order <M>7</M>.
In the primitive permutation representation of <M>S</M> on eight points,
we find four elements of order three whose sets of fixed points
cover the set of all points that are moved by <M>S</M>,
so with each element of order seven in <M>S</M>,
one of them generates an intransitive group.
<P/>
<Example><![CDATA[
gap> three:= g8.2;
(1,7,3)(2,5,8)
gap> fix:= Difference( MovedPoints( g8 ), MovedPoints( three ) );
[ 4, 6 ]
gap> orb:= Orbit( g8, fix, OnSets );;
gap> QuadrupleWithProperty( [ [ fix ], orb, orb, orb ],
> list -> Union( list ) = [ 1 .. 8 ] );
[ [ 4, 6 ], [ 1, 7 ], [ 3, 8 ], [ 2, 5 ] ]
]]></Example>
<P/>
Together with statement (a), this proves that the uniform spread of <M>S</M>
is exactly three, with <M>s</M> of order seven.
<P/>
Each element of <M>S</M> fixes a point
in the permutation representation on <M>15</M> points.
So for proving that the spread of <M>S</M> is less than five,
it is sufficient to find a quintuple of elements whose sets of fixed points
cover all <M>15</M> points.
(From the permutation characters it is clear that four of these elements
must have order three, and the fifth must be an involution.)
<P/>
<Example><![CDATA[
gap> x:= g15.1;
(4,6)(5,7)(8,13)(9,12)(10,15)(11,14)
gap> fixx:= Difference( MovedPoints( g15 ), MovedPoints( x ) );
[ 1, 2, 3 ]
gap> orbx:= Orbit( g15, fixx, OnSets );
[ [ 1, 2, 3 ], [ 1, 4, 5 ], [ 1, 6, 7 ], [ 2, 4, 6 ], [ 3, 4, 7 ],
[ 3, 5, 6 ], [ 2, 5, 7 ] ]
gap> y:= g15.2;
(1,4,2)(3,5,6)(8,14,10)(9,12,15)
gap> fixy:= Difference( MovedPoints( g15 ), MovedPoints( y ) );
[ 7, 11, 13 ]
gap> orby:= Orbit( g15, fixy, OnSets );;
gap> QuadrupleWithProperty( [ [ fixy ], orby, orby, orby ],
> l -> Difference( [ 1 .. 15 ], Union( l ) ) in orbx );
[ [ 7, 11, 13 ], [ 5, 8, 14 ], [ 1, 10, 15 ], [ 3, 9, 12 ] ]
]]></Example>
<P/>
It remains to show that the spread of <M>S</M> is (at least) four.
By the consideration of permutation characters,
we know that we can find a suitable order seven element
for all quadruples in question
except perhaps quadruples of order three elements.
We show that for each such case, we can choose <M>s</M> of order four.
Since <M>&M;(S,s)</M> consists of two subgroups of the type <M>S_4</M>,
we work with the representation on <M>14</M> points.)
<P/>
First we compute <M>s</M> and the <M>S</M>-orbit of its fixed points,
and the <M>S</M>-orbit of the fixed points of an element <M>x</M> of order three.
Then we prove that for each quadruple of conjugates of <M>x</M>,
the union of their fixed points intersects the fixed points of
at least one conjugate of <M>s</M> trivially.
<P/>
<Example><![CDATA[
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g14 );
> until Order( s ) = 4;
gap> s;
(1,3)(2,6,7,5)(9,11,10,12)(13,14)
gap> fixs:= Difference( MovedPoints( g14 ), MovedPoints( s ) );
[ 4, 8 ]
gap> orbs:= Orbit( g14, fixs, OnSets );;
gap> Length( orbs );
21
gap> three:= g14.2;
(1,3,2)(4,6,5)(8,11,9)(10,12,13)
gap> fix:= Difference( MovedPoints( g14 ), MovedPoints( three ) );
[ 7, 14 ]
gap> orb:= Orbit( g14, fix, OnSets );;
gap> Length( orb );
28
gap> QuadrupleWithProperty( [ [ fix ], orb, orb, orb ],
> l -> ForAll( orbs, o -> not IsEmpty( Intersection( o,
> Union( l ) ) ) ) );
fail
]]></Example>
<P/>
By the lemma from Section <Ref Subsect="sect:probgen-criteria"/>,
we are done.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="spreadM11">
<Heading><M>M_{11}</M></Heading>
We show that <M>S = M_{11}</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 1/3</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>11</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s</M> of order <M>11</M>,
<M>&M;(S,s)</M> consists of one group of the type <M>L_2(11)</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 1/3</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>11</M>.
</Item>
<Mark>(d)</Mark>
<Item>
Both the uniform spread and the spread of <M>S</M> is exactly three,
with <M>s</M> of order <M>11</M>.
</Item>
</List>
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="subsect:spor"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "M11" );;
gap> ProbGenInfoSimple( t );
[ "M11", 1/3, 2, [ "11A" ], [ 1 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the unique class of maximal subgroups that contain
elements of order <M>11</M> consists of groups of the structure <M>L_2(11)</M>,
see <Cite Key="CCN85" Where="p. 18"/>.
<P/>
<Example><![CDATA[
gap> OrdersClassRepresentatives( t );
[ 1, 2, 3, 4, 5, 6, 8, 8, 11, 11 ]
gap> PrimitivePermutationCharacters( t );
[ Character( CharacterTable( "M11" ),
[ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ),
Character( CharacterTable( "M11" ),
[ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ),
Character( CharacterTable( "M11" ),
[ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ),
Character( CharacterTable( "M11" ),
[ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M11" ),
[ 165, 13, 3, 1, 0, 1, 1, 1, 0, 0 ] ) ]
gap> Maxes( t );
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
]]></Example>
<P/>
For the other statements, we will use the primitive permutation
representations of <M>S</M> on <M>11</M> and <M>12</M> points
(which are fetched from the &ATLAS; of Group Representations <Cite Key="AGRv3"/>),
and their diagonal product.
<P/>
<Example><![CDATA[
gap> gens11:= OneAtlasGeneratingSet( "M11", NrMovedPoints, 11 );
rec( charactername := "1a+10a", constituents := [ 1, 2 ],
contents := "core",
generators := [ (2,10)(4,11)(5,7)(8,9), (1,4,3,8)(2,5,6,9) ],
groupname := "M11", id := "",
identifier := [ "M11", [ "M11G1-p11B0.m1", "M11G1-p11B0.m2" ], 1,
11 ], isPrimitive := true, maxnr := 1, p := 11, rankAction := 2,
repname := "M11G1-p11B0", repnr := 1, size := 7920,
stabilizer := "A6.2_3", standardization := 1, transitivity := 4,
type := "perm" )
gap> g11:= GroupWithGenerators( gens11.generators );;
gap> gens12:= OneAtlasGeneratingSet( "M11", NrMovedPoints, 12 );;
gap> g12:= GroupWithGenerators( gens12.generators );;
gap> g23:= DiagonalProductOfPermGroups( [ g11, g12 ] );
Group([ (2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21), (1,4,3,8)
(2,5,6,9)(12,17,18,15)(13,19)(14,20)(16,22,23,21) ])
]]></Example>
<P/>
First we compute that for all nonidentity elements <M>s \in S</M>
and involutions <M>g \in S</M>,
<M>∝(g,s) \geq 1/3</M> holds,
with equality if and only if <M>s</M> has order <M>11</M>;
this implies statement (c).
We actually compute, for class representatives <M>s</M>,
the proportion of involutions <M>g</M> such that
<M>\langle g, s \rangle ¬eq; S</M> holds.
<P/>
<Example><![CDATA[
gap> inv:= g11.1;
(2,10)(4,11)(5,7)(8,9)
gap> ccl:= List( ConjugacyClasses( g11 ), Representative );;
gap> SortParallel( List( ccl, Order ), ccl );
gap> List( ccl, Order );
[ 1, 2, 3, 4, 5, 6, 8, 8, 11, 11 ]
gap> Size( ConjugacyClass( g11, inv ) );
165
gap> prop:= List( ccl,
> r -> RatioOfNongenerationTransPermGroup( g11, inv, r ) );
[ 1, 1, 1, 149/165, 25/33, 31/55, 23/55, 23/55, 1/3, 1/3 ]
gap> Minimum( prop );
1/3
]]></Example>
<P/>
For the first part of statement (d),
we have to deal only with the case of triples of involutions.
<P/>
The <M>11</M>-cycle <M>s</M> is contained in exactly one maximal subgroup
of <M>S</M>, of index <M>12</M>.
By Corollary 1 in Section <Ref Subsect="sect:probgen-criteria"/>,
it is enough to show that in the primitive degree <M>12</M> representation
of <M>S</M>,
the fixed points of no triple <M>(x_1, x_2, x_3)</M> of involutions
in <M>S</M> can cover all twelve points;
equivalenly (considering complements),
we show that there is no triple such that
the intersection of the sets of <E>moved</E> points is empty.
<P/>
<Example><![CDATA[
gap> inv:= g12.1;
(1,6)(2,9)(5,7)(8,10)
gap> moved:= MovedPoints( inv );
[ 1, 2, 5, 6, 7, 8, 9, 10 ]
gap> orb12:= Orbit( g12, moved, OnSets );;
gap> Length( orb12 );
165
gap> TripleWithProperty( [ orb12{[1]}, orb12, orb12 ],
> list -> IsEmpty( Intersection( list ) ) );
fail
]]></Example>
<P/>
This implies that the uniform spread of <M>S</M> is at least three.
<P/>
Now we show that there is a quadruple consisting of one
element of order three and three involutions whose fixed points cover
all points in the degree <M>23</M> representation constructed above;
since the permutation character of this representation is strictly positive,
this implies that <M>S</M> does not have spread four,
by Corollary 2 in Section <Ref Subsect="sect:probgen-criteria"/>,
and we have proved statement (d).
<P/>
<Example><![CDATA[
gap> inv:= g23.1;
(2,10)(4,11)(5,7)(8,9)(12,17)(13,20)(16,18)(19,21)
gap> moved:= MovedPoints( inv );
[ 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21 ]
gap> orb23:= Orbit( g23, moved, OnSets );;
gap> three:= ( g23.1*g23.2^2 )^2;
(2,6,10)(4,8,7)(5,9,11)(12,17,23)(15,18,16)(19,21,22)
gap> movedthree:= MovedPoints( three );;
gap> QuadrupleWithProperty( [ [ movedthree ], orb23, orb23, orb23 ],
> list -> IsEmpty( Intersection( list ) ) );
[ [ 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23 ],
[ 1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21 ],
[ 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 23 ],
[ 1, 2, 3, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 20, 22, 23 ] ]
]]></Example>
<!-- % Show the quadruple: -->
<!-- % RepresentativeAction? -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="spreadM12">
<Heading><M>M_{12}</M></Heading>
We show that <M>S = M_{12}</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 1/3</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>10</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>10</M>,
<M>&M;(S,s)</M> consists of two nonconjugate subgroups
of the type <M>A_6.2^2</M>,
and one group of the type <M>2 \times S_5</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 31/99</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>10</M>.
</Item>
<Mark>(d)</Mark>
<Item>
The uniform spread of <M>S</M> is at least three,
with <M>s</M> of order <M>10</M>.
</Item>
<Mark>(e)</Mark>
<Item>
<M>&total;^{\prime}(&Aut;(S), s) = 4/99</M>.
</Item>
</List>
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="subsect:spor"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "M12" );;
gap> ProbGenInfoSimple( t );
[ "M12", 1/3, 2, [ "10A" ], [ 3 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the only classes of maximal subgroups that contain
elements of order <M>10</M> consist of groups of the structures
<M>A_6.2^2</M> (two classes) and <M>2 \times S_5</M> (one class),
see <Cite Key="CCN85" Where="p. 33"/>.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 10 );
13
gap> prim:= PrimitivePermutationCharacters( t );;
gap> List( prim, x -> x{ [ 1, spos ] } );
[ [ 12, 0 ], [ 12, 0 ], [ 66, 1 ], [ 66, 1 ], [ 144, 0 ], [ 220, 0 ],
[ 220, 0 ], [ 396, 1 ], [ 495, 0 ], [ 495, 0 ], [ 1320, 0 ] ]
gap> Maxes( t );
[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7",
"2xS5", "M8.S4", "4^2:D12", "A4xS3" ]
]]></Example>
<P/>
For statement (c) (which implies statement (d)),
we use the primitive permutation representation on <M>12</M> points.
<P/>
<Example><![CDATA[
gap> g:= MathieuGroup( 12 );
Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6), (1,12)(2,11)
(3,6)(4,8)(5,9)(7,10) ])
]]></Example>
<P/>
First we show that for <M>s</M> of order <M>10</M>,
<M>∝(S,s) = 31/99</M> holds.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( prim, spos );
[ 0, 3/11, 1/3, 1/11, 1/132, 13/99, 13/99, 13/396, 1/132, 1/33, 1/33,
1/33, 13/396, 0, 0 ]
gap> 2B:= g.2^2;
(3,11)(4,5)(6,10)(7,8)
gap> Size( ConjugacyClass( g, 2B ) );
495
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g );
> until Order( s ) = 10;
gap> prop:= RatioOfNongenerationTransPermGroup( g, 2B, s );
31/99
gap> Filtered( approx, x -> x >= prop );
[ 1/3 ]
]]></Example>
<P/>
Next we show that for <M>s</M> of order different from <M>10</M>,
<M>∝(g,s)</M> is larger than <M>31/99</M> for suitable <M>g \in S^{\times}</M>.
Except for <M>s</M> in the class <C>6A</C>
(which fixes no point in the degree <M>12</M>
representation), it suffices to consider <M>g</M> in the class <C>2B</C>
(with four fixed points).
<P/>
<Example><![CDATA[
gap> x:= g.2^2;
(3,11)(4,5)(6,10)(7,8)
gap> ccl:= List( ConjugacyClasses( g ), Representative );;
gap> SortParallel( List( ccl, Order ), ccl );
gap> prop:= List( ccl, r -> RatioOfNongenerationTransPermGroup( g, x, r ) );;
gap> SortedList( prop );
[ 7/55, 31/99, 5/9, 5/9, 39/55, 383/495, 383/495, 43/55, 29/33, 1, 1,
1, 1, 1, 1 ]
gap> bad:= Filtered( prop, x -> x < 31/99 );
[ 7/55 ]
gap> pos:= Position( prop, bad[1] );;
gap> [ Order( ccl[ pos ] ), NrMovedPoints( ccl[ pos ] ) ];
[ 6, 12 ]
]]></Example>
<P/>
In the remaining case, we choose <M>g</M> in the class <C>2A</C>
(which is fixed point free).
<P/>
<Example><![CDATA[
gap> x:= g.3;
(1,12)(2,11)(3,6)(4,8)(5,9)(7,10)
gap> s:= ccl[ pos ];;
gap> prop:= RatioOfNongenerationTransPermGroup( g, x, s );
17/33
gap> prop > 31/99;
true
]]></Example>
<P/>
Statement (e) has been shown already in
Section <Ref Subsect="probgen:sporaut"/>.
<!-- % Compute the exact (uniform) spread of <M>M_{12}</M>. -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O73">
<Heading><M>O_7(3)</M></Heading>
We show that <M>S = O_7(3)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 199/351</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>14</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>14</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>2.U_4(3).2_2 = \Omega^-(6,3).2</M>
and two nonconjugate groups of the type <M>S_9</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 155/351</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>14</M>.
</Item>
<Mark>(d)</Mark>
<Item>
The uniform spread of <M>S</M> is at least three,
with <M>s</M> of order <M>14</M>.
</Item>
<Mark>(e)</Mark>
<Item>
<M>&total;^{\prime}(&Aut;(S), s) = 1/3</M>.
</Item>
</List>
<P/>
Currently &GAP; provides neither the table of marks of <M>S</M> nor all
character tables of its maximal subgroups.
First we compute those primitive permutation characters of <M>S</M> that have
the degrees
<M>351</M> (point stabilizer <M>2.U_4(3).2_2</M>),
<M>364</M> (point stabilizer <M>3^5:U_4(2).2</M>),
<M>378</M> (point stabilizer <M>L_4(3).2_2</M>),
<M>1\,080</M> (point stabilizer <M>G_2(3)</M>, two classes),
<M>1\,120</M> (point stabilizer <M>3^{3+3}:L_3(3)</M>),
<M>3\,159</M> (point stabilizer <M>S_6(2)</M>, two classes),
<M>12\,636</M> (point stabilizer <M>S_9</M>, two classes),
<M>22\,113</M> (point stabilizer <M>(2^2 \times U_4(2)).2</M>,
which extends to <M>D_8 \times U_4(2).2</M> in <M>O_7(3).2</M>), and
<M>28\,431</M> (point stabilizer <M>2^6:A_7</M>).
<P/>
(So we ignore the primitive permutation characters of the degrees <M>3\,640</M>,
<M>265\,356</M>, and <M>331\,695</M>.
Note that the orders of the corresponding subgroups are not divisible by <M>7</M>.)
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "O7(3)" );;
gap> someprim:= [];;
gap> pi:= PossiblePermutationCharacters(
> CharacterTable( "2.U4(3).2_2" ), t );; Length( pi );
1
gap> Append( someprim, pi );
gap> pi:= PermChars( t, rec( torso:= [ 364 ] ) );; Length( pi );
1
gap> Append( someprim, pi );
gap> pi:= PossiblePermutationCharacters(
> CharacterTable( "L4(3).2_2" ), t );; Length( pi );
1
gap> Append( someprim, pi );
gap> pi:= PossiblePermutationCharacters( CharacterTable( "G2(3)" ), t );
[ Character( CharacterTable( "O7(3)" ),
[ 1080, 0, 0, 24, 108, 0, 0, 0, 27, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0,
0, 0, 0, 12, 0, 0, 0, 0, 0, 3, 6, 0, 3, 2, 2, 2, 0, 0, 0, 3, 0,
0, 0, 0, 0, 0, 4, 0, 3, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "O7(3)" ),
[ 1080, 0, 0, 24, 108, 0, 0, 27, 0, 18, 9, 0, 12, 4, 0, 0, 0, 0, 0,
0, 0, 0, 12, 0, 0, 0, 0, 3, 0, 0, 6, 3, 2, 2, 2, 0, 0, 3, 0, 0,
0, 0, 0, 0, 0, 4, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0 ] ) ]
gap> Append( someprim, pi );
gap> pi:= PermChars( t, rec( torso:= [ 1120 ] ) );; Length( pi );
1
gap> Append( someprim, pi );
gap> pi:= PossiblePermutationCharacters( CharacterTable( "S6(2)" ), t );
[ Character( CharacterTable( "O7(3)" ),
[ 3159, 567, 135, 39, 0, 81, 0, 0, 27, 27, 0, 15, 3, 3, 7, 4, 0,
27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 3, 9, 3, 0, 2, 1, 1, 0, 0, 0,
3, 0, 2, 0, 0, 0, 3, 0, 0, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "O7(3)" ),
[ 3159, 567, 135, 39, 0, 81, 0, 27, 0, 27, 0, 15, 3, 3, 7, 4, 0,
27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 3, 0, 3, 9, 0, 2, 1, 1, 0, 0, 3,
0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0 ] ) ]
gap> Append( someprim, pi );
gap> pi:= PossiblePermutationCharacters( CharacterTable( "S9" ), t );
[ Character( CharacterTable( "O7(3)" ),
[ 12636, 1296, 216, 84, 0, 81, 0, 0, 108, 27, 0, 6, 0, 12, 10, 1,
0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 0, 12, 9, 3, 0, 1, 0, 2, 0,
0, 0, 3, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
1 ] ), Character( CharacterTable( "O7(3)" ),
[ 12636, 1296, 216, 84, 0, 81, 0, 108, 0, 27, 0, 6, 0, 12, 10, 1,
0, 27, 0, 0, 0, 0, 0, 9, 3, 0, 9, 12, 0, 3, 9, 0, 1, 0, 2, 0,
0, 3, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,
1 ] ) ]
gap> Append( someprim, pi );
gap> t2:= CharacterTable( "O7(3).2" );;
gap> s2:= CharacterTable( "Dihedral", 8 ) * CharacterTable( "U4(2).2" );
CharacterTable( "Dihedral(8)xU4(2).2" )
gap> pi:= PossiblePermutationCharacters( s2, t2 );; Length( pi );
1
gap> pi:= RestrictedClassFunctions( pi, t );;
gap> Append( someprim, pi );
gap> pi:= PossiblePermutationCharacters(
> CharacterTable( "2^6:A7" ), t );; Length( pi );
1
gap> Append( someprim, pi );
gap> List( someprim, x -> x[1] );
[ 351, 364, 378, 1080, 1080, 1120, 3159, 3159, 12636, 12636, 22113,
28431 ]
]]></Example>
<P/>
Note that in the three cases where two possible permutation characters
were found, there are in fact two classes of subgroups that induce
different permutation characters.
For the subgroups of the types <M>G_2(3)</M> and <M>S_6(2)</M>,
this is stated in <Cite Key="CCN85" Where="p. 109"/>,
and for the subgroups of the type <M>S_9</M>,
this follows from the fact that each <M>S_9</M> type subgroup in <M>S</M> contains
elements in exactly one of the classes <C>3D</C> or <C>3E</C>,
and these two classes are fused by the outer automorphism of <M>S</M>.
<P/>
<Example><![CDATA[
gap> cl:= PositionsProperty( AtlasClassNames( t ),
> x -> x in [ "3D", "3E" ] );
[ 8, 9 ]
gap> List( Filtered( someprim, x -> x[1] = 12636 ), pi -> pi{ cl } );
[ [ 0, 108 ], [ 108, 0 ] ]
gap> GetFusionMap( t, t2 ){ cl };
[ 8, 8 ]
]]></Example>
<P/>
Now we compute the lower bounds for <M>&total;( S, s^{\prime} )</M> that are given
by the sublist <C>someprim</C> of the primitive permutation characters.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 14 );
52
gap> Maximum( ApproxP( someprim, spos ) );
199/351
]]></Example>
<P/>
This shows that <M>&total;( S, s ) = 199/351</M> holds.
For statement (a),
we have to show that choosing <M>s^{\prime}</M> from another class than
<C>14A</C> yields a larger value for <M>&total;( S, s^{\prime} )</M>.
<P/>
<Example><![CDATA[
gap> approx:= List( [ 1 .. NrConjugacyClasses( t ) ],
> i -> Maximum( ApproxP( someprim, i ) ) );;
gap> PositionsProperty( approx, x -> x <= 199/351 );
[ 52 ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters.
<P/>
<Example><![CDATA[
gap> pos:= PositionsProperty( someprim, x -> x[ spos ] <> 0 );
[ 1, 9, 10 ]
gap> List( someprim{ pos }, x -> x{ [ 1, spos ] } );
[ [ 351, 1 ], [ 12636, 1 ], [ 12636, 1 ] ]
]]></Example>
<P/>
For statement (c), we first compute <M>∝(g, s)</M> for <M>g</M> in the class
<C>2A</C>, via explicit computations with the group.
For dealing with this case, we first construct a faithful permutation
representation of <M>O_7(3)</M> from the natural matrix representation of
<M>&SO;(7,3)</M>.
<P/>
<!-- % In an earlier version, the result of <C>IsomorphismPermGroup</C> returned -->
<!-- % the action on the nonzero vectors, and I switched by hand to an action -->
<!-- % on the shortest orbit, of length 702. -->
<!-- % We need a transitive permutation representation, -->
<!-- % so we better prescribe the action on a particular orbit. -->
<Example><![CDATA[
gap> so73:= SpecialOrthogonalGroup( 7, 3 );;
gap> o73:= DerivedSubgroup( so73 );;
gap> orbs:= OrbitsDomain( o73, Elements( GF(3)^7 ) );;
gap> Set( orbs, Length );
[ 1, 702, 728, 756 ]
gap> g:= Action( o73, First( orbs, x -> Length( x ) = 702 ) );;
gap> Size( g ) = Size( t );
true
]]></Example>
<P/>
A <C>2A</C> element <M>g</M> can be found as the <M>7</M>-th power
of any element of order <M>14</M> in <M>S</M>.
<P/>
<Example><![CDATA[
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g );
> until Order( s ) = 14;
gap> 2A:= s^7;;
gap> bad:= RatioOfNongenerationTransPermGroup( g, 2A, s );
155/351
gap> bad > 1/3;
true
gap> approx:= ApproxP( someprim, spos );;
gap> PositionsProperty( approx, x -> x >= 1/3 );
[ 2 ]
]]></Example>
<P/>
This shows that <M>∝(g,s) = 155/351 > 1/3</M>.
Since <M>&total;( g, s ) < 1/3</M> for all nonidentity <M>g</M>
not in the class <C>2A</C>, we have <M>∝( S, s ) = 155/351</M>.
For statement (c), it remains to show that <M>∝( S, s^{\prime} )</M> is larger
than <M>155/351</M> whenever <M>s^{\prime}</M> is not of order <M>14</M>.
First we compute <M>∝( g, s^{\prime} )</M>, for <M>g</M> in the class
<C>2A</C>.
<P/>
<Example><![CDATA[
gap> consider:= RepresentativesMaximallyCyclicSubgroups( t );
[ 18, 19, 25, 26, 27, 30, 31, 32, 34, 35, 38, 39, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58 ]
gap> Length( consider );
28
gap> consider:= ClassesPerhapsCorrespondingToTableColumns( g, t, consider );;
gap> Length( consider );
31
gap> consider:= List( consider, Representative );;
gap> SortParallel( List( consider, Order ), consider );
gap> app2A:= List( consider, c ->
> RatioOfNongenerationTransPermGroup( g, 2A, c ) );;
gap> SortedList( app2A );
[ 1/3, 1/3, 155/351, 191/351, 67/117, 23/39, 23/39, 85/117, 10/13,
10/13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1 ]
gap> test:= PositionsProperty( app2A, x -> x <= 155/351 );;
gap> List( test, i -> Order( consider[i] ) );
[ 13, 13, 14 ]
]]></Example>
<P/>
We see that only for <M>s^{\prime}</M> in one of the two (algebraically
conjugate) classes of element order <M>13</M>,
<M>∝( S, s^{\prime} )</M> has a chance to be smaller than <M>155/351</M>.
This possibility is now excluded by counting elements in the class <C>3A</C>
that do not generate <M>S</M> together with <M>s^{\prime}</M> of order
<M>13</M>.
