File: CHAP002.htm

package info (click to toggle)
gap-ctbllib 1r1p3-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 17,612 kB
  • ctags: 287
  • sloc: sh: 501; makefile: 47
file content (2030 lines) | stat: -rw-r--r-- 106,340 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
<html><head><title>[CTblLib] 2 The GAP Character Table Library</title></head>
<body text="#000000" bgcolor="#ffffff">
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP001.htm">Previous</a>] [<a href ="CHAP003.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<h1>2 The GAP Character Table Library</h1><p>
<P>
<H3>Sections</H3>
<oL>
<li> <A HREF="CHAP002.htm#SECT001">Contents of the GAP Character Table Library</a>
<li> <A HREF="CHAP002.htm#SECT002">Access to Library Character Tables</a>
<li> <A HREF="CHAP002.htm#SECT003">Generic Character Tables</a>
<li> <A HREF="CHAP002.htm#SECT004">Examples of Generic Character Tables</a>
<li> <A HREF="CHAP002.htm#SECT005">ATLAS Tables</a>
<li> <A HREF="CHAP002.htm#SECT006">Examples of the ATLAS Format for GAP Tables</a>
<li> <A HREF="CHAP002.htm#SECT007">CAS Tables</a>
<li> <A HREF="CHAP002.htm#SECT008">Organization of the Character Table Library</a>
<li> <A HREF="CHAP002.htm#SECT009">How to Extend the Character Table Library</a>
</ol><p>
<p>
<a name = "I0"></a>

<a name = "I0"></a>
<a name = "I1"></a>

<a name = "I0"></a>
<a name = "I1"></a>
<a name = "I2"></a>

<a name = "I0"></a>
<a name = "I1"></a>
<a name = "I2"></a>
<a name = "I3"></a>

This chapter informs you about
<dl compact>
<dt>--<dd>
    the currently available character tables
    (see&nbsp;<a href="CHAP002.htm#SECT001">Contents of the GAP Character Table Library</a>),
<dt>--<dd>
    how to access library tables (see&nbsp;<a href="CHAP002.htm#SECT002">Access to Library Character Tables</a>),
<dt>--<dd>
    generic character tables
    (see&nbsp;<a href="CHAP002.htm#SECT003">Generic Character Tables</a>
    and <a href="CHAP002.htm#SECT004">Examples of Generic Character Tables</a>),
<dt>--<dd>
    the subsets of <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables
    (see&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a> and <a href="CHAP002.htm#SECT006">Examples of the ATLAS Format for GAP Tables</a>)
    and <font face="Gill Sans,Helvetica,Arial">CAS</font> tables (see&nbsp;<a href="CHAP002.htm#SECT007">CAS Tables</a>),
<dt>--<dd>
    the organization of the table library
    (see&nbsp;<a href="CHAP002.htm#SECT008">Organization of the Character Table Library</a>), and
<dt>--<dd>
    how to extend the library
    (see&nbsp;<a href="CHAP002.htm#SECT009">How to Extend the Character Table Library</a>).
</dl>
The latter two sections are rather technical,
they are thought only for those who want to maintain or extend the table
library.
<p>
<p>
<h2><a name="SECT001">2.1 Contents of the GAP Character Table Library</a></h2>
<p><p>
<a name = "I4"></a>

<a name = "I4"></a>
<a name = "I5"></a>

<a name = "I4"></a>
<a name = "I5"></a>
<a name = "I6"></a>

This section gives a brief overview of the contents of the <font face="Gill Sans,Helvetica,Arial">GAP</font>
character table library.
For the details about, e.g., the structure of data files,
see&nbsp;<a href="CHAP002.htm#SECT008">Organization of the Character Table Library</a>.
<p>
The changes in the character table library since the first release of
<font face="Gill Sans,Helvetica,Arial">GAP</font>&nbsp;4 are listed in a file that can be fetched from
<a href="http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.html">http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.html</a>
<p>
There are three different kinds of character tables in the <font face="Gill Sans,Helvetica,Arial">GAP</font> library,
namely <strong>ordinary character tables</strong>, <strong>Brauer tables</strong>,
and <strong>generic character tables</strong>.
Note that the Brauer table and the corresponding ordinary table of a group
determine the <strong>decomposition matrix</strong> of the group
(and the decomposition matrices of its blocks).
These decomposition matrices can be computed from the ordinary and modular
irreducibles with <font face="Gill Sans,Helvetica,Arial">GAP</font>
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SECT009">Operations Concerning Blocks</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual
for details).
A collection of DVI and PostScript files of the known decomposition matrices
of almost simple groups in the <font face="Gill Sans,Helvetica,Arial">GAP</font> table library can also be found
at&nbsp;<a href="http://www.math.rwth-aachen.de/~MOC/decomposition/">http://www.math.rwth-aachen.de/~MOC/decomposition/</a>
<p>
<strong>Ordinary Character Tables</strong>
<p>
Two different aspects are useful to list the ordinary character tables
available in <font face="Gill Sans,Helvetica,Arial">GAP</font>, namely the aspect of the <strong>source</strong> of the tables
and that of <strong>connections</strong> between the tables.
<p>
As for the source, there are first of all two big sources,
namely the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Finite Groups (see&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a>)
and the <font face="Gill Sans,Helvetica,Arial">CAS</font> library of character tables (see&nbsp;<a href="biblio.htm#NPP84"><cite>NPP84</cite></a>).
Many <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables are contained in the <font face="Gill Sans,Helvetica,Arial">CAS</font> library,
and difficulties may arise because the succession of characters and classes
in <font face="Gill Sans,Helvetica,Arial">CAS</font> tables and <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables are in general different,
so see&nbsp;<a href="CHAP002.htm#SECT007">CAS Tables</a> for the relations between these two variants of
character tables of the same group.
A large subset of the <font face="Gill Sans,Helvetica,Arial">CAS</font> tables is the set of tables of Sylow
normalizers of sporadic simple groups as published in&nbsp;<a href="biblio.htm#Ost86"><cite>Ost86</cite></a>
--this may be viewed as another source of character tables.
The library also contains the character tables of factor groups of space
groups (computed by W.&nbsp;Hanrath, see&nbsp;<a href="biblio.htm#Han88"><cite>Han88</cite></a>)
that are part of&nbsp;<a href="biblio.htm#HP89"><cite>HP89</cite></a> via two microfiches;
these tables are given in <font face="Gill Sans,Helvetica,Arial">CAS</font> format (see&nbsp;<a href="CHAP002.htm#SECT007">CAS Tables</a>) on the
microfiches,
but they had not been part of the ``official'' <font face="Gill Sans,Helvetica,Arial">CAS</font> library.
<p>
To avoid confusion about the ordering of classes and characters in a given
table, authorship and so on,
the <code>InfoText</code> (see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.12">InfoText</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual)
value of the table contains the information
<p>
<dl compact>
<dt><code>origin: ATLAS of finite groups</code> <dd>
    for <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables (see&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a>),
<p>
<dt><code>origin: Ostermann</code> <dd>
    for tables contained in&nbsp;<a href="biblio.htm#Ost86"><cite>Ost86</cite></a>,
<p>
<dt><code>origin: CAS library</code> <dd>
    for any table of the <font face="Gill Sans,Helvetica,Arial">CAS</font> table library that is contained
    neither in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> nor in&nbsp;<a href="biblio.htm#Ost86"><cite>Ost86</cite></a>, and
<p>
<dt><code>origin: Hanrath library</code> <dd>
    for tables contained in the microfiches in&nbsp;<a href="biblio.htm#HP89"><cite>HP89</cite></a>.
</dl>
The <code>InfoText</code> value usually contains more detailed information,
for example that the table in question is the character table of a maximal
subgroup of an almost simple group.
If the table was contained in the <font face="Gill Sans,Helvetica,Arial">CAS</font> library then additional
information may be available via the <code>CASInfo</code> value (see&nbsp;<a href="CHAP002.htm#SSEC007.1">CASInfo</a>).
<p>
If one is interested in the aspect of connections between the tables,
i.e., the internal structure of the library of ordinary tables,
the contents can be listed up the following way.
<p>
We have
<dl compact>
<dt>-<dd>
    all <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables (see&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a>), i.e., the tables of the
    simple groups which are contained in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Finite Groups,
    and the tables of cyclic and bicyclic extensions of these groups,
<dt>-<dd>
    most tables of maximal subgroups of sporadic simple groups
    (<strong>not all</strong> for <i>B</i> and <i>M</i>),
<dt>-<dd>
    some tables of maximal subgroups of other <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables,
    where the list of maximal subgroups is complete if the <code>Maxes</code> value
    for the table is known (see&nbsp;<a href="CHAP002.htm#SSEC002.2">Maxes</a>),
<dt>-<dd>
    the tables of most Sylow normalizers of sporadic simple groups,
    as printed in&nbsp;<a href="biblio.htm#Ost86"><cite>Ost86</cite></a>
    (<strong>not</strong> <i>J</i><sub>4</sub><i>N</i>2, <i>Co</i><sub>1</sub><i>N</i>2, <i>Fi</i><sub>22</sub><i>N</i>2,
    and several for <i>HN</i>, <i>Fi</i><sub>23</sub>, <i>Fi</i><sub>24</sub><sup><font face="symbol"></font></sup>, <i>B</i>, <i>M</i>)
<dt>-<dd>
    some tables of element centralizers
<dt>-<dd>
    some tables of Sylow subgroups
<dt>-<dd>
    a few other tables, e.g.&nbsp;<code>W(F4)</code>
</dl>
<p>
<strong>Note</strong> that class fusions stored on library tables are not guaranteed
to be compatible for any two subgroups of a group and their intersection,
and they are not guaranteed to be consistent w.r.t.&nbsp;the composition of maps.
<p>
<strong>Brauer Tables</strong>
<p>
The library contains all tables of the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Brauer Tables
(<a href="biblio.htm#JLPW95"><cite>JLPW95</cite></a>), and many other Brauer tables of bicyclic extensions of
simple groups which are known yet.
<p>
The Brauer tables in the library contain the information
<pre>
origin: modular ATLAS of finite groups
</pre>
in their <code>InfoText</code> string
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.12">InfoText</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual).
<p>
<strong>Generic Character Tables</strong>
<p>
See&nbsp;<a href="CHAP002.htm#SECT003">Generic Character Tables</a> for an overview of generic tables available.
<p>
<p>
<h2><a name="SECT002">2.2 Access to Library Character Tables</a></h2>
<p><p>
<a name = "I7"></a>

