1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
|
# This file was created from probgen.xml, do not edit!
#############################################################################
##
#A PositionsProperty( <list>, <prop> )
##
## Let <list> be a dense list and <prop> be a unary function that returns
## `true' or `false' when applied to the entries of <list>.
## `PositionsProperty' returns the set of positions in <list> for which
## `true' is returned.
##
if not IsBound( PositionsProperty ) then
PositionsProperty:= function( list, prop )
return Filtered( [ 1 .. Length( list ) ], i -> prop( list[i] ) );
end;
fi;
#############################################################################
##
#A UnorderedTuplesNoSort( <list>, <k> )
##
## Let <list> be a dense list and <k> be a nonnegative integer.
## `UnorderedTuplesNoSort' returns a list of all unordered <k>-tuples with
## repetitions of elements in <list>.
## The only difference to the GAP library function `UnorderedTuples' is
## that the entries in the result of `UnorderedTuplesNoSort' need not be
## sorted.
## This is advantageous when the comparison of elements in <list> is
## expensive, e.~g., when these elements are conjugacy classes in a group.
##
BindGlobal( "UnorderedTuplesNoSort", function( list, k )
return List( UnorderedTuples( [ 1 .. Length( list ) ], k ),
tuple -> list{ tuple } );
end );
#############################################################################
##
#F TripleWithProperty( <threelists>, <prop> )
#F QuadrupleWithProperty( <fourlists>, <prop> )
##
## Let <threelists> be a list of three lists $l_1, l_2, l_3$,
## and <prop> be a unary function that takes a triple $[ x_1, x_2, x_3 ]$
## with $x_i \in l_i$ as its argument and returns either `true' or `false'.
## `TripleWithProperty' returns a triple for which `prop' returns `true'
## if such a triple exists, and `fail' otherwise.
##
## Analogously, the first argument of `QuadrupleWithProperty' is a list
## <fourlists> of four lists, and the second argument <prop> takes a
## quadruple as its argument.
##
BindGlobal( "TripleWithProperty", function( threelists, prop )
local i, j, k, test;
for i in threelists[1] do
for j in threelists[2] do
for k in threelists[3] do
test:= [ i, j, k ];
if prop( test ) then
return test;
fi;
od;
od;
od;
return fail;
end );
BindGlobal( "QuadrupleWithProperty", function( fourlists, prop )
local i, j, k, l, test;
for i in fourlists[1] do
for j in fourlists[2] do
for k in fourlists[3] do
for l in fourlists[4] do
test:= [ i, j, k, l ];
if prop( test ) then
return test;
fi;
od;
od;
od;
od;
return fail;
end );
#############################################################################
##
#F PrintFormattedArray( <array> )
##
## Let <array> be a rectangular table.
## `PrintFormattedArray' prints <array> such that each column is right
## aligned.
## The only difference to the GAP library function `PrintArray'
## is that the latter prints all columns at the same width.
##
BindGlobal( "PrintFormattedArray", function( array )
local colwidths, n, row;
array:= List( array, row -> List( row, String ) );
colwidths:= List( TransposedMat( array ),
col -> Maximum( List( col, Length ) ) );
n:= Length( array[1] );
for row in List( array, row -> List( [ 1 .. n ],
i -> String( row[i], colwidths[i] ) ) ) do
Print( " ", JoinStringsWithSeparator( row, " " ), "\n" );
od;
end );
#############################################################################
##
#F PossiblePermutationCharacters( <sub>, <tbl> )
##
## For two ordinary character tables <sub> and <tbl>,
## `PossiblePermutationCharacters' returns the set of all induced class
## functions of the trivial character of <sub> to <tbl>,
## w.r.t.~the possible class fusions from <sub> to <tbl>.
##
if not IsBound( PossiblePermutationCharacters ) then
BindGlobal( "PossiblePermutationCharacters", function( sub, tbl )
local fus, triv;
fus:= PossibleClassFusions( sub, tbl );
if fus = fail then
return fail;
fi;
triv:= [ TrivialCharacter( sub ) ];
return Set(
List( fus, map -> Induced( sub, tbl, triv, map )[1] ) );
end );
fi;
#############################################################################
##
#A PrimitivePermutationCharacters( <tbl> )
##
## For an ordinary character table <tbl> for which either the value of one
## of the attributes `Maxes' or `UnderlyingGroup' is stored or the table of
## marks is contained in the GAP library of tables of marks,
## `PrimitivePermutationCharacters' returns the list of all primitive
## permutation characters of <tbl>.
## Otherwise `fail' is returned.
##
## We use 'InstallOtherMethod' not 'InstallMethod' because another test file
## declares the same attribute and installs the same method.
##
DeclareAttribute( "PrimitivePermutationCharacters", IsCharacterTable );
InstallOtherMethod( PrimitivePermutationCharacters,
[ IsCharacterTable ],
function( tbl )
local maxes, tom, G;
if HasMaxes( tbl ) then
maxes:= List( Maxes( tbl ), CharacterTable );
if ForAll( maxes, s -> GetFusionMap( s, tbl ) <> fail ) then
return List( maxes, subtbl -> TrivialCharacter( subtbl )^tbl );
fi;
elif HasFusionToTom( tbl ) then
tom:= TableOfMarks( tbl );
maxes:= MaximalSubgroupsTom( tom );
return PermCharsTom( tbl, tom ){ maxes[1] };
elif HasUnderlyingGroup( tbl ) then
G:= UnderlyingGroup( tbl );
return List( MaximalSubgroupClassReps( G ),
M -> TrivialCharacter( M )^tbl );
fi;
return fail;
end );
#############################################################################
##
#F ApproxP( <primitives>, <spos> )