<P/>
<Example><![CDATA[
gap> C3A:= First( ConjugacyClasses( g ),
> c -> Order( Representative( c ) ) = 3 and Size( c ) = 7280 );;
gap> repeat ss:= Random( g );
> until Order( ss ) = 13;
gap> bad:= RatioOfNongenerationTransPermGroup( g, Representative( C3A ), ss );
17/35
gap> bad > 155/351;
true
]]></Example>
<P/>
Now we show statement (d):
For each triple <M>(x_1, x_2, x_3)</M> of nonidentity elements in <M>S</M>,
there is an element <M>s</M> in the class <C>14A</C> such that
<M>\langle x_i, s \rangle = S</M> holds for <M>1 \leq i \leq 3</M>.
We can read off from the character-theoretic data that
only those triples have to be checked for which at least two
elements are contained in the class <C>2A</C>,
and the third element lies in one of the classes
<C>2A</C>, <C>2B</C>, <C>3B</C>.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( someprim, spos );;
gap> max:= Maximum( approx{ [ 3 .. Length( approx ) ] } );
59/351
gap> 155 + 2*59 < 351;
true
gap> third:= PositionsProperty( approx, x -> 2 * 155/351 + x >= 1 );
[ 2, 3, 6 ]
gap> ClassNames( t ){ third };
[ "2a", "2b", "3b" ]
]]></Example>
<P/>
We can find elements in the classes <C>2B</C> and <C>3B</C> as powers
of arbitrary elements of the orders <M>20</M> and <M>15</M>, respectively.
<P/>
<Example><![CDATA[
gap> ord20:= PositionsProperty( OrdersClassRepresentatives( t ),
> x -> x = 20 );
[ 58 ]
gap> PowerMap( t, 10 ){ ord20 };
[ 3 ]
gap> repeat x:= Random( g );
> until Order( x ) = 20;
gap> 2B:= x^10;;
gap> C2B:= ConjugacyClass( g, 2B );;
gap> ord15:= PositionsProperty( OrdersClassRepresentatives( t ),
> x -> x = 15 );
[ 53 ]
gap> PowerMap( t, 10 ){ ord15 };
[ 6 ]
gap> repeat x:= Random( g );
> until Order( x ) = 15;
gap> 3B:= x^5;;
gap> C3B:= ConjugacyClass( g, 3B );;
]]></Example>
<P/>
The existence of <M>s</M> can be shown with the random approach
described in Section <Ref Subsect="subsect:groups"/>.
<P/>
<Example><![CDATA[
gap> repeat s:= Random( g );
> until Order( s ) = 14;
gap> RandomCheckUniformSpread( g, [ 2A, 2A, 2A ], s, 50 );
true
gap> RandomCheckUniformSpread( g, [ 2B, 2A, 2A ], s, 50 );
true
gap> RandomCheckUniformSpread( g, [ 3B, 2A, 2A ], s, 50 );
true
]]></Example>
<P/>
Finally, we show statement (e).
Let <M>G = &Aut;(S) = S.2</M>.
By <Cite Key="CCN85" Where="p. 109"/>,
<M>&M;^{\prime}(G,s)</M> consists of the extension
of the <M>2.U_4(3).2_1</M> type subgroup.
We compute the extension of the permutation character.
<P/>
<Example><![CDATA[
gap> prim:= someprim{ [ 1 ] };
[ Character( CharacterTable( "O7(3)" ),
[ 351, 127, 47, 15, 27, 45, 36, 0, 0, 9, 0, 15, 3, 3, 7, 6, 19, 19,
10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 0, 3, 3, 0, 1, 1, 1, 6, 3, 0,
0, 2, 2, 0, 3, 0, 3, 3, 0, 0, 1, 0, 0, 1, 0, 4, 4, 1, 2, 0 ] ) ]
gap> spos:= Position( AtlasClassNames( t ), "14A" );;
gap> t2:= CharacterTable( "O7(3).2" );;
gap> map:= InverseMap( GetFusionMap( t, t2 ) );;
gap> torso:= List( prim, pi -> CompositionMaps( pi, map ) );;
gap> ext:= List( torso, x -> PermChars( t2, rec( torso:= x ) ) );
[ [ Character( CharacterTable( "O7(3).2" ),
[ 351, 127, 47, 15, 27, 45, 36, 0, 9, 0, 15, 3, 3, 7, 6, 19,
19, 10, 11, 12, 8, 3, 5, 3, 6, 1, 0, 3, 0, 1, 1, 1, 6, 3,
0, 2, 2, 0, 3, 0, 3, 3, 0, 1, 0, 0, 1, 0, 4, 1, 2, 0, 117,
37, 21, 45, 1, 13, 5, 1, 9, 9, 18, 15, 1, 7, 9, 6, 4, 0, 3,
0, 3, 3, 6, 2, 2, 9, 6, 1, 3, 1, 4, 1, 2, 1, 1, 0, 3, 1, 0,
0, 0, 0, 1, 1, 0, 0 ] ) ] ]
gap> approx:= ApproxP( Concatenation( ext ),
> Position( AtlasClassNames( t2 ), "14A" ) );;
gap> Maximum( approx{ Difference(
> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) ) } );
1/3
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O8p2">
<Heading><M>O_8^+(2)</M></Heading>
We show that <M>S = O_8^+(2) = \Omega^+(8,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 334/315</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>15</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>15</M>,
<M>&M;(S,s)</M> consists of one group of the type <M>S_6(2)</M>,
two conjugate groups of the type <M>2^6:A_8</M>,
two conjugate groups of the type <M>A_9</M>,
and one group of each of the types
<M>(3 \times U_4(2)):2 = (3 \times \Omega^-(6,2)):2</M> and
<M>(A_5 \times A_5):2^2 = (\Omega^-(4,2) \times \Omega^-(4,2)):2^2</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 29/42</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>15</M>.
</Item>
<Mark>(d)</Mark>
<Item>
Let <M>x, y \in S</M> such that <M>x, y, x y</M> lie in the unique
involution class of length <M>1\,575</M> of <M>S</M>.
(This is the class <C>2A</C>.)
Then each element in <M>S</M> together with one of
<M>x</M>, <M>y</M>, <M>x y</M> generates a proper subgroup of <M>S</M>.
</Item>
<Mark>(e)</Mark>
<Item>
Both the spread and the uniform spread of <M>S</M> is exactly two,
with <M>s</M> of order <M>15</M>.
</Item>
<Mark>(f)</Mark>
<Item>
For each choice of <M>s \in S</M>,
there is an extension <M>S.2</M> such that
for any element <M>g</M> in the (outer) class <C>2F</C>,
<M>\langle s, g \rangle</M> does not contain <M>S</M>.
</Item>
<Mark>(g)</Mark>
<Item>
For an element <M>s</M> of order <M>15</M> in <M>S</M>,
either <M>S</M> is the only maximal subgroup of <M>S.2</M> that contains
<M>s</M>,
or the maximal subgroups of <M>S.2</M> that contain <M>s</M>
are <M>S</M> and the extensions of the subgroups listed in
statement (b);
these groups have the structures <M>S_6(2) \times 2</M>,
<M>2^6:S_8</M> (twice),
<M>S_9</M> (twice), <M>S_3 \times U_4(2).2</M>, and <M>S_5 \wr 2</M>.
</Item>
<Mark>(h)</Mark>
<Item>
For <M>s \in S</M> of order <M>15</M> and arbitrary
<M>g \in S.3 \setminus S</M>,
we have <M>\langle s, g \rangle = S.3</M>.
</Item>
<Mark>(i)</Mark>
<Item>
If <M>x</M>, <M>y</M> are nonidentity elements in <M>&Aut;(S)</M> then
there is an element <M>s</M> of order <M>15</M> in <M>S</M> such that
<M>S \subseteq \langle x, s \rangle \cap \langle y, s \rangle</M>.
</Item>
</List>
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "O8+(2)" );;
gap> ProbGenInfoSimple( t );
[ "O8+(2)", 334/315, 0, [ "15A", "15B", "15C" ], [ 7, 7, 7 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the only classes of maximal subgroups that contain
elements of order <M>15</M> consist of groups of the structures
as claimed, see <Cite Key="CCN85" Where="p. 85"/>.
<P/>
<Example><![CDATA[
gap> prim:= PrimitivePermutationCharacters( t );;
gap> spos:= Position( OrdersClassRepresentatives( t ), 15 );;
gap> List( Filtered( prim, x -> x[ spos ] <> 0 ), l -> l{ [ 1, spos ] } );
[ [ 120, 1 ], [ 135, 2 ], [ 960, 2 ], [ 1120, 1 ], [ 12096, 1 ] ]
]]></Example>
<P/>
For the remaining statements,
we take a primitive permutation representation on <M>120</M> points,
and assume that the permutation character is <C>1a+35a+84a</C>.
(See <Cite Key="CCN85" Where="p. 85"/>,
note that the three classes of maximal subgroups
of index <M>120</M> in <M>S</M> are conjugate under triality.)
<P/>
<Example><![CDATA[
gap> matgroup:= DerivedSubgroup( GeneralOrthogonalGroup( 1, 8, 2 ) );;
gap> points:= NormedRowVectors( GF(2)^8 );;
gap> orbs:= OrbitsDomain( matgroup, points );;
gap> List( orbs, Length );
[ 135, 120 ]
gap> g:= Action( matgroup, orbs[2] );;
gap> Size( g );
174182400
gap> pi:= Sum( Irr( t ){ [ 1, 3, 7 ] } );
Character( CharacterTable( "O8+(2)" ),
[ 120, 24, 32, 0, 0, 8, 36, 0, 0, 3, 6, 12, 4, 8, 0, 0, 0, 10, 0, 0,
12, 0, 0, 8, 0, 0, 3, 6, 0, 0, 2, 0, 0, 2, 1, 2, 2, 3, 0, 0, 2, 0,
0, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0 ] )
]]></Example>
<P/>
In order to show statement (c),
we first observe that for <M>s</M> in the class <C>15A</C>
and <M>g</M> <E>not</E> in one of the classes <C>2A</C>, <C>2B</C>, <C>3A</C>,
<M>&total;(g,s) < 1/3</M> holds,
and for the exceptional three classes,
we have <M>&total;(g,s) > 1/2</M>.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( prim, spos );;
gap> testpos:= PositionsProperty( approx, x -> x >= 1/3 );
[ 2, 3, 7 ]
gap> AtlasClassNames( t ){ testpos };
[ "2A", "2B", "3A" ]
gap> approx{ testpos };
[ 254/315, 334/315, 1093/1120 ]
gap> ForAll( approx{ testpos }, x -> x > 1/2 );
true
]]></Example>
<P/>
Now we compute the values <M>∝(g,s)</M>, for <M>s</M> in the class
<C>15A</C>
and <M>g</M> in one of the classes <C>2A</C>, <C>2B</C>, <C>3A</C>.
<P/>
By our choice of the character of the permutation representation we use,
the class <C>15A</C> is determined as the unique class of element order
<M>15</M> with one fixed point.
(Note that the three classes of element order <M>15</M> in <M>S</M> are conjugate
under triality.)
A <C>2A</C> element can be found as the fourth power of any element of order
<M>8</M> in <M>S</M>,
a <C>3A</C> element can be found as the fifth power of a <C>15A</C> element,
and a <C>2B</C> element can be found as the sixth power of an element
of order <M>12</M>, with <M>32</M> fixed points.
<P/>
<Example><![CDATA[
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g );
> until Order( s ) = 15 and NrMovedPoints( g ) = 1 + NrMovedPoints( s );
gap> 3A:= s^5;;
gap> repeat x:= Random( g ); until Order( x ) = 8;
gap> 2A:= x^4;;
gap> repeat x:= Random( g ); until Order( x ) = 12 and
> NrMovedPoints( g ) = 32 + NrMovedPoints( x^6 );
gap> 2B:= x^6;;
gap> prop15A:= List( [ 2A, 2B, 3A ],
> x -> RatioOfNongenerationTransPermGroup( g, x, s ) );
[ 23/35, 29/42, 149/224 ]
gap> Maximum( prop15A );
29/42
]]></Example>
<P/>
This means that for <M>s</M> in the class <C>15A</C>,
we have <M>∝( S, s ) = 29/42</M>,
and the same holds for all <M>s</M> of order <M>15</M>
since the three classes of element order <M>15</M> are conjugate under triality.
Now we show that for <M>s</M> of order different from <M>15</M>,
the value <M>∝(g,s)</M> is larger than <M>29/42</M>,
for <M>g</M> in one of the classes <C>2A</C>, <C>2B</C>, <C>3A</C>,
or their images under triality.
This implies statement (c).
<P/>
<Example><![CDATA[
gap> test:= List( [ 2A, 2B, 3A ], x -> ConjugacyClass( g, x ) );;
gap> ccl:= ConjugacyClasses( g );;
gap> consider:= Filtered( ccl, c -> Size( c ) in List( test, Size ) );;
gap> Length( consider );
7
gap> filt:= Filtered( ccl, c -> ForAll( consider, cc ->
> RatioOfNongenerationTransPermGroup( g, Representative( cc ),
> Representative( c ) ) <= 29/42 ) );;
gap> Length( filt );
3
gap> List( filt, c -> Order( Representative( c ) ) );
[ 15, 15, 15 ]
]]></Example>
<!-- % The computation of <C>filt</C> requires 2896 seconds! -->
<P/>
Now we show statement (d).
First we observe that all those Klein four groups in <M>S</M> whose involutions
lie in the class <C>2A</C> are conjugate in <M>S</M>.
Note that this is the unique class of length <M>1\,575</M> in <M>S</M>,
and also the unique class whose elements have <M>24</M> fixed points
in the degree <M>120</M> permutation representation.
<P/>
For that, we use the character table of <M>S</M> to read off that <M>S</M> contains
exactly <M>14\,175</M> such subgroups,
and we use the group to compute one such subgroup and its normalizer
of index <M>14\,175</M>.
<P/>
<Example><![CDATA[
gap> SizesConjugacyClasses( t );
[ 1, 1575, 3780, 3780, 3780, 56700, 2240, 2240, 2240, 89600, 268800,
37800, 340200, 907200, 907200, 907200, 2721600, 580608, 580608,
580608, 100800, 100800, 100800, 604800, 604800, 604800, 806400,
806400, 806400, 806400, 2419200, 2419200, 2419200, 7257600,
24883200, 5443200, 5443200, 6451200, 6451200, 6451200, 8709120,
8709120, 8709120, 1209600, 1209600, 1209600, 4838400, 7257600,
7257600, 7257600, 11612160, 11612160, 11612160 ]
gap> NrPolyhedralSubgroups( t, 2, 2, 2 );
rec( number := 14175, type := "V4" )
gap> repeat x:= Random( g );
> until Order( x ) mod 2 = 0
> and NrMovedPoints( x^( Order(x)/2 ) ) = 120 - 24;
gap> x:= x^( Order(x)/2 );;
gap> repeat y:= x^Random( g );
> until NrMovedPoints( x*y ) = 120 - 24;
gap> v4:= SubgroupNC( g, [ x, y ] );;
gap> n:= Normalizer( g, v4 );;
gap> Index( g, n );
14175
]]></Example>
<P/>
We verify that the triple has the required property.
<P/>
<Example><![CDATA[
gap> maxorder:= RepresentativesMaximallyCyclicSubgroups( t );;
gap> maxorderreps:= List( ClassesPerhapsCorrespondingToTableColumns( g, t,
> maxorder ), Representative );;
gap> Length( maxorderreps );
28
gap> CommonGeneratorWithGivenElements( g, maxorderreps, [ x, y, x*y ] );
fail
]]></Example>
<P/>
For the simple group <M>S</M>, it remains to show statement (e).
We want to show that for any choice of two nonidentity elements <M>x</M>, <M>y</M>
in <M>S</M>, there is an element <M>s</M> in the class <C>15A</C> such that
<M>\langle s, x \rangle = \langle s, y \rangle = S</M> holds.
Only <M>x</M>, <M>y</M> in the classes given by the list <C>testpos</C> must be considered,
by the estimates <M>&total;(g,s)</M>.
<P/>
We replace the values <M>&total;(g,s)</M> by the exact values <M>∝(g,s)</M>,
for <M>g</M> in one of these three classes.
Each of the three classes is determined by its element order and its number
of fixed points.
<P/>
<Example><![CDATA[
gap> reps:= List( ccl, Representative );;
gap> bading:= List( testpos, i -> Filtered( reps,
> r -> Order( r ) = OrdersClassRepresentatives( t )[i] and
> NrMovedPoints( r ) = 120 - pi[i] ) );;
gap> List( bading, Length );
[ 1, 1, 1 ]
gap> bading:= List( bading, x -> x[1] );;
]]></Example>
<P/>
For each pair <M>(C_1, C_2)</M> of classes represented by this list,
we have to show that for any choice of elements <M>x \in C_1</M>, <M>y \in C_2</M>
there is <M>s</M> in the class <C>15A</C> such that
<M>\langle s, x \rangle = \langle s, y \rangle = S</M> holds.
This is done with the random approach that is described in
Section <Ref Subsect="subsect:groups"/>.
<P/>
<Example><![CDATA[
gap> for pair in UnorderedTuples( bading, 2 ) do
> test:= RandomCheckUniformSpread( g, pair, s, 80 );
> if test <> true then
> Error( test );
> fi;
> od;
]]></Example>
<P/>
We get no error message, so statement (e) holds.
<P/>
<!--
Alternatively, we could ...
For that, we work with an intransitive permutation representation of <M>S</M>,
which is the sum of the smallest six faithful transitive permutation
representations; any element of <M>S</M> fixes at least three points in this
representation.
gap> Sum( prim{ [ 1 .. 6 ] } );
Character( CharacterTable( "O8+(2)" ), [ 765, 189, 93, 93, 93, 45, 63, 63,
63, 9, 45, 45, 45, 21, 21, 21, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 9,
21, 21, 21, 9, 9, 9, 9, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9, 3, 3, 3, 3,
3, 3 ] )
gap> tom:= TableOfMarks( t );;
gap> mx:= MaximalSubgroupsTom( tom );
[ [ 11170, 11169, 11168, 11167, 11166, 11165, 11164, 11163, 11162, 11158,
11157, 11156, 11155, 11077, 11076, 11075, 11074 ],
[ 120, 120, 120, 135, 135, 135, 960, 960, 960, 1120, 1120, 1120, 1575,
11200, 12096, 12096, 12096 ] ]
gap> reps:= List( mx[1]{ [ 1..6 ] }, i -> RepresentativeTom( tom, i ) );;
gap> g:= UnderlyingGroup( tom );;
gap> acts:= List( reps, x -> Action( g, RightTransversal( g, x ), OnRight ) );;
gap> g:= DiagonalProductOfPermGroups( acts );;
gap> NrMovedPoints( g );
765
First we compute a triple of involutions in <M>S</M> such that at least one
of them generates a proper subgroup of <M>S</M> together with any
element in a fixed class of element order <M>15</M>.
gap> repeat 8A:= Random( g ); until Order( 8A ) = 8;
gap> 2A:= 8A^4;;
gap> Size( Centralizer( g, 2A ) );
110592
gap> fix:= Difference( MovedPoints( g ), MovedPoints( 2A ) );;
gap> Length( fix );
189
gap> orb:= Orbit( g, fix, OnSets );;
gap> Length( orb );
1575
gap> repeat s:= Random( g );
> until Order( s ) = 15;
gap> fixs:= Difference( MovedPoints( g ), MovedPoints( s ) );;
gap> Length( fixs );
3
gap> orbs:= Orbit( g, fixs, OnSets );;
gap> Length( orbs );
4320
gap> triple:= TripleWithProperty( [ orb{[1]}, orb, orb ],
> t -> ForAll( orbs, x -> not IsEmpty( Intersection( x, Union( t ) ) ) ) );;
gap> IsList( triple );
true
gap> uni:= Union( triple );;
gap> Number( uni );
381
Note that each {\tt 2A} involution in <M>S</M> fixes exactly <M>189</M> points,
and the union of the fixed points of the triple found covers less than
half of the set of all points.
So it is not clear that this triple is good for our purposes.
Next we check that each element in <M>S</M> fixes a point that is also
fixed by one of the elements in our involution triple.
We have to consider only classes of maximal element order.
gap> maxorder:= RepresentativesMaximallyCyclicSubgroups( t );
[ 17, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53 ]
gap> maxorderccl:= ClassesPerhapsCorrespondingToTableColumns( g, t,
> maxorder );;
gap> Length( maxorderccl );
28
gap> for c in maxorderccl do
> s:= Representative( c );
> fixs:= Difference( MovedPoints( g ), MovedPoints( s ) );
> if ForAny( Orbit( g, fixs, OnSets ),
> l -> IsEmpty( Intersection( l, uni ) ) ) then
> Error( "bad element of order ", Order( s ) );
> fi;
> od;
(The above computation required more than one hour of CPU time.)
We get no error message, so the spread of <M>S</M> is less than three.
-->
<P/>
Now we turn to the automorphic extensions of <M>S</M>.
First we compute a permutation representation of <M>&SO;^+(8,2) \cong S.2</M>
and an element <M>g</M> in the class <C>2F</C>,
which is the unique conjugacy class of size <M>120</M> in <M>S.2</M>.
<P/>
<Example><![CDATA[
gap> matgrp:= SO(1,8,2);;
gap> g2:= Image( IsomorphismPermGroup( matgrp ) );;
gap> IsTransitive( g2, MovedPoints( g2 ) );
true
gap> repeat x:= Random( g2 ); until Order( x ) = 14;
gap> 2F:= x^7;;
gap> Size( ConjugacyClass( g2, 2F ) );
120
]]></Example>
<P/>
Only for <M>s</M> in six conjugacy classes of <M>S</M>,
there is a nonzero probability to have <M>S.2 = \langle g, s \rangle</M>.
<P/>
<Example><![CDATA[
gap> der:= DerivedSubgroup( g2 );;
gap> cclreps:= List( ConjugacyClasses( der ), Representative );;
gap> nongen:= List( cclreps,
> x -> RatioOfNongenerationTransPermGroup( g2, 2F, x ) );;
gap> goodpos:= PositionsProperty( nongen, x -> x < 1 );;
gap> invariants:= List( goodpos, i -> [ Order( cclreps[i] ),
> Size( Centralizer( g2, cclreps[i] ) ), nongen[i] ] );;
gap> SortedList( invariants );
[ [ 10, 20, 1/3 ], [ 10, 20, 1/3 ], [ 12, 24, 2/5 ], [ 12, 24, 2/5 ],
[ 15, 15, 0 ], [ 15, 15, 0 ] ]
]]></Example>
<P/>
<M>S</M> contains three classes of element order <M>10</M>, which are conjugate
in <M>S.3</M>.
For a fixed extension of the type <M>S.2</M>,
the element <M>s</M> can be chosen only in two of these three classes,
which means that there is another group of the type <M>S.2</M>
(more precisely, another subgroup of index three in <M>S.S_3</M>)
in which this choice of <M>s</M> is not suitable
–note that the general aim is to find <M>s \in S</M> uniformly for all
automorphic extensions of <M>S</M>.
Analogous statements hold for the other possibilities for <M>s</M>,
so statement (f) follows.
<P/>
Statement (g) follows from the list of maximal subgroups
in <Cite Key="CCN85" Where="p. 85"/>.
<P/>
Statement (h) follows from the fact that <M>S</M> is the only maximal
subgroup of <M>S.3</M> that contains elements of order <M>15</M>,
according to the list of maximal subgroups
in <Cite Key="CCN85" Where="p. 85"/>.
Alternatively, if we do not want to assume this information,
we can use explicit computations, as follows.
All we have to check is that any element in the classes <C>3F</C> and <C>3G</C>
generates <M>S.3</M> together with a fixed element of order <M>15</M> in <M>S</M>.
<P/>
We compute a permutation representation of <M>S.3</M> as the derived subgroup
of a subgroup of the type <M>S.S_3</M> inside the sporadic simple Fischer group
<M>Fi_{22}</M>;
these subgroups lie in the fourth class of maximal subgroups of <M>Fi_{22}</M>,
see <Cite Key="CCN85" Where="p. 163"/>.
An element in the class <C>3F</C> of <M>S.3</M> can be found as a power of
an order <M>21</M> element,
and an element in the class <C>3G</C> can be found as the fourth power of
a <C>12P</C> element.
<P/>
<Example><![CDATA[
gap> aut:= Group( AtlasGenerators( "Fi22", 1, 4 ).generators );;
gap> Size( aut ) = 6 * Size( t );
true
gap> g3:= DerivedSubgroup( aut );;
gap> orbs:= OrbitsDomain( g3, MovedPoints( g3 ) );;
gap> List( orbs, Length );
[ 3150, 360 ]
gap> g3:= Action( g3, orbs[2] );;
gap> repeat s:= Random( g3 ); until Order( s ) = 15;
gap> repeat x:= Random( g3 ); until Order( x ) = 21;
gap> 3F:= x^7;;
gap> RatioOfNongenerationTransPermGroup( g3, 3F, s );
0
gap> repeat x:= Random( g3 );
> until Order( x ) = 12 and Size( Centralizer( g3, x^4 ) ) = 648;
gap> 3G:= x^4;;
gap> RatioOfNongenerationTransPermGroup( g3, 3G, s );
0
]]></Example>
<P/>
Finally, consider statement (i).
It implies that <Cite Key="BGK" Where="Corollary 1.5"/> holds
for <M>\Omega^+(8,2)</M>, with <M>s</M> of order <M>15</M>.
Note that by part (f),
<M>s</M> <E>cannot be chosen in a prescribed conjugacy class</E> of <M>S</M>
that is independent of the elements <M>x</M>, <M>y</M>.
<P/>
If <M>x</M> and <M>y</M> lie in <M>S</M> then statement (i) follows from part (e),
and by part (g), the case that <M>x</M> or <M>y</M> lie in <M>S.3 \setminus S</M>
is also not a problem.
We now show that also <M>x</M> or <M>y</M> in <M>S.2 \setminus S</M> is not a problem.
Here we have to deal with the cases that <M>x</M> and <M>y</M> lie in the same
subgroup of index <M>3</M> in <M>&Aut;(S)</M> or in different such subgroups.
Actually we show that for each index <M>3</M> subgroup
<M>H = S.2 < &Aut;(S)</M>,
we can choose <M>s</M> from two of the three classes of element order <M>15</M> in <M>S</M>
such that <M>S</M> is the only maximal subgroup of <M>H</M> that contains <M>s</M>,
and thus <M>\langle x, s \rangle</M> contains <M>H</M>,
for any choice of <M>x \in H \setminus S</M>.