This section describes how to access
a specific character table (see&nbsp;<a href="CHAP002.htm#SSEC002.1">CharacterTableFromLibrary</a>),
known character tables of maximal subgroups (see&nbsp;<a href="CHAP002.htm#SSEC002.2">Maxes</a>),
and how to select character tables with prescribed properties
(see&nbsp;<a href="CHAP002.htm#SSEC002.6">AllCharacterTableNames</a>, <a href="CHAP002.htm#SSEC002.7">OneCharacterTableName</a>).
<p>
<a name = "SSEC002.1"></a>
<li><code>CharacterTableFromLibrary( </code><var>tblname</var><code> ) F</code>
<li><code>CharacterTableFromLibrary( </code><var>series</var><code>, </code><var>param1</var><code>[, </code><var>param2</var><code>] ) F</code>
<p>
If the only argument is a string <var>tblname</var> and if this is an admissible
name (see below) of a library character table then
<code>CharacterTableFromLibrary</code> returns this library table, otherwise <code>fail</code>.
<p>
If <code>CharacterTableFromLibrary</code> is called with more than one argument
then the first must be a string <var>series</var> specifying a series of groups
which is implemented via a generic character table,
for example <code>"Symmetric"</code> for symmetric groups;
the remaining arguments specialise then the desired member of the series
(see&nbsp;<a href="CHAP002.htm#SECT003">Generic Character Tables</a> for a list of available generic tables).
If no generic table with name <var>series</var> is available or if the parameters
are not admissible then <code>CharacterTableFromLibrary</code> returns <code>fail</code>.
<p>
A call of <code>CharacterTableFromLibrary</code> may cause to read some library
files and to construct the table object from the data stored in these
files,
so fetching a library table may take more time than on expects.
<p>
<code>CharacterTableFromLibrary</code> is called by <code>CharacterTable</code> if the first
argument is a string, so one may also call <code>CharacterTable</code>.
<p>
Admissible names for the <strong>ordinary character table</strong> <i>t</i> of the group <i>G</i>
are
<dl compact>
<dt>-<dd>
    an <font face="Gill Sans,Helvetica,Arial">ATLAS</font> like name if <i>t</i> is an <font face="Gill Sans,Helvetica,Arial">ATLAS</font> table
    (see&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a>), for example
    <code>"M22"</code> for the table of the Mathieu group <i>M</i><sub>22</sub>,
    <code>"L2(13).2"</code> for <i>L</i><sub>2</sub>(13):2, and
    <code>"12_1.U4(3).2_1"</code> for 12<sub>1</sub>.<i>U</i><sub>4</sub>(3).2<sub>1</sub>,
<p>
    (The difference to the name printed in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> is that
    subscripts and superscripts are omitted except if they are used to
    qualify integer values,
    and double dots are replaced by a single dot.)
<dt>-<dd>
    the names that were admissible for tables of <i>G</i> in <font face="Gill Sans,Helvetica,Arial">CAS</font>
    if the <font face="Gill Sans,Helvetica,Arial">CAS</font> table library contained a table of <i>G</i>,
    for example <code>sl42</code> for the table of the alternating group <i>A</i><sub>8</sub>,
<p>
    (But note that the <font face="Gill Sans,Helvetica,Arial">GAP</font> table may be different from that in
    <font face="Gill Sans,Helvetica,Arial">CAS</font>, see&nbsp;<a href="CHAP002.htm#SECT007">CAS Tables</a>.)
<dt>-<dd>
    some ``relative'' names, as follows.
<p>
    If <i>G</i> is the <var>n</var>--th maximal subgroup (in decreasing group order)
    of a group whose library table <i>s</i> is available in <font face="Gill Sans,Helvetica,Arial">GAP</font> and stores
    the <code>Maxes</code> value (see&nbsp;<a href="CHAP002.htm#SSEC002.2">Maxes</a>),
    and if <var>name</var> is an admissible name for <i>s</i>
    then <code></code><var>name</var><code>M</code><var>n</var><code></code> is admissible for <i>t</i>.
    For example, the name <code>"J3M2"</code> can be used to access the second
    maximal subgroup of the sporadic simple Janko group <i>J</i><sub>3</sub>
    which has the admissible name <code>J3</code>.
<p>
    If <i>G</i> is a nontrivial Sylow <i>p</i> normalizer in a sporadic simple
    group with admissible name <var>name</var>,
    --where nontrivial means that <i>G</i> is not isomorphic to a subgroup of
    <i>p</i>:(<i>p</i><font face="symbol">-</font>1)--
    then <code></code><var>name</var><code>N</code><var>p</var><code></code> is an admissible name of <i>t</i>.
    For example, the name <code>"J4N11"</code> can be used to access the table of
    the Sylow 11 normalizer in the sporadic simple Janko group <i>J</i><sub>4</sub>.
<p>
    In a few cases, the table of the Sylow <i>p</i> subgroup of <i>G</i> is
    accessible via the name <code></code><var>name</var><code>Syl</code><var>p</var><code></code> where <var>name</var> is an admissible
    name of the table of <i>G</i>.
    For example, <code>"A11Syl2"</code> is an admissible name for the table of the
    Sylow 2 subgroup of the alternating group <i>A</i><sub>11</sub>.
<p>
    In a few cases, the table of an element centralizer in <i>G</i> is
    accessible via the name <code></code><var>name</var><code>C</code><var>cl</var><code></code>
    where <var>name</var> is an admissible name of the table of <i>G</i>.
    For example, <code>"M11C2"</code> is an admissible name for the table of an
    involution centralizer in the Mathieu group <i>M</i><sub>11</sub>.
</dl>
<p>
The recommended way to access <strong>Brauer tables</strong> from the library is via the
<code>mod</code> operator from the ordinary table and the desired characteristic
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC003.2">BrauerTable</a> and <a href="../../../doc/htm/ref/CHAP069.htm#SECT007">Operators for Character Tables</a>
in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual),
so it is not necessary to define admissible names of Brauer tables.
<p>
A <strong>generic character table</strong> (see&nbsp;<a href="CHAP002.htm#SECT003">Generic Character Tables</a>) is
accessible only by the name given by its <code>Identifier</code> value
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.11">Identifier!for character tables</a>
in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual).
<p>
Case is not significant for character table names.
For example, both <code>"suzm3"</code> and <code>"SuzM3"</code> are admissible names for
the third maximal subgroup of the sporadic simple Suzuki group.
<p>
<pre>
gap&gt; s5:= CharacterTable( "A5.2" );
CharacterTable( "A5.2" )
gap&gt; sym5:= CharacterTable( "Symmetric", 5 );
CharacterTable( "Sym(5)" )
gap&gt; TransformingPermutationsCharacterTables( s5, sym5 );
rec( columns := (2,3,4,7,5), rows := (1,7,3,4,6,5,2), group := Group(()) )
</pre>
The above two tables are tables of the symmetric group on five letters;
the first is in <font face="Gill Sans,Helvetica,Arial">ATLAS</font> format (see&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a>),
the second is constructed from the generic table for symmetric groups
(see&nbsp;<a href="CHAP002.htm#SECT003">Generic Character Tables</a>).
<pre>
gap&gt; CharacterTable( "J5" );
fail
gap&gt; CharacterTable( "A5" ) mod 2;
BrauerTable( "A5", 2 )
</pre>
<p>
<a name = "SSEC002.2"></a>
<li><code>Maxes( </code><var>tbl</var><code> ) A</code>
<p>
is a list of identifiers of the tables of all maximal subgroups of <var>tbl</var>.
This is meaningful only for library tables,
and there is no default method to compute the value.
<p>
If the <code>Maxes</code> value of <var>tbl</var> is stored then it lists exactly one
representative for each conjugacy class of maximal subgroups of the group
of <var>tbl</var>,
and the tables of these maximal subgroups are available in the <font face="Gill Sans,Helvetica,Arial">GAP</font>
table library, and the fusions to <var>tbl</var> are stored on these tables.
<p>
<pre>
gap&gt; tbl:= CharacterTable( "M11" );;
gap&gt; HasMaxes( tbl );
true
gap&gt; maxes:= Maxes( tbl );
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
gap&gt; CharacterTable( maxes[1] );
CharacterTable( "A6.2_3" )
</pre>
<p>
<a name = "SSEC002.3"></a>
<li><code>FusionToTom( </code><var>tbl</var><code> ) A</code>
<p>
If this attribute is set for an ordinary character table <var>tbl</var> then
the <font face="Gill Sans,Helvetica,Arial">GAP</font> Library of Tables of Marks contains the table of marks of the
group of <var>tbl</var>, and the attribute value is a record with the following
components.
<p>
<dl compact>
<dt><code>name</code> <dd>
    the <code>Identifier</code> component of the table of marks of <var>tbl</var>,
<p>
<dt><code>map</code> <dd>
    the fusion map, and
<p>
<dt><code>text</code> (optional) <dd>
    a string describing the status of the fusion.
</dl>
<p>
<pre>
gap&gt; FusionToTom( CharacterTable( "A5" ) );
rec( name := "A5", map := [ 1, 2, 3, 5, 5 ], text := "fusion map is unique" )
</pre>
<p>
<a name = "SSEC002.4"></a>
<li><code>ProjectivesInfo( </code><var>tbl</var><code> ) A</code>
<p>
If this attribute is set for an ordinary character table <var>tbl</var> then
the value is a list of records, each with the following components.
<p>
<dl compact>
<dt><code>name</code> <dd>
    the <code>Identifier</code> value of the character table <var>mult</var> of the covering
    whose faithful irreducible characters are described by the record,
<p>
<dt><code>chars</code> <dd>
    a list of values lists of faithful projective irreducibles;
    only one representative of each family of Galois conjugates is
    contained in this list,
    and
<p>
<dt><code>map</code> <dd>
    a list of positions that maps each class of <var>tbl</var> to that preimage in
    <var>mult</var> for which the entries in <code>chars</code> give the values.
    In a sense, a projection map is an inverse of the factor fusion from
    the table of the covering to the given table
    (see&nbsp;<a href="../../../doc/htm/ref/CHAP071.htm#SSEC003.3">ProjectionMap</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual).
</dl>
<p>
<pre>
gap&gt; ProjectivesInfo( CharacterTable( "A5" ) );
[ rec( name := "2.A5", 
      chars := [ [ 2, 0, -1, E(5)+E(5)^4, E(5)^2+E(5)^3 ], [ 2, 0, -1, 
              E(5)^2+E(5)^3, E(5)+E(5)^4 ], [ 4, 0, 1, -1, -1 ], 
          [ 6, 0, 0, 1, 1 ] ], map := [ 1, 3, 4, 6, 8 ] ) ]
</pre>
<p>
<a name = "SSEC002.5"></a>
<li><code>ExtensionInfoCharacterTable( </code><var>tbl</var><code> ) A</code>
<p>
Let <var>tbl</var> be the ordinary character table of a group <i>G</i>, say.
If this attribute is set for <var>tbl</var> then the value is a list of length
two,
the first entry being a string <var>M</var> that describes the Schur multiplier
of <i>G</i> and the second entry being a string <var>A</var> that describes the outer
automorphism group of <i>G</i>.
Trivial multiplier or outer automorphism group are denoted by an empty
string.
<p>
If <var>tbl</var> is a table from the <font face="Gill Sans,Helvetica,Arial">GAP</font> Character Table Library and <i>G</i> is
(nonabelian and) simple then the value is set.
In this case, an admissible name for the character table of the
Darstellungsgruppe of <i>G</i> (if this table is available and different from
<var>tbl</var>) is given by the concatenation of <var>M</var>, <code>"."</code>, and the <code>Identifier</code>
value of <var>tbl</var>.
Analogously, an admissible name for the character table of the
automorphism group of <i>G</i> (if this table is available and different from
<var>tbl</var>) is given by the concatenation of the <code>Identifier</code> value of <var>tbl</var>,
<code>"."</code>, and <var>A</var>.
<p>
<pre>
gap&gt; ExtensionInfoCharacterTable( CharacterTable( "A5" ) );
[ "2", "2" ]
</pre>
<p>
<a name = "I8"></a>

<a name = "SSEC002.6"></a>
<li><code>AllCharacterTableNames( [</code><var>func</var><code>, </code><var>val</var><code>, ... ] ) F</code>
<li><code>AllCharacterTableNames( </code><var>func</var><code>, </code><var>val</var><code>, ...[, OfThose, </code><var>func</var><code>] ) F</code>
<p>
Similar to group libraries (see Chapter&nbsp;<a href="../../../doc/htm/ref/CHAP048.htm">Group Libraries</a> in the
<font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual),
the <font face="Gill Sans,Helvetica,Arial">GAP</font> character table library can be used to search for ordinary
character tables with prescribed properties.
<p>
A specific library table can be selected by an admissible name
(see&nbsp;<a href="CHAP002.htm#SSEC002.1">CharacterTableFromLibrary</a>).
<p>
The selection function for character tables from the <font face="Gill Sans,Helvetica,Arial">GAP</font> Character
Table Library that have certain abstract properties is
<code>AllCharacterTableNames</code>.
Contrary to the situation in the case of group libraries,
the selection function returns a list not of library character tables
but of their names;
using <code>CharacterTable</code> one can then access the tables themselves.
<p>
<code>AllCharacterTableNames</code> takes an arbitrary even number of arguments.
The argument at each odd position must be a function, and
the argument at the subsequent even position must be a value that this
function must return when called for the character table in question,
in order to have the name of the table included in the selection,
or a list of such values.
For example,
<pre>
gap&gt; names:= AllCharacterTableNames();;
</pre>
returns a list containing one admissible name of each ordinary character
table in the <font face="Gill Sans,Helvetica,Arial">GAP</font> library, and
<pre>
gap&gt; simpnames:= AllCharacterTableNames( IsSimple, true );;
gap&gt; AllCharacterTableNames( IsSimple, true, Size, [ 1 .. 100 ] );
[ "A5" ]
</pre>
return lists containing an admissible name of each ordinary character
table in the <font face="Gill Sans,Helvetica,Arial">GAP</font> library whose groups are simple or are simple and
have order at most 100, respectively.
<p>
For the sake of efficiency,
the arguments <code>IsSimple</code> and <code>IsSporadicSimple</code> followed by <code>true</code> are
handled in a special way, <font face="Gill Sans,Helvetica,Arial">GAP</font> need not read all files of the table
library in these cases in order to find the desired names.
<p>
If the function <code>OfThose</code> is an argument at an odd position then the
following argument <var>func</var> must be a function that takes a character table
and returns a name of a character table or a list of names;
this is interpreted as replacement of the names computed up to this
position by the union of names returned by <var>func</var>.
For example, <var>func</var> may be <code>Maxes</code> (see&nbsp;<a href="CHAP002.htm#SSEC002.2">Maxes</a>) or
<code>NamesOfFusionSources</code> (see&nbsp;<a href="../../../doc/htm/ref/CHAP071.htm#SSEC002.5">NamesOfFusionSources</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font>
Reference Manual).
<pre>
gap&gt; maxesnames:= AllCharacterTableNames( IsSporadicSimple, true,
&gt;                                         HasMaxes, true,
&gt;                                         OfThose, Maxes );;
</pre>
returns the union of names of ordinary tables of those maximal subgroups
of sporadic simple groups that are contained in the table library in the
sense that the attribute <code>Maxes</code> is set.
<p>
For the sake of efficiency, <code>OfThose</code> followed by one of the arguments
<code>AutomorphismGroup</code>, <code>SchurCover</code>, <code>CompleteGroup</code> is handled in a
special way.
<p>
<a name = "SSEC002.7"></a>
<li><code>OneCharacterTableName( </code><var>func</var><code>, </code><var>val</var><code> ) F</code>
<li><code>OneCharacterTableName( </code><var>func</var><code>, </code><var>val</var><code>, ..., OfThose, </code><var>func</var><code> ) F</code>
<p>
The example function for character tables from the <font face="Gill Sans,Helvetica,Arial">GAP</font> Character
Table Library that have certain abstract properties is
<code>OneCharacterTableName</code>.
It is analogous to the selection function <code>AllCharacterTableNames</code>
(see&nbsp;<a href="CHAP002.htm#SSEC002.6">AllCharacterTableNames</a>), the difference is that it returns one
<code>Identifier</code> value of a character table with the properties in question
instead of the list of all such values.
If no table with the required properties is contained in the <font face="Gill Sans,Helvetica,Arial">GAP</font>
Character Table Library then <code>fail</code> is returned.
<pre>
gap&gt; OneCharacterTableName( IsSimple, true, Size, 60 );
"A5"
gap&gt; OneCharacterTableName( IsSimple, true, Size, 20 );
fail
</pre>
<p>
<a name = "SSEC002.8"></a>
<li><code>CTblLibSetUnload( </code><var>value</var><code> ) F</code>
<p>
If <var>value</var> is <code>false</code> then the call to <code>CTblLibSetUnload</code> has the effect
that data files from the <font face="Gill Sans,Helvetica,Arial">GAP</font> Character TableLibrary are read only once
in the current session.
By default, the contents of only one data file is kept in memory,
in order to keep the space small.
This behaviour can be achieved also by calling <code>CTblLibSetUnload</code> with
<code>true</code>.
<p>
<p>
<h2><a name="SECT003">2.3 Generic Character Tables</a></h2>
<p><p>
<a name = "I9"></a>