##
## Let <primitives> be a list of primitive permutation characters of a group
## $G$, say, and <spos> the position of the conjugacy class of the element
## $s \in G$.
## Assume that the elements in <primitives> have the form $1_M^G$,
## for suitable maximal subgroups $M$ of $G$,
## and let $\MM$ be the set of these groups $M$.
## `ApproxP' returns the class function $\psi$ of $G$ that is defined by
## $\psi(1) = 0$ and
## \[
## \psi(g) = \sum_{M \in \MM}
## \frac{1_M^G(s) \cdot 1_M^G(g)}{1_M^G(1)}
## \]
## otherwise.
##
## If <primitives> contains all those primitive permutation characters
## $1_M^G$ of $G$ (with multiplicity according to the number of conjugacy
## classes of these maximal subgroups) that do not vanish at $s$,
## and if all these $M$ are self-normalizing in $G$
## --this holds for example if $G$ is a finite simple group--
## then $\psi(g) = &total;( g, s )$ holds.
##
## The latter is an upper bound for the proportion
## $∝( g, s )$ of elements in the conjugacy class of $s$ that generate
## together with $g$ a proper subgroup of $G$.
##
## Note that if $∝( g, s )$ is less than $1/k$ for all
## $g \in G^{\times}$ then $G$ has spread at least $k$.
##
BindGlobal( "ApproxP", function( primitives, spos )
local sum;
sum:= ShallowCopy( Sum( List( primitives,
pi -> pi[ spos ] * pi / pi[1] ) ) );
sum[1]:= 0;
return sum;
end );
#############################################################################
##
#F ProbGenInfoSimple( <tbl> )
##
## Let <tbl> be the ordinary character table of a finite simple group $S$.
## If the full list of primitive permutation characters of <tbl> cannot be
## computed with `PrimitivePermutationCharacters' then `fail' is returned.
## Otherwise `ProbGenInfoSimple' returns a list of length $5$, containing
## the identifier of <tbl>,
## the value $&total;(S)$,
## the value $\sprtotal( S )$,
## a list of {\ATLAS} names of the classes of elements $s$ for which
## $&total;(S) = &total;( S, s )$ holds,
## and the list of the corresponding cardinalities $|&M;(S,s)|$.
##
BindGlobal( "ProbGenInfoSimple", function( tbl )
local prim, max, min, bound, s;
prim:= PrimitivePermutationCharacters( tbl );
if prim = fail then
return fail;
fi;
max:= List( [ 1 .. NrConjugacyClasses( tbl ) ],
i -> Maximum( ApproxP( prim, i ) ) );
min:= Minimum( max );
bound:= Inverse( min );
if IsInt( bound ) then
bound:= bound - 1;
else
bound:= Int( bound );
fi;
s:= PositionsProperty( max, x -> x = min );
s:= List( Set( s, i -> ClassOrbit( tbl, i ) ), i -> i[1] );
return [ Identifier( tbl ),
min,
bound,
AtlasClassNames( tbl ){ s },
Sum( List( prim, pi -> pi{ s } ) ) ];
end );
#############################################################################
##
#F ProbGenInfoAlmostSimple( <tblS>, <tblG>, <sposS> )
##
## Let <tblS> be the ordinary character table of a finite simple group $S$,
## <tblG> be the character table of an automorphic extension $G$ of $S$
## in which $S$ has prime index,
## and <sposS> a list of class positions in <tblS>.
##
## If the full list of primitive permutation characters of <tblG> cannot be
## computed with `PrimitivePermutationCharacters' then `fail' is returned.
## Otherwise `ProbGenInfoAlmostSimple' returns a list of length five,
## containing
## the identifier of <tblG>,
## the maximum $m$ of $&total;^{\prime}( G, s )$,
## for $s$ in the classes described by <sposS>,
## a list of {\ATLAS} names (w.r.t. $G$) of the classes of elements $s$
## for which this maximum is attained,
## and the list of the corresponding cardinalities $|\M^{\prime}(G,s)|$.
##
BindGlobal( "ProbGenInfoAlmostSimple", function( tblS, tblG, sposS )
local p, fus, inv, prim, sposG, outer, approx, l, max, min,
s, cards, i, names;
p:= Size( tblG ) / Size( tblS );
if not IsPrimeInt( p )
or Length( ClassPositionsOfNormalSubgroups( tblG ) ) <> 3 then
return fail;
fi;
fus:= GetFusionMap( tblS, tblG );
if fus = fail then
return fail;
fi;
inv:= InverseMap( fus );
prim:= PrimitivePermutationCharacters( tblG );
if prim = fail then
return fail;
fi;
sposG:= Set( fus{ sposS } );
outer:= Difference( PositionsProperty(
OrdersClassRepresentatives( tblG ), IsPrimeInt ), fus );
approx:= List( sposG, i -> ApproxP( prim, i ){ outer } );
if IsEmpty( outer ) then
max:= List( approx, x -> 0 );
else
max:= List( approx, Maximum );
fi;
min:= Minimum( max);
s:= sposG{ PositionsProperty( max, x -> x = min ) };
cards:= List( prim, pi -> pi{ s } );
for i in [ 1 .. Length( prim ) ] do
# Omit the character that is induced from the simple group.
if ForAll( prim[i], x -> x = 0 or x = prim[i][1] ) then
cards[i]:= 0;
fi;
od;
names:= AtlasClassNames( tblG ){ s };
Perform( names, ConvertToStringRep );
return [ Identifier( tblG ),
min,
names,
Sum( cards ) ];
end );
#############################################################################
##
#F SigmaFromMaxes( <tbl>, <sname>, <maxes>, <numpermchars> )
#F SigmaFromMaxes( <tbl>, <sname>, <maxes>, <numpermchars>, <choice> )