<P/>
For that, we note that no novelty in <M>S.2</M> contains elements of order <M>15</M>,
so all maximal subgroups of <M>S.2</M> that contain such elements –besides <M>S</M>–
have one of the indices <M>120, 135, 960, 1120</M>, or <M>12096</M>,
and point stabilizers of the types <M>S_6(2) \times 2</M>, <M>2^6:S_8</M>, <M>S_9</M>,
<M>S_3 \times U_4(2):2</M>, or
<M>S_5 \wr 2</M>.
We compute the corresponding permutation characters.
<P/>
<Example><![CDATA[
gap> t2:= CharacterTable( "O8+(2).2" );;
gap> s:= CharacterTable( "S6(2)" ) * CharacterTable( "Cyclic", 2 );;
gap> pi:= PossiblePermutationCharacters( s, t2 );;
gap> prim:= pi;;
gap> pi:= PermChars( t2, rec( torso:= [ 135 ] ) );;
gap> Append( prim, pi );
gap> pi:= PossiblePermutationCharacters( CharacterTable( "A9.2" ), t2 );;
gap> Append( prim, pi );
gap> s:= CharacterTable( "Dihedral(6)" ) * CharacterTable( "U4(2).2" );;
gap> pi:= PossiblePermutationCharacters( s, t2 );;
gap> Append( prim, pi );
gap> s:= CharacterTableWreathSymmetric( CharacterTable( "S5" ), 2 );;
gap> pi:= PossiblePermutationCharacters( s, t2 );;
gap> Append( prim, pi );
gap> Length( prim );
5
gap> ord15:= PositionsProperty( OrdersClassRepresentatives( t2 ),
> x -> x = 15 );
[ 39, 40 ]
gap> List( prim, pi -> pi{ ord15 } );
[ [ 1, 0 ], [ 2, 0 ], [ 2, 0 ], [ 1, 0 ], [ 1, 0 ] ]
gap> List( ord15, i -> Maximum( ApproxP( prim, i ) ) );
[ 307/120, 0 ]
]]></Example>
<P/>
Here it is appropriate to clean the workspace again.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O8p3">
<Heading><M>O_8^+(3)</M></Heading>
We show that <M>S = O_8^+(3)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 863/1820</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>20</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>20</M>,
<M>&M;(S,s)</M> consists of two nonconjugate groups of the type
<M>O_7(3) = \Omega(7,3)</M>,
two conjugate subgroups of the type <M>3^6:L_4(3)</M>,
two nonconjugate subgroups of the type <M>(A_4 \times U_4(2)):2</M>,
and one subgroup of each of the types <M>2.U_4(3).(2^2)_{122}</M>
and <M>(A_6 \times A_6):2^2</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 194/455</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>20</M>.
</Item>
<Mark>(d)</Mark>
<Item>
The uniform spread of <M>S</M> is at least three,
with <M>s</M> of order <M>20</M>.
</Item>
<Mark>(e)</Mark>
<Item>
The preimage of <M>s</M> in the matrix group <M>2.S = \Omega^+(8,3)</M>
can be chosen of order <M>40</M>,
and then the maximal subgroups of <M>2.S</M> containing <M>s</M>
have the structures <M>2.O_7(3)</M>, <M>3^6:2.L_4(3)</M>,
<M>4.U_4(3).2^2 = &SU;(4,3).2^2</M>,
<M>2.(A_4 \times U_4(2)).2 = 2.(&PSp;(2,3) \otimes &PSp;(4,3)).2</M>, and
<M>2.(A_6 \times A_6):2^2 = 2.(\Omega^-(4,3) \times \Omega^-(4,3)):2^2</M>,
respectively.
</Item>
<Mark>(f)</Mark>
<Item>
For <M>s \in S</M> of order <M>20</M>, we have
<M>∝^{\prime}(S.2_1, s) \in \{ 83/567, 574/1215 \}</M>,
<M>∝^{\prime}(S.2_2, s) \in \{ 0, 1 \}</M>
(depending on the choice of <M>s</M>), and
<M>&total;^{\prime}(S.3, s) = 0</M>.
<P/>
Furthermore, for any choice of <M>s^{\prime} \in S</M>,
we have <M>&total;^{\prime}(S.2_2, s^{\prime}) = 1</M>
for some group <M>S.2_2</M>.
However, if it is allowed to choose <M>s</M> from an <M>&Aut;(S)</M>-class
of elements of order <M>20</M> (and not from a fixed <M>S</M>-class)
then we can achieve <M>&total;(g,s) = 0</M> for any given
<M>g \in S.2_2 \setminus S</M>.
</Item>
<Mark>(g)</Mark>
<Item>
The maximal subgroups of <M>S.2_1</M> that contain an element of order
<M>20</M> are either
<M>S</M> and the extensions of the subgroups listed in statement (b)
or they are
<M>S</M> and <M>L_4(3).2^2</M>, <M>3^6:L_4(3).2</M> (twice),
<M>2.U_4(3).(2^2)_{122}.2</M>, and
<M>(A_6 \times A_6):2^2.2</M>.
<P/>
In the former case, the groups have the structures
<M>O_7(3):2</M> (twice),
<M>3^6:(L_4(3) \times 2)</M> (twice),
<M>S_4 \times U_4(2).2</M> (twice),
<M>2.U_4(3).(2^2)_{122}.2</M>, and
<M>(A_6 \times A_6):2^2 \times 2</M>.
</Item>
</List>
<P/>
Statement (a) follows from inspection of the primitive permutation
characters.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "O8+(3)" );;
gap> ProbGenInfoSimple( t );
[ "O8+(3)", 863/1820, 2, [ "20A", "20B", "20C" ], [ 8, 8, 8 ] ]
]]></Example>
<P/>
Also statement (b) follows from the information provided by the
character table of <M>S</M> (cf. <Cite Key="CCN85" Where="p. 140"/>).
<P/>
<Example><![CDATA[
gap> prim:= PrimitivePermutationCharacters( t );;
gap> ord:= OrdersClassRepresentatives( t );;
gap> spos:= Position( ord, 20 );;
gap> filt:= PositionsProperty( prim, x -> x[ spos ] <> 0 );
[ 1, 2, 7, 15, 18, 19, 24 ]
gap> Maxes( t ){ filt };
[ "O7(3)", "O8+(3)M2", "3^6:L4(3)", "2.U4(3).(2^2)_{122}",
"(A4xU4(2)):2", "O8+(3)M19", "(A6xA6):2^2" ]
gap> prim{ filt }{ [ 1, spos ] };
[ [ 1080, 1 ], [ 1080, 1 ], [ 1120, 2 ], [ 189540, 1 ],
[ 7960680, 1 ], [ 7960680, 1 ], [ 9552816, 1 ] ]
]]></Example>
<P/>
For statement (c), we first show that <M>∝(S,s) = 194/455</M> holds.
Since this value is larger than <M>1/3</M>,
we have to inspect only those classes <M>g^S</M> for which
<M>&total;(g,s) \geq 1/3</M> holds,
<P/>
<Example><![CDATA[
gap> ord:= OrdersClassRepresentatives( t );;
gap> ord20:= PositionsProperty( ord, x -> x = 20 );;
gap> cand:= [];;
gap> for i in ord20 do
> approx:= ApproxP( prim, i );
> Add( cand, PositionsProperty( approx, x -> x >= 1/3 ) );
> od;
gap> cand;
[ [ 2, 6, 7, 10 ], [ 3, 6, 8, 11 ], [ 4, 6, 9, 12 ] ]
gap> AtlasClassNames( t ){ cand[1] };
[ "2A", "3A", "3B", "3E" ]
]]></Example>
<P/>
The three possibilities form one orbit under the outer automorphism group
of <M>S</M>.
<P/>
<Example><![CDATA[
gap> t3:= CharacterTable( "O8+(3).3" );;
gap> tfust3:= GetFusionMap( t, t3 );;
gap> List( cand, x -> tfust3{ x } );
[ [ 2, 4, 5, 6 ], [ 2, 4, 5, 6 ], [ 2, 4, 5, 6 ] ]
]]></Example>
<P/>
By symmetry, we may consider only the first possibility,
and assume that <M>s</M> is in the class <C>20A</C>.
<P/>
We work with a permutation representation of degree <M>1\,080</M>,
and assume that the permutation character is <C>1a+260a+819a</C>.
(Note that all permutation characters of <M>S</M> of degree <M>1\,080</M>
are conjugate under <M>&Aut;(S)</M>.)
<P/>
<Example><![CDATA[
gap> g:= Action( SO(1,8,3), NormedRowVectors( GF(3)^8 ), OnLines );;
gap> Size( g );
9904359628800
gap> g:= DerivedSubgroup( g );; Size( g );
4952179814400
gap> orbs:= OrbitsDomain( g, MovedPoints( g ) );;
gap> List( orbs, Length );
[ 1080, 1080, 1120 ]
gap> g:= Action( g, orbs[1] );;
gap> PositionProperty( Irr( t ), chi -> chi[1] = 819 );
9
gap> permchar:= Sum( Irr( t ){ [ 1, 2, 9 ] } );
Character( CharacterTable( "O8+(3)" ),
[ 1080, 128, 0, 0, 24, 108, 135, 0, 0, 108, 0, 0, 27, 27, 0, 0, 18,
9, 12, 16, 0, 0, 4, 15, 0, 0, 20, 0, 0, 12, 11, 0, 0, 20, 0, 0, 15,
0, 0, 12, 0, 0, 2, 0, 0, 3, 3, 0, 0, 6, 6, 0, 0, 3, 2, 2, 2, 18, 0,
0, 9, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 3, 0, 0, 12, 0, 0, 3, 0, 0, 0,
0, 0, 4, 3, 3, 0, 0, 1, 0, 0, 4, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 3,
0, 0, 2, 0, 0, 5, 0, 0, 1, 0, 0 ] )
]]></Example>
<P/>
Now we show that for <M>s</M> in the class <C>20A</C> (which fixes one point),
the proportion of nongenerating elements <M>g</M> in one of the classes
<C>2A</C>, <C>3A</C>, <C>3B</C>, <C>3E</C> has the maximum <M>194/455</M>,
which is attained exactly for <C>3A</C>.
(We find a <C>2A</C> element as a power of <M>s</M>,
a <C>3A</C> element as a power of any element of order <M>18</M>,
a <C>3B</C> and a <C>3E</C> element as elements with <M>135</M> and <M>108</M>
fixed points, respectively, which occur as powers of suitable
elements of order <M>15</M>.)
<P/>
<Example><![CDATA[
gap> permchar{ ord20 };
[ 1, 0, 0 ]
gap> AtlasClassNames( t )[ PowerMap( t, 10 )[ ord20[1] ] ];
"2A"
gap> ord18:= PositionsProperty( ord, x -> x = 18 );;
gap> Set( AtlasClassNames( t ){ PowerMap( t, 6 ){ ord18 } } );
[ "3A" ]
gap> ord15:= PositionsProperty( ord, x -> x = 15 );;
gap> PowerMap( t, 5 ){ ord15 };
[ 7, 8, 9, 10, 11, 12 ]
gap> AtlasClassNames( t ){ [ 7 .. 12 ] };
[ "3B", "3C", "3D", "3E", "3F", "3G" ]
gap> permchar{ [ 7 .. 12 ] };
[ 135, 0, 0, 108, 0, 0 ]
gap> mp:= NrMovedPoints( g );;
gap> ResetGlobalRandomNumberGenerators();
gap> repeat 20A:= Random( g );
> until Order( 20A ) = 20 and mp - NrMovedPoints( 20A ) = 1;
gap> 2A:= 20A^10;;
gap> repeat x:= Random( g ); until Order( x ) = 18;
gap> 3A:= x^6;;
gap> repeat x:= Random( g );
> until Order( x ) = 15 and mp - NrMovedPoints( x^5 ) = 135;
gap> 3B:= x^5;;
gap> repeat x:= Random( g );
> until Order( x ) = 15 and mp - NrMovedPoints( x^5 ) = 108;
gap> 3E:= x^5;;
gap> nongen:= List( [ 2A, 3A, 3B, 3E ],
> c -> RatioOfNongenerationTransPermGroup( g, c, 20A ) );
[ 3901/9477, 194/455, 451/1092, 451/1092 ]
gap> Maximum( nongen );
194/455
]]></Example>
<P/>
Next we compute the values <M>∝(g,s)</M>, for <M>g</M> is in the class
<C>3A</C> and certain elements <M>s</M>.
It is enough to consider representatives <M>s</M> of maximally cyclic subgroups
in <M>S</M>, but here we can do better, as follows.
Since <C>3A</C> is the unique class of length <M>72\,800</M>,
it is fixed under <M>&Aut;(S)</M>,
so it is enough to consider one element <M>s</M> from each <M>&Aut;(S)</M>-orbit
on the classes of <M>S</M>.
We use the class fusion between the character tables of <M>S</M> and <M>&Aut;(S)</M>
for computing orbit representatives.
<P/>
<Example><![CDATA[
gap> maxorder:= RepresentativesMaximallyCyclicSubgroups( t );;
gap> Length( maxorder );
57
gap> autt:= CharacterTable( "O8+(3).S4" );;
gap> fus:= PossibleClassFusions( t, autt );;
gap> orbreps:= Set( fus, map -> Set( ProjectionMap( map ) ) );
[ [ 1, 2, 5, 6, 7, 13, 17, 18, 19, 20, 23, 24, 27, 30, 31, 37, 43,
46, 50, 54, 55, 56, 57, 58, 64, 68, 72, 75, 78, 84, 85, 89, 95,
96, 97, 100, 106, 112 ] ]
gap> totest:= Intersection( maxorder, orbreps[1] );
[ 43, 50, 54, 56, 57, 64, 68, 75, 78, 84, 85, 89, 95, 97, 100, 106,
112 ]
gap> Length( totest );
17
gap> AtlasClassNames( t ){ totest };
[ "6Q", "6X", "6B1", "8A", "8B", "9G", "9K", "12A", "12D", "12J",
"12K", "12O", "13A", "14A", "15A", "18A", "20A" ]
]]></Example>
<P/>
This means that we have to test one element of each of the element orders
<M>13</M>, <M>14</M>, <M>15</M>, and <M>18</M>
(note that we know already a bound for elements of order <M>20</M>),
plus certain elements of the orders <M>6</M>, <M>8</M>, <M>9</M>, and <M>12</M>
which can be identified by their centralizer orders and (for elements of
order <M>6</M> and <M>8</M>) perhaps the centralizer orders of some powers.
<P/>
<Example><![CDATA[
gap> elementstotest:= [];;
gap> for elord in [ 13, 14, 15, 18 ] do
> repeat s:= Random( g );
> until Order( s ) = elord;
> Add( elementstotest, s );
> od;
]]></Example>
<P/>
The next elements to be tested are
in the classes <C>6B1</C> (centralizer order <M>162</M>),
in one of <C>9G</C>–<C>9J</C> (centralizer order <M>729</M>),
in one of <C>9K</C>–<C>9N</C> (centralizer order <M>81</M>),
in one of <C>12A</C>–<C>12C</C> (centralizer order <M>1\,728</M>),
in one of <C>12D</C>–<C>12I</C> (centralizer order <M>432</M>),
in <C>12J</C> (centralizer order <M>192</M>),
in one of <C>12K</C>–<C>12N</C> (centralizer order <M>108</M>),
and in one of <C>12O</C>–<C>12T</C> (centralizer order <M>72</M>).
<P/>
<Example><![CDATA[
gap> ordcent:= [ [ 6, 162 ], [ 9, 729 ], [ 9, 81 ], [ 12, 1728 ],
> [ 12, 432 ], [ 12, 192 ], [ 12, 108 ], [ 12, 72 ] ];;
gap> cents:= SizesCentralizers( t );;
gap> for pair in ordcent do
> Print( pair, ": ", AtlasClassNames( t ){
> Filtered( [ 1 .. Length( ord ) ],
> i -> ord[i] = pair[1] and cents[i] = pair[2] ) }, "\n" );
> repeat s:= Random( g );
> until Order( s ) = pair[1] and Size( Centralizer( g, s ) ) = pair[2];
> Add( elementstotest, s );
> od;
[ 6, 162 ]: [ "6B1" ]
[ 9, 729 ]: [ "9G", "9H", "9I", "9J" ]
[ 9, 81 ]: [ "9K", "9L", "9M", "9N" ]
[ 12, 1728 ]: [ "12A", "12B", "12C" ]
[ 12, 432 ]: [ "12D", "12E", "12F", "12G", "12H", "12I" ]
[ 12, 192 ]: [ "12J" ]
[ 12, 108 ]: [ "12K", "12L", "12M", "12N" ]
[ 12, 72 ]: [ "12O", "12P", "12Q", "12R", "12S", "12T" ]
]]></Example>
<P/>
The next elements to be tested are
in one of the classes <C>6Q</C>–<C>6S</C> (centralizer order <M>648</M>).
<P/>
<Example><![CDATA[
gap> AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],
> i -> cents[i] = 648 and cents[ PowerMap( t, 2 )[i] ] = 52488
> and cents[ PowerMap( t, 3 )[i] ] = 26127360 ) };
[ "6Q", "6R", "6S" ]
gap> repeat s:= Random( g );
> until Order( s ) = 6 and Size( Centralizer( g, s ) ) = 648
> and Size( Centralizer( g, s^2 ) ) = 52488
> and Size( Centralizer( g, s^3 ) ) = 26127360;
gap> Add( elementstotest, s );
]]></Example>
<P/>
The next elements to be tested are
in the class <C>6X</C>–<C>6A1</C> (centralizer order <M>648</M>).
<P/>
<Example><![CDATA[
gap> AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],
> i -> cents[i] = 648 and cents[ PowerMap( t, 2 )[i] ] = 52488
> and cents[ PowerMap( t, 3 )[i] ] = 331776 ) };
[ "6X", "6Y", "6Z", "6A1" ]
gap> repeat s:= Random( g );
> until Order( s ) = 6 and Size( Centralizer( g, s ) ) = 648
> and Size( Centralizer( g, s^2 ) ) = 52488
> and Size( Centralizer( g, s^3 ) ) = 331776;
gap> Add( elementstotest, s );
]]></Example>
<P/>
Finally, we add elements from the classes <C>8A</C> and <C>8B</C>.
<P/>
<Example><![CDATA[
gap> AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],
> i -> ord[i] = 8 and cents[ PowerMap( t, 2 )[i] ] = 13824 ) };
[ "8A" ]
gap> repeat s:= Random( g );
> until Order( s ) = 8 and Size( Centralizer( g, s^2 ) ) = 13824;
gap> Add( elementstotest, s );
gap> AtlasClassNames( t ){ Filtered( [ 1 .. Length( ord ) ],
> i -> ord[i] = 8 and cents[ PowerMap( t, 2 )[i] ] = 1536 ) };
[ "8B" ]
gap> repeat s:= Random( g );
> until Order( s ) = 8 and Size( Centralizer( g, s^2 ) ) = 1536;
gap> Add( elementstotest, s );
]]></Example>
<P/>
Now we compute the ratios.
It turns out that from these candidates,
only elements <M>s</M> of the orders <M>14</M> and <M>15</M> satisfy
<M>∝(g,s) < 194/455</M>.
<P/>
<Example><![CDATA[
gap> nongen:= List( elementstotest,
> s -> RatioOfNongenerationTransPermGroup( g, 3A, s ) );;
gap> smaller:= PositionsProperty( nongen, x -> x < 194/455 );
[ 2, 3 ]
gap> nongen{ smaller };
[ 127/325, 1453/3640 ]
]]></Example>
<P/>
So the only candidates for <M>s</M> that may be better than order <M>20</M> elements
are elements of order <M>14</M> or <M>15</M>.
In order to exclude these two possibilities,
we compute <M>∝(g,s)</M> for <M>s</M> in the class <C>14A</C>
and <M>g = s^7</M> in the class <C>2A</C>,
and for <M>s</M> in the class <C>15A</C> and <M>g</M> in the class <C>2A</C>,
which yields values that are larger than <M>194/455</M>.
<P/>
<Example><![CDATA[
gap> repeat s:= Random( g );
> until Order( s ) = 14 and NrMovedPoints( s ) = 1078;
gap> 2A:= s^7;;
gap> nongen:= RatioOfNongenerationTransPermGroup( g, 2A, s );
1573/3645
gap> nongen > 194/455;
true
gap> repeat s:= Random( g );
> until Order( s ) = 15 and NrMovedPoints( s ) = 1080 - 3;
gap> nongen:= RatioOfNongenerationTransPermGroup( g, 2A, s );
490/1053
gap> nongen > 194/455;
true
]]></Example>
<P/>
For statement (d), we show that for each triple of elements
in the union of the classes <C>2A</C>, <C>3A</C>, <C>3B</C>, <C>3E</C>
there is an element in the class <C>20A</C> that generates <M>S</M>
together with each element of the triple.
<P/>
<Example><![CDATA[
gap> for tup in UnorderedTuples( [ 2A, 3A, 3B, 3E ], 3 ) do
> cl:= ShallowCopy( tup );
> test:= RandomCheckUniformSpread( g, cl, 20A, 100 );
> if test <> true then
> Error( test );
> fi;
> od;
]]></Example>
<P/>
We get no error message, so statement (d) is true.
<P/>
For statement (e), first we show that <M>2.S = \Omega^+(8,3)</M> contains
elements of order <M>40</M> but <M>S</M> does not.
<P/>
<Example><![CDATA[
gap> der:= DerivedSubgroup( SO(1,8,3) );;
gap> repeat x:= PseudoRandom( der ); until Order( x ) = 40;
gap> 40 in ord;
false
]]></Example>
<P/>
Thus elements of order <M>40</M> must arise as preimages of order <M>20</M> elements
under the natural epimorphism from <M>2.S</M> to <M>S</M>,
which means that we may choose an order <M>40</M> preimage <M>\hat{s}</M> of <M>s</M>.
Then <M>&M;(2.S, \hat{s})</M> consists of central extensions of the subgroups
listed in statement (b).
The perfect subgroups <M>O_7(3)</M>, <M>L_4(3)</M>, <M>2.U_4(3)</M>, and <M>U_4(2)</M>
of these groups must lift to their Schur double covers in <M>2.S</M> because
otherwise the preimages would not contain elements of order <M>40</M>.
<P/>
Next we consider the preimage of the subgroup <M>U = (A_4 \times U_4(2)).2</M>
of <M>S</M>.
We show that the preimages of the two direct factors <M>A_4</M> and <M>U_4(2)</M>
in <M>U^{\prime} = A_4 \times U_4(2)</M> are Schur covers.
For <M>A_4</M>, this follows from the fact that the preimage of <M>U^{\prime}</M>
must contain elements of order <M>20</M>,
and that <M>U_4(2)</M> does not contain elements of order <M>10</M>.
<P/>
<Example><![CDATA[
gap> u42:= CharacterTable( "U4(2)" );;
gap> Filtered( OrdersClassRepresentatives( u42 ), x -> x mod 5 = 0 );
[ 5 ]
]]></Example>
<P/>
In order to show that the <M>U_4(2)</M> type subgroup of <M>U^{\prime}</M> lifts to its
double cover in <M>2.S</M>, we note that the class <C>2B</C> of <M>U_4(2)</M>
lifts to a class of elements of order four in the double cover <M>2.U_4(2)</M>,
and that the corresponding class of elements in <M>U</M>
is <M>S</M>-conjugate to the class of involutions in the direct factor <M>A_4</M>
(which is the unique class of length three in <M>U</M>).
<P/>
<Example><![CDATA[
gap> u:= CharacterTable( Maxes( t )[18] );
CharacterTable( "(A4xU4(2)):2" )
gap> 2u42:= CharacterTable( "2.U4(2)" );;
gap> OrdersClassRepresentatives( 2u42 )[4];
4
gap> GetFusionMap( 2u42, u42 )[4];
3
gap> OrdersClassRepresentatives( u42 )[3];
2
gap> List( PossibleClassFusions( u42, u ), x -> x[3] );
[ 8 ]
gap> PositionsProperty( SizesConjugacyClasses( u ), x -> x = 3 );
[ 2 ]
gap> ForAll( PossibleClassFusions( u, t ), x -> x[2] = x[8] );
true
]]></Example>
<P/>
<!-- % An alternative argument to show that <M>A_4</M> lifts to its double cover -->
<!-- % is that its involutions lie in a class of <M>S</M> that lifts to elements -->
<!-- % of order four because it contains involutions in <M>O_7(3)</M> that lift to -->
<!-- % elements of order four in <M>2.O_7(3)</M>. -->
<P/>
The last subgroup for which the structure of the preimage has to be shown
is <M>U = (A_6 \times A_6):2^2</M>.
We claim that each of the <M>A_6</M> type subgroups in the derived subgroup
<M>U^{\prime} = A_6 \times A_6</M> lifts to its double cover in <M>2.S</M>.
Since all elements of order <M>20</M> in <M>U</M> lie in <M>U^{\prime}</M>,
at least one of the two direct factors must lift to its double cover,
in order to give rise to an order <M>40</M> element in <M>U</M>.
In fact both factors lift to the double cover
since the two direct factors are interchanged by conjugation in <M>U</M>;
the latter follows form tha fact that <M>U</M> has no normal subgroup
of type <M>A_6</M>.
<P/>
<Example><![CDATA[
gap> u:= CharacterTable( Maxes( t )[24] );
CharacterTable( "(A6xA6):2^2" )
gap> ClassPositionsOfDerivedSubgroup( u );
[ 1 .. 22 ]
gap> PositionsProperty( OrdersClassRepresentatives( u ), x -> x = 20 );
[ 8 ]
gap> List( ClassPositionsOfNormalSubgroups( u ),
> x -> Sum( SizesConjugacyClasses( u ){ x } ) );
[ 1, 129600, 259200, 259200, 259200, 518400 ]
]]></Example>
<P/>
So statement (e) holds.
<P/>
For statement (f), we have to consider the upward extensions <M>S.2_1</M>,
<M>S.2_2</M>, and <M>S.3</M>.
<P/>
First we look at <M>S.2_1</M>, an extension by an outer automorphism that
acts as a double transposition in the outer automorphism group <M>S_4</M>.
Note that the symmetry between the three classes of element oder <M>20</M> in <M>S</M>
is broken in <M>S.2_1</M>,
two of these classes have square roots in <M>S.2_1</M>, the third has not.