<a name = "I9"></a>
<a name = "I10"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>
<a name = "I12"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>
<a name = "I12"></a>
<a name = "I13"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>
<a name = "I12"></a>
<a name = "I13"></a>
<a name = "I14"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>
<a name = "I12"></a>
<a name = "I13"></a>
<a name = "I14"></a>
<a name = "I15"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>
<a name = "I12"></a>
<a name = "I13"></a>
<a name = "I14"></a>
<a name = "I15"></a>
<a name = "I16"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>
<a name = "I12"></a>
<a name = "I13"></a>
<a name = "I14"></a>
<a name = "I15"></a>
<a name = "I16"></a>
<a name = "I17"></a>

<a name = "I9"></a>
<a name = "I10"></a>
<a name = "I11"></a>
<a name = "I12"></a>
<a name = "I13"></a>
<a name = "I14"></a>
<a name = "I15"></a>
<a name = "I16"></a>
<a name = "I17"></a>
<a name = "I18"></a>

Generic character tables provide a means for writing down the character
tables of all groups in a (usually infinite) series of similar groups,
e.g., cyclic groups, or symmetric groups, or the general linear groups
<span class="roman">GL</span>(2,<i>q</i>) where <i>q</i> ranges over certain prime powers.
<p>
Let { <i>G</i><sub><i>q</i></sub> <font face="symbol">||</font> <i>q</i>  <font face="symbol"></font> <i>I</i> } be such a series, where <i>I</i> is an index set.
The character table of one fixed member <i>G</i><sub><i>q</i></sub> could be computed using a
function that takes <i>q</i> as only argument and constructs the table of <i>G</i><sub><i>q</i></sub>.
It is, however, often desirable to compute not only the whole table but to
access just one specific character, or to compute just one character value,
without computing the whole character table.
<p>
For example, both the conjugacy classes and the irreducible characters of
the symmetric group <i>S</i><sub><i>n</i></sub> are in bijection with the partitions of <i>n</i>.
Thus for given <i>n</i> it makes sense to ask for the character corresponding to
a particular partition, or just for its character value at another
partition.
<p>
A generic character table in <font face="Gill Sans,Helvetica,Arial">GAP</font> allows one such local evaluations.
In this sense, <font face="Gill Sans,Helvetica,Arial">GAP</font> can deal also with character tables that are too big
to be computed and stored as a whole.
<p>
Currently the only operations for generic tables supported by <font face="Gill Sans,Helvetica,Arial">GAP</font> are
the specialisation of the parameter <i>q</i> in order to compute the whole
character table of <i>G</i><sub><i>q</i></sub>, and local evaluation
(see&nbsp;<a href="CHAP002.htm#SSEC003.2">ClassParameters</a> for an example).
<font face="Gill Sans,Helvetica,Arial">GAP</font> does <strong>not</strong> support the computation of, e.g., generic scalar products.
<p>
Currently, generic tables of the following groups
--in alphabetical order-- are available in <font face="Gill Sans,Helvetica,Arial">GAP</font>.
(A list of the names of generic tables known to <font face="Gill Sans,Helvetica,Arial">GAP</font> is
<code>LIBTABLE.GENERIC.firstnames</code>.)
We list the function calls needed to get a specialized table,
the generic table itself can be accessed by calling <code>CharacterTable</code>
with the first argument only;
for example, <code>CharacterTable( "Cyclic" )</code> yields the generic table of
cyclic groups.
<dl compact>
<dt><dd>
    <code>CharacterTable( "Alternating", </code><var>n</var><code> )</code>,
    the table of the <strong>alternating</strong> group on <var>n</var> letters,
<dt><dd>
    <code>CharacterTable( "Cyclic", </code><var>n</var><code> )</code>,
    the table of the <strong>cyclic</strong> group of order <var>n</var>,
<dt><dd>
    <code>CharacterTable( "Dihedral", </code><var>2n</var><code> )</code>,
    the table of the <strong>dihedral</strong> group of order <var>2n</var>,
<dt><dd>
    <code>CharacterTable( "DoubleCoverAlternating", </code><var>n</var><code> )</code>,
    the table of the <strong>Schur double cover of the alternating</strong> group
    on <var>n</var> letters (see&nbsp;<a href="biblio.htm#Noe02"><cite>Noe02</cite></a>),
<dt><dd>
    <code>CharacterTable( "DoubleCoverSymmetric", </code><var>n</var><code> )</code>,
    the table of the <strong>standard Schur double cover of the symmetric</strong> group
    on <var>n</var> letters (see&nbsp;<a href="biblio.htm#Noe02"><cite>Noe02</cite></a>),
<dt><dd>
    <code>CharacterTable( "GL", 2, </code><var>q</var><code> )</code>,
    the table of the <strong>general linear</strong> group GL(2,<i>q</i>),
    for a prime power <var>q</var>,
<dt><dd>
    <code>CharacterTable( "GU", 3, </code><var>q</var><code> )</code>,
    the table of the <strong>general unitary</strong> group GU(3,<i>q</i>),
    for a prime power <var>q</var>,
<dt><dd>
    <code>CharacterTable( "P:Q", [ </code><var>p</var><code>, </code><var>q</var><code> ] )</code> and
    <code>CharacterTable( "P:Q", [ </code><var>p</var><code>, </code><var>q</var><code>, </code><var>k</var><code> ] )</code>,
    the table of the <strong>Frobenius extension</strong> of the cyclic group of order <var>p</var>
    by a cyclic group of order <var>q</var> where <var>q</var> divides <i>p</i><font face="symbol">-</font>1;
    if <var>p</var> is a prime integer then <var>q</var> determines the group uniquely
    and thus the first version can be used,
    otherwise the action of the residue class of <var>k</var> modulo <var>p</var> is taken
    for forming orbits of length <var>q</var> each on the nonidentity elements of
    the group of order <var>p</var>,
<dt><dd>
    <code>CharacterTable( "PSL", 2, </code><var>q</var><code> )</code>,
    the table of the <strong>projective special linear</strong> group PSL(2,<i>q</i>),
    for a prime power <var>q</var>,
<dt><dd>
    <code>CharacterTable( "SL", 2, </code><var>q</var><code> )</code>,
    the table of the <strong>special linear</strong> group SL(2,<i>q</i>),
    for a prime power <var>q</var>,
<dt><dd>
    <code>CharacterTable( "SU", 3, </code><var>q</var><code> )</code>,
    the table of the <strong>special unitary</strong> group SU(3,<i>q</i>),
    for a prime power <var>q</var>,
<dt><dd>
    <code>CharacterTable( "Suzuki", </code><var>q</var><code> )</code>,
    the table of the <strong>Suzuki</strong> group <i>Sz</i>(<i>q</i>) = <sup>2</sup><i>B</i><sub>2</sub>(<i>q</i>),
    for <var>q</var> an odd power of 2,
<dt><dd>
    <code>CharacterTable( "Symmetric", </code><var>n</var><code> )</code>,
    the table of the <strong>symmetric</strong> group on <var>n</var> letters,
<dt><dd>
    <code>CharacterTable( "WeylB", </code><var>n</var><code> )</code>,
    the table of the <strong>Weyl</strong> group of type <i>B</i><sub><i>n</i></sub>,
<dt><dd>
    <code>CharacterTable( "WeylD", </code><var>n</var><code> )</code>,
    the table of the <strong>Weyl</strong> group of type <i>D</i><sub><i>n</i></sub>.
</dl>
In addition to the above calls that really use generic tables,
the following calls to <code>CharacterTable</code> are to some extent ``generic''
constructions.
But note that no local evaluation is possible in these cases,
as no generic table object exists in <font face="Gill Sans,Helvetica,Arial">GAP</font> that can be asked for local
information.
<dl compact>
<dt><dd>
    <code>CharacterTable( "Quaternionic", </code><var>4n</var><code> )</code>,
    the table of the <strong>quaternionic</strong> (dicyclic) group of order <var>4n</var>,
<dt><dd>
    <code>CharacterTableWreathSymmetric( </code><var>tbl</var><code>, </code><var>n</var><code> )</code>,
    the character table of the wreath product of the group whose table is
    <var>tbl</var> with the symmetric group on <var>n</var> letters
    (see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC018.5">CharacterTableWreathSymmetric</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual).
</dl>
<p>
<a name = "SSEC003.1"></a>
<li><code>CharacterTableSpecialized( </code><var>generic_table</var><code>, </code><var>q</var><code> ) F</code>
<p>
For a record <var>generic_table</var> representing a generic character table,
and a parameter value <var>q</var>,
<code>CharacterTableSpecialized</code> returns a character table object computed by
evaluating <var>generic_table</var> at <var>q</var>.
<p>
<pre>
gap&gt; c5:= CharacterTableSpecialized( CharacterTable( "Cyclic" ), 5 );
CharacterTable( "C5" )
gap&gt; Display( c5 );
C5