##
## Let <tbl> be the ordinary character table of a finite almost simple group
## $G$ with socle $S$,
## <sname> be the name of a class in <tbl>,
## <maxes> be a list of character tables of all those maximal subgroups
## of $G$ which contain elements $s$ in the class with the name <sname>.
## Further let <numpermchars> be a list of integers such that the $i$-th
## entry in <maxes> induces `<numpermchars>[i]' different permutation
## characters.
## (So if several classes of maximal subgroups in $G$ induce the same
## permutation character then the table of this subgroup must occur with
## this multiplicity in <maxes>, and the corresponding entries in
## <numpermchars> must be $1$.
## Conversely, if there are $n$ classes of isomorphic maximal subgroups
## which induce $n$ different permutation characters then the table must
## occur only once in <maxes>, and the corresponding multiplicity in
## <numpermchars> must be $n$.)
##
## The return value is `fail' if there is an entry `<maxes>[i]' such that
## `PossiblePermutationCharacters' does not return a list of length
## `<numpermchars>[i]' when its arguments are `<maxes>[i]' and <tbl>.
##
## If the string `"outer"' is entered as the optional argument <choice> then
## $G$ is assumed to be an automorphic extension of $S$,
## with $[G:S]$ a prime,
## and $&total;^{\prime}(G,s)$ is returned.
##
## Otherwise `SigmaFromMaxes' returns $&total;(G,s)$.
##
BindGlobal( "SigmaFromMaxes", function( arg )
local t, sname, maxes, numpermchars, prim, spos, outer;
t:= arg[1];
sname:= arg[2];
maxes:= arg[3];
numpermchars:= arg[4];
prim:= List( maxes, s -> PossiblePermutationCharacters( s, t ) );
spos:= Position( AtlasClassNames( t ), sname );
if ForAny( [ 1 .. Length( maxes ) ],
i -> Length( prim[i] ) <> numpermchars[i] ) then
return fail;
elif Length( arg ) = 5 and arg[5] = "outer" then
outer:= Difference(
PositionsProperty( OrdersClassRepresentatives( t ), IsPrimeInt ),
ClassPositionsOfDerivedSubgroup( t ) );
return Maximum( ApproxP( Concatenation( prim ), spos ){ outer } );
else
return Maximum( ApproxP( Concatenation( prim ), spos ) );
fi;
end );
#############################################################################
##
#F DisplayProbGenMaxesInfo( <tbl>, <snames> )
##
## For a character table <tbl> with known `Maxes' value and a list <snames>
## of class names in <tbl>,
## `DisplayProbGenMaxesInfo' prints a description of the maximal subgroups
## of <tbl> that contain an element $s$ in the classes with names in the
## list <snames>.
## Printed are the `Identifier' values of the tables of the maximal
## subgroups and the number of conjugate subgroups in this class
## that contain $s$.
##
BindGlobal( "DisplayProbGenMaxesInfo", function( tbl, snames )
local mx, prim, i, spos, nonz, indent, j;
if not HasMaxes( tbl ) then
Print( Identifier( tbl ), ": fail\n" );
return;
fi;
mx:= List( Maxes( tbl ), CharacterTable );
prim:= List( mx, s -> TrivialCharacter( s )^tbl );
Assert( 1, SortedList( prim ) =
SortedList( PrimitivePermutationCharacters( tbl ) ) );
for i in [ 1 .. Length( prim ) ] do
# Deal with the case that the subgroup is normal.
if ForAll( prim[i], x -> x = 0 or x = prim[i][1] ) then
prim[i]:= prim[i] / prim[i][1];
fi;
od;
spos:= List( snames,
nam -> Position( AtlasClassNames( tbl ), nam ) );
nonz:= List( spos, x -> PositionsProperty( prim, pi -> pi[x] <> 0 ) );
for i in [ 1 .. Length( spos ) ] do
Print( Identifier( tbl ), ", ", snames[i], ": " );
indent:= ListWithIdenticalEntries(
Length( Identifier( tbl ) ) + Length( snames[i] ) + 4, ' ' );
if not IsEmpty( nonz[i] ) then
Print( Identifier( mx[ nonz[i][1] ] ), " (",
prim[ nonz[i][1] ][ spos[i] ], ")\n" );
for j in [ 2 .. Length( nonz[i] ) ] do
Print( indent, Identifier( mx[ nonz[i][j] ] ), " (",
prim[ nonz[i][j] ][ spos[i] ], ")\n" );
od;
else
Print( "\n" );
fi;
od;
end );
#############################################################################
##
#F PcConjugacyClassReps( <G> )
##
## Let <G> be a finite solvable group.
## `PcConjugacyClassReps' returns a list of representatives of
## the conjugacy classes of <G>,
## which are computed using a polycyclic presentation for <G>.
##
BindGlobal( "PcConjugacyClassReps", function( G )
local iso;
iso:= IsomorphismPcGroup( G );
return List( ConjugacyClasses( Image( iso ) ),
c -> PreImagesRepresentative( iso, Representative( c ) ) );
end );
#############################################################################
##
#F ClassesOfPrimeOrder( <G>, <primes>, <N> )