<P/>
<Example><![CDATA[
gap> t2:= CharacterTable( "O8+(3).2_1" );;
gap> ord20:= PositionsProperty( OrdersClassRepresentatives( t2 ),
> x -> x = 20 );;
gap> ord20:= Intersection( ord20, ClassPositionsOfDerivedSubgroup( t2 ) );
[ 84, 85, 86 ]
gap> List( ord20, x -> x in PowerMap( t2, 2 ) );
[ false, true, true ]
]]></Example>
<P/>
Changing the viewpoint, we see that for each class of element order <M>20</M>
in <M>S</M>,
there is a group of the type <M>S.2_1</M> in which the elements in this class
do not have square roots,
and there are groups of this type in which these elements have square roots.
So we have to deal with two different cases,
and we do this by first collecting the permutation characters induced from
<E>all</E> maximal subgroups of <M>S.2_1</M> (other than <M>S</M>) that contain
elements of order <M>20</M> in <M>S</M>,
and then considering <M>s</M> in each of these classes of <M>S</M>.
<P/>
We fix an embedding of <M>S</M> into <M>S.2_1</M> in which the elements
in the class <C>20A</C> do not have square roots.
This situation is given for the stored class fusion between the tables
in the &GAP; Character Table Library.
<P/>
<Example><![CDATA[
gap> tfust2:= GetFusionMap( t, t2 );;
gap> tfust2{ PositionsProperty( OrdersClassRepresentatives( t ),
> x -> x = 20 ) };
[ 84, 85, 86 ]
]]></Example>
<P/>
The six different actions of <M>S</M> on the cosets of <M>O_7(3)</M> type subgroups
induce pairwise different permutation characters that form an orbit under
the action of <M>&Aut;(S)</M>.
Four of these characters cannot extend to <M>S.2_1</M>,
the other two extend to permutation characters of <M>S.2_1</M> on the cosets of
<M>O_7(3).2</M> type subgroups;
these subgroups contain <C>20A</C> elements.
<P/>
<Example><![CDATA[
gap> primt2:= [];;
gap> poss:= PossiblePermutationCharacters( CharacterTable( "O7(3)" ), t );;
gap> invfus:= InverseMap( tfust2 );;
gap> List( poss, pi -> ForAll( CompositionMaps( pi, invfus ), IsInt ) );
[ false, false, false, false, true, true ]
gap> PossiblePermutationCharacters(
> CharacterTable( "O7(3)" ) * CharacterTable( "Cyclic", 2 ), t2 );
[ ]
gap> ext:= PossiblePermutationCharacters( CharacterTable( "O7(3).2" ), t2 );;
gap> List( ext, pi -> pi{ ord20 } );
[ [ 1, 0, 0 ], [ 1, 0, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
The novelties in <M>S.2_1</M> that arise from <M>O_7(3)</M> type subgroups of <M>S</M>
have the structure <M>L_4(3).2^2</M>.
These subgroups contain elements in the classes <C>20B</C> and <C>20C</C>
of <M>S</M>.
<P/>
<Example><![CDATA[
gap> ext:= PossiblePermutationCharacters( CharacterTable( "L4(3).2^2" ), t2 );;
gap> List( ext, pi -> pi{ ord20 } );
[ [ 0, 0, 1 ], [ 0, 1, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
Note that from the possible permutation characters of <M>S.2_1</M> on the cosets
of <M>L_4(3):2 \times 2</M> type subgroups,
we see that such subgroups must contain <C>20A</C> elements,
i. e., all such subgroups of <M>S.2_1</M> lie inside <M>O_7(3).2</M> type subgroups.
This means that the structure description of these novelties
in <Cite Key="CCN85" Where="p. 140"/> is not correct.
The correct structure is <M>L_4(3).2^2</M>.)
<P/>
<Example><![CDATA[
gap> List( PossiblePermutationCharacters( CharacterTable( "L4(3).2_2" ) *
> CharacterTable( "Cyclic", 2 ), t2 ), pi -> pi{ ord20 } );
[ [ 1, 0, 0 ] ]
]]></Example>
<P/>
All <M>3^6:L_4(3)</M> type subgroups of <M>S</M> extend to <M>S.2_1</M>.
We compute these permutation characters as the possible permutation characters
of the right degree.
<P/>
<Example><![CDATA[
gap> ext:= PermChars( t2, rec( torso:= [ 1120 ] ) );;
gap> List( ext, pi -> pi{ ord20 } );
[ [ 2, 0, 0 ], [ 0, 0, 2 ], [ 0, 2, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
Also all <M>2.U_4(3).2^2</M> type subgroups of <M>S</M> extend to <M>S.2_1</M>.
We compute the permutation characters as the extensions of the corresponding
permutation characters of <M>S</M>.
<P/>
<Example><![CDATA[
gap> filt:= Filtered( prim, x -> x[1] = 189540 );;
gap> cand:= List( filt, x -> CompositionMaps( x, invfus ) );;
gap> ext:= Concatenation( List( cand,
> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;
gap> List( ext, x -> x{ ord20 } );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
The extensions of <M>(A_4 \times U_4(2)):2</M> type subgroups of <M>S</M> to <M>S.2_1</M>
have the type <M>S_4 \times U_4(2):2</M>, they contain <C>20A</C> elements.
<P/>
<Example><![CDATA[
gap> ext:= PossiblePermutationCharacters( CharacterTable( "Symmetric", 4 ) *
> CharacterTable( "U4(2).2" ), t2 );;
gap> List( ext, x -> x{ ord20 } );
[ [ 1, 0, 0 ], [ 1, 0, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
All <M>(A_6 \times A_6):2^2</M> type subgroups of <M>S</M> extend to <M>S.2_1</M>.
We compute the permutation characters as the extensions of the corresponding
permutation characters of <M>S</M>.
<P/>
<Example><![CDATA[
gap> filt:= Filtered( prim, x -> x[1] = 9552816 );;
gap> cand:= List( filt, x -> CompositionMaps( x, InverseMap( tfust2 ) ));;
gap> ext:= Concatenation( List( cand,
> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;
gap> List( ext, x -> x{ ord20 } );
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
We have found all relevant permutation characters of <M>S.2_1</M>.
This together with the list
in <Cite Key="CCN85" Where="p. 140"/> implies statement (g).
<P/>
Now we compute the bounds <M>&total;^{\prime}(S.2_1, s)</M>.
<P/>
<Example><![CDATA[
gap> Length( primt2 );
15
gap> approx:= List( ord20, x -> ApproxP( primt2, x ) );;
gap> outer:= Difference(
> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) );;
gap> List( approx, l -> Maximum( l{ outer } ) );
[ 574/1215, 83/567, 83/567 ]
]]></Example>
<P/>
Next we look at <M>S.2_2</M>, an extension by an outer automorphism that
acts as a transposition in the outer automorphism group <M>S_4</M>.
Similar to the above situation,
the symmetry between the three classes of element oder <M>20</M> in <M>S</M>
is broken also in <M>S.2_2</M>:
The first is a conjugacy class of <M>S.2_2</M>,
the other two classes are fused in <M>S.2_2</M>,
<P/>
<Example><![CDATA[
gap> t2:= CharacterTable( "O8+(3).2_2" );;
gap> ord20:= PositionsProperty( OrdersClassRepresentatives( t2 ),
> x -> x = 20 );;
gap> ord20:= Intersection( ord20, ClassPositionsOfDerivedSubgroup( t2 ) );
[ 82, 83 ]
gap> tfust2:= GetFusionMap( t, t2 );;
gap> tfust2{ PositionsProperty( OrdersClassRepresentatives( t ),
> x -> x = 20 ) };
[ 82, 83, 83 ]
]]></Example>
<P/>
Like in the case <M>S.2_1</M>, we compute the permutation characters induced from
<E>all</E> maximal subgroups of <M>S.2_2</M> (other than <M>S</M>) that contain
elements of order <M>20</M> in <M>S</M>.
<P/>
We fix the embedding of <M>S</M> into <M>S.2_2</M> in which the class
<C>20A</C> of <M>S</M> is a class of <M>S.2_2</M>.
This situation is given for the stored class fusion between the tables
in the &GAP; Character Table Library.
<P/>
Exactly two classes of <M>O_7(3)</M> type subgroups in <M>S</M> extend to <M>S.2_2</M>,
these groups contain <C>20A</C> elements.
<P/>
<Example><![CDATA[
gap> primt2:= [];;
gap> ext:= PermChars( t2, rec( torso:= [ 1080 ] ) );;
gap> List( ext, pi -> pi{ ord20 } );
[ [ 1, 0 ], [ 1, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
Only one class of <M>3^6:L_4(3)</M> type subgroups extends to <M>S.2_2</M>.
(Note that we need not consider the novelties of the type
<M>3^{3+6}:(L_3(3) \times 2)</M>, because the order of these groups is not
divisible by <M>5</M>.)
<P/>
<Example><![CDATA[
gap> ext:= PermChars( t2, rec( torso:= [ 1120 ] ) );;
gap> List( ext, pi -> pi{ ord20 } );
[ [ 2, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
Only one class of <M>2.U_4(3).2^2</M> type subgroups of <M>S</M> extends to <M>S.2_2</M>.
We compute the permutation character as the extension of the corresponding
permutation characters of <M>S</M>.
<P/>
<Example><![CDATA[
gap> filt:= Filtered( prim, x -> x[1] = 189540 );;
gap> cand:= List( filt, x -> CompositionMaps( x, InverseMap( tfust2 ) ));;
gap> ext:= Concatenation( List( cand,
> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;
gap> List( ext, x -> x{ ord20 } );
[ [ 1, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
Two classes of <M>(A_4 \times U_4(2)):2</M> type subgroups of <M>S</M> extend
to <M>S.2_2</M>.
<P/>
<Example><![CDATA[
gap> filt:= Filtered( prim, x -> x[1] = 7960680 );;
gap> cand:= List( filt, x -> CompositionMaps( x, InverseMap( tfust2 ) ));;
gap> ext:= Concatenation( List( cand,
> pi -> PermChars( t2, rec( torso:= pi ) ) ) );;
gap> List( ext, x -> x{ ord20 } );
[ [ 1, 0 ], [ 1, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
Exactly one class of <M>(A_6 \times A_6):2^2</M> type subgroups in <M>S</M>
extends to <M>S.2_2</M>, and the extensions have the structure
<M>S_6 \wr 2</M>.
<P/>
<Example><![CDATA[
gap> ext:= PossiblePermutationCharacters( CharacterTableWreathSymmetric(
> CharacterTable( "S6" ), 2 ), t2 );;
gap> List( ext, x -> x{ ord20 } );
[ [ 1, 0 ] ]
gap> Append( primt2, ext );
]]></Example>
<P/>
We have found all relevant permutation characters of <M>S.2_2</M>,
and compute the bounds <M>&total;^{\prime}(S.2_2, s)</M>.
<P/>
<Example><![CDATA[
gap> Length( primt2 );
7
gap> approx:= List( ord20, x -> ApproxP( primt2, x ) );;
gap> outer:= Difference(
> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) );;
gap> List( approx, l -> Maximum( l{ outer } ) );
[ 14/9, 0 ]
]]></Example>
<P/>
This means that there is an extension of the type <M>S.2_2</M> in which
<M>s</M> cannot be chosen such that the bound is less than <M>1/2</M>.
More precisely, we have <M>&total;(g,s) \geq 1/2</M> exactly for <M>g</M> in the
unique outer involution class of size <M>1\,080</M>.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( primt2, ord20[1] );;
gap> bad:= Filtered( outer, i -> approx[i] >= 1/2 );
[ 84 ]
gap> OrdersClassRepresentatives( t2 ){ bad };
[ 2 ]
gap> SizesConjugacyClasses( t2 ){ bad };
[ 1080 ]
gap> Number( SizesConjugacyClasses( t2 ), x -> x = 1080 );
1
]]></Example>
<P/>
So we compute the proportion of elements in this class that generate <M>S.2_2</M>
together with an element <M>s</M> of order <M>20</M> in <M>S</M>.
(As above, we have to consider two conjugacy classes.)
For that, we first compute a permutation representation of <M>S.2_2</M>,
using that <M>S.2_2</M> is isomporphic to the two subgroups of index <M>2</M> in
<M>&PGO;^+(8,3) = O_8^+(3).2^2_{122}</M> that are different from
<M>&PSO;^+(8,3) = O_8^+(3).2_1</M>,
cf. <Cite Key="CCN85" Where="p. 140"/>.
<P/>
<Example><![CDATA[
gap> go:= GO(1,8,3);;
gap> so:= SO(1,8,3);;
gap> outerelm:= First( GeneratorsOfGroup( go ), x -> not x in so );;
gap> g2:= ClosureGroup( DerivedSubgroup( so ), outerelm );;
gap> Size( g2 );
19808719257600
gap> dom:= NormedRowVectors( GF(3)^8 );;
gap> orbs:= OrbitsDomain( g2, dom, OnLines );;
gap> List( orbs, Length );
[ 1080, 1080, 1120 ]
gap> act:= Action( g2, orbs[1], OnLines );;
]]></Example>
<P/>
An involution <M>g</M> can be found as a power of one of the given generators.
<P/>
<Example><![CDATA[
gap> Order( outerelm );
26
gap> g:= Permutation( outerelm^13, orbs[1], OnLines );;
gap> Size( ConjugacyClass( act, g ) );
1080
]]></Example>
<P/>
Now we find the candidates for the elements <M>s</M>,
and compute their ratios of nongeneration.
<P/>
<Example><![CDATA[
gap> ord20;
[ 82, 83 ]
gap> SizesCentralizers( t2 ){ ord20 };
[ 40, 20 ]
gap> der:= DerivedSubgroup( act );;
gap> repeat 20A:= Random( der );
> until Order( 20A ) = 20 and Size( Centralizer( act, 20A ) ) = 40;
gap> RatioOfNongenerationTransPermGroup( act, g, 20A );
1
gap> repeat 20BC:= Random( der );
> until Order( 20BC ) = 20 and Size( Centralizer( act, 20BC ) ) = 20;
gap> RatioOfNongenerationTransPermGroup( act, g, 20BC );
0
]]></Example>
<P/>
This means that for <M>s</M> in one <M>S</M>-class of elements of order <M>20</M>,
we have <M>∝^{\prime}(g, s) = 1</M>,
and <M>s</M> in the other two <M>S</M>-classes of elements of order <M>20</M> generates
with any conjugate of <M>g</M>.
<P/>
Concerning <M>S.2_2</M>, it remains to show that we cannot find a better element
than <M>s</M>.
For that, we first compute class representatives <M>s^{\prime}</M>
in <M>S</M>, w.r.t. conjugacy in <M>S.2_2</M>,
and then compute <M>∝^{\prime}( s^{\prime}, g )</M>.
(It would be enough to check representatives of classes of maximal element
order, but computing all classes is easy enough.)
<P/>
<Example><![CDATA[
gap> ccl:= ConjugacyClasses( act );;
gap> der:= DerivedSubgroup( act );;
gap> reps:= Filtered( List( ccl, Representative ), x -> x in der );;
gap> Length( reps );
83
gap> ratios:= List( reps,
> s -> RatioOfNongenerationTransPermGroup( act, g, s ) );;
gap> cand:= PositionsProperty( ratios, x -> x < 1 );;
gap> ratios:= ratios{ cand };;
gap> SortParallel( ratios, cand );
gap> ratios;
[ 0, 1/10, 1/10, 16/135, 1/3, 1/3, 11/27, 7/15, 7/15 ]
]]></Example>
<P/>
For <M>S.2_2</M>, it remains to show that there is no element <M>s^{\prime} \in S</M>
such that <M>∝^{\prime}( {s^{\prime}}^x, g ) < 1</M> holds for any
<M>x \in &Aut;(S)</M> and <M>g \in S.2_2</M>.
So we are done when we can show that each class given by <C>cand</C>
is conjugate in <M>S.3</M> to a class outside <C>cand</C>.
The classes can be identified by element orders and centralizer orders.
<P/>
<Example><![CDATA[
gap> invs:= List( cand,
> x -> [ Order( reps[x] ), Size( Centralizer( der, reps[x] ) ) ] );
[ [ 20, 20 ], [ 18, 108 ], [ 18, 108 ], [ 14, 28 ], [ 15, 45 ],
[ 15, 45 ], [ 10, 40 ], [ 12, 72 ], [ 12, 72 ] ]
]]></Example>
<P/>
Namely, <C>cand</C> contains no full <M>S.3</M>-orbit of classes of the element orders
<M>20</M>, <M>18</M>, <M>14</M>, <M>15</M>, and <M>10</M>; also, <C>cand</C> does not contain full
<M>S.3</M>-orbits on the classes <C>12O</C>–<C>12T</C>.
<P/>
Finally, we deal with <M>S.3</M>.
The fact that no maximal subgroup of <M>S</M> containing an element of order <M>20</M>
extends to <M>S.3</M> follows either from the list of maximal subgroups of <M>S</M>
in <Cite Key="CCN85" Where="p. 140"/>
or directly from the permutation characters.
<P/>
<Example><![CDATA[
gap> t3:= CharacterTable( "O8+(3).3" );;
gap> tfust3:= GetFusionMap( t, t3 );;
gap> inv:= InverseMap( tfust3 );;
gap> filt:= PositionsProperty( prim, x -> x[ spos ] <> 0 );;
gap> ForAll( prim{ filt },
> pi -> ForAny( CompositionMaps( pi, inv ), IsList ) );
true
]]></Example>
<P/>
So we have to consider only the classes of novelties in <M>S.3</M>,
but the order of none of these groups is divisible by <M>20</M>
–again see <Cite Key="CCN85" Where="p. 140"/>).
This means that <E>any</E> element in <M>S.3 \setminus S</M> together with an element
of order <M>20</M> in <M>S</M> generates <M>S.3</M>.
This is in fact stronger than statement (f),
which claims this property only for elements of prime order in
<M>S.3 \setminus S</M> (and their roots);
note that <M>S.3 \setminus S</M> contains elements of the orders <M>9</M> and <M>27</M>.
<P/>
<Example><![CDATA[
gap> outer:= Difference( [ 1 .. NrConjugacyClasses( t3 ) ],
> ClassPositionsOfDerivedSubgroup( t3 ) );
[ 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94 ]
gap> Set( OrdersClassRepresentatives( t3 ){ outer } );
[ 3, 6, 9, 12, 18, 21, 24, 27, 36, 39 ]
]]></Example>
<P/>
Before we turn to the next computations, we clean the workspace.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O8p4">
<Heading><M>O^+_8(4)</M></Heading>
We show that <M>S = O^+_8(4) = \Omega^+(8,4)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For suitable <M>s \in S</M> of the type <M>2^- \perp 6^-</M>
(i. e., <M>s</M> decomposes the natural <M>8</M>-dimensional module
for <M>S</M> into an orthogonal sum of two irreducible modules
of the dimensions <M>2</M> and <M>6</M>, respectively) and of order
<M>65</M>,
<M>&M;(S,s)</M> consists of exactly three pairwise nonconjugate subgroups
of the type <M>(5 \times O^-_6(4)).2 = (5 \times \Omega^-(6,4)).2</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;( S, s ) \leq 34\,817 / 1\,645\,056</M>.
</Item>
<Mark>(c)</Mark>
<Item>
In the extensions <M>S.2_1</M> and <M>S.3</M> of <M>S</M> by
graph automorphisms,
there is at most one maximal subgroup besides <M>S</M> that contains
<M>s</M>.
For the extension <M>S.2_2</M> of <M>S</M> by a field automorphism,
we have <M>&total;^{\prime}(S.2_2, s) = 0</M>.
In the extension <M>S.2_3</M> of <M>S</M> by the product of an involutory
graph automorphism and a field automorphism,
there is a unique maximal subgroup besides <M>S</M> that contains <M>s</M>.
</Item>
</List>
<P/>
A safe source for determining <M>&M;(S,s)</M> is <Cite Key="Kle87"/>.
<!-- % (In the result matrix of this paper, we have <M>q = 4</M> and <M>d = 1</M>.) -->
<!-- % 1--3: <M>&GL;(4,q)</M> no, -->
<!-- % 4: <M>&GL;(2,q)</M> no, -->
<!-- % 5: <M>\Omega^+(4,q)</M> no, -->
<!-- % 6--8: <M>&GL;(3,q)</M> no, -->
<!-- % 9--14: <M>\Omega(7,q)</M> yes -->
<!-- % but only three classes for even <M>q</M>, -->
<!-- % 15--18: <M>G_2(q)</M> no (and not maximal), -->
<!-- % 19--21: <M>\Omega^+(6,q)</M> no, -->
<!-- % 22: <M>&GL;(3,q)</M> no, -->
<!-- % 23--25: <M>\Omega^-(6,q)</M> yes, -->
<!-- % so three classes of <M>(5 \times \Omega^-(6,4)).2</M> -->
<!-- % 26: <M>&GU;(3,q)</M> not maximal, -->
<!-- % 27--32: only for odd <M>q</M>, -->
<!-- % 33--54: only for prime <M>q</M>, -->
<!-- % 55, 56: <M>S_4</M> no, -->
<!-- % 58--60: <M>\Omega^-(4,q)</M> no, -->
<!-- % 61: <M>D_{34}</M> no, -->
<!-- % 62, 63: <M>&POmega;^+(8,2)</M> no, -->
<!-- % 64--69: <M>\Omega^-(8,2)</M> no, -->
<!-- % 70: <M>&PGL;(3,q)</M> no -->
By inspection of the result matrix in this paper,
we get that the only maximal subgroups of <M>S</M> that contain elements
of order <M>65</M> occur in the rows 9–14 and 23–25;
they have the isomorphism types
<M>S_6(4) = &Sp;(6,4) \cong O_7(4) = \Omega(7,4)</M> and
<M>(5 \times O_6^-(4)).2 = (5 \times \Omega^-(6,4)).2</M>, respectively,
and for each of these, there are three conjugacy classes of subgroups
in <M>S</M>, which are conjugate under the triality graph automorphism of <M>S</M>.
<P/>
We start with the natural matrix representation of <M>S</M>.
For convenience,
we compute an isomorphic permutation group on <M>5\,525</M> points.
<P/>
<Example><![CDATA[
gap> q:= 4;; n:= 8;;
gap> G:= DerivedSubgroup( SO( 1, n, q ) );;
gap> points:= NormedRowVectors( GF(q)^n );;
gap> orbs:= OrbitsDomain( G, points, OnLines );;
gap> List( orbs, Length );
[ 5525, 16320 ]
gap> hom:= ActionHomomorphism( G, orbs[1], OnLines );;
gap> G:= Image( hom );;
]]></Example>
<P/>
The group <M>S</M> contains exactly six conjugacy classes of (cyclic) subgroups
of order <M>65</M>;
this follows from the fact that the centralizer of any Sylow <M>13</M> subgroup
in <M>S</M> has the structure <M>5 \times 5 \times 13</M>.
<P/>
<Example><![CDATA[
gap> Collected( Factors( Size( G ) ) );
[ [ 2, 24 ], [ 3, 5 ], [ 5, 4 ], [ 7, 1 ], [ 13, 1 ], [ 17, 2 ] ]
gap> ResetGlobalRandomNumberGenerators();
gap> repeat x:= Random( G );
> until Order( x ) mod 13 = 0;
gap> x:= x^( Order( x ) / 13 );;
gap> c:= Centralizer( G, x );;
gap> IsAbelian( c ); AbelianInvariants( c );
true
[ 5, 5, 13 ]
]]></Example>
<P/>
The group <M>S_6(4)</M> contains exactly one class of subgroups of order <M>65</M>,
since the conjugacy classes of elements of order <M>65</M> in <M>S_6(4)</M> are
algebraically conjugate.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S6(4)" );;
gap> ord65:= PositionsProperty( OrdersClassRepresentatives( t ),
> x -> x = 65 );
[ 105, 106, 107, 108, 109, 110, 111, 112 ]
gap> ord65 = ClassOrbit( t, ord65[1] );
true
]]></Example>
<P/>
Thus there are at least three classes of order <M>65</M> elements in <M>S</M>
that are <E>not</E> contained in <M>S_6(4)</M> type subgroups of <M>S</M>.
So we choose such an element <M>s</M>,
and have to consider only overgroups of the type
<M>(5 \times \Omega^-(6,4)).2</M>.
<P/>
The group <M>\Omega^-(6,4) \cong U_4(4)</M> contains exactly one class
of subgroups of order <M>65</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "U4(4)" );;
gap> ords:= OrdersClassRepresentatives( t );;
gap> ord65:= PositionsProperty( ords, x -> x = 65 );;
gap> ord65 = ClassOrbit( t, ord65[1] );
true
]]></Example>
<P/>
So <M>5 \times \Omega^-(6,4)</M> contains exactly six such classes.
Furthermore, subgroups in different classes are not <M>S</M>-conjugate.
<P/>
<Example><![CDATA[
gap> syl5:= SylowSubgroup( c, 5 );;
gap> elms:= Filtered( Elements( syl5 ), y -> Order( y ) = 5 );;
gap> reps:= Set( elms, SmallestGeneratorPerm );; Length( reps );
6
gap> reps65:= List( reps, y -> SubgroupNC( G, [ y * x ] ) );;
gap> pairs:= Combinations( reps65, 2 );;
gap> ForAny( pairs, p -> IsConjugate( G, p[1], p[2] ) );
false
]]></Example>
<P/>
We consider only subgroups <M>M \leq S</M> in the three <M>S</M>-classes of the type
<M>(5 \times \Omega^-(6,4)).2</M>.
<P/>
<Example><![CDATA[
gap> cand:= List( reps, y -> Normalizer( G, SubgroupNC( G, [ y ] ) ) );;
gap> cand:= Filtered( cand, y -> Size( y ) = 10 * Size( t ) );;
gap> Length( cand );
3
]]></Example>
<P/>
<!--
We can identify the three classes that are contained also in <M>O_7(4)</M>
type subgroups, as follows.
The elements in the naturally embedded subgroup <M>O_7(4)</M> of <M>O_8^+(4)</M>
fix a <M>1</M>-space, and exactly one of the six representatives of order <M>65</M>
has this property; more precisely, it has the structure <M>1 \perp 1 \perp 6</M>,
whereas the other five representatives have the structure <M>2 \perp 6</M>.
gap> mats:= List( reps, y -> PreImagesRepresentative( hom, x * y ) );;
gap> List( mats,
> x -> List( Factors( CharacteristicPolynomial( x ) ), Degree ) );
[ [ 2, 6 ], [ 2, 6 ], [ 1, 1, 6 ], [ 2, 6 ], [ 2, 6 ], [ 2, 6 ] ]
Furthermore, the corresponding elements of order <M>5</M> have two types of
normalizers.
gap> cand:= List( reps, y -> Normalizer( G, SubgroupNC( G, [ y ] ) ) );;
gap> List( cand, Size );
[ 10183680000, 3120000, 3120000, 10183680000, 3120000, 10183680000 ]
So the elements of order <M>65</M> that lie only in subgroups of the type
<M>(5 \times \Omega^-(6,4)).2</M> are precisely those whose <M>13</M>-th power
has a normalizer of the right order.