     5  1  1  1  1  1

       1a 5a 5b 5c 5d
    5P 1a 1a 1a 1a 1a

X.1     1  1  1  1  1
X.2     1  A  B /B /A
X.3     1  B /A  A /B
X.4     1 /B  A /A  B
X.5     1 /A /B  B  A

A = E(5)
B = E(5)^2
</pre>
(Also <code>CharacterTable( "Cyclic", 5 )</code> could have been used to construct
the above table.)
<p>
While the numbers of conjugacy classes for the members of a series of groups
are usually not bounded,
there is always a fixed finite number of <strong>types</strong> (equivalence classes)
of conjugacy classes;
very often the equivalence relation is isomorphism of the centralizers of the
representatives.
<p>
For each type <i>t</i> of classes and a fixed <i>q</i>  <font face="symbol"></font> <i>I</i>, a <strong>parametrisation</strong> of
the classes in <i>t</i> is a function that assigns to each conjugacy class of
<i>G</i><sub><i>q</i></sub> in <i>t</i> a <strong>parameter</strong> by which it is uniquely determined.
Thus the classes are indexed by pairs [<i>t</i>,<i>p</i><sub><i>t</i></sub>] consisting of a type <i>t</i>
and a parameter <i>p</i><sub><i>t</i></sub> for that type.
<p>
For any generic table, there has to be a fixed number of types of irreducible
characters of <i>G</i><sub><i>q</i></sub>, too.
Like the classes, the characters of each type are parametrised.
<p>
In <font face="Gill Sans,Helvetica,Arial">GAP</font>, the parametrisations of classes and characters for tables
computed from generic tables is stored using the attributes <code>ClassParameters</code>
and <code>CharacterParameters</code>.
<p>
<a name = "SSEC003.2"></a>
<li><code>ClassParameters( </code><var>tbl</var><code> ) A</code>
<a name = "SSEC003.2"></a>
<li><code>CharacterParameters( </code><var>tbl</var><code> ) A</code>
<p>
are lists containing a parameter for each conjugacy class or irreducible
character, respectively, of the character table <var>tbl</var>.
<p>
It depends on <var>tbl</var> what these parameters are,
so there is no default to compute class and character parameters.
<p>
For example, the classes of symmetric groups can be parametrized by
partitions, corresponding to the cycle structures of permutations.
Character tables constructed from generic character tables
(see&nbsp;<a href="CHAP002.htm#SECT003">Generic Character Tables</a>) usually have class and character
parameters stored.
<p>
If <var>tbl</var> is a <i>p</i>-modular Brauer table such that class parameters are
stored in the underlying ordinary table
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.4">OrdinaryCharacterTable</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual)
of <var>tbl</var> then <code>ClassParameters</code> returns the sublist of class parameters
of the ordinary table, for <i>p</i>-regular classes.
<p>
<pre>
gap&gt; HasClassParameters( c5 );  HasCharacterParameters( c5 );
true
true
gap&gt; ClassParameters( c5 );  CharacterParameters( c5 );
[ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ] ]
[ [ 1, 0 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ] ]
gap&gt; ClassParameters( CharacterTable( "Symmetric", 3 ) );
[ [ 1, [ 1, 1, 1 ] ], [ 1, [ 2, 1 ] ], [ 1, [ 3 ] ] ]
</pre>
Here are examples for ``local evaluation'' of generic character tables,
first a character value of the cyclic group shown above,
then a character value and a representative order of a symmetric group.
<pre>
gap&gt; CharacterTable( "Cyclic" ).irreducibles[1][1]( 5, 2, 3 );
E(5)
gap&gt; tbl:= CharacterTable( "Symmetric" );;
gap&gt; tbl.irreducibles[1][1]( 5, [ 3, 2 ], [ 2, 2, 1 ] );
1
gap&gt; tbl.orders[1]( 5, [ 2, 1, 1, 1 ] );
2
</pre>
<p>
Any generic table in <font face="Gill Sans,Helvetica,Arial">GAP</font> is represented by a record.
The following components are supported for generic character table records.
<p>
<dl compact>
<dt><code>centralizers</code> <dd>
    list of functions, one for each class type <i>t</i>,
    with arguments <i>q</i> and <i>p</i><sub><i>t</i></sub>, returning the centralizer order of
    the class [<i>t</i>,<i>p</i><sub><i>t</i></sub>],
<p>
<dt><code>charparam</code> <dd>
    list of functions, one for each character type <i>t</i>,
    with argument <i>q</i>, returning the list of character parameters
    of type <i>t</i>,
<p>
<dt><code>classparam</code> <dd>
    list of functions, one for each class type <i>t</i>,
    with argument <i>q</i>, returning the list of class parameters of type <i>t</i>,
<p>
<dt><code>classtext</code> <dd>
    list of functions, one for each class type <i>t</i>,
    with arguments <i>q</i> and <i>p</i><sub><i>t</i></sub>,
    returning a representative of the class with parameter [<i>t</i>,<i>p</i><sub><i>t</i></sub>],
<p>
<dt><code>domain</code> <dd>
    function of <i>q</i> returning <code>true</code> if <i>q</i> is a valid parameter,
    and <code>false</code> otherwise,
<p>
<dt><code>identifier</code> <dd>
    identifier string of the generic table,
<p>
<dt><code>irreducibles</code> <dd>
    list of list of functions,
    in row <i>i</i> and column <i>j</i> the function of three arguments,
    namely <i>q</i> and the parameters <i>p</i><sub><i>t</i></sub> and <i>p</i><sub><i>s</i></sub> of the class type <i>t</i>
    and the character type <i>s</i>,
<p>
<dt><code>isGenericTable</code> <dd>
    always <code>true</code>
<p>
<dt><code>libinfo</code> <dd>
    record with components <code>firstname</code> (<code>Identifier</code> value of the table)
    and <code>othernames</code> (list of other admissible names)
<p>
<dt><code>matrix</code> <dd>
    function of <i>q</i> returning the matrix of irreducibles of <i>G</i><sub><i>q</i></sub>,
<p>
<dt><code>orders</code> <dd>
    list of functions, one for each class type <i>t</i>,
    with arguments <i>q</i> and <i>p</i><sub><i>t</i></sub>, returning the representative order
    of elements of type <i>t</i> and parameter <i>p</i><sub><i>t</i></sub>,
<p>
<dt><code>powermap</code> <dd>
    list of functions, one for each class type <i>t</i>,
    each with three arguments <i>q</i>, <i>p</i><sub><i>t</i></sub>, and <i>k</i>,
    returning the pair [<i>s</i>,<i>p</i><sub><i>s</i></sub>] of type and parameter for the <i>k</i>-th
    power of the class with parameter [<i>t</i>,<i>p</i><sub><i>t</i></sub>],
<p>
<dt><code>size</code> <dd>
    function of <i>q</i> returning the order of <i>G</i><sub><i>q</i></sub>,
<p>
<dt><code>specializedname</code> <dd>
    function of <i>q</i> returning the <code>Identifier</code> value of the table of <i>G</i><sub><i>q</i></sub>,
<p>
<dt><code>text</code> <dd>
    string informing about the generic table
</dl>
<p>
In the specialized table, the <code>ClassParameters</code> and <code>CharacterParameters</code>
values are the lists of parameters [<i>t</i>,<i>p</i><sub><i>t</i></sub>] of classes and characters,
respectively.
<p>
If the <code>matrix</code> component is present then its value implements a method
to compute the complete table of small members <i>G</i><sub><i>q</i></sub> more efficiently
than via local evaluation;
this method will be called when the generic table is used to compute the
whole character table for a given <i>q</i> (see&nbsp;<a href="CHAP002.htm#SSEC003.1">CharacterTableSpecialized</a>).
<p>
<p>
<h2><a name="SECT004">2.4 Examples of Generic Character Tables</a></h2>
<p><p>
<a name = "I19"></a>

<a name = "I19"></a>
<a name = "I20"></a>

1. The generic table of cyclic groups.
<p>
For the cyclic group <i>C</i><sub><i>q</i></sub> = <font face="symbol"></font><i>x</i> <font face="symbol"></font> of order <i>q</i>,
there is one type of classes.
The class parameters are integers <i>k</i>  <font face="symbol"></font> { 0, <font face="symbol"></font>, <i>q</i><font face="symbol">-</font>1 },
the class with parameter <i>k</i> consists of the group element <i>x</i><sup><i>k</i></sup>.
Group order and centralizer orders are the identity function <i>q</i> <font face="symbol"></font> <i>q</i>,
independent of the parameter <i>k</i>.
The representative order function maps the parameter pair [<i>q</i>,<i>k</i>] to
[(<i>q</i>)/(gcd(<i>q</i>,<i>k</i>))], which is the order of <i>x</i><sup><i>k</i></sup> in <i>C</i><sub><i>q</i></sub>;
the <i>p</i>-th power map is the function mapping the triple (<i>q</i>,<i>k</i>,<i>p</i>) to
the parameter [1,(<i>kp</i>  mod <i>q</i>)].
<p>
There is one type of characters,
with parameters <i>l</i>  <font face="symbol"></font> { 0, <font face="symbol"></font>, <i>q</i><font face="symbol">-</font>1 };
for <i>e</i><sub><i>q</i></sub> a primitive complex <i>q</i>-th root of unity,
the character values are <font face="symbol">c</font><sub><i>l</i></sub>(<i>x</i><sup><i>k</i></sup>) = <i>e</i><sub><i>q</i></sub><sup><i>kl</i></sup>.
<p>
The library file contains the following generic table.
<pre>
rec(
identifier := "Cyclic",
specializedname := ( q -&gt; Concatenation( "C", String(q) ) ),
size := ( n -&gt; n ),
text := "generic character table for cyclic groups",
centralizers := [ function( n, k ) return n; end ],
classparam := [ ( n -&gt; [ 0 .. n-1 ] ) ],
charparam := [ ( n -&gt; [ 0 .. n-1 ] ) ],
powermap := [ function( n, k, pow ) return [ 1, k*pow mod n ]; end ],
orders := [ function( n, k ) return n / Gcd( n, k ); end ],
irreducibles := [ [ function( n, k, l ) return E(n)^(k*l); end ] ],
domain := IsPosInt,
libinfo := rec( firstname:= "Cyclic", othernames:= [] ),
isGenericTable := true )
</pre>
<p>
2. The generic table of the general linear group <span class="roman">GL</span><span class="roman">(</span><span class="roman">2</span><span class="roman">,</span><span class="roman">q</span><span class="roman">)</span>.
<p>
We have four types <i>t</i><sub>1</sub>, <i>t</i><sub>2</sub>, <i>t</i><sub>3</sub>, <i>t</i><sub>4</sub> of classes,
according to the rational canonical form of the elements.
<i>t</i><sub>1</sub> describes scalar matrices,
<i>t</i><sub>2</sub> nonscalar diagonal matrices,
<i>t</i><sub>3</sub> companion matrices of (<i>X</i><font face="symbol">-</font><font face="symbol">r</font>)<sup>2</sup> for elements <font face="symbol">r</font> <font face="symbol"></font> <b>F</b><sub><i>q</i></sub><sup><font face="symbol">*</font></sup>,
and
<i>t</i><sub>4</sub> companion matrices of irreducible polynomials of degree 2 over <b>F</b><sub><i>q</i></sub>.
<p>
The sets of class parameters of the types are in bijection with
<b>F</b><sub><i>q</i></sub><sup><font face="symbol">*</font></sup> for <i>t</i><sub>1</sub> and <i>t</i><sub>3</sub>,
with the set
{{<font face="symbol">r</font>,<font face="symbol">t</font>}; <font face="symbol">r</font>, <font face="symbol">t</font> <font face="symbol"></font> <b>F</b><sub><i>q</i></sub><sup><font face="symbol">*</font></sup>, <font face="symbol">r</font> <font face="symbol"></font> <font face="symbol">t</font>} for <i>t</i><sub>2</sub>,
and with the set
{{<font face="symbol">e</font>,<font face="symbol">e</font><sup><i>q</i></sup>}; <font face="symbol">e</font> <font face="symbol"></font> <b>F</b><sub><i>q</i><sup>2</sup></sub>\<b>F</b><sub><i>q</i></sub>} for <i>t</i><sub>4</sub>.
<p>
The centralizer order functions are
<i>q</i> <font face="symbol"></font> (<i>q</i><sup>2</sup><font face="symbol">-</font>1)(<i>q</i><sup>2</sup><font face="symbol">-</font><i>q</i>) for type <i>t</i><sub>1</sub>,
<i>q</i> <font face="symbol"></font> (<i>q</i><font face="symbol">-</font>1)<sup>2</sup> for type <i>t</i><sub>2</sub>,
<i>q</i> <font face="symbol"></font> <i>q</i>(<i>q</i><font face="symbol">-</font>1) for type <i>t</i><sub>3</sub>, and
<i>q</i> <font face="symbol"></font> <i>q</i><sup>2</sup><font face="symbol">-</font>1 for type <i>t</i><sub>4</sub>.
<p>
The representative order function of <i>t</i><sub>1</sub> maps (<i>q</i>,<font face="symbol">r</font>) to the order
of <font face="symbol">r</font> in <b>F</b><sub><i>q</i></sub>,
that of <i>t</i><sub>2</sub> maps (<i>q</i>,{<font face="symbol">r</font>,<font face="symbol">t</font>}) to the least common multiple
of the orders of <font face="symbol">r</font> and <font face="symbol">t</font>.
<p>
The file contains something similar to the following table.
<pre>
rec(
identifier := "GL2",
specializedname := ( q -&gt; Concatenation( "GL(2,", String(q), ")" ) ),
size := ( q -&gt; (q^2-1)*(q^2-q) ),
text := "generic character table of GL(2,q), see Robert Steinberg: ...",
centralizers := [ function( q, k ) return (q^2-1) * (q^2-q); end,
                  ..., ..., ... ],
classparam := [ ( q -&gt; [ 0 .. q-2 ] ), ..., ..., ... ],
charparam := [ ( q -&gt; [ 0 .. q-2 ] ), ..., ..., ... ],
powermap := [ function( q, k, pow ) return [ 1, (k*pow) mod (q-1) ]; end,
              ..., ..., ... ],
orders:= [ function( q, k ) return (q-1)/Gcd( q-1, k ); end,
           ..., ..., ... ],
irreducibles := [ [ function( q, k, l ) return E(q-1)^(2*k*l); end,
                    ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ],
                  [ ..., ..., ..., ... ] ],
classtext := [ ..., ..., ..., ... ],
domain := IsPrimePowerInt,
isGenericTable := true )
</pre>
<p>
<p>
<h2><a name="SECT005">2.5 ATLAS Tables</a></h2>
<p><p>
<a name = "I21"></a>