##
## Let <G> be a finite group, <primes> be a list of primes,
## and <N> be a normal subgroup of <G>.
## `ClassesOfPrimeOrder' returns a list of those conjugacy classes of <G>
## that are not contained in <N>
## and whose elements' orders occur in <primes>.
##
## For each prime $p$ in <primes>, first class representatives of order $p$
## in a Sylow $p$ subgroup of <G> are computed,
## then the representatives in <N> are discarded,
## and then representatives w. r. t. conjugacy in <G> are computed.
##
## (Note that this approach may be inappropriate if an elementary abelian
## Sylow $p$ subgroup for a large prime $p$ occurs, and if the conjugacy
## tests in <G> are expensive.)
##
BindGlobal( "ClassesOfPrimeOrder", function( G, primes, N )
local ccl, p, syl, Greps, reps, r, cr;
ccl:= [];
for p in primes do
syl:= SylowSubgroup( G, p );
Greps:= [];
reps:= Filtered( PcConjugacyClassReps( syl ),
r -> Order( r ) = p and not r in N );
for r in reps do
cr:= ConjugacyClass( G, r );
if ForAll( Greps, c -> c <> cr ) then
Add( Greps, cr );
fi;
od;
Append( ccl, Greps );
od;
return ccl;
end );
#############################################################################
##
#F IsGeneratorsOfTransPermGroup( <G>, <list> )
##
## Let <G> be a finite group that acts *transitively* on its moved points,
## and <list> a list of elements in <G>.
##
## `IsGeneratorsOfTransPermGroup' returns `true' if the elements in <list>
## generate <G>, and `false' otherwise.
## The main point is that the return value `true' requires the group
## generated by `list' to be transitive, and the check for transitivity
## is much cheaper than the test whether this group is equal to `G'.
##
if not IsBound( IsGeneratorsOfTransPermGroup) then
BindGlobal( "IsGeneratorsOfTransPermGroup", function( G, list )
local S;
if not IsTransitive( G ) then
Error( "<G> must be transitive on its moved points" );
fi;
S:= SubgroupNC( G, list );
return IsTransitive( S, MovedPoints( G ) ) and
Size( S ) = Size( G );
end );
fi;
#############################################################################
##
#F RatioOfNongenerationTransPermGroup( <G>, <g>, <s> )
##
## Let <G> be a finite group that acts *transitively* on its moved points,
## and <g> and <s> be two elements in <G>.
##
## `RatioOfNongenerationTransPermGroup' returns the proportion
## $∝(g,s)$.
##
BindGlobal( "RatioOfNongenerationTransPermGroup", function( G, g, s )
local nongen, pair;
if not IsTransitive( G ) then
Error( "<G> must be transitive on its moved points" );
fi;
nongen:= 0;
for pair in DoubleCosetRepsAndSizes( G, Centralizer( G, g ),
Centralizer( G, s ) ) do
if not IsGeneratorsOfTransPermGroup( G, [ s, g^pair[1] ] ) then
nongen:= nongen + pair[2];
fi;
od;
return nongen / Size( G );
end );
#############################################################################
##
#F DiagonalProductOfPermGroups( <groups> )
##
## Let $G$ be a group, and let <groups> be a list
## $[ G_1, G_2, \ldots, G_n ]$ of permutation groups such that $G_i$
## describes the action of $G$ on a set $\Omega_i$, say.
## Moreover, we require that for $1 \leq i, j \leq n$,
## mapping the `GeneratorsOfGroup' list of $G_i$ to that of $G_j$
## defines an isomorphism.
##
## `DiagonalProductOfPermGroups' takes `groups' as its argument,
## and returns the action of $G$ on the disjoint union of
## $\Omega_1, \Omega_2, \ldots \Omega_n$.
##
BindGlobal( "DiagonalProductOfPermGroups", function( groups )
local prodgens, deg, i, gens, D, pi;
prodgens:= GeneratorsOfGroup( groups[1] );
deg:= NrMovedPoints( prodgens );
for i in [ 2 .. Length( groups ) ] do
gens:= GeneratorsOfGroup( groups[i] );
D:= MovedPoints( gens );
pi:= MappingPermListList( D, [ deg+1 .. deg+Length( D ) ] );
deg:= deg + Length( D );
prodgens:= List( [ 1 .. Length( prodgens ) ],
i -> prodgens[i] * gens[i]^pi );
od;
return Group( prodgens );
end );
#############################################################################
##
#F RepresentativesMaximallyCyclicSubgroups( <tbl> )
##
## For an ordinary character table <tbl>,
## `RepresentativesMaximallyCyclicSubgroups' returns a list of class
## positions containing exactly one class of generators for each class of
## maximally cyclic subgroups.
##
BindGlobal( "RepresentativesMaximallyCyclicSubgroups", function( tbl )
local n, result, orders, p, pmap, i, j;
# Initialize.
n:= NrConjugacyClasses( tbl );
result:= BlistList( [ 1 .. n ], [ 1 .. n ] );
# Omit powers of smaller order.
orders:= OrdersClassRepresentatives( tbl );
for p in PrimeDivisors( Size( tbl ) ) do
pmap:= PowerMap( tbl, p );
for i in [ 1 .. n ] do
if orders[ pmap[i] ] < orders[i] then
result[ pmap[i] ]:= false;
fi;
od;
od;
# Omit Galois conjugates.
for i in [ 1 .. n ] do
if result[i] then
for j in ClassOrbit( tbl, i ) do
if i <> j then
result[j]:= false;
fi;
od;
fi;
od;
# Return the result.
return ListBlist( [ 1 .. n ], result );
end );
#############################################################################
##
#F ClassesPerhapsCorrespondingToTableColumns( <G>, <tbl>, <cols> )