-->
<P/>
(Note that one of the members in <M>&M;(S,s)</M> is the stabilizer in <M>S</M> of the
orthogonal decomposition <M>2^- \perp 6^-</M>,
the other two members are not reducible.)
<P/>
By the above, the classes of subgroups of order <M>65</M> in each such <M>M</M>
are in bijection with the corresponding classes in <M>S</M>.
Since <M>N_S(\langle g \rangle) \subseteq M</M> holds
for any <M>g \in M</M> of order <M>65</M>, also the conjugacy classes of
<E>elements</E> of order <M>65</M> in <M>M</M> are in bijection with those in <M>S</M>.
<P/>
<Example><![CDATA[
gap> norms:= List( reps65, y -> Normalizer( G, y ) );;
gap> ForAll( norms, y -> ForAll( cand, M -> IsSubset( M, y ) ) );
true
]]></Example>
<P/>
As a consequence, we have <M>g^S \cap M = g^M</M> and thus <M>1_M^S(g) = 1</M>.
This implies statement (a).
<P/>
In order to show statement (b),
we want to use the function <C>UpperBoundFixedPointRatios</C> introduced in
Section <Ref Subsect="subsect:groups"/>.
For that, we first compute the conjugacy classes of
the three class representatives <M>M</M>.
(Since the groups have elementary abelian Sylow <M>5</M> subgroups of the order
<M>5^4</M>, computing all conjugacy classes appears to be faster than using
<C>ClassesOfPrimeOrder</C>.)
Then we compute an upper bound for <M>&total;(S,s)</M>.
<P/>
<Example><![CDATA[
gap> syl5:= SylowSubgroup( cand[1], 5 );;
gap> Size( syl5 ); IsElementaryAbelian( syl5 );
625
true
gap> UpperBoundFixedPointRatios( G, List( cand, ConjugacyClasses ), false );
[ 34817/1645056, false ]
]]></Example>
<P/>
<E>Remark:</E>
<P/>
Computing the exact value <M>&total;(S,s)</M> in the above setup would require
to test the <M>S</M>-conjugacy of certain order <M>5</M> elements in <M>M</M>.
With the current &GAP; implementation,
some of the relevant tests need several hours of CPU time.
<P/>
An alternative approach would be to compute the permutation action of
<M>S</M> on the cosets of <M>M</M>, of degree <M>6\,580\,224</M>,
and to count the fixed points of conjugacy class representatives
of prime order.
The currently available &GAP; library methods are not sufficient
for computing this in reasonable time.
<Q>Ad-hoc code</Q> for this special case works,
but it seemed to be not appropriate to include it here.
<P/>
In the proof of statement (c),
again we consult the result matrix in <Cite Key="Kle87"/>.
For <M>S.3</M>,
the maximal subgroups are in the rows <M>4</M>, <M>15</M>, <M>22</M>, <M>26</M>, and <M>61</M>.
Only row <M>26</M> yields subgroups that contain elements <M>s</M> of order <M>65</M>,
they have the isomorphism type
<M>(5 \times &GU;(3,4)).2 \cong (5^2 \times U_3(4)).2</M>.
Note that the conjugacy classes of the members in <M>&M;(S,s)</M> are permuted
by the outer automorphism of order <M>3</M>,
so none of the subgroups in <M>&M;(S,s)</M> extends to <M>S.3</M>.
By <Cite Key="BGK" Where="Lemma 2.4 (2)"/>,
if there is a maximal subgroup of <M>S.3</M>
besides <M>S</M> that contains <M>s</M> then this subgroup is the normalizer in <M>S.3</M>
of the intersection of the three members of <M>&M;(S,s)</M>,
i. e., <M>s</M> is contained in at most one such subgroup.
<!-- % If we do not believe this, we can see it character-theoretically, -->
<!-- % from the embedding of <M>&GU;(3,4)</M> into <M>U_4(4) \cong \Omega^-(6,4)</M>, -->
<!-- % the unique possible permutation character of degree <M>3264</M> -->
<!-- % takes the value <M>1</M> on all elements of order <M>13</M> and <M>65</M>, -->
<!-- % so the same holds for the direct product with the cyclic <M>5</M> -->
<!-- % and the extension by the outer <M>2</M>. -->
<!-- % So also inducing this character to <M>S</M> gives the value <M>1</M>. -->
<P/>
For <M>S.2_1</M>,
only the rows <M>9</M> and <M>23</M> yield maximal subgroups containing elements of
order <M>65</M>, and since we had chosen <M>s</M> in such a way
that row <M>9</M> was excluded already for the simple group,
only extensions of the elements in <M>&M;(S,s)</M> can appear.
Exactly one of these three subgroups of <M>S</M> extends to <M>S.2_1</M>,
so again we get just one maximal subgroup of <M>S.2_1</M>, besides <M>S</M>,
that contains <M>s</M>.
<!-- %T Just for curiosity: -->
<!-- %T What is the intersection of the two non-extending ones? -->
<P/>
All subgroups in <M>&M;(S,s)</M> extend to <M>S.2_2</M>, see <Cite Key="Kle87"/>.
We compute the extensions of the above subgroups <M>M</M> of <M>S</M> to <M>S.2_2</M>,
by constructing the action of the field automorphism
in the permutation representation we used for <M>S</M>.
In other words, we compute the projective action of the Frobenius map.
<P/>
<Example><![CDATA[
gap> frob:= PermList( List( orbs[1], v -> Position( orbs[1],
> List( v, x -> x^2 ) ) ) );;
gap> G2:= ClosureGroupDefault( G, frob );;
gap> cand2:= List( cand, M -> Normalizer( G2, M ) );;
gap> ccl:= List( cand2,
> M2 -> PcConjugacyClassReps( SylowSubgroup( M2, 2 ) ) );;
gap> List( ccl, l -> Number( l, x -> Order( x ) = 2 and not x in G ) );
[ 0, 0, 0 ]
]]></Example>
<P/>
So in each case, the extension of <M>M</M> to its normalizer in <M>S.2_2</M>
is non-split.
This implies <M>&total;^{\prime}(S.2_2,s) = 0</M>.
<P/>
Finally, in the extension of <M>S</M> by the product of a graph automorphism
and the field automorphism, exactly that member of <M>&M;(S,s)</M> is invariant
that is invariant under the graph automorphism,
hence statement (c) holds.
<P/>
It is again time to clean the workspace.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
<P/>
<!--
the alternative approach:
compute the classes of <M>S</M>, then a right transversal of <M>M</M>,
and count fixed points.
gap> ccl:= ConjugacyClasses( permG );; Length( ccl );
405
(The above computations require about <M>4</M> hours of CPU time.)
One class of the <M>(5 \times O^-_6(4)).2</M> type subgroups can be described as
the stabilizers of certain <M>2</M>-dimensional subspaces of the natural module.
So the idea is to enumerate the <M>S</M>-orbit of such a subspace
--it is of length <M>6\,580\,224</M>--
and to count, for each class representative of <M>S</M>,
the number of fixed points in this orbit.
This yields the first desired permutation character.
We first compute the <M>S</M>-orbit of a suitable <M>2</M>-dimensional space.
This could be done directly by representing each vector space by its
canonical basis, and acting with the matrix group on the canonical bases,
via the &GAP; function <C>OnSubspacesByCanonicalBasis</C>.
However,
it is more efficient to replace each canonical basis by
the normed nonzero vectors in the space spanned by this basis,
and then to perform the computations in the permutation group
obtained by identifying the normed vectors with points.
In our case, each <M>2</M>-dimensional space is thus represented by a set
of five numbers in the range between <M>1</M> and <M>21\,845</M>.
gap> basis:=
> [ [ Z(2), 0*Z(2), Z(2^2)^2, Z(2^2), Z(2), Z(2^2), Z(2), Z(2^2) ],
> [ 0*Z(2), Z(2), 0*Z(2), Z(2^2)^2, Z(2^2)^2, Z(2^2), Z(2^2), 0*Z(2) ] ];;
gap> encode:= Set( NormedRowVectors( VectorSpace( GF(q), basis ) ),
> v -> Position( points, v ) );
[ 2366, 9148, 13028, 17520, 21064 ]
gap> MakeImmutable( encode );
gap> orb:= Orbit( Action( S, points, OnLines ), encode, OnSets );;
gap> Length( orb );
6580224
This computation is too large for the standard &GAP; functions!
The next step is the computation of the permutation character <M>\pi</M> of the
<M>S</M>-action on <C>orb</C>.
The class representatives <C>cclreps</C> are given w.r.t. the permutation
representation on <M>5\,525</M> points,
we first compute preimages in the matrix group, under the isomorphism <C>iso</C>,
and then the induced permutations of the <M>21\,845</M> normed vectors.
(Instead of using the &GAP; function <C>Permutation</C> for the second step,
we call <C>Sortex</C> for the list of images of the normed vectors of each matrix.
Note that the list <C>points</C> is strictly sorted.)
%T check that this really defines a permutation?
%T Read( "~/construct/O8p4/classreps" );
%T perm:= [];
%T for r in ccl do
%T Print( <Ref ???="process ...\n"/> );
%T pre:= PreImagesRepresentative( iso, r );
%T acting:= Sortex( List( points, v -> OnLines( v, pre ) ) );
%T Add( perm, Number( orb, p -> OnSets( p, acting ) = x ) );
%T od;
gap> IsSSortedList( points );
true
gap> preims:= List( cclreps, x -> PreImagesRepresentative( iso, x ) );;
gap> acts:= List( preims,
> mat -> Sortex( List( points, v -> OnLines( v, mat ) ) ) );;
gap> pi:= List( acts, perm -> Number( orb, x -> OnSets( x, perm ) = x ) );
[ 6580224, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3264,
3264, 0, 0, 0, 0, 0, 0, 0, 8, 8, 72, 72, 84, 84, 72, 20, 20, 28160, 8, 0,
0, 12, 12, 18432, 0, 0, 0, 12, 12, 209, 209, 2, 2, 74, 2, 2, 2, 2, 72, 2,
2, 2, 2, 28289, 28289, 257, 257, 12, 12, 12, 12, 12, 12, 12, 12, 24, 209,
209, 2, 2, 0, 0, 0, 0, 0, 0, 12, 12, 3264, 3264, 2, 2, 14, 14, 12, 12, 0,
0, 0, 0, 0, 12, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 209, 209, 0, 0, 12, 12, 0,
0, 72, 72, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 24192, 0, 1,
1, 17, 17, 256, 192, 192, 16, 16, 1, 1, 225, 225, 9, 9, 224, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 137, 137, 2, 0, 0, 0, 0, 0, 0, 12, 12, 24, 192, 192, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 17, 0, 0, 0, 0, 0, 0,
0, 0, 12, 12, 0, 8, 8, 8, 8, 136, 136, 136, 136, 9, 9, 224, 8, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 2, 2, 8, 8, 2048, 0,
17, 17, 8, 0, 0, 16, 0, 0, 0, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0 ]
In order to determine <M>&M;(S,s)</M>, we first note that <M>S</M> contains six classes
of cyclic subgroups of order <M>65</M>, and that <M>\pi</M> takes the value <M>1</M> on
all elements of order <M>65</M>.
gap> ord65:= PositionsProperty( ccl,
> c -> Order( Representative( c ) ) = 65 );;
gap> Set( pi{ ord65 } );
[ 1 ]
Since <M>S_6(4)</M> contains exactly one class of cyclic subgroups of order <M>65</M>,
and since <M>S</M> contains three classes of <M>S_6(4)</M> type subgroups,
there are classes of cyclic subgroups of order <M>65</M> that are not contained
in any <M>S_6(4)</M> type subgroup of <M>S</M>.
So we choose <M>s</M> from one of these classes, and get that <M>&M;(S,s)</M> consists
of three groups of the type <M>(C_5 \times O_6^-(4)).2</M>.
By the fact that these groups are conjugate under the triality automorphism
of <M>S</M>, the three permutation characters take the same set of values,
so
\[
&total;(S,s) = \sum_{M \in &MM;(s)} \frac{1_M^S(s) \cdot 1_M^S(g)}{1_M^S(1)}
\leq 3 \max\{ \pi(g); g \in S^{\times} \} / \pi(1)
\]
holds.
Thus we get the following upper bound for <M>&total;(S,s)</M>.
gap> bound:= 3 * Maximum( pi{ [ 2 .. Length( pi ) ] } ) / pi[1];
28289/2193408
question of equality:
gap> approx:= ( pi{ [ 2 .. Length( pi ) ] } ) / pi[1];;
gap> mx:= Maximum( approx );
28289/6580224
gap> PositionsProperty( approx, x -> x = mx );
[ 90, 91 ]
equality?
-->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O93">
<Heading><M>\ast</M> <M>O_9(3)</M></Heading>
The group <M>S = O_9(3) = \Omega_9(3)</M> is the first member in the series
dealt with in <Cite Key="BGK" Where="Proposition 5.7"/>,
and serves as an example to illustrate this statement.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of the type <M>1 \perp 8^-</M>
(i. e., <M>s</M> decomposes the natural <M>9</M>-dimensional module
for <M>S</M>
into an orthogonal sum of two irreducible modules of the dimensions
<M>1</M> and <M>8</M>, respectively) and of order <M>(3^4 + 1)/2 = 41</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>O_8^-(3).2_1 = &PGO;^-(8,3)</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 1/3</M>.
</Item>
<Mark>(c)</Mark>
<Item>
The uniform spread of <M>S</M> is at least three,
with <M>s</M> of order <M>41</M>.
</Item>
</List>
<P/>
By <Cite Key="MSW94"/>, the only maximal subgroup of <M>S</M> that contains <M>s</M>
is the stabilizer <M>M</M> of the orthogonal decomposition.
The group <M>2 \times O_8^-(3).2_1 = &GO;^-(8,3)</M> embeds naturally into
<M>&SO;(9,3)</M>, its intersection with <M>S</M> is <M>&PGO;^-(8,3)</M>.
This proves statement (a).
<P/>
The group <M>M</M> is the stabilizer of a <M>1</M>-space, it has index <M>3\,240</M> in <M>S</M>.
<P/>
<Example><![CDATA[
gap> g:= SO( 9, 3 );;
gap> g:= DerivedSubgroup( g );;
gap> Size( g );
65784756654489600
gap> orbs:= OrbitsDomain( g, NormedRowVectors( GF(3)^9 ), OnLines );;
gap> List( orbs, Length ) / 41;
[ 3240/41, 81, 80 ]
gap> Size( SO( 9, 3 ) ) / Size( GO( -1, 8, 3 ) );
3240
]]></Example>
<P/>
So we compute the unique transitive permutation character of <M>S</M> that has
degree <M>3\,240</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "O9(3)" );;
gap> pi:= PermChars( t, rec( torso:= [ 3240 ] ) );
[ Character( CharacterTable( "O9(3)" ),
[ 3240, 1080, 380, 132, 48, 324, 378, 351, 0, 0, 54, 27, 54, 27, 0,
118, 0, 36, 46, 18, 12, 2, 8, 45, 0, 108, 108, 135, 126, 0, 0,
56, 0, 0, 36, 47, 38, 27, 39, 36, 24, 12, 18, 18, 15, 24, 2,
18, 15, 9, 0, 0, 0, 2, 0, 18, 11, 3, 9, 6, 6, 9, 6, 3, 6, 3, 0,
6, 16, 0, 4, 6, 2, 45, 36, 0, 0, 0, 0, 0, 0, 0, 9, 9, 6, 3, 0,
0, 15, 13, 0, 5, 7, 36, 0, 10, 0, 10, 19, 6, 15, 0, 0, 0, 0,
12, 3, 10, 0, 3, 3, 7, 0, 6, 6, 2, 8, 0, 4, 0, 2, 0, 1, 3, 0,
0, 3, 0, 3, 2, 2, 3, 3, 6, 2, 2, 9, 6, 3, 0, 0, 18, 9, 0, 0,
12, 0, 0, 8, 0, 6, 9, 5, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 2, 1,
3, 3, 1, 0, 0, 4, 1, 0, 0, 1, 0, 3, 3, 1, 1, 2, 2, 0, 0, 1, 3,
4, 0, 1, 2, 0, 0, 1, 0, 4, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 1, 1, 1, 0, 0, 1, 1, 1, 0 ] ) ]
gap> spos:= Position( OrdersClassRepresentatives( t ), 41 );
208
gap> approx:= ApproxP( pi, spos );;
gap> Maximum( approx );
1/3
gap> PositionsProperty( approx, x -> x = 1/3 );
[ 2 ]
gap> SizesConjugacyClasses( t )[2];
3321
gap> OrdersClassRepresentatives( t )[2];
2
]]></Example>
<P/>
We see that <M>∝( S, s ) = &total;( S, s ) = 1/3</M> holds,
and that <M>&total;( g, s )</M> attains this maximum only for <M>g</M> in one
class of involutions in <M>S</M>;
let us call this class <C>2A</C>.
(This class consists of the negatives of a class of <E>reflections</E>
in <M>&GO;(9,3)</M>.)
This shows statement (b).
<P/>
In order to show that the uniform spread of <M>S</M> is at least three,
it suffices to show that for each triple of <C>2A</C> elements,
there is an element <M>s</M> of order <M>41</M> in <M>S</M> that generates <M>S</M> with each
element of the triple.
<P/>
We work with the primitive permutation representation of <M>S</M> on <M>3\,240</M>
points.
In this representation, <M>s</M> fixes exactly one point,
and by statement (a),
<M>s</M> generates <M>S</M> with <M>x \in S</M> if and only if <M>x</M> moves this point.
Since the number of fixed points of each <C>2A</C> involution in <M>S</M> is
exactly one third of the moved points of <M>S</M>,
it suffices to show that we cannot choose three such involutions with
mutually disjoint fixed point sets.
And this is shown particularly easily because it will turn out that
already for any two different <C>2A</C> involutions,
the sets of fixed points of are never disjoint.
<P/>
First we compute a <C>2A</C> element, which is determined as an involution
with exactly <M>1\,080</M> fixed points.
<P/>
<Example><![CDATA[
gap> g:= Action( g, orbs[1], OnLines );;
gap> repeat
> repeat x:= Random( g ); ord:= Order( x ); until ord mod 2 = 0;
> y:= x^(ord/2);
> until NrMovedPoints( y ) = 3240 - 1080;
]]></Example>
<P/>
Next we compute the sets of fixed points of the elements in the class <C>2A</C>,
by forming the <M>S</M>-orbit of the set of fixed points of the chosen
<C>2A</C> element.
<P/>
<Example><![CDATA[
gap> fp:= Difference( MovedPoints( g ), MovedPoints( y ) );;
gap> orb:= Orbit( g, fp, OnSets );;
]]></Example>
<P/>
Finally, we show that for any pair of <C>2A</C> elements, their sets of
fixed points intersect nontrivially.
(Of course we can fix one of the two elements.)
This proves statement (c).
<P/>
<Example><![CDATA[
gap> ForAny( orb, l -> IsEmpty( Intersection( l, fp ) ) );
false
]]></Example>
<!-- %T remark: <M>\Omega(5,3)</M> is not interesting because nonsimple, -->
<!-- %T and there are three maxes not just one -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O10m3">
<Heading><M>O_{10}^-(3)</M></Heading>
We show that the group <M>S = O_{10}^-(3) = &POmega;^-(10,3)</M> satisfies the
following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> irreducible of order <M>(3^5 + 1)/4 = 61</M>,
<M>&M;(S,s)</M> consists of one subgroup of the type
<M>&SU;(5,3) \cong U_5(3)</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 1/1\,066</M>.
</Item>
</List>
<P/>
By <Cite Key="Be00"/>, the maximal subgroups of <M>S</M> containing <M>s</M> are of
extension field type,
and by <Cite Key="KlL90" Where="Prop. 4.3.18 and 4.3.20"/>,
these groups have the structure
<M>&SU;(5,3) = U_5(3)</M>
(which lift to <M>2 \times U_5(3) < &GU;(5,3)</M> in
<M>\Omega^-(10,3) = 2.S</M>) or <M>\Omega(5,9).2</M>,
but the order of the latter group is not divisible by <M>|s|</M>.
Furthermore, by <Cite Key="BGK" Where="Lemma 2.12 (b)"/>,
<M>s</M> is contained in only one member of the former class.
<P/>
<Example><![CDATA[
gap> Size( GO(5,9) ) / 61;
6886425600/61
]]></Example>
<P/>
<E>When the first version of these computations was written,
the character tables of both <M>S</M> and <M>U_5(3)</M> were not
contained in the &GAP; Character Table Library,
so we worked with the groups.
Meanwhile the character tables are available,
thus we can show also a character theoretic solution.)</E>
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "O10-(3)" ); s:= CharacterTable( "U5(3)" );
CharacterTable( "O10-(3)" )
CharacterTable( "U5(3)" )
gap> SigmaFromMaxes( t, "61A", [ s ], [ 1 ] );
1/1066
]]></Example>
<P/>
<E>(Now follow the computations with groups.)</E>
<P/>
The first step is the construction of the embedding of <M>M = &SU;(5,3)</M>
into the matrix group <M>2.S</M>,
that is, we write the matrix generators of <M>M</M> as linear mappings on
the natural module for <M>2.S</M>, and then conjugate them such that the
result matrices respect the bilinear form of <M>2.S</M>.
For convenience, we choose a basis for the field extension
<M>&F;_9/&F;_3</M> such that the <M>&F;_3</M>-linear mapping given by the invariant
form of <M>M</M> is invariant under the <M>&F;_3</M>-linear mappings given by
the generators of <M>M</M>.
<P/>
<!-- % We need that the basis vectors <C>v</C> satisfy -->
<!-- % <C>BlownUpMat( b, v^q ) = TransposedMat( BlownUpMat( b, v ) )</C>. -->
<Example><![CDATA[
gap> m:= SU(5,3);;
gap> so:= SO(-1,10,3);;
gap> omega:= DerivedSubgroup( so );;
gap> om:= InvariantBilinearForm( so ).matrix;;
gap> Display( om );
. 1 . . . . . . . .
1 . . . . . . . . .
. . 1 . . . . . . .
. . . 2 . . . . . .
. . . . 2 . . . . .
. . . . . 2 . . . .
. . . . . . 2 . . .
. . . . . . . 2 . .
. . . . . . . . 2 .
. . . . . . . . . 2
gap> b:= Basis( GF(9), [ Z(3)^0, Z(3^2)^2 ] );
Basis( GF(3^2), [ Z(3)^0, Z(3^2)^2 ] )
gap> blow:= List( GeneratorsOfGroup( m ), x -> BlownUpMat( b, x ) );;
gap> form:= BlownUpMat( b, InvariantSesquilinearForm( m ).matrix );;
gap> ForAll( blow, x -> x * form * TransposedMat( x ) = form );
true
gap> Display( form );
. . . . . . . . 1 .
. . . . . . . . . 1
. . . . . . 1 . . .
. . . . . . . 1 . .
. . . . 1 . . . . .
. . . . . 1 . . . .
. . 1 . . . . . . .
. . . 1 . . . . . .
1 . . . . . . . . .
. 1 . . . . . . . .
]]></Example>
<P/>
The matrix <C>om</C> of the invariant bilinear form of <M>2.S</M>
is equivalent to the identity matrix <M>I</M>.
So we compute matrices <C>T1</C> and <C>T2</C>
that transform <C>om</C> and <C>form</C>, respectively, to <M>\pm I</M>.
<P/>
<Example><![CDATA[
gap> T1:= IdentityMat( 10, GF(3) );;
gap> T1{[1..3]}{[1..3]}:= [[1,1,0],[1,-1,1],[1,-1,-1]]*Z(3)^0;;
gap> pi:= PermutationMat( (1,10)(3,8), 10, GF(3) );;
gap> tr:= NullMat( 10,10,GF(3) );;
gap> tr{[1, 2]}{[1, 2]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[3, 4]}{[3, 4]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[7, 8]}{[7, 8]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[9,10]}{[9,10]}:= [[1,1],[1,-1]]*Z(3)^0;;
gap> tr{[5, 6]}{[5, 6]}:= [[1,0],[0,1]]*Z(3)^0;;
gap> tr2:= IdentityMat( 10,GF(3) );;
gap> tr2{[1,3]}{[1,3]}:= [[-1,1],[1,1]]*Z(3)^0;;
gap> tr2{[7,9]}{[7,9]}:= [[-1,1],[1,1]]*Z(3)^0;;
gap> T2:= tr2 * tr * pi;;
gap> D:= T1^-1 * T2;;
gap> tblow:= List( blow, x -> D * x * D^-1 );;
gap> IsSubset( omega, tblow );
true
]]></Example>
<P/>
Now we switch to a permutation representation of <M>S</M>,
and use the embedding of <M>M</M> into <M>2.S</M> to obtain the corresponding
subgroup of type <M>M</M> in <M>S</M>.
<!-- % Note that the negative of the identity of <M>M</M> is contained in <M>2.S</M> -->
<!-- % but not in <M>M</M>. -->
Then we compute an upper bound for <M>\max\{ &fpr;(g,S/M); g \in S^{\times} \}</M>.
<P/>
<Example><![CDATA[
gap> orbs:= OrbitsDomain( omega, NormedRowVectors( GF(3)^10 ), OnLines );;
gap> List( orbs, Length );
[ 9882, 9882, 9760 ]
gap> permgrp:= Action( omega, orbs[3], OnLines );;
gap> M:= SubgroupNC( permgrp,
> List( tblow, x -> Permutation( x, orbs[3], OnLines ) ) );;
gap> ccl:= ClassesOfPrimeOrder( M, PrimeDivisors( Size( M ) ),
> TrivialSubgroup( M ) );;
gap> UpperBoundFixedPointRatios( permgrp, [ ccl ], false );
[ 1/1066, true ]
]]></Example>
<P/>
The entry <K>true</K> in the second position of the result indicates
that in fact the <E>exact</E> value for the maximum of <M>&fpr;(g,S/M)</M>
has been computed.
This implies statement (b).