<a name = "I21"></a>
<a name = "I22"></a>

<a name = "I21"></a>
<a name = "I22"></a>
<a name = "I23"></a>

The <font face="Gill Sans,Helvetica,Arial">GAP</font> character table library contains all character tables of bicyclic
extensions of simple groups
that are included in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Finite Groups (<a href="biblio.htm#CCN85"><cite>CCN85</cite></a>,
from now on called <font face="Gill Sans,Helvetica,Arial">ATLAS</font>),
and the Brauer tables contained in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Brauer Characters
(<a href="biblio.htm#JLPW95"><cite>JLPW95</cite></a>).
<p>
These tables have the information
<pre>
origin: ATLAS of finite groups
</pre>
or
<pre>
origin: modular ATLAS of finite groups
</pre>
in their <code>InfoText</code> value (see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.12">InfoText</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual),
they are simply called <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables further on.
<p>
For displaying <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables with the row labels used in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>, or
for displaying decomposition matrices,
see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC009.5">LaTeXStringDecompositionMatrix</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual
and&nbsp;<a href="CHAP002.htm#SSEC005.1">AtlasLabelsOfIrreducibles</a>.
<p>
In addition to the information given in Chapters&nbsp;6--8 of the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>
which tell you how to read the printed tables,
there are some rules relating these to the corresponding <font face="Gill Sans,Helvetica,Arial">GAP</font> tables.
<p>
<strong>Improvements</strong>
<p>
For the <font face="Gill Sans,Helvetica,Arial">GAP</font> Character Table Library not the printed versions of the
<font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Finite Groups and the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Brauer Characters are relevant
but the revised versions given by the currently three lists of improvements
that are maintained by Simon Norton.
The first such list is contained in&nbsp;<a href="biblio.htm#BN95"><cite>BN95</cite></a>,
and is printed in the Appendix of&nbsp;<a href="biblio.htm#JLPW95"><cite>JLPW95</cite></a>;
it contains the improvements that had been known until the
``<font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Brauer Characters'' was published.
The second list contains the improvements to the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Finite Groups
that were found since the publication of&nbsp;<a href="biblio.htm#JLPW95"><cite>JLPW95</cite></a>.
It can be found in the internet, namely, an HTML version
at&nbsp;<a href="http://web.mat.bham.ac.uk/atlas/html/atlasmods.html">http://web.mat.bham.ac.uk/atlas/html/atlasmods.html</a>
<p>
and a DVI
version at&nbsp;<a href="http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi">http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi</a>
<p>
The third list contains the improvements to the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Brauer Characters,
HTML and PDF versions can be found in the internet
at&nbsp;<a href="http://www.math.rwth-aachen.de/~MOC/ABCerr.html">http://www.math.rwth-aachen.de/~MOC/ABCerr.html</a>
<p>
and&nbsp;<a href="http://www.math.rwth-aachen.de/~MOC/ABCerr.pdf">http://www.math.rwth-aachen.de/~MOC/ABCerr.pdf</a>
<p>
respectively.
<p>
Also some tables are regarded as <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables which are not printed in
the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> but available in <font face="Gill Sans,Helvetica,Arial">ATLAS</font> format from Cambridge,
according to the lists of improvements mentioned above.
Currently these are the tables related to <i>L</i><sub>2</sub>(49), <i>L</i><sub>2</sub>(81), <i>L</i><sub>6</sub>(2),
<i>O</i><sub>8</sub><sup><font face="symbol">-</font></sup>(3), <i>O</i><sub>8</sub><sup>+</sup>(3), <i>S</i><sub>10</sub>(2), and <sup>2</sup><i>E</i><sub>6</sub>(2).3.
<p>
<strong>Power Maps</strong>
<p>
For the tables of 3.<i>McL</i>, 3<sub>2</sub>.<i>U</i><sub>4</sub>(3) and its covers,
and 3<sub>2</sub>.<i>U</i><sub>4</sub>(3).2<sub>3</sub> and its covers,
the power maps are not uniquely determined by the information
from the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> but determined only up to matrix automorphisms
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC020.1">MatrixAutomorphisms</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual)
of the irreducible characters.
In these cases, the first possible map according to lexicographical
ordering was chosen, and the automorphisms are listed in the <code>InfoText</code>
strings of the tables.
<p>
<strong>Projective Characters and Projections</strong>
<p>
If <i>G</i> (or <i>G</i>.<i>a</i>) has a nontrivial Schur multiplier then the attribute
<code>ProjectivesInfo</code> of the <font face="Gill Sans,Helvetica,Arial">GAP</font> table object of <i>G</i> (or <i>G</i>.<i>a</i>) is set
(see&nbsp;<a href="CHAP002.htm#SSEC002.4">ProjectivesInfo</a>); the <code>chars</code> component of the record in question
is the list of values lists of those faithful projective irreducibles
that are printed in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> (so--called <em>proxy characters</em>),
and the <code>map</code> component lists the positions of columns in the covering
for which the column is printed in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>
(a so--called <em>proxy class</em>, this preimage is denoted by <i>g</i><sub>0</sub> in
Chapter&nbsp;7, Section&nbsp;14 of the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>).
<p>
<strong>Tables of Isoclinic Groups</strong>
<p>
As described in Chapter&nbsp;6, Section&nbsp;7 and in Chapter&nbsp;7, Section&nbsp;18 of the
<font face="Gill Sans,Helvetica,Arial">ATLAS</font>, there exist two (often nonisomorphic) groups of structure
2.<i>G</i>.2 for a simple group <i>G</i>, which are isoclinic.
The table in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Character Table Library is the one printed in the
<font face="Gill Sans,Helvetica,Arial">ATLAS</font>, the table of the other isoclinic variant can be constructed using
<code>CharacterTableIsoclinic</code> (see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC018.4">CharacterTableIsoclinic</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font>
Reference Manual).
<p>
<strong>Ordering of Characters and Classes</strong>
<p>
(Throughout this paragraph, <i>G</i> always means the simple group involved.)
<dl compact>
<dt>1.<dd>
    For <i>G</i> itself, the ordering of classes and characters in the <font face="Gill Sans,Helvetica,Arial">GAP</font>
    table coincides with the one in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>.
<dt>2.<dd>
    For an automorphic extension <i>G</i>.<i>a</i>, there are three types of characters.
<p>
    If a character <font face="symbol">c</font> of <i>G</i> extends to <i>G</i>.<i>a</i> then the different
    extensions <font face="symbol">c</font><sup>0</sup>, <font face="symbol">c</font><sup>1</sup>, <font face="symbol"></font>, <font face="symbol">c</font><sup><i>a</i><font face="symbol">-</font>1</sup> are consecutive in the
    table of <i>G</i>.<i>a</i> (see Chapter&nbsp;7, Section&nbsp;16 of the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>).
<p>
    If some characters of <i>G</i> fuse to give a single character of <i>G</i>.<i>a</i> then
    the position of that character in the table of <i>G</i>.<i>a</i> is given by the
    position of the first involved character of <i>G</i>.
<p>
    If both extension and fusion occur for a character
    then the resulting characters are consecutive in the table of <i>G</i>.<i>a</i>,
    and each replaces the first involved character of <i>G</i>.
<dt>3.<dd>
    Similarly, there are different types of classes for an automorphic
    extension <i>G</i>.<i>a</i>, as follows.
<p>
    If some classes collapse then the resulting class replaces the first
    involved class of <i>G</i>.
<p>
    For <i>a</i>  &gt;  2, any proxy class and its algebraic conjugates that are not
    printed in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> are consecutive in the table of <i>G</i>.<i>a</i>;
    if more than two classes of <i>G</i>.<i>a</i> have the same proxy class
    (the only case that actually occurs is for <i>a</i> = 5)
    then the ordering of non-printed classes is the natural one of
    corresponding Galois conjugacy operators <font face="symbol">*</font><i>k</i>
    (see Chapter&nbsp;7, Section&nbsp;19 in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>).
<p>
    For <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub> dividing <i>a</i> such that <i>a</i><sub>1</sub>  &lt;  <i>a</i><sub>2</sub>,
    the classes of <i>G</i>.<i>a</i><sub>1</sub> in <i>G</i>.<i>a</i> precede the classes of <i>G</i>.<i>a</i><sub>2</sub> not
    contained in <i>G</i>.<i>a</i><sub>1</sub>.
    This ordering is the same as in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>,
    with the only exception <i>U</i><sub>3</sub>(8).6.
<dt>4.<dd>
    For a central extension <i>M</i>.<i>G</i>, there are two different types of
    characters, as follows.
<p>
    Each character can be regarded as a faithful character of a factor group
    <i>m</i>.<i>G</i>, where <i>m</i> divides <i>M</i>.
    Characters with the same kernel are consecutive as in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>,
    the ordering of characters with different kernels is given by the order
    of precedence 1, 2, 4, 3, 6, 12 for the different values of <i>m</i>.
<p>
    If <i>m</i>  &gt;  2, a faithful character of <i>m</i>.<i>G</i> that is printed in the
    <font face="Gill Sans,Helvetica,Arial">ATLAS</font> (a so-called <em>proxy character</em>) represents two or more
    Galois conjugates.
    In each <font face="Gill Sans,Helvetica,Arial">ATLAS</font> table in <font face="Gill Sans,Helvetica,Arial">GAP</font>, a proxy character always precedes the
    non-printed characters with this proxy.
    The case <i>m</i> = 12 is the only one that actually occurs where more than
    one character for a proxy is not printed.
    In this case, the non-printed characters are ordered according to the
    corresponding Galois conjugacy operators <font face="symbol">*</font>5, <font face="symbol">*</font>7, <font face="symbol">*</font>11
    (in that succession).
<dt>5.<dd>
    For the classes of a central extension we have the following.
<p>
    The preimages of a <i>G</i>-class in <i>M</i>.<i>G</i> are subsequent,
    the ordering is the same as that of the lifting order rows in the
    <font face="Gill Sans,Helvetica,Arial">ATLAS</font> (see Chapter&nbsp;7, Section&nbsp;7 there).
<p>
    The primitive roots of unity chosen to represent the generating
    central element (i.e., the element in the second class of the <font face="Gill Sans,Helvetica,Arial">GAP</font>
    table) are  <code>E(3)</code>,  <code>E(4)</code>,  <code>E(6)^5</code> (<code>= E(2) * E(3)</code>), and <code>E(12)^7</code>
    (<code>= E(3) * E(4)</code>), for <i>m</i> = 3, 4, 6, and 12, respectively.
<dt>6.<dd>
    For tables of bicyclic extensions <i>m</i>.<i>G</i>.<i>a</i>, both the rules for
    automorphic and central extensions hold.
    Additionally we have the following three rules.
<p>
    Whenever classes of the subgroup <i>m</i>.<i>G</i> collapse in <i>m</i>.<i>G</i>.<i>a</i>
    then the resulting class replaces the first involved class.
<p>
    Whenever characters of the subgroup <i>m</i>.<i>G</i> collapse fuse in <i>m</i>.<i>G</i>.<i>a</i>
    then the result character replaces the first involved character.
<p>
    Extensions of a character are subsequent, and the extensions of a
    proxy character precede the extensions of characters with this proxy
    that are not printed.
<p>
    Preimages of a class of <i>G</i>.<i>a</i> in <i>m</i>.<i>G</i>.<i>a</i> are subsequent,
    and the preimages of a proxy class precede the preimages of non-printed
    classes with this proxy.
</dl>
<p>
<a name = "SSEC005.1"></a>
<li><code>AtlasLabelsOfIrreducibles( </code><var>tbl</var><code>[, "short"] ) F</code>
<p>
Let <var>tbl</var> be the (ordinary or Brauer) character table of a bicyclic
extension of a simple group that occurs in the
<font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Finite Groups&nbsp;<a href="biblio.htm#CCN85"><cite>CCN85</cite></a> or the
<font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Brauer Characters&nbsp;<a href="biblio.htm#JLPW95"><cite>JLPW95</cite></a>.
<code>AtlasLabelsOfIrreducibles</code> returns a list of strings, the <i>i</i>-th entry
being a label for the <i>i</i>-th irreducible character of <var>tbl</var>.
<p>
The labels have the following form.
We state the rules only for ordinary characters,
the rules for Brauer characters are obtained by replacing <font face="symbol">c</font>
by <font face="symbol">j</font>.
<p>
First consider only downward extensions <i>m</i>.<i>G</i> of a simple group <i>G</i>.
If <i>m</i>  <font face="symbol"></font> 2 then only labels of the form <font face="symbol">c</font><sub><i>i</i></sub> occur,
which denotes the <i>i</i>-th ordinary character shown in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>.
<p>
The labels of faithful ordinary characters of groups <i>m</i>.<i>G</i> with <i>m</i> <font face="symbol"></font> 3
are of the form <font face="symbol">c</font><sub><i>i</i></sub>, <font face="symbol">c</font><sub><i>i</i></sub><sup><font face="symbol">*</font></sup>, or <font face="symbol">c</font><sub><i>i</i></sub><sup><font face="symbol">*</font><i>k</i></sup>,
which means the <i>i</i>-th character printed in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>,
the unique character that is not printed and for which <font face="symbol">c</font><sub><i>i</i></sub> acts as
proxy
(see&nbsp;Sections&nbsp;8 and&nbsp;19 of Chapter&nbsp;7 in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> of Finite Groups),
and the image of the printed character <font face="symbol">c</font><sub><i>i</i></sub> under the algebraic
conjugacy operator <font face="symbol">*</font><i>k</i>, respectively.
<p>
For groups <i>m</i>.<i>G</i>.<i>a</i> with <i>a</i>  &gt;  1, the labels of the irreducible characters
are derived from the labels of the irreducible constituents of their
restrictions to <i>m</i>.<i>G</i>, as follows.
<dl compact>
<dt>1.<dd>
    If the ordinary irreducible character <font face="symbol">c</font><sub><i>i</i></sub> of <i>m</i>.<i>G</i> extends to
    <i>m</i>.<i>G</i>.<i>a</i> then the <i>a</i><sup><font face="symbol"></font></sup> extensions are denoted by
    <font face="symbol">c</font><sub><i>i</i>,0</sub>, <font face="symbol">c</font><sub><i>i</i>,1</sub>, <font face="symbol"></font>, <font face="symbol">c</font><sub><i>i</i>,<i>a</i><sup><font face="symbol"></font></sup></sub>,
    where <font face="symbol">c</font><sub><i>i</i>,0</sub> is the character whose values are printed in the
    <font face="Gill Sans,Helvetica,Arial">ATLAS</font>.
<dt>2.<dd>
    The label <font face="symbol">c</font><sub><i>i</i><sub>1</sub> + <i>i</i><sub>2</sub> + <font face="symbol"></font>+ <i>i</i><sub><i>a</i></sub></sub> means that <i>a</i> different
    characters <font face="symbol">c</font><sub><i>i</i><sub>1</sub></sub>, <font face="symbol">c</font><sub><i>i</i><sub>2</sub></sub>, <font face="symbol"></font>, <font face="symbol">c</font><sub><i>i</i><sub><i>a</i></sub></sub> of <i>m</i>.<i>G</i>
    induce to an irreducible character of <i>m</i>.<i>G</i>.<i>a</i> with this label.
<p>
    If the string <code>"short"</code> was entered as the second argument then the
    label has the short form <font face="symbol">c</font><sub><i>i</i><sub>1</sub>+</sub>.
    Note that <i>i</i><sub>2</sub>, <i>i</i><sub>3</sub>, <font face="symbol"></font>, <i>i</i><sub><i>a</i></sub> can be read off from the
    fusion signs in the <font face="Gill Sans,Helvetica,Arial">ATLAS</font>.
<dt>3.<dd>
    Finally, the label
    <font face="symbol">c</font><sub><i>i</i><sub>1</sub>,<i>j</i><sub>1</sub> + <i>i</i><sub>2</sub>,<i>j</i><sub>2</sub> + <font face="symbol"></font>+ <i>i</i><sub><i>a</i><sup><font face="symbol"></font></sup></sub>,<i>j</i><sub><i>a</i><sup><font face="symbol"></font></sup></sub></sub>
    means that the characters
    <font face="symbol">c</font><sub><i>i</i><sub>1</sub></sub>, <font face="symbol">c</font><sub><i>i</i><sub>2</sub></sub>, <font face="symbol"></font>, <font face="symbol">c</font><sub><i>i</i><sub><i>a</i><sup><font face="symbol"></font></sup></sub></sub> of <i>m</i>.<i>G</i>
    extend to a group that lies properly between <i>m</i>.<i>G</i> and <i>m</i>.<i>G</i>.<i>a</i>,
    and the extensions <font face="symbol">c</font><sub><i>i</i><sub>1</sub>,<i>j</i><sub>1</sub></sub>, <font face="symbol">c</font><sub><i>i</i><sub>2</sub>,<i>j</i><sub>2</sub></sub>, <font face="symbol"></font><font face="symbol">c</font><sub><i>i</i><sub><i>a</i><sup><font face="symbol"></font></sup></sub>,<i>j</i><sub><i>a</i><sup><font face="symbol"></font></sup></sub></sub>
    induce to an irreducible character of <i>m</i>.<i>G</i>.<i>a</i> with this label.
<p>
    Again, if the string <code>"short"</code> was entered as the second argument
    then the label has a short form, namely <font face="symbol">c</font><sub><i>i</i>,<i>j</i>+</sub>.
</dl>
<p>
<pre>
gap&gt; AtlasLabelsOfIrreducibles( CharacterTable( "3.A7.2" ) );
[ "\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}", "\\chi_{3+4}", 
  "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}", "\\chi_{6,1}", "\\chi_{7,0}", 
  "\\chi_{7,1}", "\\chi_{8,0}", "\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", 
  "\\chi_{17+17\\ast 2}", "\\chi_{18+18\\ast 2}", "\\chi_{19+19\\ast 2}", 
  "\\chi_{20+20\\ast 2}", "\\chi_{21+21\\ast 2}", "\\chi_{22+23\\ast 8}", 
  "\\chi_{22\\ast 8+23}" ]
gap&gt; AtlasLabelsOfIrreducibles( CharacterTable( "3.A7.2" ), "short" );
[ "\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}", "\\chi_{3+}", 
  "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}", "\\chi_{6,1}", "\\chi_{7,0}", 
  "\\chi_{7,1}", "\\chi_{8,0}", "\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", 
  "\\chi_{17+}", "\\chi_{18+}", "\\chi_{19+}", "\\chi_{20+}", "\\chi_{21+}", 
  "\\chi_{22+}", "\\chi_{23+}" ]
</pre>
<p>
<p>
<h2><a name="SECT006">2.6 Examples of the ATLAS Format for GAP Tables</a></h2>
<p><p>
<a name = "I24"></a>