##
## For a group <G>, its ordinary character table <tbl>, and a list <cols>
## of class positions in <tbl>,
## `ClassesPerhapsCorrespondingToTableColumns' returns the sublist
## of those conjugacy classes of `G' for which the corresponding column
## in `tbl' can be contained in `cols',
## according to element order and class length.
##
BindGlobal( "ClassesPerhapsCorrespondingToTableColumns",
function( G, tbl, cols )
local orders, classes, invariants;
orders:= OrdersClassRepresentatives( tbl );
classes:= SizesConjugacyClasses( tbl );
invariants:= List( cols, i -> [ orders[i], classes[i] ] );
return Filtered( ConjugacyClasses( G ),
c -> [ Order( Representative( c ) ), Size(c) ] in invariants );
end );
#############################################################################
##
#F UpperBoundFixedPointRatios( <G>, <maxesclasses>, <truetest> )
##
## Let <G> be a finite group, and <maxesclasses> be a list
## $[ l_1, l_2, ..., l_n ]$ such that each $l_i$ is a list of conjugacy
## classes of maximal subgroups $M_i$ of <G>, such that all classes of
## prime element order in $M_i$ are contained in $l_i$,
## and such that the $M_i$ are all those maximal subgroups of <G>
## (in particular, \emph{not} only conjugacy class representatives of
## subgroups) that contain a fixed element $s \in G$.
##
## `UpperBoundFixedPointRatios' returns a list $[ x, y ]$, where
## \[
## x = \max_{1 \not= p \mid |G|} \max_{g \in G \setminus Z(G), |g|=p}
## \sum_{i=1}^n \sum_{h \in S(i,p,g)} |h^{M_i}| / |g^G|,
## \]
## and $S(i,p,g)$ is a set of representatives $h$ of all those classes in
## $l_i$ that satisfy $|h| = p$ and $|C_G(h)| = |C_G(g)|$,
## and in the case that $G$ is a permutation group additionally that
## $h$ and $g$ move the same number of points.
## Since $S(i,p,g) \supseteq g^G \cap M_i$ holds,
## $x$ is an upper bound for $&total;(G,s)$.
##
## The second entry is `true' if the first value is in fact equal to
## $\max_{g \in G \setminus Z(G)} &fpr;(g,G/M}$, and `false' otherwise.
##
## The third argument <truetest> must be `true' or `false',
## where `true' means that the exact value of $&total;(G,s)$ is computed
## not just an upper bound; this can be much more expensive.
## (We try to reduce the number of conjugacy tests in this case,
## the second half of the code is not completely straightforward.)
##
## If $G$ is an automorphic extension of a simple group $S$,
## with $[G:S] = p$ a prime, then `UpperBoundFixedPointRatios' can be used
## to compute $&total;^{\prime}(G,s)$,
## by choosing $M_i$ the maximal subgroups of $G$ containing $s$,
## except $S$, such that $l_i$ contains only the classes of element order
## $p$ in $M_i \setminus (M_i \cap S)$.
##
## Note that in the case $n = 1$, we have $&total;(G,s) = ∝(G,s)$,
## so in this case the second entry `true' means that the first entry is
## equal to $\max_{g \in G \setminus Z(G)} &fpr;(g,G/M_1}$.
##
BindGlobal( "UpperBoundFixedPointRatios",
function( G, maxesclasses, truetest )
local myIsConjugate, invs, info, c, r, o, inv, pos, sums, max, maxpos,
maxlen, reps, split, i, found, j;
myIsConjugate:= function( G, x, y )
local movx, movy;
movx:= MovedPoints( x );
movy:= MovedPoints( y );
if movx = movy then
G:= Stabilizer( G, movx, OnSets );
fi;
return IsConjugate( G, x, y );
end;
invs:= [];
info:= [];
# First distribute the classes according to invariants.
for c in Concatenation( maxesclasses ) do
r:= Representative( c );
o:= Order( r );
# Take only prime order representatives.
if IsPrimeInt( o ) then
inv:= [ o, Size( Centralizer( G, r ) ) ];
# Omit classes that are central in `G'.
if inv[2] <> Size( G ) then
if IsPerm( r ) then
Add( inv, NrMovedPoints( r ) );
fi;
pos:= First( [ 1 .. Length( invs ) ], i -> inv = invs[i] );
if pos = fail then
# This class is not `G'-conjugate to any of the previous ones.
Add( invs, inv );
Add( info, [ [ r, Size( c ) * inv[2] ] ] );
else
# This class may be conjugate to an earlier one.
Add( info[ pos ], [ r, Size( c ) * inv[2] ] );
fi;
fi;
fi;
od;
if info = [] then
return [ 0, true ];
fi;
repeat
# Compute the contributions of the classes with the same invariants.
sums:= List( info, x -> Sum( List( x, y -> y[2] ) ) );
max:= Maximum( sums );
maxpos:= Filtered( [ 1 .. Length( info ) ], i -> sums[i] = max );
maxlen:= List( maxpos, i -> Length( info[i] ) );
# Split the sets with the same invariants if necessary
# and if we want to compute the exact value.
if truetest and not 1 in maxlen then
# Make one conjugacy test.
pos:= Position( maxlen, Minimum( maxlen ) );
reps:= info[ maxpos[ pos ] ];
if myIsConjugate( G, reps[1][1], reps[2][1] ) then
# Fuse the two classes.
reps[1][2]:= reps[1][2] + reps[2][2];
reps[2]:= reps[ Length( reps ) ];
Unbind( reps[ Length( reps ) ] );