<P/>
We clean the workspace.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O14m2">
<Heading><M>O_{14}^-(2)</M></Heading>
We show that the group <M>S = O_{14}^-(2) = \Omega^-(14,2)</M> satisfies the
following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> irreducible of order <M>2^7+1 = 129</M>,
<M>&M;(S,s)</M> consists of one subgroup <M>M</M> of the type
<M>&GU;(7,2) \cong 3 \times U_7(2)</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 1/2\,015</M>.
</Item>
</List>
<P/>
By <Cite Key="Be00"/>,
any maximal subgroup of <M>S</M> containing <M>s</M> is of extension
field type,
and by <Cite Key="KlL90" Where="Table 3.5.F, Prop. 4.3.18"/>,
these groups have the type <M>&GU;(7,2)</M>,
and there is exactly one class of subgroups of this type.
Furthermore, by <Cite Key="BGK" Where="Lemma 2.12 (a)"/>,
<M>s</M> is contained in only one member of this class.
<P/>
We embed <M>U_7(2)</M> into <M>S</M>,
by first replacing each element in <M>&F;_4</M> by the <M>2 \times 2</M> matrix
of the induced <M>&F;_2</M>-linear mapping w.r.t. a suitable basis,
and then conjugating the images of the generators such that the invariant
quadratic form of <M>S</M> is respected.
<P/>
<Example><![CDATA[
gap> o:= SO(-1,14,2);;
gap> g:= SU(7,2);;
gap> b:= Basis( GF(4) );;
gap> blow:= List( GeneratorsOfGroup( g ), x -> BlownUpMat( b, x ) );;
gap> form:= NullMat( 14, 14, GF(2) );;
gap> for i in [ 1 .. 14 ] do form[i][ 15-i ]:= Z(2); od;
gap> ForAll( blow, x -> x * form * TransposedMat( x ) = form );
true
gap> pi:= PermutationMat( (1,13)(3,11)(5,9), 14, GF(2) );;
gap> pi * form * TransposedMat( pi ) = InvariantBilinearForm( o ).matrix;
true
gap> pi2:= PermutationMat( (7,3)(8,4), 14, GF(2) );;
gap> D:= pi2 * pi;;
gap> tblow:= List( blow, x -> D * x * D^-1 );;
gap> IsSubset( o, tblow );
true
]]></Example>
<P/>
Note that the central subgroup of order three in <M>&GU;(7,2)</M> consists of
scalar matrices.
<P/>
<Example><![CDATA[
gap> omega:= DerivedSubgroup( o );;
gap> IsSubset( omega, tblow );
true
gap> z:= Z(4) * One( g );;
gap> tz:= D * BlownUpMat( b, z ) * D^-1;;
gap> tz in omega;
true
]]></Example>
<P/>
Now we switch to a permutation representation of <M>S</M>,
and compute the conjugacy classes of prime element order in the subgroup <M>M</M>.
The latter is done in two steps, first class representatives of the
simple subgroup <M>U_7(2)</M> of <M>M</M> are computed, and then they are multiplied
with the scalars in <M>M</M>.
<P/>
<Example><![CDATA[
gap> orbs:= OrbitsDomain( omega, NormedRowVectors( GF(2)^14 ), OnLines );;
gap> List( orbs, Length );
[ 8127, 8256 ]
gap> omega:= Action( omega, orbs[1], OnLines );;
gap> gens:= List( GeneratorsOfGroup( g ),
> x -> Permutation( D * BlownUpMat( b, x ) * D^-1, orbs[1] ) );;
gap> g:= Group( gens );;
gap> ccl:= ClassesOfPrimeOrder( g, PrimeDivisors( Size( g ) ),
> TrivialSubgroup( g ) );;
gap> tz:= Permutation( tz, orbs[1] );;
gap> primereps:= List( ccl, Representative );;
gap> Add( primereps, () );
gap> reps:= Concatenation( List( primereps,
> x -> List( [ 0 .. 2 ], i -> x * tz^i ) ) );;
gap> primereps:= Filtered( reps, x -> IsPrimeInt( Order( x ) ) );;
gap> Length( primereps );
48
]]></Example>
<P/>
Finally, we apply <C>UpperBoundFixedPointRatios</C>
(see Section <Ref Subsect="subsect:groups"/>)
to compute an upper bound for <M>&fpr;(g,S/M)</M>, for <M>g \in S^{\times}</M>.
<P/>
<Example><![CDATA[
gap> M:= ClosureGroup( g, tz );;
gap> bccl:= List( primereps, x -> ConjugacyClass( M, x ) );;
gap> UpperBoundFixedPointRatios( omega, [ bccl ], false );
[ 1/2015, true ]
]]></Example>
<P/>
Although some of the classes of <M>M</M> in the list <C>bccl</C> may be <M>S</M>-conjugate,
the entry <K>true</K> in the second position of the result indicates
that in fact the <E>exact</E> value for the maximum of <M>&fpr;(g,S/M)</M>,
for <M>g \in S^{\times}</M>, has been computed.
This implies statement (b).
<P/>
We clean the workspace.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="O12p3">
<Heading><M>O_{12}^+(3)</M></Heading>
We show that the group <M>S = O_{12}^+(3) = &POmega;^+(12,3)</M> satisfies the
following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>S</M> has a maximal subgroup <M>M</M> of the type
<M>N_S(&POmega;^+(6,9))</M>,
which has the structure <M>&POmega;^+(6,9).[4]</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&fpr;(g,S/M) \leq 2/88\,209</M> holds for all <M>g \in S^{\times}</M>.
</Item>
</List>
<P/>
(This result is used in the proof
of <Cite Key="BGK" Where="Proposition 5.14"/>,
where it is shown that for <M>s \in S</M> of order <M>205</M>,
<M>&M;(S,s)</M> consists of one reducible subgroup <M>G_8</M>
and at most two extension field type subgroups
of the type <M>N_S(&POmega;^+(6,9))</M>.
By <Cite Key="GK" Where="Proposition 3.16"/>,
<M>&fpr;(g,S/G_8) \leq 19/3^5</M> holds
for all <M>g \in S^{\times}</M>.
This implies
<M>∝(g,s) \leq 19/3^5 + 2 \cdot 2/88\,209 = 6\,901/88\,209 < 1/3</M>.)
<P/>
Statement (a) follows
from <Cite Key="KlL90" Where="Prop. 4.3.14"/>.
<P/>
<!-- % The table of O12+(3) is now available. -->
For statement (b), we embed <M>&GO;^+(6,9) \cong \Omega^+(6,9).2^2</M>
into <M>&SO;^+(12,3) = 2.S.2</M>,
by replacing each element in <M>&F;_9</M> by the <M>2 \times 2</M> matrix of the
induced <M>&F;_3</M>-linear mapping w.r.t. a suitable basis <M>(b_1, b_2)</M>.
We choose a basis with the property <M>b_1 = 1</M> and <M>b_2^2 = 1 + b_2</M>,
because then the image of a symmetric matrix is again symmetric
(so the image of the invariant form is an invariant form for the image
of the group),
and apply an appropriate transformation to the images of the generators.
<P/>
<Example><![CDATA[
gap> so:= SO(+1,12,3);;
gap> Display( InvariantBilinearForm( so ).matrix );
. 1 . . . . . . . . . .
1 . . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 2 . . . . . . . .
. . . . 2 . . . . . . .
. . . . . 2 . . . . . .
. . . . . . 2 . . . . .
. . . . . . . 2 . . . .
. . . . . . . . 2 . . .
. . . . . . . . . 2 . .
. . . . . . . . . . 2 .
. . . . . . . . . . . 2
gap> g:= GO(+1,6,9);;
gap> Z(9)^2 = Z(3)^0 + Z(9);
true
gap> b:= Basis( GF(9), [ Z(3)^0, Z(9) ] );
Basis( GF(3^2), [ Z(3)^0, Z(3^2) ] )
gap> blow:= List( GeneratorsOfGroup( g ), x -> BlownUpMat( b, x ) );;
gap> m:= BlownUpMat( b, InvariantBilinearForm( g ).matrix );;
gap> Display( m );
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
1 . . . . . . . . . . .
. 1 . . . . . . . . . .
. . . . 2 . . . . . . .
. . . . . 2 . . . . . .
. . . . . . 2 . . . . .
. . . . . . . 2 . . . .
. . . . . . . . 2 . . .
. . . . . . . . . 2 . .
. . . . . . . . . . 2 .
. . . . . . . . . . . 2
gap> pi:= PermutationMat( (2,3), 12, GF(3) );;
gap> tr:= IdentityMat( 12, GF(3) );;
gap> tr{[3,4]}{[3,4]}:= [[1,-1],[1,1]]*Z(3)^0;;
gap> D:= tr * pi;;
gap> D * m * TransposedMat( D ) = InvariantBilinearForm( so ).matrix;
true
gap> tblow:= List( blow, x -> D * x * D^-1 );;
gap> IsSubset( so, tblow );
true
]]></Example>
<P/>
The image of <M>&GO;^+(6,9)</M> under the embedding into <M>&SO;^+(12,3)</M>
does not lie in <M>\Omega^+(12,3) = 2.S</M>,
so a factor of two is missing in <M>&GO;^+(6,9) \cap 2.S</M> for getting
(the preimage <M>2.M</M> of) the required maximal subgroup <M>M</M> of <M>S</M>.
Because of this, and also because currently it is time consuming
to compute the derived subgroup of <M>&SO;^+(12,3)</M>,
we work with the upward extension <M>&PSO;^+(12,3) = S.2</M>.
Note that <M>M</M> extends to a maximal subgroup of <M>S.2</M>.
<P/>
First we factor out the centre of <M>&SO;^+(12,3)</M>,
and switch to a permutation representation of <M>S.2</M>.
<P/>
<Example><![CDATA[
gap> orbs:= OrbitsDomain( so, NormedRowVectors( GF(3)^12 ), OnLines );;
gap> List( orbs, Length );
[ 88452, 88452, 88816 ]
gap> act:= Action( so, orbs[1], OnLines );;
gap> SetSize( act, Size( so ) / 2 );
]]></Example>
<!-- Calling <C>DerivedSubgroup</C> for the matrix group is very expensive.
One could provide explicit generators, as follows.
<Example><![CDATA[
gap> gens:= [ Comm( act.1, act.2 ), Comm( act.1, act.3 ),
> Comm( act.2, act.3 ), act.1^2, act.2^2, act.3^2 ];;
gap> omega:= SubgroupNC( act, gens );;
gap> Size( act ) / Size( omega );
2
]]></Example>
Still this (computing the order) requires about 136 seconds. -->
<P/>
Next we rewrite the matrix generators for <M>&GO;^+(6,9)</M> accordingly,
and compute the normalizer in <M>S.2</M> of the subgroup they generate;
this is the maximal subgroup <M>M.2</M> we need.
<P/>
<Example><![CDATA[
gap> u:= SubgroupNC( act,
> List( tblow, x -> Permutation( x, orbs[1], OnLines ) ) );;
gap> n:= Normalizer( act, u );;
gap> Size( n ) / Size( u );
2
]]></Example>
<!-- % Computing the normalizer exceeds 200MB an and needs 251 seconds. -->
<P/>
Now we compute class representatives of prime order in <M>M.2</M>,
in a smaller faithful permutation representation,
and then the desired upper bound for <M>&fpr;(g, S/M)</M>.
<!-- In the earlier version of this file, the conjugacy classes of the whole
group <C>nact</C> were computed, a list of length 333.
The computation of the classes needed 5772 sec. in GAP 4.4.12
and was very space consuming.
In GAP 4.5, the problems were even larger.
Thus I decided to compute directly only the classes whose element orders
are primes. -->
<P/>
<Example><![CDATA[
gap> norbs:= OrbitsDomain( n, MovedPoints( n ) );;
gap> List( norbs, Length );
[ 58968, 29484 ]
gap> hom:= ActionHomomorphism( n, norbs[2] );;
gap> nact:= Image( hom );;
gap> Size( nact ) = Size( n );
true
gap> ccl:= ClassesOfPrimeOrder( nact, PrimeDivisors( Size( nact ) ),
> TrivialSubgroup( nact ) );;
gap> Length( ccl );
26
gap> preim:= List( ccl,
> x -> PreImagesRepresentative( hom, Representative( x ) ) );;
gap> pccl:= List( preim, x -> ConjugacyClass( n, x ) );;
gap> for i in [ 1 .. Length( pccl ) ] do
> SetSize( pccl[i], Size( ccl[i] ) );
> od;
gap> UpperBoundFixedPointRatios( act, [ pccl ], false );
[ 2/88209, true ]
]]></Example>
<!-- If we would work with the central extension,
we would get [ 4/88209, false ] -->
<P/>
Note that we have computed
<M>\max\{ &fpr;(g,S.2/M.2), g \in S.2^{\times} \} \geq
\max\{ &fpr;(g,S.2/M.2), g \in S^{\times} \} =
\max\{ &fpr;(g,S/M), g \in S^{\times} \}</M>.
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="S48">
<Heading><M>\ast</M> <M>S_4(8)</M></Heading>
We show that the group <M>S = S_4(8) = &Sp;(4,8)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> irreducible of order <M>65</M>,
<M>&M;(S,s)</M> consists of two nonconjugate subgroups of the type
<M>S_2(64).2 = &Sp;(2,64).2 \cong L_2(64).2
\cong O_4^-(8).2 = \Omega^-(4,8).2</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 8/63</M>.
</Item>
</List>
<P/>
By <Cite Key="Be00"/>, the only maximal subgroups of <M>S</M> that contain <M>s</M>
are <M>O_4^-(8).2 = &SO;^-(4,8)</M> or of extension field type.
By <Cite Key="KlL90" Where="Prop. 4.3.10, 4.8.6"/>,
there is one class of each of these subgroups (which happen to be isomorphic).
<P/>
These classes of subgroups induce different permutation characters.
One argument to see this is that the involutions in the outer half
of extension field type subgroup <M>S_2(64).2 < S_4(8)</M> have
a two-dimensional fixed space,
whereas the outer involutions in <M>&SO;^-(4,8)</M> have a three-dimensional
fixed space.
<P/>
The former statement can be seen by using a normal basis of the field
extension <M>&F;_{64}/&F;_8</M>, such that the action of the Frobenius
automorphism (which yields a suitable outer involution) is just a
double transposition on the basis vectors of the natural module for <M>S</M>.
<P/>
<Example><![CDATA[
gap> sp:= SP(4,8);;
gap> Display( InvariantBilinearForm( sp ).matrix );
. . . 1
. . 1 .
. 1 . .
1 . . .
gap> z:= Z(64);;
gap> f:= AsField( GF(8), GF(64) );;
gap> repeat
> b:= Basis( f, [ z, z^8 ] );
> z:= z * Z(64);
> until b <> fail;
gap> sub:= SP(2,64);;
gap> Display( InvariantBilinearForm( sub ).matrix );
. 1
1 .
gap> ext:= Group( List( GeneratorsOfGroup( sub ),
> x -> BlownUpMat( b, x ) ) );;
gap> tr:= PermutationMat( (3,4), 4, GF(2) );;
gap> conj:= ConjugateGroup( ext, tr );;
gap> IsSubset( sp, conj );
true
gap> inv:= [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] * Z(2);;
gap> inv in sp;
true
gap> inv in conj;
false
gap> Length( NullspaceMat( inv - inv^0 ) );
2
]]></Example>
<P/>
The latter statement can be shown by looking at an outer involution in
<M>&SO;^-(4,8)</M>.
<P/>
<Example><![CDATA[
gap> so:= SO(-1,4,8);;
gap> der:= DerivedSubgroup( so );;
gap> x:= First( GeneratorsOfGroup( so ), x -> not x in der );;
gap> x:= x^( Order(x)/2 );;
gap> Length( NullspaceMat( x - x^0 ) );
3
]]></Example>
<!-- We could also embed <M>&SO;^-(4,8)</M> into <M>S_4(8)</M>.
Since the invariant forms of the two groups do not coincide,
we have to conjugate one of the groups.
<Example><![CDATA[
gap> Display( InvariantBilinearForm( so ).matrix );
. 1 . .
1 . . .
. . . 1
. . 1 .
gap> tr:= PermutationMat( (2,4), 4, GF(2) );;
gap> conj:= ConjugateGroup( so, tr );;
gap> IsSubset( sp, conj );
true
]]></Example>
-->
<P/>
The character table of <M>L_2(64).2</M> is currently not available in the
&GAP; Character Table Library, so we compute the possible permutation
characters with a combinatorial approach,
and show statement (a).
<P/>
<Example><![CDATA[
gap> CharacterTable( "L2(64).2" );
fail
gap> t:= CharacterTable( "S4(8)" );;
gap> degree:= Size( t ) / ( 2 * Size( SL(2,64) ) );;
gap> pi:= PermChars( t, rec( torso:= [ degree ] ) );
[ Character( CharacterTable( "S4(8)" ),
[ 2016, 0, 256, 32, 0, 36, 0, 8, 1, 0, 4, 0, 0, 0, 28, 28, 28, 0,
0, 0, 0, 0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,
4, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 ] ), Character( CharacterTable( "S4(8)" ),
[ 2016, 256, 0, 32, 36, 0, 0, 8, 1, 4, 0, 28, 28, 28, 0, 0, 0, 0,
0, 0, 36, 36, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 4, 4, 4,
0, 0, 0, 4, 4, 4, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 ] ) ]
gap> spos:= Position( OrdersClassRepresentatives( t ), 65 );;
gap> List( pi, x -> x[ spos ] );
[ 1, 1 ]
]]></Example>
<P/>
Now we compute <M>&total;(S,s)</M>, which yields statement (b).
<P/>
<Example><![CDATA[
gap> Maximum( ApproxP( pi, spos ) );
8/63
]]></Example>
<P/>
We clean the workspace.
<P/>
<Example><![CDATA[
gap> CleanWorkspace();
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="S62">
<Heading><M>S_6(2)</M></Heading>
We show that the group <M>S = S_6(2) = &Sp;(6,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 4/7</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>9</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>9</M>,
<M>&M;(S,s)</M> consists of one subgroup of the type
<M>U_4(2).2 = \Omega^-(6,2).2</M> and three conjugate subgroups
of the type <M>L_2(8).3 = &Sp;(2,8).3</M>.
</Item>
<Mark>(c)</Mark>
<Item>
For <M>s \in S</M> of order <M>9</M>,
and <M>g \in S^{\times}</M>,
we have <M>∝(g,s) < 1/3</M>,
except if <M>g</M> is in one of the classes
<C>2A</C> (the transvection class) or <C>3A</C>.
</Item>
<Mark>(d)</Mark>
<Item>
For <M>s \in S</M> of order <M>15</M>,
and <M>g \in S^{\times}</M>,
we have <M>∝(g,s) < 1/3</M>,
except if <M>g</M> is in one of the classes <C>2A</C> or <C>2B</C>.
</Item>
<Mark>(e)</Mark>
<Item>
<M>∝(S) = 11/21</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>15</M>.
</Item>
<Mark>(f)</Mark>
<Item>
For all <M>s^{\prime} \in S</M>,
we have <M>∝(g,s^{\prime}) > 1/3</M>
for <M>g</M> in at least two classes.
</Item>
<Mark>(g)</Mark>
<Item>
The uniform spread of <M>S</M> is at least two,
with <M>s</M> of order <M>9</M>.
</Item>
</List>
<!-- %T show: exact spread equal to <M>2</M> -->
<P/>
(Note that in this example,
the optimal choice of <M>s</M> w.r.t. <M>&total;(S,s)</M>
is not optimal w.r.t. <M>∝(S,s)</M>.)
<P/>
Statement (a) follows from the inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S6(2)" );;
gap> ProbGenInfoSimple( t );
[ "S6(2)", 4/7, 1, [ "9A" ], [ 4 ] ]
]]></Example>
<P/>
Also statement (b) follows from the information provided by the
character table of <M>S</M> (cf. <Cite Key="CCN85" Where="p. 46"/>).
<P/>
<Example><![CDATA[
gap> prim:= PrimitivePermutationCharacters( t );;
gap> ord:= OrdersClassRepresentatives( t );;
gap> spos:= Position( ord, 9 );;
gap> filt:= PositionsProperty( prim, x -> x[ spos ] <> 0 );
[ 1, 8 ]
gap> Maxes( t ){ filt };
[ "U4(2).2", "L2(8).3" ]
gap> List( prim{ filt }, x -> x[ spos ] );
[ 1, 3 ]
]]></Example>
<P/>
Now we consider statement (c).
For <M>s</M> of order <M>9</M> and <M>g</M> in one of the classes <C>2A</C>,
<C>3A</C>,
we observe that <M>∝(g,s) = &total;(g,s)</M> holds.
This is because exactly one maximal subgroup of <M>S</M>
contains both <M>s</M> and <M>g</M>.
For all other elements <M>g</M>, we have even <M>&total;(g,s) < 1/3</M>.
<P/>
<Example><![CDATA[
gap> prim:= PrimitivePermutationCharacters( t );;
gap> spos9:= Position( ord, 9 );;
gap> approx9:= ApproxP( prim, spos9 );;
gap> filt9:= PositionsProperty( approx9, x -> x >= 1/3 );
[ 2, 6 ]
gap> AtlasClassNames( t ){ filt9 };
[ "2A", "3A" ]
gap> approx9{ filt9 };
[ 4/7, 5/14 ]
gap> List( Filtered( prim, x -> x[ spos9 ] <> 0 ), x -> x{ filt9 } );
[ [ 16, 10 ], [ 0, 0 ] ]
]]></Example>
<P/>
Similarly, statement (d) follows.
For <M>s</M> of order <M>15</M> and <M>g</M> in one of the classes <C>2A</C>,
<C>2B</C>,
already the degree <M>36</M> permutation character yields <M>∝(g,s) \geq 1/3</M>.
And for all other elements <M>g</M>, again we have <M>&total;(g,s) < 1/3</M>.
<P/>
<Example><![CDATA[
gap> spos15:= Position( ord, 15 );;
gap> approx15:= ApproxP( prim, spos15 );;
gap> filt15:= PositionsProperty( approx15, x -> x >= 1/3 );
[ 2, 3 ]
gap> PositionsProperty( ApproxP( prim{ [ 2 ] }, spos15 ), x -> x >= 1/3 );
[ 2, 3 ]
gap> AtlasClassNames( t ){ filt15 };
[ "2A", "2B" ]
gap> approx15{ filt15 };
[ 46/63, 8/21 ]
]]></Example>
<P/>
For the remaining statements, we use explicit computations with <M>S</M>,
in the transitive degree <M>63</M> permutation representation.
We start with a function that computes a transvection in <M>S_d(2)</M>;
note that the invariant bilinear form used for symplectic groups in &GAP;
is described by a matrix with nonzero entries exactly in the positions
<M>(i,d+1-i)</M>, for <M>1 \leq i \leq d</M>.
<P/>
<Example><![CDATA[
gap> transvection:= function( d )
> local mat;
> mat:= IdentityMat( d, Z(2) );
> mat{ [ 1, d ] }{ [ 1, d ] }:= [ [ 0, 1 ], [ 1, 0 ] ] * Z(2);
> return mat;
> end;;
]]></Example>
<P/>
First we compute, for statement (d), the exact values <M>∝(g,s)</M> for <M>g</M>
in one of the classes <C>2A</C> or <C>2B</C>, and <M>s</M> of order <M>15</M>.
Note that the classes <C>2A</C>, <C>2B</C> are the unique classes of the
lengths <M>63</M> and <M>315</M>, respectively.
<P/>
<Example><![CDATA[
gap> PositionsProperty( SizesConjugacyClasses( t ), x -> x in [ 63, 315 ] );
[ 2, 3 ]
gap> d:= 6;;
gap> matgrp:= Sp(d,2);;
gap> hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;
gap> g:= Image( hom, matgrp );;
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s15:= Random( g );
> until Order( s15 ) = 15;
gap> 2A:= Image( hom, transvection( d ) );;
gap> Size( ConjugacyClass( g, 2A ) );
63
gap> IsTransitive( g, MovedPoints( g ) );
true
gap> RatioOfNongenerationTransPermGroup( g, 2A, s15 );
11/21
gap> repeat 12C:= Random( g );
> until Order( 12C ) = 12 and Size( Centralizer( g, 12C ) ) = 12;
gap> 2B:= 12C^6;;
gap> Size( ConjugacyClass( g, 2B ) );
315
gap> RatioOfNongenerationTransPermGroup( g, 2B, s15 );
8/21
]]></Example>
<P/>
For statement (e), we compute <M>∝(g, s^{\prime})</M>,
for a transvection <M>g</M> and class representatives <M>s^{\prime}</M> of <M>S</M>.
It turns out that the minimum is <M>11/21</M>,
and it is attained for exactly one <M>s^{\prime}</M>;
by the above, this element has order <M>15</M>.
<P/>
<Example><![CDATA[
gap> ccl:= ConjugacyClasses( g );;
gap> reps:= List( ccl, Representative );;
gap> nongen2A:= List( reps,
> x -> RatioOfNongenerationTransPermGroup( g, 2A, x ) );;
gap> min:= Minimum( nongen2A );
11/21
gap> Number( nongen2A, x -> x = min );
1
]]></Example>
<P/>
For statement (f), we show that for any choice of <M>s^{\prime}</M>,
at least two of the values <M>∝(g,s^{\prime})</M>,
with <M>g</M> in the classes <C>2A</C>, <C>2B</C>, or <C>3A</C>,
are larger than <M>1/3</M>.
<P/>
<Example><![CDATA[
gap> nongen2B:= List( reps,
> x -> RatioOfNongenerationTransPermGroup( g, 2B, x ) );;
gap> 3A:= s15^5;;
gap> nongen3A:= List( reps,
> x -> RatioOfNongenerationTransPermGroup( g, 3A, x ) );;
gap> bad:= List( [ 1 .. NrConjugacyClasses( t ) ],
> i -> Number( [ nongen2A, nongen2B, nongen3A ],
> x -> x[i] > 1/3 ) );;
gap> Minimum( bad );
2
]]></Example>
<P/>
Finally, for statement (g), we have to consider only the case that the
two elements <M>x</M>, <M>y</M> are transvections.
<P/>
<Example><![CDATA[
gap> PositionsProperty( approx9, x -> x + approx9[2] >= 1 );
[ 2 ]
]]></Example>
<P/>
We use the random approach described in
Section <Ref Subsect="subsect:groups"/>.