<a name = "I24"></a>
<a name = "I25"></a>

<a name = "I26"></a>

We give three little examples for the conventions stated in&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a>,
listing both the <font face="Gill Sans,Helvetica,Arial">ATLAS</font> format and the table displayed by <font face="Gill Sans,Helvetica,Arial">GAP</font>.
<p>
First, let <i>G</i> be the trivial group.
We consider the cyclic group <i>C</i><sub>6</sub> of order 6.
It can be viewed in several ways, namely
<dl compact>
<dt>1.<dd>
    as a downward extension of the factor group <i>C</i><sub>2</sub> which contains
    <i>G</i> as a subgroup,
    or equivalently,
    as an upward extension of the subgroup <i>C</i><sub>3</sub> which has a factor group
    isomorphic to <i>G</i>,
<dt>2.<dd>
    as a downward extension of the factor group <i>C</i><sub>3</sub> which contains
    <i>G</i> as a subgroup,
    or equivalently,
    as an upward extension of the subgroup <i>C</i><sub>2</sub> which has a factor group
    isomorphic to <i>G</i>,
<dt>3.<dd>
    as a downward extension of the factor groups <i>C</i><sub>3</sub> and <i>C</i><sub>2</sub> which
    have <i>G</i> as a factor group, or
<dt>4.<dd>
    as an upward extension of the subgroups <i>C</i><sub>3</sub> or <i>C</i><sub>2</sub> which both
    contain a subgroup isomorphic to <i>G</i>.
</dl>
<p>
Situation 1.&nbsp;is shown here.
<pre>
 -------   -------         ;   @   ;   ;   @      2   1   1   1   1   1   1
|       | |       |            1           1      3   1   1   1   1   1   1
|   G   | |  G.2  |      p power           A
|       | |       |      p' part           A         1a  3a  3b  2a  6a  6b
 -------   -------       ind  1A fus ind  2A     2P  1a  3b  3a  1a  3b  3a
 -------   -------                               3P  1a  1a  1a  2a  2a  2a
|       | |       |  chi1  +   1   :  ++   1
|  3.G  | | 3.G.2 |                            X.1    1   1   1   1   1   1
|       | |       |      ind   1 fus ind   2   X.2    1   1   1  -1  -1  -1
 -------   -------             3           6   X.3    1   A  /A   1   A  /A
                               3           6   X.4    1   A  /A  -1  -A -/A
                                               X.5    1  /A   A   1  /A   A
                     chi2 o2   1   : oo2   1   X.6    1  /A   A  -1 -/A  -A

                                               A = E(3)
                                                 = (-1+ER(-3))/2 = b3
</pre>
<code>X.1</code>, <code>X.2</code> extend  <font face="symbol">c</font><sub>1</sub>.
<code>X.3</code>, <code>X.4</code> extend the proxy character <font face="symbol">c</font><sub>2</sub>.
<code>X.5</code>, <code>X.6</code> extend the not printed character with proxy <font face="symbol">c</font><sub>2</sub>.
The classes <code>1a</code>, <code>3a</code>, <code>3b</code> are preimages of <code>1A</code>,
and <code>2a</code>, <code>6a</code>, <code>6b</code> are preimages of <code>2A</code>.
<p>
Situation 2.&nbsp;is shown here.
<pre>
 -------   -------         ;   @   ;   ;   @      2   1   1   1   1   1   1
|       | |       |            1           1      3   1   1   1   1   1   1
|   G   | |  G.3  |      p power           A
|       | |       |      p' part           A         1a  2a  3a  6a  3b  6b
 -------   -------       ind  1A fus ind  3A     2P  1a  1a  3b  3b  3a  3a
 -------   -------                               3P  1a  2a  1a  2a  1a  2a
|       | |       |  chi1  +   1   : +oo   1
|  2.G  | | 2.G.3 |                            X.1    1   1   1   1   1   1
|       | |       |      ind   1 fus ind   3   X.2    1   1   A   A  /A  /A
 -------   -------             2           6   X.3    1   1  /A  /A   A   A
                                               X.4    1  -1   1  -1   1  -1
                     chi2  +   1   : +oo   1   X.5    1  -1   A  -A  /A -/A
                                               X.6    1  -1  /A -/A   A  -A

                                               A = E(3)
                                                 = (-1+ER(-3))/2 = b3
</pre>
<code>X.1</code>--<code>X.3</code> extend <font face="symbol">c</font><sub>1</sub>, <code>X.4</code>--<code>X.6</code> extend <font face="symbol">c</font><sub>2</sub>.
The classes <code>1a</code> and <code>2a</code> are preimages of <code>1A</code>,
<code>3a</code> and <code>6a</code> are preimages of the proxy class <code>3A</code>,
and <code>3b</code> and <code>6b</code> are preimages of the not printed class with proxy <code>3A</code>.
<p>
Situation 3.&nbsp;is shown here.
<pre>
 -------             ;   @        2   1   1   1   1   1   1
|       |                1        3   1   1   1   1   1   1
|   G   |          p power
|       |          p' part           1a  6a  3a  2a  3b  6b
 -------           ind  1A       2P  1a  3a  3b  1a  3a  3b
 -------                         3P  1a  2a  1a  2a  1a  2a
|       |      chi1  +   1
|  2.G  |                      X.1    1   1   1   1   1   1
|       |          ind   1     X.2    1  -1   1  -1   1  -1
 -------                 2     X.3    1   A  /A   1   A  /A
 -------                       X.4    1  /A   A   1  /A   A
|       |      chi2  +   1     X.5    1  -A  /A  -1   A -/A
|  3.G  |                      X.6    1 -/A   A  -1  /A  -A
|       |          ind   1
 -------                 3     A = E(3)
 -------                 3       = (-1+ER(-3))/2 = b3
|       |
|  6.G  |      chi3 o2   1
|       |
 -------           ind   1
                         6
                         3
                         2
                         3
                         6

               chi4 o2   1
</pre>
<code>X.1</code>, <code>X.2</code> correspond to <font face="symbol">c</font><sub>1</sub>, <font face="symbol">c</font><sub>2</sub>, respectively;
<code>X.3</code>, <code>X.5</code> correspond to the proxies <font face="symbol">c</font><sub>3</sub>, <font face="symbol">c</font><sub>4</sub>, and
<code>X.4</code>, <code>X.6</code> to the not printed characters with these proxies.
followers.
The factor fusion onto 3.<i>G</i> is given by <code>[ 1, 2, 3, 1, 2, 3 ]</code>,
that onto <i>G</i>.2 by <code>[ 1, 2, 1, 2, 1, 2 ]</code>.
<p>
Finally, situation 4.&nbsp;is shown here.
<pre>
 -------   -------   -------   -------
|       | |       | |       | |       |
|   G   | |  G.2  | |  G.3  | |  G.6  |
|       | |       | |       | |       |
 -------   -------   -------   -------