else
# Split the list. This may require additional conjugacy tests.
Unbind( info[ maxpos[ pos ] ] );
split:= [ reps[1], reps[2] ];
for i in [ 3 .. Length( reps ) ] do
found:= false;
for j in split do
if myIsConjugate( G, reps[i][1], j[1] ) then
j[2]:= reps[i][2] + j[2];
found:= true;
break;
fi;
od;
if not found then
Add( split, reps[i] );
fi;
od;
info:= Compacted( Concatenation( info,
List( split, x -> [ x ] ) ) );
fi;
fi;
until 1 in maxlen or not truetest;
return [ max / Size( G ), 1 in maxlen ];
end );
#############################################################################
##
#F OrbitRepresentativesProductOfClasses( <G>, <classreps> )
##
## For a finite group <G> and a list
## $<classreps> = [ g_1, g_2, \ldots, g_n ]$ of elements in <G>,
## `OrbitRepresentativesProductOfClasses' returns a list of representatives
## of <G>-orbits on the Cartesian product
## $g_1^{<G>} \times g_2^{<G>} \times \cdots \times g_n^{<G>}$.
##
## The idea behind this function is to choose $R(<G>, g_1) = \{ ( g_1 ) \}$
## in the case $n = 1$,
## and, for $n > 1$,
## \[
## R(<G>, g_1, g_2, \ldots, g_n) = \{ (h_1, h_2, \ldots, h_n);
## (h_1, h_2, \ldots, h_{n-1}) \in R(<G>, g_1, g_2, \ldots, g_{n-1}),
## k_n = g_n^d, \textrm{\ for\ } d \in D \} ,
## \]
## where $D$ is a set of representatives of double cosets
## $C_{<G>}(g_n) \setminus <G> / \cap_{i=1}^{n-1} C_{<G>}(h_i)$.
##
BindGlobal( "OrbitRepresentativesProductOfClasses",
function( G, classreps )
local cents, n, orbreps;
cents:= List( classreps, x -> Centralizer( G, x ) );
n:= Length( classreps );
orbreps:= function( reps, intersect, pos )
if pos > n then
return [ reps ];
fi;
return Concatenation( List(
DoubleCosetRepsAndSizes( G, cents[ pos ], intersect ),
r -> orbreps( Concatenation( reps, [ classreps[ pos ]^r[1] ] ),
Intersection( intersect, cents[ pos ]^r[1] ), pos+1 ) ) );
end;
return orbreps( [ classreps[1] ], cents[1], 2 );
end );
#############################################################################
##
#F RandomCheckUniformSpread( <G>, <classreps>, <s>, <N> )
##
## Let <G> be a finite permutation group that is transitive on its moved
## points,
## <classreps> be a list of elements in <G>,
## <s> be an element in <G>,
## and <N> be a positive integer.
##
## `RandomCheckUniformSpread' computes representatives $X$ of <G>-orbits
## on the Cartesian product of the conjugacy classes of <classreps>;
## for each of them, up to <N> random conjugates $s^{\prime}$ of <s> are
## checked whether $s^{\prime}$ generates <G> with each element in the
## $n$-tuple of elements in $X$.
## If such an element $s^{\prime}$ is found this way, for all $X$,
## the function returns `true',
## otherwise a representative $X$ is returned for which no good conjugate
## of <s> is found.
##
BindGlobal( "RandomCheckUniformSpread", function( G, classreps, s, try )
local elms, found, i, conj;
if not IsTransitive( G, MovedPoints( G ) ) then
Error( "<G> must be transitive on its moved points" );
fi;
# Compute orbit representatives of G on the direct product,
# and try to find a good conjugate of s for each representative.
for elms in OrbitRepresentativesProductOfClasses( G, classreps ) do
found:= false;
for i in [ 1 .. try ] do
conj:= s^Random( G );
if ForAll( elms,
x -> IsGeneratorsOfTransPermGroup( G, [ x, conj ] ) ) then
found:= true;
break;
fi;
od;
if not found then
return elms;
fi;
od;
return true;
end );
#############################################################################
##
#F CommonGeneratorWithGivenElements( <G>, <classreps>, <tuple> )
##
## Let <G> be a finite group,
## and <classreps> and <tuple> be lists of elements in <G>.
## `CommonGeneratorWithGivenElements' returns an element $g$ in the
## <G>-conjugacy class of one of the elements in <classreps> with the
## property that each element in <tuple> together with $g$ generates <G>,
## if such an element $g$ exists.
## Otherwise `fail' is returned.
##
BindGlobal( "CommonGeneratorWithGivenElements",
function( G, classreps, tuple )
local inter, rep, repcen, pair;
if not IsTransitive( G, MovedPoints( G ) ) then
Error( "<G> must be transitive on its moved points" );
fi;
inter:= Intersection( List( tuple, x -> Centralizer( G, x ) ) );
for rep in classreps do
repcen:= Centralizer( G, rep );
for pair in DoubleCosetRepsAndSizes( G, repcen, inter ) do
if ForAll( tuple,
x -> IsGeneratorsOfTransPermGroup( G, [ x, rep^pair[1] ] ) ) then
return rep;
fi;
od;
od;
return fail;
end );
#############################################################################
##
#F RelativeSigmaL( <d>, <B> )