<P/>
<Example><![CDATA[
gap> repeat s9:= Random( g );
> until Order( s9 ) = 9;
gap> RandomCheckUniformSpread( g, [ 2A, 2A ], s9, 20 );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="S82">
<Heading><M>S_8(2)</M></Heading>
We show that the group <M>S = S_8(2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of order <M>17</M>,
<M>&M;(S,s)</M> consists of one subgroup of each of the types
<M>O_8^-(2).2 = \Omega^-(8,2).2</M>, <M>S_4(4).2 = &Sp;(4,4).2</M>,
and <M>L_2(17) = &PSL;(2,17)</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>17</M>,
and <M>g \in S^{\times}</M>,
we have <M>∝(g,s) < 1/3</M>, except if <M>g</M> is a transvection.
</Item>
<Mark>(c)</Mark>
<Item>
The uniform spread of <M>S</M> is at least two,
with <M>s</M> of order <M>17</M>.
</Item>
</List>
<P/>
Statement (a) follows from the list of maximal subgroups of <M>S</M>
in <Cite Key="CCN85" Where="p. 123"/>,
and the fact that <M>1_H^S(s) = 1</M> holds for each <M>H \in &M;(S,s)</M>.
Note that <M>17</M> divides the indices of the maximal subgroups of the types
<M>O_8^+(2).2</M> and <M>2^7 : S_6(2)</M> in <M>S</M>,
and obviously <M>17</M> does not divide the orders of the remaining maximal
subgroups.
<P/>
The permutation characters induced from the first two subgroups
are uniquely determined by the ordinary character tables.
The permutation character induced from the last subgroup is
uniquely determined if one considers also the corresponding Brauer tables;
the correct class fusion is stored in the &GAP; Character Table Library,
see <Cite Key="AmbigFus"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S8(2)" );;
gap> pi1:= PossiblePermutationCharacters( CharacterTable( "O8-(2).2" ), t );;
gap> pi2:= PossiblePermutationCharacters( CharacterTable( "S4(4).2" ), t );;
gap> pi3:= [ TrivialCharacter( CharacterTable( "L2(17)" ) )^t ];;
gap> prim:= Concatenation( pi1, pi2, pi3 );;
gap> Length( prim );
3
gap> spos:= Position( OrdersClassRepresentatives( t ), 17 );;
gap> List( prim, x -> x[ spos ] );
[ 1, 1, 1 ]
]]></Example>
<P/>
For statement (b),
we observe that <M>&total;(g,s) < 1/3</M> if <M>g</M> is not a transvection,
and that <M>∝(g,s) = &total;(g,s)</M> for transvections <M>g</M>
because exactly one of the three permutation characters is nonzero
on both <M>s</M> and the class of transvections.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( prim, spos );;
gap> PositionsProperty( approx, x -> x >= 1/3 );
[ 2 ]
gap> Number( prim, pi -> pi[2] <> 0 and pi[ spos ] <> 0 );
1
gap> approx[2];
8/15
]]></Example>
<P/>
In statement (c), we have to consider only the case that the
two elements <M>x</M>, <M>y</M> are transvections.
<P/>
<Example><![CDATA[
gap> PositionsProperty( approx, x -> x + approx[2] >= 1 );
[ 2 ]
]]></Example>
<P/>
We use the random approach described in
Section <Ref Subsect="subsect:groups"/>.
<P/>
<Example><![CDATA[
gap> d:= 8;;
gap> matgrp:= Sp(d,2);;
gap> hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;
gap> x:= Image( hom, transvection( d ) );;
gap> g:= Image( hom, matgrp );;
gap> C:= ConjugacyClass( g, x );; Size( C );
255
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g );
> until Order( s ) = 17;
gap> RandomCheckUniformSpread( g, [ x, x ], s, 20 );
true
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="S102">
<Heading><M>\ast</M> <M>S_{10}(2)</M></Heading>
We show that the group <M>S = S_{10}(2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of order <M>33</M>,
<M>&M;(S,s)</M> consists of one subgroup of each of the types
<M>\Omega^-(10,2).2</M> and <M>L_2(32).5 = &Sp;(2,32).5</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>33</M>,
and <M>g \in S^{\times}</M>,
we have <M>∝(g,s) < 1/3</M>, except if <M>g</M> is a transvection.
</Item>
<Mark>(c)</Mark>
<Item>
The uniform spread of <M>S</M> is at least two,
with <M>s</M> of order <M>33</M>.
</Item>
</List>
<P/>
By <Cite Key="Be00"/>, the only maximal subgroups of <M>S</M> that contain <M>s</M>
have the types stated in (a),
and by <Cite Key="KlL90" Where="Prop. 4.3.10 and 4.8.6"/>,
there is exactly one class of each of these subgroups.
<P/>
We compute the values <M>&total;( g, s )</M>, for all <M>g \in S^{\times}</M>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "S10(2)" );;
gap> pi1:= PossiblePermutationCharacters( CharacterTable( "O10-(2).2" ), t );;
gap> pi2:= PossiblePermutationCharacters( CharacterTable( "L2(32).5" ), t );;
gap> prim:= Concatenation( pi1, pi2 );; Length( prim );
2
gap> spos:= Position( OrdersClassRepresentatives( t ), 33 );;
gap> approx:= ApproxP( prim, spos );;
]]></Example>
<P/>
For statement (b),
we observe that <M>&total;(g,s) < 1/3</M> if <M>g</M> is not a transvection,
and that <M>∝(g,s) = &total;(g,s)</M> for transvections <M>g</M>
because exactly one of the two permutation characters is nonzero
on both <M>s</M> and the class of transvections.
<P/>
<Example><![CDATA[
gap> PositionsProperty( approx, x -> x >= 1/3 );
[ 2 ]
gap> Number( prim, pi -> pi[2] <> 0 and pi[ spos ] <> 0 );
1
gap> approx[2];
16/31
]]></Example>
<P/>
In statement (c), we have to consider only the case that the
two elements <M>x</M>, <M>y</M> are transvections.
We use the random approach described in
Section <Ref Subsect="subsect:groups"/>.
<P/>
<Example><![CDATA[
gap> d:= 10;;
gap> matgrp:= Sp(d,2);;
gap> hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;
gap> x:= Image( hom, transvection( d ) );;
gap> g:= Image( hom, matgrp );;
gap> C:= ConjugacyClass( g, x );; Size( C );
1023
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g );
> until Order( s ) = 33;
gap> RandomCheckUniformSpread( g, [ x, x ], s, 20 );
true
]]></Example>
</Subsection>
<!-- % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- % <Subsection Label="sect:<M>\ast</M> <M>S_{10">
<Heading><M>\ast</M> <M>S_{10</Heading>(2)</M>}\label{S102} -->
<!-- % -->
<!-- % We show that the group <M>S = S_{10}(2)</M> satisfies the following. -->
<!-- % \begin{enumerate} -->
<!-- % \item[(a)] -->
<!-- % For <M>s \in S</M> of order <M>45</M>, -->
<!-- % and <M>g \in S^{\times}</M>, -->
<!-- % we have <M>∝(g,s) < 1/3</M>, except if <M>g</M> is a transvection. -->
<!-- % \item[(b)] -->
<!-- % The uniform spread of <M>S</M> is at least two, -->
<!-- % with <M>s</M> of order <M>45</M>. -->
<!-- % \end{enumerate} -->
<!-- % -->
<!-- % In <Cite Key="KlL90" Where="Table 3.5.C"/>, only the subgroups of the types -->
<!-- % <M>O_{10}^+(2).2</M> and <M>S_4(2) \perp S_6(2) \cong S_6 \times S_6(2)</M> -->
<!-- % contain elements of order <M>45</M>, -->
<!-- % and that there is only one conjugacy class of each of these subgroups. -->
<!-- % -->
<!-- % For that, observe that we have <M>n = 10</M> and <M>q = 2</M>. -->
<!-- % <M>C_1</M> contains the subgroups <M>P_m</M> and <M>Sp_m(2) \perp Sp_{10-m}(2)</M>; -->
<!-- % the former do not occur because for <M>1 \leq m \leq 5</M>, the groups -->
<!-- % <M>&PGL;_m(2) \times PSp_{10-2m}(2)</M> do not contain elements of order <M>45</M>, -->
<!-- % and for the latter type, <M>m = 2</M> does not occur but <M>m = 4</M> yields the -->
<!-- % maximal subgroup <M>S_4(2) \perp S_6(2)</M>. -->
<!-- % Only the groups <M>Sp_2(2) \wr S_5</M> and <M>Sp_2(2^5)</M> occur for <M>C_2</M> -->
<!-- % and <M>C_3</M>, but they do not contain elements of order <M>45</M>. -->
<!-- % The classes <M>C_4</M>--<M>C_7</M> do not do not occur because <M>q</M> is -->
<!-- % a prime and not odd. -->
<!-- % Finally, <M>C_8</M> contains the maximal subgroups <M>O_{10}^{\pm}(2).2</M>, -->
<!-- % but <M>O_{10}^-(2).2</M> does not contain elements of order <M>45</M>. -->
<!--
gap> 45 in OrdersClassRepresentatives( CharacterTable( "O10-(2)" ) );
false
-->
<!-- % It remains to check whether other finite nonabelian simple groups can be -->
<!-- % involved. -->
<!-- % We list all finite nonabelian simple groups whose order divides that of <M>S</M>, -->
<!-- % and then filter out those whose order is a multiple of <M>45</M>. -->
<!--
<Example><![CDATA[
gap> LoadPackage( "genus", false );
gap> cand:= SizesSimpleGroupsInfo( [ Size( SP(10,2) ) ], "divides" );;
gap> cand:= Filtered( cand, x -> x[1] mod 45 = 0 );;
gap> Filtered( cand, x -> CharacterTable( x[2] ) = fail or
> 45 in OrdersClassRepresentatives( CharacterTable( x[2] ) ) );
[ [ 23499295948800, "O10+(2)" ], [ 258492255436800, "L5(4)" ],
[ 24815256521932800, "S10(2)" ] ]
-->
<!-- % Note that <M>L_5(4)</M> cannot be a subgroup of <M>S_{10}(2)</M>, for example -->
<!-- % because of the too large element order <M>(4^5-1)/(4-1)</M> in <M>L_5(4)</M>. -->
<!--
gap> t:= CharacterTable( "S10(2)" );;
gap> s1:= CharacterTable( "O10+(2).2" );;
gap> s2:= CharacterTable( "S6" ) * CharacterTable( "S6(2)" );;
gap> pi1:= PossiblePermutationCharacters( s1, t );
[ Character( CharacterTable( "S10(2)" ), [ 528, 256, 144, 128, 64, 48, 32,
16, 120, 0, 36, 3, 6, 56, 72, 24, 40, 32, 0, 8, 24, 16, 16, 8, 16, 8,
12, 4, 12, 0, 8, 4, 4, 28, 3, 64, 24, 32, 36, 0, 16, 16, 0, 1, 8, 16,
12, 6, 4, 0, 8, 12, 0, 3, 2, 8, 4, 1, 4, 0, 4, 3, 2, 1, 10, 12, 20, 8,
0, 8, 8, 0, 4, 4, 4, 0, 4, 2, 6, 2, 2, 6, 3, 0, 16, 4, 8, 4, 1, 3, 1,
0, 20, 12, 12, 4, 8, 0, 8, 4, 6, 0, 2, 0, 0, 2, 6, 4, 0, 4, 0, 4, 0, 0,
2, 6, 3, 4, 2, 0, 4, 2, 0, 1, 0, 2, 2, 3, 0, 2, 1, 4, 4, 2, 10, 1, 0,
1, 3, 0, 0, 2, 1, 1, 4, 0, 2, 1, 0, 4, 6, 2, 0, 2, 1, 1, 6, 2, 2, 2, 0,
2, 0, 2, 2, 0, 0, 0, 2, 4, 4, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1,
0, 2, 0, 2, 0, 1, 1, 1, 1, 1, 0, 2, 1 ] ) ]
gap> pi2:= PossiblePermutationCharacters( s2, t );
[ Character( CharacterTable( "S10(2)" ), [ 23744512, 1810432, 90112, 176128,
28672, 5120, 9216, 5120, 96832, 3520, 1009, 280, 253, 5440, 5440, 256,
256, 1600, 256, 320, 320, 256, 256, 256, 576, 320, 0, 64, 64, 64, 64,
0, 64, 337, 12, 12160, 832, 2176, 337, 320, 640, 289, 256, 280, 384,
97, 49, 85, 109, 13, 97, 17, 32, 40, 61, 33, 49, 40, 37, 5, 17, 8, 21,
8, 1, 16, 16, 16, 16, 16, 16, 0, 16, 16, 0, 16, 16, 0, 0, 0, 0, 1, 1,
1, 97, 17, 33, 17, 12, 0, 0, 0, 112, 112, 16, 16, 32, 32, 64, 16, 1, 1,
13, 13, 16, 13, 13, 48, 0, 1, 1, 16, 16, 16, 5, 5, 4, 1, 13, 1, 1, 5,
5, 4, 0, 1, 5, 0, 1, 1, 0, 1, 1, 1, 22, 13, 12, 4, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 5, 5, 1, 5, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 0, 0, 0, 1, 1,
10, 2, 5, 6, 2, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 2, 2, 1 ] ) ]
gap> prim:= Concatenation( pi1, pi2 );;
gap> spos:= Position( OrdersClassRepresentatives( t ), 45 );;
gap> approx:= ApproxP( prim, spos );;
gap> PositionsProperty( approx, x -> x >= 1/3 );
[ 2 ]
-->
<!-- % We compute <M>∝(g,s)</M>, for a transvection <M>g</M> and <M>s</M> of order <M>45</M>. -->
<!--
gap> d:= 10;;
gap> matgrp:= Sp(d,2);;
gap> hom:= ActionHomomorphism( matgrp, NormedRowVectors( GF(2)^d ) );;
gap> x:= Image( hom, transvection( d ) );;
gap> g:= Image( hom, matgrp );;
gap> Size( ConjugacyClass( g, x ) );;
1023
gap> repeat s:= Random( g ); until Order( s ) = 45;
gap> RatioOfNongenerationTransPermGroup( g, x, s );
16/31
-->
<!-- % In statement (b), we have to consider only the case that the -->
<!-- % two elements <M>x</M>, <M>y</M> are both transvections. -->
<!--
gap> PositionsProperty( approx, x -> x + approx[2] >= 1 );
[ 2 ]
-->
<!-- % We use the random approach described in Section <Ref Subsect="subsect:groups"/>. -->
<!--
gap> RandomCheckUniformSpread( g, [ x, x ], s, 20 );
true
-->
<!-- % -->
<!-- % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<!-- % <Subsection Label="sect:<M>\ast</M> <M>S_{14">
<Heading><M>\ast</M> <M>S_{14</Heading>(2)</M>}\label{S142} -->
<!-- % -->
<!-- % We show that for the maximal subgroup <M>M = &Sp;(6,2) \perp &Sp;(8,2)</M> -->
<!-- % in <M>S = S_{14}(2)</M>, -->
<!-- % we have <M>&fpr;(g, S/M) \leq 106/5\,461</M> for all <M>g \in S^{\times}</M>. -->
<!-- % -->
<!-- % For that, we first compute class representatives of prime order for the -->
<!-- % direct factors <M>&Sp;(6,2)</M> and <M>&Sp;(8,2)</M> of <M>M</M>, -->
<!-- % and the embedding of the two groups into <M>S</M>. -->
<!-- % (A suitable permutation matrix transforms the diagonal product of the -->
<!-- % invariant forms of the two factors to the invariant form of <M>S</M>.) -->
<!-- % Then the class representatives of prime order in <M>M</M> are obtained -->
<!-- % as certain products of the representatives in the two factors. -->
<!--
gap> reps1:= List( ConjugacyClasses( Sp(6,2) ), Representative );;
gap> reps1:= Filtered( reps1, x -> IsPrimeInt( Order( x ) ) );;
gap> for i in [ 1 .. Length( reps1 ) ] do
> m:= IdentityMat( 14, GF(2) );
> m{ [ 1 .. 6 ] }{ [ 1 .. 6 ] }:= reps1[i];
> reps1[i]:= m;
> od;
gap> Length( reps1 );
9
gap> reps2:= List( ConjugacyClasses( Sp(8,2) ), Representative );;
gap> reps2:= Filtered( reps2, x -> IsPrimeInt( Order( x ) ) );;
gap> for i in [ 1 .. Length( reps2 ) ] do
> m:= IdentityMat( 14, GF(2) );
> m{ [ 7 .. 14 ] }{ [ 7 .. 14 ] }:= reps2[i];
> reps2[i]:= m;
> od;
gap> Length( reps2 );
15
gap> form:= NullMat( 14, 14, GF(2) );;
gap> for i in [ 1 .. 6 ] do form[i][7-i]:= Z(2); od;
gap> for i in [ 7 .. 14 ] do form[i][21-i]:= Z(2); od;
gap> Display( form );
. . . . . 1 . . . . . . . .
. . . . 1 . . . . . . . . .
. . . 1 . . . . . . . . . .
. . 1 . . . . . . . . . . .
. 1 . . . . . . . . . . . .
1 . . . . . . . . . . . . .
. . . . . . . . . . . . . 1
. . . . . . . . . . . . 1 .
. . . . . . . . . . . 1 . .
. . . . . . . . . . 1 . . .
. . . . . . . . . 1 . . . .
. . . . . . . . 1 . . . . .
. . . . . . . 1 . . . . . .
. . . . . . 1 . . . . . . .
gap> tr:= (2,10,4,12,6,14,8);;
gap> T:= PermutationMat( tr, 14, GF(2) );;
gap> g:= Sp(14,2);;
gap> T^-1 * form * T = InvariantBilinearForm( g ).matrix;
true
gap> emb1:= List( reps1, x -> T^-1 * x * T );;
gap> IsSubset( g, emb1 );
true
gap> emb2:= List( reps2, x -> T^-1 * x * T );;
gap> IsSubset( g, emb2 );
true
gap> Add( emb1, One( g ) );
gap> Add( emb2, One( g ) );
gap> prods:= Concatenation( List( emb1, x -> x * emb2 ) );;
gap> Length( prods );
160
gap> prods:= Filtered( prods, x -> IsPrimeInt( Order( x ) ) );;
gap> Length( prods );
63
-->
<!-- % Now we compute generators of <M>M</M>, and use the function -->
<!-- % <C>UpperBoundFixedPointRatios</C> (see Section <Ref Subsect="subsect:groups"/>) -->
<!-- % to compute an upper bound for <M>\max \{ &fpr;(g,S/M); g \in S^{\times} \}</M>. -->
<!--
<Example><![CDATA[
gap> gens1:= ShallowCopy( GeneratorsOfGroup( Sp(6,2) ) );;
gap> for i in [ 1 .. Length( gens1 ) ] do
> m:= IdentityMat( 14, GF(2) );
> m{ [ 1 .. 6 ] }{ [ 1 .. 6 ] }:= gens1[i];
> gens1[i]:= m;
> od;
gap> gens2:= ShallowCopy( GeneratorsOfGroup( Sp(8,2) ) );;
gap> for i in [ 1 .. Length( gens2 ) ] do
> m:= IdentityMat( 14, GF(2) );
> m{ [ 7 .. 14 ] }{ [ 7 .. 14 ] }:= gens2[i];
> gens2[i]:= m;
> od;
gap> gens:= List( Concatenation( gens1, gens2 ), x -> T^-1 * x * T );;
gap> M:= Subgroup( g, gens );;
gap> classes:= List( prods, x -> ConjugacyClass( M, x ) );;
gap> UpperBoundFixedPointRatios( g, [ classes ], false );
[ 106/5461, false ]
-->
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="U42">
<Heading><M>U_4(2)</M></Heading>
We show that <M>S = U_4(2) = &SU;(4,2) \cong S_4(3) = &PSp;(4,3)</M>
satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 21/40</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>12</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>9</M>,
<M>&M;(S,s)</M> consists of two groups,
of the types <M>3^{1+2}_+ \colon 2A_4 = &GU;(3,2)</M>
and <M>3^3 \colon S_4</M>, respectively.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 2/5</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>9</M>.
</Item>
<Mark>(d)</Mark>
<Item>
The uniform spread of <M>S</M> is at least three,
with <M>s</M> of order <M>9</M>.
</Item>
<Mark>(e)</Mark>
<Item>
<M>&total;^{\prime}(&Aut;(S),s) = 7/20</M>.
</Item>
</List>
<!-- %T Can we compute the exact (uniform) spread? -->
<P/>
(Note that in this example,
the optimal choice of <M>s</M> w.r.t. <M>&total;(S,s)</M>
is not optimal w.r.t. <M>∝(S,s)</M>.)
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "U4(2)" );;
gap> ProbGenInfoSimple( t );
[ "U4(2)", 21/40, 1, [ "12A" ], [ 2 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the only classes of maximal subgroups that contain
elements of order <M>9</M> consist of groups of the structures
<M>3^{1+2}_+:2A_4</M> and <M>3^3:S_4</M>,
see <Cite Key="CCN85" Where="p. 26"/>.
<P/>
<Example><![CDATA[
gap> OrdersClassRepresentatives( t );
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
gap> prim:= PrimitivePermutationCharacters( t );
[ Character( CharacterTable( "U4(2)" ),
[ 27, 3, 7, 0, 0, 9, 0, 3, 1, 2, 0, 0, 3, 3, 0, 1, 0, 0, 0, 0 ] ),
Character( CharacterTable( "U4(2)" ),
[ 36, 12, 8, 0, 0, 6, 3, 0, 2, 1, 0, 0, 0, 0, 3, 2, 0, 0, 0, 0 ] ),
Character( CharacterTable( "U4(2)" ),
[ 40, 8, 0, 13, 13, 4, 4, 4, 0, 0, 5, 5, 2, 2, 2, 0, 1, 1, 1, 1 ] ),
Character( CharacterTable( "U4(2)" ),
[ 40, 16, 4, 4, 4, 1, 7, 0, 2, 0, 4, 4, 1, 1, 1, 1, 1, 1, 0, 0 ] ),
Character( CharacterTable( "U4(2)" ),
[ 45, 13, 5, 9, 9, 6, 3, 1, 1, 0, 1, 1, 4, 4, 1, 2, 0, 0, 1, 1 ] ) ]
]]></Example>
<P/>
For statement (c),
we use a primitive permutation representation on <M>40</M> points
that occurs in the natural action of <M>&SU;(4,2)</M>.
<P/>
<Example><![CDATA[
gap> g:= SU(4,2);;
gap> orbs:= OrbitsDomain( g, NormedRowVectors( GF(4)^4 ), OnLines );;
gap> List( orbs, Length );
[ 45, 40 ]
gap> g:= Action( g, orbs[2], OnLines );;
]]></Example>
<P/>
First we show that for <M>s</M> of order <M>9</M>, <M>∝(S,s) = 2/5</M> holds.
For that, we have to consider only <M>∝(g,s)</M>,
with <M>g</M> in one of the classes <C>2A</C> (of length <M>45</M>)
and <C>3A</C> (of length <M>40</M>);
since the class <C>3B</C> contains the inverses of the elements in
the class <C>3A</C>, we need not test it.
<P/>
<Example><![CDATA[
gap> spos:= Position( OrdersClassRepresentatives( t ), 9 );
17
gap> approx:= ApproxP( prim, spos );
[ 0, 3/5, 1/10, 17/40, 17/40, 1/8, 11/40, 1/10, 1/20, 0, 9/40, 9/40,
3/40, 3/40, 3/40, 1/40, 1/20, 1/20, 1/40, 1/40 ]
gap> badpos:= PositionsProperty( approx, x -> x >= 2/5 );
[ 2, 4, 5 ]
gap> PowerMap( t, 2 )[4];
5
gap> OrdersClassRepresentatives( t );
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
gap> SizesConjugacyClasses( t );
[ 1, 45, 270, 40, 40, 240, 480, 540, 3240, 5184, 360, 360, 720, 720,
1440, 2160, 2880, 2880, 2160, 2160 ]
]]></Example>
<P/>
A representative <M>g</M> of a class of length <M>40</M> can be found as the third
power of any order <M>9</M> element.
<P/>
<Example><![CDATA[
gap> PowerMap( t, 3 )[ spos ];
4
gap> ResetGlobalRandomNumberGenerators();
gap> repeat s:= Random( g );
> until Order( s ) = 9;
gap> Size( ConjugacyClass( g, s^3 ) );
40
gap> prop:= RatioOfNongenerationTransPermGroup( g, s^3, s );
13/40
]]></Example>
<P/>
Next we examine <M>g</M> in the class <C>2A</C>.
<P/>
<Example><![CDATA[
gap> repeat x:= Random( g ); until Order( x ) = 12;
gap> Size( ConjugacyClass( g, x^6 ) );
45
gap> prop:= RatioOfNongenerationTransPermGroup( g, x^6, s );
2/5
]]></Example>
<P/>
Finally, we compute that for <M>s</M> of order different from <M>9</M>
and <M>g</M> in the class <C>2A</C>,
<M>∝(g,s)</M> is larger than <M>2/5</M>.
<P/>
<Example><![CDATA[
gap> ccl:= List( ConjugacyClasses( g ), Representative );;
gap> SortParallel( List( ccl, Order ), ccl );
gap> List( ccl, Order );
[ 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 9, 9, 12, 12 ]
gap> prop:= List( ccl, r -> RatioOfNongenerationTransPermGroup( g, x^6, r ) );
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 5/9, 1, 1, 1, 1, 1, 1, 2/5, 2/5, 7/15,
7/15 ]
gap> Minimum( prop );
2/5
]]></Example>
<P/>
In order to show statement (d),
we have to consider triples <M>(x_1, x_2, x_3)</M>
with <M>x_i</M> of prime order and <M>\sum_{i=1}^3 ∝(x_i,s) \geq 1</M>.
This means that it suffices to check <M>x</M> in the class <C>2A</C>,
<M>y</M> in <C>2A</C><M> \cup </M><C>3A</C>,
and <M>z</M> in <C>2A</C><M> \cup </M><C>3A</C><M> \cup </M><C>3D</C>.
<P/>
<Example><![CDATA[
gap> approx[2]:= 2/5;;
gap> approx[4]:= 13/40;;
gap> primeord:= PositionsProperty( OrdersClassRepresentatives( t ),
> IsPrimeInt );
[ 2, 3, 4, 5, 6, 7, 10 ]
gap> RemoveSet( primeord, 5 );
gap> primeord;
[ 2, 3, 4, 6, 7, 10 ]
gap> approx{ primeord };
[ 2/5, 1/10, 13/40, 1/8, 11/40, 0 ]
gap> AtlasClassNames( t ){ primeord };
[ "2A", "2B", "3A", "3C", "3D", "5A" ]
gap> triples:= Filtered( UnorderedTuples( primeord, 3 ),
> t -> Sum( approx{ t } ) >= 1 );
[ [ 2, 2, 2 ], [ 2, 2, 4 ], [ 2, 2, 7 ], [ 2, 4, 4 ], [ 2, 4, 7 ] ]
]]></Example>
<P/>
We use the random approach described in
Section <Ref Subsect="subsect:groups"/>.