      ;   @   ;   ;   @   ;   ;   @   ;     ;   @

          1           1           1             1
    p power           A           A            AA
    p' part           A           A            AA
    ind  1A fus ind  2A fus ind  3A fus   ind  6A

chi1  +   1   :  ++   1   : +oo   1   :+oo+oo   1


    2   1   1   1   1   1   1
    3   1   1   1   1   1   1

       1a  2a  3a  3b  6a  6b
   2P  1a  1a  3b  3a  3b  3a
   3P  1a  2a  1a  1a  2a  2a
 X.1    1   1   1   1   1   1
 X.2    1  -1   A  /A  -A -/A
 X.3    1   1  /A   A  /A   A
 X.4    1  -1   1   1  -1  -1
 X.5    1   1   A  /A   A  /A
 X.6    1  -1  /A   A -/A  -A

 A = E(3)
   = (-1+ER(-3))/2 = b3
</pre>
The classes <code>1a</code>, <code>2a</code> correspond to 1<i>A</i>, 2<i>A</i>, respectively.
<code>3a</code>, <code>6a</code> correspond to the proxies 3<i>A</i>, 6<i>A</i>,
and <code>3b</code>, <code>6b</code> to the not printed classes with these proxies.
<p>
The second example explains the fusion case;
again, <i>G</i> is the trivial group.
<pre>
 -------   -------        ;   @   ;   ;  @      3.G.2
|       | |       |           1          1
|   G   | |  G.2  |     p power          A         2   1   .   1
|       | |       |     p' part          A         3   1   1   .
 -------   -------      ind  1A fus ind 2A
 -------   -------                                    1a 3a 2a
|       | |       |   X1  +   1   :  ++  1        2P  1a 3a 1a
|  2.G  | | 2.G.2 |                               3P  1a 1a 2a
|       | |       |     ind   1 fus ind  2
 -------   -------            2          2      X.1    1  1  1
 -------   -------                              X.2    1  1 -1
|       | |           X2  +   1   :  ++  1      X.3    2 -1  .
|  3.G  | | 3.G.2
|       | |             ind   1 fus ind  2
 -------                      3                 6.G.2
 -------   -------            3
|       | |                                        2   2  1  1  2  2  2
|  6.G  | | 6.G.2     X3 o2   1   *   +            3   1  1  1  1  .  .
|       | |
 -------                ind   1 fus ind  2            1a 6a 3a 2a 2b 2c
                              6          2        2P  1a 3a 3a 1a 1a 1a
                              3                   3P  1a 2a 1a 2a 2b 2c
                              2
                              3                 Y.1    1  1  1  1  1  1
                              6                 Y.2    1  1  1  1 -1 -1
                                                Y.3    1 -1  1 -1  1 -1
                      X4 o2   1   *   +         Y.4    1 -1  1 -1 -1  1
                                                Y.5    2 -1 -1  2  .  .
                                                Y.6    2  1 -1 -2  .  .
</pre>
The tables of <i>G</i>, 2.<i>G</i>, 3.<i>G</i>, 6.<i>G</i> and <i>G</i>.2 are known from the first
example, that of 2.<i>G</i>.2 will be given in the next one.
So here we print only the <font face="Gill Sans,Helvetica,Arial">GAP</font> tables of 3.<i>G</i>.2  <font face="symbol">@</font> <i>D</i><sub>6</sub> and
6.<i>G</i>.2  <font face="symbol">@</font> <i>D</i><sub>12</sub>.
<p>
In 3.<i>G</i>.2, the characters <code>X.1</code>, <code>X.2</code> extend <font face="symbol">c</font><sub>1</sub>;
<font face="symbol">c</font><sub>3</sub> and its non-printed partner fuse to give <code>X.3</code>,
and the two preimages of <code>1A</code> of order 3 collapse.
<p>
In  6.<i>G</i>.2,  <code>Y.1</code>--<code>Y.4</code> are extensions of <font face="symbol">c</font><sub>1</sub>, <font face="symbol">c</font><sub>2</sub>,
so these characters are the inflated characters from 2.<i>G</i>.2
(with respect to the factor fusion <code>[ 1, 2, 1, 2, 3, 4 ]</code>).
<code>Y.5</code> is inflated from 3.<i>G</i>.2
(with respect to the factor fusion <code>[ 1, 2, 2, 1, 3, 3 ]</code>),
and <code>Y.6</code> is the result of the fusion of <font face="symbol">c</font><sub>4</sub> and its non-printed
partner.
<p>
For the last example, let <i>G</i> be the elementary abelian group 2<sup>2</sup>
of order 4.
Consider the following tables.
<pre>
 -------   -------            ;   @   @   @   @   ;   ;   @
|       | |       |               4   4   4   4           1
|   G   | |  G.3  |         p power   A   A   A           A
|       | |       |         p' part   A   A   A           A
 -------   -------          ind  1A  2A  2B  2C fus ind  3A
 -------   -------
|       | |       |     chi1  +   1   1   1   1   : +oo   1
|  2.G  | | 2.G.3 |     chi2  +   1   1  -1  -1   .   +   0
|       | |       |     chi3  +   1  -1   1  -1   |
 -------   -------      chi4  +   1  -1  -1   1   |

                            ind   1   4   4   4 fus ind   3
                                  2                       6

                        chi5  -   2   0   0   0   : -oo   1

  G.3

     2   2   2   .   .
     3   1   .   1   1

        1a  2a  3a  3b
    2P  1a  1a  3b  3a
    3P  1a  2a  1a  1a

  X.1    1   1   1   1
  X.2    1   1   A  /A
  X.3    1   1  /A   A
  X.4    3  -1   .   .

  A = E(3)
    = (-1+ER(-3))/2 = b3

  2.G                          2.G.3

     2   3   3   2   2   2        2   3   3   2   1   1   1   1
                                  3   1   1   .   1   1   1   1
        1a  2a  4a  4b  4c
    2P  1a  1a  2a  1a  1a           1a  2a  4a  3a  6a  3b  6b
    3P  1a  2a  4a  4b  4c       2P  1a  1a  2a  3b  3b  3a  3a
                                 3P  1a  2a  4a  1a  2a  1a  2a
  X.1    1   1   1   1   1
  X.2    1   1   1  -1  -1     X.1    1   1   1   1   1   1   1
  X.3    1   1  -1   1  -1     X.2    1   1   1   A   A  /A  /A
  X.4    1   1  -1  -1   1     X.3    1   1   1  /A  /A   A   A
  X.5    2  -2   .   .   .     X.4    3   3  -1   .   .   .   .
                               X.5    2  -2   .   1   1   1   1
                               X.6    2  -2   .   A  -A  /A -/A
                               X.7    2  -2   .  /A -/A   A  -A

                               A = E(3)
                                 = (-1+ER(-3))/2 = b3
</pre>
In the table of <i>G</i>.3  <font face="symbol">@</font> <i>A</i><sub>4</sub>, the characters <font face="symbol">c</font><sub>2</sub>, <font face="symbol">c</font><sub>3</sub>, and
<font face="symbol">c</font><sub>4</sub> fuse, and the classes <code>2A</code>, <code>2B</code>  and <code>2C</code> collapse.
For getting the table of 2.<i>G</i>  <font face="symbol">@</font> <i>Q</i><sub>8</sub>,
one just has to split the class <code>2A</code> and adjust the representative orders.
Finally, the table of 2.<i>G</i>.3  <font face="symbol">@</font> <i>SL</i><sub>2</sub>(3) is given;
the class fusion corresponding to the injection 2.<i>G</i> <font face="symbol"></font>2.<i>G</i>.3
is <code>[ 1, 2, 3, 3, 3 ]</code>, and the factor fusion corresponding to the
epimorphism 2.<i>G</i>.3 <font face="symbol"></font> <i>G</i>.3 is <code>[ 1, 1, 2, 3, 3, 4, 4 ]</code>.
<p>
(The beautiful LaTeX pictures that were part of the <font face="Gill Sans,Helvetica,Arial">GAP</font>&nbsp;3 manual
will be reintroduced
as soon as the bad decision to use TeX for the manual will be revised.)
<p>
<p>
<h2><a name="SECT007">2.7 CAS Tables</a></h2>
<p><p>
<a name = "I27"></a>