##
## Let <d> be a positive integer and <B> a basis for a field extension
## of degree $n$, say, over the field $F$ with $q$ elements.
## `RelativeSigmaL' returns a group of $<d> n \times <d> n$ matrices
## over $F$, which is the intersection of $&SL;(<d> n, q)$ and the split
## extension of an extension field type subgroup isomorphic with
## $&GL;(<d>, q^n)$ by the Frobenius automorphism that maps each matrix
## entry to its $q$-th power.
##
## (If $q$ is a prime then the return value is isomorphic with the
## semilinear group $\SigmaL(<d>, q^n)$.)
##
RelativeSigmaL:= function( d, B )
local n, F, q, glgens, diag, pi, frob, i;
n:= Length( B );
F:= LeftActingDomain( UnderlyingLeftModule( B ) );
q:= Size( F );
# Create the generating matrices inside the linear subgroup.
glgens:= List( GeneratorsOfGroup( SL( d, q^n ) ),
m -> BlownUpMat( B, m ) );
# Create the matrix of a diagonal part that maps to determinant 1.
diag:= IdentityMat( d*n, F );
diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n)^(q-1) ] ] );
Add( glgens, diag );
# Create the matrix that realizes the Frobenius action,
# and adjust the determinant.
pi:= List( B, b -> Coefficients( B, b^q ) );
frob:= NullMat( d*n, d*n, F );
for i in [ 0 .. d-1 ] do
frob{ [ 1 .. n ] + i*n }{ [ 1 .. n ] + i*n }:= pi;
od;
diag:= IdentityMat( d*n, F );
diag{ [ 1 .. n ] }{ [ 1 .. n ] }:= BlownUpMat( B, [ [ Z(q^n) ] ] );
diag:= diag^LogFFE( Inverse( Determinant( frob ) ), Determinant( diag ) );
# Return the result.
return Group( Concatenation( glgens, [ diag * frob ] ) );
end;;
#############################################################################
##
#F ApproxPForSL( <d>, <q> )
##
## For a positive integer <d> and a prime power <q>,
## `ApproxPForSL' returns $[ &M;(G,s), &total;( G, s ) ]$,
## where $G = &PSL;( <d>, <q> )$, $s \in G$ is the image of a Singer cycle
## in $&SL;(d,q)$,
## and $&M;(G,s)$ is the list of names of those maximal subgroups of $G$
## that contain $s$.
##
ApproxPForSL:= function( d, q )
local G, epi, PG, primes, maxes, names, ccl;
# Check whether this is an admissible case (see [Be00]).
if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then
return fail;
fi;
# Create the group SL(d,q), and the map to PSL(d,q).
G:= SL( d, q );
epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );
PG:= ImagesSource( epi );
# Create the subgroups corresponding to the prime divisors of `d'.
primes:= PrimeDivisors( d );
maxes:= List( primes, p -> RelativeSigmaL( d/p,
Basis( AsField( GF(q), GF(q^p) ) ) ) );
names:= List( primes, p -> Concatenation( "GL(", String( d/p ), ",",
String( q^p ), ").", String( p ) ) );
if 2 < q then
names:= List( names, name -> Concatenation( name, " cap G" ) );
fi;
# Compute the conjugacy classes of prime order elements in the maxes.
# (In order to avoid computing all conjugacy classes of these subgroups,
# we work in Sylow subgroups.)
ccl:= List( List( maxes, x -> ImagesSet( epi, x ) ),
M -> ClassesOfPrimeOrder( M, PrimeDivisors( Size( M ) ),
TrivialSubgroup( M ) ) );
return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];
end;;
#############################################################################
##
#F SymmetricBasis( <q>, <n> )
##
## For a positive integer <n> and a prime power <q>,
## `SymmetricBasis' returns a basis $B$ for the `GF(<q>)'-vector space
## `GF(<q>^<n>)' with the property that $`BlownUpMat'( B, x )$
## is symmetric for each element $x$ in `GF(<q>^<n>)'.
##
SymmetricBasis:= function( q, n )
local vectors, B, issymmetric;
if q = 2 and n = 2 then
vectors:= [ Z(2)^0, Z(2^2) ];
elif q = 2 and n = 3 then
vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];
elif q = 2 and n = 5 then
vectors:= [ Z(2)^0, Z(2^5), Z(2^5)^4, Z(2^5)^25, Z(2^5)^26 ];
elif q = 3 and n = 2 then
vectors:= [ Z(3)^0, Z(3^2) ];
elif q = 3 and n = 3 then
vectors:= [ Z(3)^0, Z(3^3)^2, Z(3^3)^7 ];
elif q = 4 and n = 2 then
vectors:= [ Z(2)^0, Z(2^4)^3 ];
elif q = 4 and n = 3 then
vectors:= [ Z(2)^0, Z(2^3), Z(2^3)^5 ];
elif q = 5 and n = 2 then
vectors:= [ Z(5)^0, Z(5^2)^2 ];
elif q = 5 and n = 3 then
vectors:= [ Z(5)^0, Z(5^3)^9, Z(5^3)^27 ];
else
Error( "sorry, no basis for <q> and <n> stored" );
fi;
B:= Basis( AsField( GF(q), GF(q^n) ), vectors );
# Check that the basis really has the required property.
issymmetric:= M -> M = TransposedMat( M );
if not ForAll( B, b -> issymmetric( BlownUpMat( B, [ [ b ] ] ) ) ) then
Error( "wrong basis!" );
fi;
# Return the result.
return B;
end;;
#############################################################################
##
#F EmbeddedMatrix( <F>, <mat>, <func> )