<P/>
<Example><![CDATA[
gap> repeat 6E:= Random( g );
> until Order( 6E ) = 6 and Size( Centralizer( g, 6E ) ) = 18;
gap> 2A:= 6E^3;;
gap> 3A:= s^3;;
gap> 3D:= 6E^2;;
gap> RandomCheckUniformSpread( g, [ 2A, 2A, 2A ], s, 50 );
true
gap> RandomCheckUniformSpread( g, [ 2A, 2A, 3A ], s, 50 );
true
gap> RandomCheckUniformSpread( g, [ 3D, 2A, 2A ], s, 50 );
true
gap> RandomCheckUniformSpread( g, [ 2A, 3A, 3A ], s, 50 );
true
gap> RandomCheckUniformSpread( g, [ 3D, 3A, 2A ], s, 50 );
true
]]></Example>
<P/>
Statement (e) can be proved using <C>ProbGenInfoAlmostSimple</C>,
cf. Section <Ref Subsect="easyloopaut"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "U4(2)" );;
gap> t2:= CharacterTable( "U4(2).2" );;
gap> spos:= PositionsProperty( OrdersClassRepresentatives( t ), x -> x = 9 );;
gap> ProbGenInfoAlmostSimple( t, t2, spos );
[ "U4(2).2", 7/20, [ "9AB" ], [ 2 ] ]
]]></Example>
<P/>
<!-- % spread at least four? -->
<!-- % upper bound five for the spread: -->
<!-- % -->
<!-- % gap> Sum( prim{[3,5]} ); -->
<!-- % Character( CharacterTable( <Ref ???="U4(2)"/> ), [ 85, 29, 9, 13, 13, 7, 10, 1, 3, 0, 5, -->
<!-- % 5, 5, 5, 2, 3, 1, 1, 1, 1 ] ) -->
<!-- % gap> g:= UnderlyingGroup( tom );; -->
<!-- % gap> g:= DiagonalProductOfPermGroups( List( mx, m -> -->
<!-- % > Action( g, RightTransversal( g, m ), OnRight ) ) );; -->
<!-- % gap> NrMovedPoints( g ); -->
<!-- % 85 -->
<!-- % gap> mp:= MovedPoints( g );; -->
<!-- % gap> repeat 6E:= Random( g ); -->
<!-- % > until Order( 6E ) = 6 and Size( Centralizer( g, 6E ) ) = 18; -->
<!-- % gap> 2A:= 6E^3;; -->
<!-- % gap> NrMovedPoints( 2A ); -->
<!-- % 56 -->
<!-- % gap> orb2A:= Orbit( g, Difference( mp, MovedPoints( 2A ) ), OnSets );; -->
<!-- % gap> repeat union:= Union(List([1..5], x -> Random(orb2A ) ) ); until Number( union ) = 85; -->
<!-- % -->
<!-- %not needed, -->
<!-- %also not successful for bounding the spread from above: -->
<!-- % -->
<!-- %.... -->
<!-- % -->
<!-- %We work with the imprimitive permutation representation that is the -->
<!-- %direct sum of the two nonequivalent transitive representations of -->
<!-- %degree <M>40</M>. -->
<!-- %Each element <M>s</M> of order <M>9</M> fixes two of the <M>80</M> points, -->
<!-- %and an element <M>s</M> generates <M>S</M> together with <M>s</M> if and only if -->
<!-- %<M>x</M> moves the two fixed points of <M>s</M>. -->
<!--
gap> tom:= TableOfMarks( t );
TableOfMarks( "U4(2)" )
gap> maxes:= MaximalSubgroupsTom( tom );
[ [ 115, 114, 113, 112, 111 ], [ 27, 36, 40, 40, 45 ] ]
gap> mx:= List( maxes[1]{ [ 3, 4 ] },
> i -> RepresentativeTom( tom, i ) );;
gap> g:= UnderlyingGroup( tom );;
gap> g:= DiagonalProductOfPermGroups( List( mx, m ->
> Action( g, RightTransversal( g, m ), OnRight ) ) );;
gap> NrMovedPoints( g );
80
gap> repeat s:= Random( g ); until Order( s ) = 9;
gap> NrMovedPoints( s );
78
gap> mp:= MovedPoints( g );;
gap> fixs:= Difference( mp, MovedPoints( s ) );
[ 20, 77 ]
gap> orbs:= Orbit( g, fixs, OnSets );;
gap> Length( orbs );
160
-->
<!-- %We need elements in the classes {\tt 2A}, {\tt 3A}, and {\tt 3D}. -->
<!--
gap> 3A:= s^3;;
gap> repeat 6E:= Random( g );
> until Order( 6E ) = 6 and Size( Centralizer( g, 6E ) ) = 18;
gap> 2A:= 6E^3;;
gap> 3D:= 6E^2;;
gap> orb2A:= Orbit( g, Difference( mp, MovedPoints( 2A ) ), OnSets );;
gap> orb3A:= Orbit( g, Difference( mp, MovedPoints( 3A ) ), OnSets );;
gap> orb3D:= Orbit( g, Difference( mp, MovedPoints( 3D ) ), OnSets );;
-->
<!-- %Now we perform the tests. -->
<!--
gap> prop:= function( triple )
> local union;
> union:= Union( triple );
> return ForAll( orbs, p -> not IsEmpty( Intersection( p, union ) ) );
> end;
function( triple ) ... end
gap> TripleWithProperty( [ orb2A{ [ 1 ] }, orb2A, orb2A ], prop );
fail
gap> TripleWithProperty( [ orb2A{ [ 1 ] }, orb2A, orb3A ], prop );
fail
gap> TripleWithProperty( [ orb2A{ [ 1 ] }, orb2A, orb3D ], prop );
fail
gap> TripleWithProperty( [ orb2A{ [ 1 ] }, orb3A, orb3A ], prop );
fail
gap> TripleWithProperty( [ orb2A{ [ 1 ] }, orb3A, orb3D ], prop );
fail
-->
<!-- %Better take the longest class first. -->
<!-- %Better replace this by a ForAll statement. -->
<!-- % -->
<!-- % alternatively: spread at least three with s of order 12 -->
<!-- % (easier construction of the representation!) -->
<!-- % -->
<!-- %so the triples that must be checked are -->
<!-- %<M>(2A \cup 3A, 2A \cup 3A, \ast)</M>, -->
<!-- %where <M>\ast</M> stands for the elements of order 2 or three -->
<!-- %(prime order elements, note that order 5 cannot occur) -->
<!-- % -->
<!-- %thus first check <M>(2A, 2A \cup 3A, \ast)</M> -->
<!-- %and then <M>(3A, 2A \cup 3A, \ast)</M> -->
<!-- % -->
<!-- %(up to conjugacy, so first element one fixed in 2A or 3A!) -->
<!-- % -->
<!-- %We use the imprimitive permutation representation on 40+45 points -->
<!-- %in which <M>s</M> fixes two points. -->
<!-- %In this representation, the element <M>g \in S</M> generates -->
<!-- %<M>S</M> together with <M>s</M> if no point is fixed by both <M>g</M> and <M>s</M>. -->
<!--
gap> g:= SU(4,2);
SU(4,2)
gap> g:= Action( g, NormedRowVectors( GF(4)^4 ), OnLines );
<permutation group with 2 generators>
gap> repeat s:= Random( g ); until Order( s ) = 12;
gap> NrMovedPoints( s );
83
gap> fix12:= Difference( [1..85], MovedPoints( s ) );
[ 22, 50 ]
gap> 2a:= s^6;;
gap> NrMovedPoints( 2a );
64
gap> 3a:= s^4;;
gap> NrMovedPoints( 3a );
63
gap> repeat 2b:= Random( g ); until Order( 2b ) = 2
> and Size( Centralizer( g, 2b ) ) = 96;
gap> repeat 3c:= Random( g ); until Order( 3c ) = 3
> and Size( Centralizer( g, 3c ) ) = 108;
gap> repeat 3d:= Random( g ); until Order( 3c ) = 3
> and Size( Centralizer( g, 3d ) ) = 54;
gap> orb12:= Orbit( g, fix12, OnSets );;
gap> Length( orb12 );
360
gap> orb2a:= Orbit( g, Difference( [ 1 .. 85 ], MovedPoints( 2a ) ), OnSets );;
gap> orb2b:= Orbit( g, Difference( [ 1 .. 85 ], MovedPoints( 2b ) ), OnSets );;
gap> orb3a:= Orbit( g, Difference( [ 1 .. 85 ], MovedPoints( 3a ) ), OnSets );;
gap> orb3c:= Orbit( g, Difference( [ 1 .. 85 ], MovedPoints( 3c ) ), OnSets );;
gap> orb3d:= Orbit( g, Difference( [ 1 .. 85 ], MovedPoints( 3d ) ), OnSets );;
gap> orb2aor3a:= Union( orb2a, orb3a );;
gap> orball:= Union( orb2a, orb2b, orb3a, orb3c, orb3d );;
gap> for l1 in orb2aor3a do
> for l2 in orball do
> fixed:= Union( orb2a[1], l1, l2 );
> if ForAll( orb12, f -> not IsEmpty( Intersection( fixed, f ) ) )
> then
> Error( "!" );
> fi;
> od;
> od;
gap> for l1 in orb2aor3a do
> for l2 in orball do
> fixed:= Union( orb3a[1], l1, l2 );
> if ForAll( orb12, f -> not IsEmpty( Intersection( fixed, f ) ) )
> then
> Error( "!" );
> fi;
> od;
> od;
-->
<!-- %no output, so uniform spread at least three! -->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="U43">
<Heading><M>U_4(3)</M></Heading>
We show that <M>S = U_4(3) = &PSU;(4,3)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
<M>&total;(S) = 53/153</M>,
and this value is attained exactly for <M>&total;(S,s)</M>
with <M>s</M> of order <M>7</M>.
</Item>
<Mark>(b)</Mark>
<Item>
For <M>s \in S</M> of order <M>7</M>,
<M>&M;(S,s)</M> consists of two nonconjugate groups of the type
<M>L_3(4)</M>,
one group of the type <M>U_3(3)</M>, and four pairwise nonconjugate
groups of the type <M>A_7</M>.
</Item>
<Mark>(c)</Mark>
<Item>
<M>∝(S) = 43/135</M>,
and this value is attained exactly for <M>∝(S,s)</M>
with <M>s</M> of order <M>7</M>.
</Item>
<Mark>(d)</Mark>
<Item>
The uniform spread of <M>S</M> is at least three,
with <M>s</M> of order <M>7</M>.
</Item>
<Mark>(e)</Mark>
<Item>
The preimage of <M>s</M> in the matrix group <M>&SU;(4,3) \cong 4.U_4(3)</M>
has order <M>28</M>,
the preimages of the groups in <M>&M;(S,s)</M> have the structures
<M>4_2.L_3(4)</M>, <M>4 \times U_3(3) \cong &GU;(3,3)</M>, and <M>4.A_7</M>
(the latter being a central product of a cyclic group of order four
and <M>2.A_7</M>).
</Item>
<Mark>(f)</Mark>
<Item>
<M>∝^{\prime}(S.2_1,s) = 13/27</M>,
<M>&total;^{\prime}(S.2_2) = 1/3</M>,
and <M>&total;^{\prime}(S.2_3) = 31/162</M>,
with <M>s</M> of order <M>7</M> in each case.
</Item>
</List>
<P/>
Statement (a) follows from inspection of the primitive permutation
characters, cf. Section <Ref Subsect="easyloop"/>.
<P/>
<Example><![CDATA[
gap> t:= CharacterTable( "U4(3)" );;
gap> ProbGenInfoSimple( t );
[ "U4(3)", 53/135, 2, [ "7A" ], [ 7 ] ]
]]></Example>
<P/>
Statement (b) can be read off from the permutation characters,
and the fact that the only classes of maximal subgroups that contain
elements of order <M>7</M> consist of groups of the structures
as claimed,
see <Cite Key="CCN85" Where="p. 52"/>.
<P/>
<Example><![CDATA[
gap> prim:= PrimitivePermutationCharacters( t );;
gap> spos:= Position( OrdersClassRepresentatives( t ), 7 );
13
gap> List( Filtered( prim, x -> x[ spos ] <> 0 ), l -> l{ [ 1, spos ] } );
[ [ 162, 1 ], [ 162, 1 ], [ 540, 1 ], [ 1296, 1 ], [ 1296, 1 ],
[ 1296, 1 ], [ 1296, 1 ] ]
]]></Example>
<P/>
In order to show statement (c) (which then implies statement (d)),
we use a permutation representation on <M>112</M> points.
It corresponds to an orbit of one-dimensional subspaces in the
natural module of <M>\Omega^-(6,3) \cong S</M>.
<P/>
<Example><![CDATA[
gap> matgrp:= DerivedSubgroup( SO( -1, 6, 3 ) );;
gap> orbs:= OrbitsDomain( matgrp, NormedRowVectors( GF(3)^6 ), OnLines );;
gap> List( orbs, Length );
[ 126, 126, 112 ]
gap> G:= Action( matgrp, orbs[3], OnLines );;
]]></Example>
<P/>
It is sufficient to compute <M>∝(g,s)</M>, for involutions <M>g \in S</M>.
<P/>
<Example><![CDATA[
gap> approx:= ApproxP( prim, spos );
[ 0, 53/135, 1/10, 1/24, 1/24, 7/45, 4/45, 1/27, 1/36, 1/90, 1/216,
1/216, 7/405, 7/405, 1/270, 0, 0, 0, 0, 1/270 ]
gap> Filtered( approx, x -> x >= 43/135 );
[ 53/135 ]
gap> OrdersClassRepresentatives( t );
[ 1, 2, 3, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 9, 9, 9, 9, 12 ]
gap> ResetGlobalRandomNumberGenerators();
gap> repeat g:= Random( G ); until Order(g) = 2;
gap> repeat s:= Random( G );
> until Order(s) = 7;
gap> bad:= RatioOfNongenerationTransPermGroup( G, g, s );
43/135
gap> bad < 1/3;
true
]]></Example>
<P/>
Statement (e) can be shown easily with character-theoretic methods,
as follows.
Since <M>&SU;(4,3)</M> is a Schur cover of <M>S</M> and the groups in <M>&M;(S,s)</M>
are simple, only very few possibilities have to be checked.
The Schur multiplier of <M>U_3(3)</M> is trivial
(see, e. g., <Cite Key="CCN85" Where="p. 14"/>),
so the preimage in <M>&SU;(4,3)</M> is a direct product of <M>U_3(3)</M> and the
centre of <M>&SU;(4,3)</M>.
Neither <M>L_3(4)</M> nor its double cover <M>2.L_3(4)</M> can be a subgroup of
<M>&SU;(4,3)</M>, so the preimage of <M>L_3(4)</M> must be a Schur cover of <M>L_3(4)</M>,
i. e., it must have either the type <M>4_1.L_3(4)</M> or <M>4_2.L_3(4)</M>
(see <Cite Key="CCN85" Where="p. 23"/>);
only the type <M>4_2.L_3(4)</M> turns out to be possible.
<P/>
<Example><![CDATA[
gap> 4t:= CharacterTable( "4.U4(3)" );;
gap> Length( PossibleClassFusions( CharacterTable( "L3(4)" ), 4t ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "2.L3(4)" ), 4t ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "4_1.L3(4)" ), 4t ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "4_2.L3(4)" ), 4t ) );
4
]]></Example>
<P/>
As for the preimage of the <M>A_7</M> type subgroups,
we first observe that the double cover of <M>A_7</M> cannot be a subgroup of the
double cover of <M>S</M>,
so the preimage of <M>A_7</M> in the double cover of <M>U_4(3)</M> is a direct product
<M>2 \times A_7</M>.
The group <M>&SU;(4,3)</M> does not contain <M>A_7</M> type subgroups,
thus the <M>A_7</M> type subgroups in <M>2.U_4(3)</M> lift to double covers of <M>A_7</M>
in <M>&SU;(4,3)</M>.
This proves the claimed structure.
<P/>
<Example><![CDATA[
gap> 2t:= CharacterTable( "2.U4(3)" );;
gap> Length( PossibleClassFusions( CharacterTable( "2.A7" ), 2t ) );
0
gap> Length( PossibleClassFusions( CharacterTable( "A7" ), 4t ) );
0
]]></Example>
<P/>
For statement (f), we consider automorphic extensions of <M>S</M>.
The bound for <M>S.2_3</M> has been computed in Section <Ref Subsect="easyloopaut"/>.
That for <M>S.2_2</M> can be computed form the fact that the classes of
maximal subgroups of <M>S.2_2</M> containing <M>s</M> of order <M>7</M> are
<M>S</M>, one class of <M>U_3(3).2</M> type subgroups, and two classes of <M>S_7</M> type
subgroups which induce the same permutation character
(see <Cite Key="CCN85" Where="p. 52"/>).
<P/>
<Example><![CDATA[
gap> t2:= CharacterTable( "U4(3).2_2" );;
gap> pi1:= PossiblePermutationCharacters( CharacterTable( "U3(3).2" ), t2 );
[ Character( CharacterTable( "U4(3).2_2" ),
[ 540, 12, 54, 0, 0, 9, 8, 0, 0, 6, 0, 0, 1, 2, 0, 0, 0, 2, 0, 24,
4, 0, 0, 0, 0, 0, 0, 3, 2, 0, 4, 0, 0, 0 ] ) ]
gap> pi2:= PossiblePermutationCharacters( CharacterTable( "A7.2" ), t2 );
[ Character( CharacterTable( "U4(3).2_2" ),
[ 1296, 48, 0, 27, 0, 9, 0, 4, 1, 0, 3, 0, 1, 0, 0, 0, 0, 0, 216,
24, 0, 4, 0, 0, 0, 9, 0, 3, 0, 1, 0, 1, 0, 0 ] ) ]
gap> prim:= Concatenation( pi1, pi2, pi2 );;
gap> outer:= Difference(
> PositionsProperty( OrdersClassRepresentatives( t2 ), IsPrimeInt ),
> ClassPositionsOfDerivedSubgroup( t2 ) );;
gap> spos:= Position( OrdersClassRepresentatives( t2 ), 7 );;
gap> Maximum( ApproxP( prim, spos ){ outer } );
1/3
]]></Example>
<P/>
Finally, Section <Ref Subsect="easyloopaut"/> shows that the character tables are
not sufficient for what we need, so we compute the exact proportion of
nongeneration for <M>U_4(3).2_1 \cong &SO;^-(6,3)</M>.
<P/>
<Example><![CDATA[
gap> matgrp:= SO( -1, 6, 3 );
SO(-1,6,3)
gap> orbs:= OrbitsDomain( matgrp, NormedRowVectors( GF(3)^6 ), OnLines );;
gap> List( orbs, Length );
[ 126, 126, 112 ]
gap> G:= Action( matgrp, orbs[3], OnLines );;
gap> repeat s:= Random( G );
> until Order( s ) = 7;
gap> repeat
> repeat 2B:= Random( G ); until Order( 2B ) mod 2 = 0;
> 2B:= 2B^( Order( 2B ) / 2 );
> c:= Centralizer( G, 2B );
> until Size( c ) = 12096;
gap> RatioOfNongenerationTransPermGroup( G, 2B, s );
13/27
gap> repeat
> repeat 2C:= Random( G ); until Order( 2C ) mod 2 = 0;
> 2C:= 2C^( Order( 2C ) / 2 );
> c:= Centralizer( G, 2C );
> until Size( c ) = 1440;
gap> RatioOfNongenerationTransPermGroup( G, 2C, s );
0
]]></Example>
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="U63">
<Heading><M>U_6(3)</M></Heading>
We show that <M>S = U_6(3) = &PSU;(6,3)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of the type <M>1 \perp 5</M>
(i. e., the preimage of <M>s</M> in <M>2.S = &SU;(6,3)</M> decomposes
the natural
<M>6</M>-dimensional module for <M>2.S</M> into an orthogonal sum of two
irreducible modules of the dimensions <M>1</M> and <M>5</M>, respectively)
and of order <M>(3^5 + 1)/2 = 122</M>,
<M>&M;(S,s)</M> consists of one group of the type <M>2 \times U_5(3)</M>,
which lifts to a subgroup of the type <M>4 \times U_5(3) = &GU;(5,3)</M>
in <M>2.S</M>.
(The preimage of <M>s</M> in <M>2.S</M> has order <M>3^5 + 1 = 244</M>.)
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 353/3\,159</M>.
</Item>
</List>
<P/>
By <Cite Key="MSW94"/>, the only maximal subgroup of <M>S</M> that contains <M>s</M>
is the stabilizer <M>H \cong 2 \times U_5(3)</M> of the orthogonal decomposition.
This proves statement (a).
<P/>
The character table of <M>S</M> is currently not available in the &GAP;
Character Table Library.
We consider the permutation action of <M>S</M> on the orbit of the stabilized
<M>1</M>-space.
So <M>M</M> can be taken as a point stabilizer in this action.
<P/>
<Example><![CDATA[
gap> CharacterTable( "U6(3)" );
fail
gap> g:= SU(6,3);;
gap> orbs:= OrbitsDomain( g, NormedRowVectors( GF(9)^6 ), OnLines );;
gap> List( orbs, Length );
[ 22204, 44226 ]
gap> repeat x:= PseudoRandom( g ); until Order( x ) = 244;
gap> List( orbs, o -> Number( o, v -> OnLines( v, x ) = v ) );
[ 0, 1 ]
gap> g:= Action( g, orbs[2], OnLines );;
gap> M:= Stabilizer( g, 1 );;
]]></Example>
<P/>
Then we compute a list of elements in <M>M</M> that covers the conjugacy classes
of prime element order, from which the numbers of fixed points
and thus <M>\max\{ &fpr;( S/M, g ); g \in M^{\times} \} = &total;( S, s )</M>
can be derived.
This way we avoid completely to check the <M>S</M>-conjugacy
of elements (class representatives of Sylow subgroups in <M>M</M>).
<P/>
<Example><![CDATA[
gap> elms:= [];;
gap> for p in PrimeDivisors( Size( M ) ) do
> syl:= SylowSubgroup( M, p );
> Append( elms, Filtered( PcConjugacyClassReps( syl ),
> r -> Order( r ) = p ) );
> od;
gap> 1 - Minimum( List( elms, NrMovedPoints ) ) / Length( orbs[2] );
353/3159
]]></Example>
<!-- Alternatively, we can also compute the conjugacy classes of SU(6,3);
after 22151560 msec, one gets 264 classes (with quite a large workspace)
Note that <M>S</M> contains only one class of cyclic subgroups of order
<M>122</M>,
for example because the elements of order <M>61</M> in
<M>U_5(3) = &SU;(5,3)</M> are self-centralizing.
<Example><![CDATA[
gap> u:= SU(5,3);;
gap> orbs:= OrbitsDomain( u, NormedRowVectors( GF(9)^5 ), OnLines );;
gap> u:= Action( u, orbs[1], OnLines );;
gap> repeat x:= Random( u );
> until Order( x ) mod 61 = 0;
gap> Order( x );
61
gap> Size( Centralizer( u, x ) );
61
]]></Example>
-->
</Subsection>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
<Subsection Label="U82">
<Heading><M>U_8(2)</M></Heading>
We show that <M>S = U_8(2) = &SU;(8,2)</M> satisfies the following.
<P/>
<List>
<Mark>(a)</Mark>
<Item>
For <M>s \in S</M> of the type <M>1 \perp 7</M>
(i. e., <M>s</M> decomposes the natural <M>8</M>-dimensional module
for <M>S</M> into an orthogonal sum of two irreducible modules
of the dimensions <M>1</M> and <M>7</M>, respectively) and of order
<M>2^7 + 1 = 129</M>,
<M>&M;(S,s)</M> consists of one group of the type
<M>3 \times U_7(2) = &GU;(7,2)</M>.
</Item>
<Mark>(b)</Mark>
<Item>
<M>&total;(S,s) = 2\,753/10\,880</M>.
</Item>
</List>
<P/>
By <Cite Key="MSW94"/>, the only maximal subgroup of <M>S</M> that contains <M>s</M>
is the stabilizer <M>M \cong &GU;(7,2)</M> of the orthogonal decomposition.
This proves statement (a).
<P/>
The character table of <M>S</M> is currently not available in the &GAP;
Character Table Library.
We proceed exactly as in Section <Ref Subsect="U63"/> in order to prove statement (b).
<P/>
<Example><![CDATA[
gap> CharacterTable( "U8(2)" );
fail
gap> g:= SU(8,2);;
gap> orbs:= OrbitsDomain( g, NormedRowVectors( GF(4)^8 ), OnLines );;
gap> List( orbs, Length );
[ 10965, 10880 ]
gap> repeat x:= PseudoRandom( g ); until Order( x ) = 129;
gap> List( orbs, o -> Number( o, v -> OnLines( v, x ) = v ) );
[ 0, 1 ]
gap> g:= Action( g, orbs[2], OnLines );;
gap> M:= Stabilizer( g, 1 );;
gap> elms:= [];;
gap> for p in PrimeDivisors( Size( M ) ) do
> syl:= SylowSubgroup( M, p );
> Append( elms, Filtered( PcConjugacyClassReps( syl ),
> r -> Order( r ) = p ) );
> od;
gap> Length( elms );
611
gap> 1 - Minimum( List( elms, NrMovedPoints ) ) / Length( orbs[2] );
2753/10880
]]></Example>
<!-- Alternatively, we can also compute the conjugacy classes of SU(8,2);
after 16376160 msec, one gets 520 classes (with quite a large workspace)
Note that <M>S</M> contains only one class of cyclic subgroups of order
<M>129</M>,
for example because the elements of order <M>43</M> in
<M>U_7(2) = &SU;(7,2)</M> are self-centralizing.
<Example><![CDATA[
gap> u:= SU(7,2);;
gap> orbs:= OrbitsDomain( u, NormedRowVectors( GF(4)^7 ), OnLines );;
gap> u:= Action( u, orbs[1], OnLines );;
gap> repeat x:= Random( u ); until Order( x ) mod 43 = 0;
gap> Order( x );
43
gap> Size( Centralizer( u, x ) );
43
]]></Example>
-->
</Subsection>
</Section>
</Chapter>
<!-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -->
|