##
## For a field <F>, a matrix <mat> and a function <func> that takes a matrix
## and returns a matrix of the same shape,
## `EmbeddedMatrix' returns a block diagonal matrix over the field <F>
## whose diagonal blocks are <mat> and `<func>( <mat> )'.
##
BindGlobal( "EmbeddedMatrix", function( F, mat, func )
local d, result;
d:= Length( mat );
result:= NullMat( 2*d, 2*d, F );
result{ [ 1 .. d ] }{ [ 1 .. d ] }:= mat;
result{ [ d+1 .. 2*d ] }{ [ d+1 .. 2*d ] }:= func( mat );
return result;
end );
#############################################################################
##
#F ApproxPForOuterClassesInExtensionOfSLByGraphAut( <d>, <q> )
##
## For a positive integer <d> and a prime power <q>,
## `ApproxPForOuterClassesInExtensionOfSLByGraphAut' returns
## $[ &M;(G,s), &total;^{\prime}( G, s ) ]$,
## where $G$ is $&PSL;( <d>, <q> )$ extended by a graph automorphism,
## $s \in G$ is the image of a Singer cycle in $&SL;(d,q)$,
## and $&M;(G,s)$ is the list of names of those maximal subgroups of
## $&PGL;( <d>, <q> )$ that contain $s$.
##
ApproxPForOuterClassesInExtensionOfSLByGraphAut:= function( d, q )
local embedG, swap, G, orb, epi, PG, Gprime, primes, maxes, ccl, names;
# Check whether this is an admissible case (see [Be00],
# note that a graph automorphism exists only for `d > 2').
if d = 2 or ( d = 3 and q = 4 ) then
return fail;
fi;
# Provide a function that constructs a block diagonal matrix.
embedG:= mat -> EmbeddedMatrix( GF( q ), mat,
M -> TransposedMat( M^-1 ) );
# Create the matrix that exchanges the two blocks.
swap:= NullMat( 2*d, 2*d, GF(q) );
swap{ [ 1 .. d ] }{ [ d+1 .. 2*d ] }:= IdentityMat( d, GF(q) );
swap{ [ d+1 .. 2*d ] }{ [ 1 .. d ] }:= IdentityMat( d, GF(q) );
# Create the group SL(d,q).2, and the map to the projective group.
G:= ClosureGroupDefault( Group( List( GeneratorsOfGroup( SL( d, q ) ),
embedG ) ),
swap );
orb:= Orbit( G, One( G )[1], OnLines );
epi:= ActionHomomorphism( G, orb, OnLines );
PG:= ImagesSource( epi );
Gprime:= DerivedSubgroup( PG );
# Create the subgroups corresponding to the prime divisors of `d'.
primes:= PrimeDivisors( d );
maxes:= List( primes,
p -> ClosureGroupDefault( Group( List( GeneratorsOfGroup(
RelativeSigmaL( d/p, SymmetricBasis( q, p ) ) ),
embedG ) ),
swap ) );
# Compute conjugacy classes of outer involutions in the maxes.
# (In order to avoid computing all conjugacy classes of these subgroups,
# we work in the Sylow $2$ subgroups.)
maxes:= List( maxes, M -> ImagesSet( epi, M ) );
ccl:= List( maxes, M -> ClassesOfPrimeOrder( M, [ 2 ], Gprime ) );
names:= List( primes, p -> Concatenation( "GL(", String( d/p ), ",",
String( q^p ), ").", String( p ) ) );
return [ names, UpperBoundFixedPointRatios( PG, ccl, true )[1] ];
end;;
#############################################################################
##
#F RelativeGammaL( <d>, <B> )
##
## Let the arguments be as for `RelativeSigmaL'.
## Then `RelativeGammaL' returns the extension field type subgroup of
## $&GL;(d,q)$ that corresponds to the subgroup of $&SL;(d,q)$ returned by
## `RelativeSigmaL'.
##
RelativeGammaL:= function( d, B )
local n, F, q, diag;
n:= Length( B );
F:= LeftActingDomain( UnderlyingLeftModule( B ) );
q:= Size( F );
diag:= IdentityMat( d * n, F );
diag{[ 1 .. n ]}{[ 1 .. n ]}:= BlownUpMat( B, [ [ Z(q^n) ] ] );
return ClosureGroup( RelativeSigmaL( d, B ), diag );
end;;
#############################################################################
##
#F ApproxPForOuterClassesInGL( <d>, <q> )
##
## Let the arguments be as for `ApproxPForSL'.
## Then `ApproxPForOuterClassesInGL' returns the list of names of the
## extension field type subgroups of $&GL;(<d>,<q>)$,
## and $&total;^{\prime}(&GL;(<d>,<q>),s)$,
## for a Singer cycle $s \in &SL;(d,q)$.
##
ApproxPForOuterClassesInGL:= function( d, q )
local G, epi, PG, Gprime, primes, maxes, names;
# Check whether this is an admissible case (see [Be00]).
if ( d = 2 and q in [ 2, 5, 7, 9 ] ) or ( d = 3 and q = 4 ) then
return fail;
fi;
# Create the group GL(d,q), and the map to PGL(d,q).
G:= GL( d, q );
epi:= ActionHomomorphism( G, NormedRowVectors( GF(q)^d ), OnLines );
PG:= ImagesSource( epi );
Gprime:= ImagesSet( epi, SL( d, q ) );
# Create the subgroups corresponding to the prime divisors of `d'.
primes:= PrimeDivisors( d );
maxes:= List( primes, p -> RelativeGammaL( d/p,
Basis( AsField( GF(q), GF(q^p) ) ) ) );
maxes:= List( maxes, M -> ImagesSet( epi, M ) );
names:= List( primes, p -> Concatenation( "M(", String( d/p ), ",",
String( q^p ), ")" ) );
return [ names,
UpperBoundFixedPointRatios( PG, List( maxes,
M -> ClassesOfPrimeOrder( M,
PrimeDivisors( Index( PG, Gprime ) ), Gprime ) ),
true )[1] ];
end;;
#############################################################################
##
#E
|