<a name = "I27"></a>
<a name = "I28"></a>

<a name = "I27"></a>
<a name = "I28"></a>
<a name = "I29"></a>

All character tables of the <font face="Gill Sans,Helvetica,Arial">CAS</font> table library (see&nbsp;<a href="biblio.htm#NPP84"><cite>NPP84</cite></a>)
are available in <font face="Gill Sans,Helvetica,Arial">GAP</font> except if stated otherwise in the file
<code>doc/ctbldiff.pdf</code>.
This sublibrary has been completely revised before it was included in <font face="Gill Sans,Helvetica,Arial">GAP</font>,
for example, errors have been corrected and power maps have been completed.
<p>
Any <font face="Gill Sans,Helvetica,Arial">CAS</font> table is accessible by each of its <font face="Gill Sans,Helvetica,Arial">CAS</font> names (except if
stated otherwise in <code>doc/ctbldiff.pdf</code>), that is,
the table name or the filename used in <font face="Gill Sans,Helvetica,Arial">CAS</font>.
<p>
<pre>
gap&gt; tbl:= CharacterTable( "m10" );
CharacterTable( "A6.2_3" )
</pre>
<p>
<a name = "SSEC007.1"></a>
<li><code>CASInfo( </code><var>tbl</var><code> ) A</code>
<p>
Let <var>tbl</var> be an ordinary character table <var>tbl</var> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> library
that was (up to permutations of classes and characters) contained already
in the <font face="Gill Sans,Helvetica,Arial">CAS</font> table library.
When one fetches <var>tbl</var> from the library, one does in general not get the
original <font face="Gill Sans,Helvetica,Arial">CAS</font> table.
Namely, in many cases (mostly <font face="Gill Sans,Helvetica,Arial">ATLAS</font> tables, see&nbsp;<a href="CHAP002.htm#SECT005">ATLAS Tables</a>)
the identifier of the table (see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.11">Identifier!for character tables</a>
in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual) as well as the ordering of classes and
characters are different for the <font face="Gill Sans,Helvetica,Arial">CAS</font> table and its <font face="Gill Sans,Helvetica,Arial">GAP</font> version.
<p>
Note that in several cases, the <font face="Gill Sans,Helvetica,Arial">CAS</font> library contains different
tables of the same group,
in particular these tables may have different names and orderings of
classes and characters.
<p>
The <code>CASInfo</code> value of <var>tbl</var>, if stored, is a list of records,
each describing the relation between <var>tbl</var> and a character table in the
<font face="Gill Sans,Helvetica,Arial">CAS</font> library.
The records have the components
<p>
<dl compact>
<dt><code>name</code> <dd>
    the name of the <font face="Gill Sans,Helvetica,Arial">CAS</font> table,
<p>
<dt><code>permchars</code> and <code>permclasses</code> <dd>
    permutations of the <code>Irr</code> values and the classes of <var>tbl</var>,
    respectively, that must be applied in order to get the orderings in
    the original <font face="Gill Sans,Helvetica,Arial">CAS</font> table, and
<p>
<dt><code>text</code> <dd>
    the text that was stored on the <font face="Gill Sans,Helvetica,Arial">CAS</font> table
    (which may contain incorrect statements).
</dl>
<p>
<pre>
gap&gt; HasCASInfo( tbl );
true
gap&gt; CASInfo( tbl );
[ rec( name := "m10", permchars := (3,5)(4,8,7,6), permclasses := (), 
      text := "names:     m10\norder:     2^4.3^2.5 = 720\nnumber of classes: \
8\nsource:    cambridge atlas\ncomments:  point stabilizer of mathieu-group m1\
1\ntest:      orth, min, sym[3]\n" ) ]
</pre>
<p>
The class fusions stored on tables from the <font face="Gill Sans,Helvetica,Arial">CAS</font> library have been
computed anew;
the <code>text</code> component of such a fusion record tells if the fusion map is equal
to that in the <font face="Gill Sans,Helvetica,Arial">CAS</font> library
--of course modulo the permutation of classes between the table in <font face="Gill Sans,Helvetica,Arial">CAS</font>
and its <font face="Gill Sans,Helvetica,Arial">GAP</font> version.
<p>
<pre>
gap&gt; First( ComputedClassFusions( tbl ), x -&gt; x.name = "M11" );
rec( name := "M11", map := [ 1, 2, 3, 4, 5, 4, 7, 8 ], 
  text := "fusion is unique up to table automorphisms,\nthe representative is \
equal to the fusion map on the CAS table" )
</pre>
<p>
<p>
<h2><a name="SECT008">2.8 Organization of the Character Table Library</a></h2>
<p><p>
The data files of the <font face="Gill Sans,Helvetica,Arial">GAP</font> Character Table Library
reside in the <code>data</code> directory of the package <code>ctbllib</code>.
<p>
The filenames start with <code>ct</code> (for ``character table''),
followed by either <code>o</code> (for ``ordinary''), <code>b</code> (for ``Brauer''),
or <code>g</code> (for ``generic''),
then a description of the contents (up to 5 characters, e.g., <code>alter</code>
for the tables of alternating and related groups),
and the suffix <code>.tbl</code>.
<p>
The file <code>ctb</code><var>descr</var><code>.tbl</code> contains the known Brauer tables
corresponding to the ordinary tables in the file <code>cto</code><var>descr</var><code>.tbl</code>.
<p>
Each data file of the table library is supposed to consist of
<dl compact>
<dt>1.<dd>
    comment lines, starting with <code></code> in the first column,
<dt>2.<dd>
    assignments to <code>ALN</code> (short for ``add library name'',
    see&nbsp;<a href="CHAP002.htm#SSEC009.1">NotifyNameOfCharacterTable</a>)
    and to a component of <code>Revision</code>, at the beginning of the file,
    for example in the file with name <code>ctoalter.tbl</code> a value is assigned
    to <code>Revision.ctoalter_tbl</code>,
<dt>3.<dd>
    assignments to <code>ALN</code> and to a component of <code>LIBTABLE.LOADSTATUS</code>,
    at the end of the file, and
<dt>4.<dd>
    function calls of the form
    <code>SET_TABLEFILENAME( </code><var>filename</var><code> )</code>,
    <code>MBT( </code><var>name</var><code>, </code><var>data</var><code> )</code> (``make Brauer table''),
    <code>MOT( </code><var>name</var><code>, </code><var>data</var><code> )</code> (``make ordinary table''),
    <code>ALF( </code><var>from</var><code>, </code><var>to</var><code>, </code><var>map</var><code> )</code>,
    <code>ALF( </code><var>from</var><code>, </code><var>to</var><code>, </code><var>map</var><code>, </code><var>textlines</var><code> )</code> (``add library fusion''),
    <code>ALN( </code><var>name</var><code>, </code><var>listofnames</var><code> )</code>, and
    <code>ARC( </code><var>name</var><code>, </code><var>component</var><code>, </code><var>compdata</var><code> )</code> (``add record component'').
<p>
    Here <var>filename</var> must be a string corresponding to the filename but
    without suffix, for example <code>"ctoalter"</code> if the file has the name
    <code>ctoalter.tbl</code>;
    <var>name</var> must be the identifier value of the ordinary character table
    corresponding to the table to which the command refers;
    <var>data</var> must be a comma separated sequence of <font face="Gill Sans,Helvetica,Arial">GAP</font> objects;
    <var>from</var> and <var>to</var> must be identifier values of ordinary character
    tables,
    <var>map</var> a list of positive itegers,
    <var>textlines</var> and <var>listofnames</var> lists list of strings,
    <var>component</var> a string, and
    <var>compdata</var> any <font face="Gill Sans,Helvetica,Arial">GAP</font> object.
<p>
    <code>MOT</code>, <code>ALF</code>, <code>ALN</code>, and <code>ARC</code> occur only in files containing
    ordinary character tables,
    and <code>MBT</code> occurs only in files containing Brauer tables.
</dl>
Besides the above calls, the data in files containing ordinary and Brauer
tables may contain only the following <font face="Gill Sans,Helvetica,Arial">GAP</font> functions.
(Files containing generic character tables may contain calls to
arbitrary <font face="Gill Sans,Helvetica,Arial">GAP</font> library functions.)
<p>
<code>ACM</code>,
<code>Concatenation</code>,
<code>E</code>,
<code>EvalChars</code>,
<code>GALOIS</code>,
<code>Length</code>,
<code>NotifyCharTableName</code>,
<code>ShallowCopy</code>,
<code>TENSOR</code>, and
<code>TransposedMat</code>.
<p>
The <code>awk</code> script <code>maketbl</code> in the <code>etc</code> directory of the <code>ctbllib</code>
package expects the file format described above,
and to some extent this format is checked by this script.
<p>
The function calls may be continued over several lines of a file.
A semicolon is assumed to be the last character in its line
if and only if it terminates a function call.
<p>
Names of character tables are strings
(see Chapter&nbsp;<a href="../../../doc/htm/ref/CHAP026.htm">Strings and Characters</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual),
i.e., they are enclosed in double quotes;
strings in table library files must not be split over several lines,
because otherwise the <code>awk</code> script may get confused.
Additionally, no character table name is allowed to contain double
quotes.
<p>
<font face="Gill Sans,Helvetica,Arial">GAP</font>'s knowledge about the ordinary tables in the table library
is given by the file <code>ctprimar.tbl</code> (the ``primary file'' of the
table library).
This file can be produced from the library files by the script <code>maketbl</code>
in the <code>etc</code> directory of the <code>ctbllib</code> package.
The information is stored in the global variable <code>LIBLIST</code>,
which is a record with the following components.
<p>
<dl compact>
<dt><code>firstnames</code> <dd>
    the list of <code>Identifier</code> (see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.11">Identifier!for character tables</a>
    in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual) values of the ordinary tables,
<p>
<dt><code>files</code> <dd>
    the list of filenames containing the data of ordinary tables,
<p>
<dt><code>filenames</code> <dd>
    a list of positive integers, value <i>j</i> at position <i>i</i> means that the
    table whose identifier is the <i>i</i>--th in the <code>firstnames</code> list is
    contained in the <i>j</i>-th file of the <code>files</code> component,
<p>
<dt><code>fusionsource</code> <dd>
    a list containing at position <i>i</i> the list of names of tables that
    store a fusion into the table whose identifier is the <i>i</i>--th in the
    <code>firstnames</code> list,
<p>
<dt><code>allnames</code> <dd>
    a list of all admissible names of ordinary library tables,
<p>
<dt><code>position</code> <dd>
    a list that stores at position <i>i</i> the position in <code>firstnames</code>
    of the identifier of the table with the <i>i</i>--th admissible name in
    <code>allnames</code>,
<p>
<dt><code>projections</code> <dd>
    a list of triples [ <i>name</i> , <i>factname</i> , <i>map</i>  ]
    describing a factor fusion <var>map</var> from the table with identifier
    <var>name</var> to the table with identifier <var>factname</var>
    (this is used to construct the table of <var>name</var> using the data of
    the table of <var>factname</var>),
<p>
<dt><code>simpleinfo</code> <dd>
    a list of triples [ <i>m</i> , <i>name</i> , <i>a</i>  ] describing the tables of
    simple groups in the library; <var>name</var> is the identifier of the table,
    <code></code><var>m</var><code>.</code><var>name</var><code></code> and <code></code><var>name</var><code>.</code><var>a</var><code></code> are admissible names for its
    Schur multiplier and automorphism group, respectively,
<p>
<dt><code>sporadicSimple</code> <dd>
    a list of identifiers of the tables of the 26 sporadic simple
    groups, and
<p>
<dt><code>GENERIC</code> <dd>
    a record with information about generic tables
    (see&nbsp;<a href="CHAP002.htm#SECT003">Generic Character Tables</a>).
</dl>
<p>
There are three different ways how the table data can be stored in the
file.
<p>
<strong>Full ordinary tables</strong> are encoded by a call to the function <code>MOT</code>,
where the arguments correspond to the relevant attribute values;
each fusion into another library table is added by a call to <code>ALF</code>,
values to be stored in components of the table object are added with
<code>ARC</code>, and admissible names are notified with <code>ALN</code>.
The argument of <code>MOT</code> that encodes the irreducible characters is
abbreviated as follows.
For each subset of characters that differ just by multiplication with a
linear character or by Galois conjugacy, only the first one is given by
its values, the others are replaced by
<code>[TENSOR,[</code><var>i</var><code>,</code><var>j</var><code>]]</code> (which means that the character is the tensor
product of the <var>i</var>-th and the <var>j</var>-th character in the list)
or <code>[GALOIS,[</code><var>i</var><code>,</code><var>j</var><code>]]</code> (which means that the character is obtained from
the <var>i</var>-th character by applying <code>GaloisCyc( ., </code><var>j</var><code> )</code> to it.
<p>
<strong>Brauer tables</strong> are stored relative to the corresponding ordinary tables;
attribute values that can be got by restriction from the ordinary table
to <i>p</i>--regular classes are not stored,
and instead of the irreducible characters the files contain (inverses of)
decomposition matrices or Brauer trees for the blocks of nonzero defects.
<p>
<strong>Ordinary construction tables</strong> have the attribute
<code>ConstructionInfoCharacterTable</code> (see&nbsp;<a href="CHAP003.htm#SSEC001.1">ConstructionInfoCharacterTable</a>)
set, with value a list that contains the name of the construction
function used and the arguments for a call to this function;
The function call is performed by <code>CharacterTable</code> when the table is
constructed (<strong>not</strong> when the file containing the table is read).
The aim of this mechanism is to store structured character tables such as
tables of direct products and tables of central extensions of other
tables in a compact way.
<p>
<a name = "SSEC008.1"></a>
<li><code>LibInfoCharacterTable( </code><var>tblname</var><code> ) F</code>
<p>
is a record with components
<p>
<dl compact>
<dt><code>firstName</code> <dd>
    the <code>Identifier</code> value (see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.11">Identifier!for character tables</a>
    in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual) of the library table
    for which <var>tblname</var> is an admissible name, and
<p>
<dt><code>fileName</code> <dd>
    the name of the file in which the table data is stored.
</dl>
If no such table exists in the <font face="Gill Sans,Helvetica,Arial">GAP</font> library then <code>fail</code> is returned.
<p>
If <var>tblname</var> contains the substring <code>"mod"</code> then it is regarded as the
name of a Brauer table.
In this case the result is computed from that for the corresponding
ordinary table and the characteristic.
So if the ordinary table exists then the result is a record although
the Brauer table in question need not be contained in the <font face="Gill Sans,Helvetica,Arial">GAP</font> library.
<p>
<p>
<h2><a name="SECT009">2.9 How to Extend the Character Table Library</a></h2>
<p><p>
<a name = "I30"></a>

<a name = "I30"></a>
<a name = "I31"></a>

<font face="Gill Sans,Helvetica,Arial">GAP</font> users may want to extend the character table library in different
respects.
Probably the easiest change is to add new admissible names to library tables,
in order to use these names in calls of <code>CharacterTable</code>
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC003.1">CharacterTable</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual,
and <a href="CHAP002.htm#SSEC002.1">CharacterTableFromLibrary</a>).
This can be done as follows.
<p>
<a name = "SSEC009.1"></a>
<li><code>NotifyNameOfCharacterTable( </code><var>firstname</var><code>, </code><var>newnames</var><code> ) F</code>
<a name = "SSEC009.1"></a>
<li><code>ALN( </code><var>firstname</var><code>, </code><var>newnames</var><code> ) F</code>
<p>
notifies the strings in the list <var>newnames</var> as new admissible names for
the library table with <code>Identifier</code> value <var>firstname</var>,
see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.11">Identifier!for character tables</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual.
If there is already another library table for which some of these names
are admissible then an error is signaled.
<p>
<code>NotifyNameOfCharacterTable</code> modifies the global variable <code>LIBLIST</code>.
<p>
<code>ALN</code> is a shorthand for <code>NotifyNameOfCharacterTable</code>.
In those library files for which the <code>maketbl</code> script has produced the
necessary information for <code>LIBLIST</code>, <code>ALN</code> is set to <code>Ignore</code>
in the beginning and back to <code>NotifyNameOfCharacterTable</code> in the end.
<p>
<pre>
gap&gt; CharacterTable( "private" );
fail
gap&gt; NotifyNameOfCharacterTable( "A5", [ "private" ] );
gap&gt; a5:= CharacterTable( "private" );
CharacterTable( "A5" )
</pre>
<p>
The next kind of changes is the addition of new fusions between library
tables.
Once a fusion map is known, it can be added to the library file containing
the table of the subgroup, using the format produced by <code>LibraryFusion</code>.
<p>
<a name = "SSEC009.2"></a>
<li><code>ALF( </code><var>from</var><code>, </code><var>to</var><code>, </code><var>map</var><code>[, </code><var>text</var><code>, </code><var>spec</var><code>] ) F</code>
<p>
<code>ALF</code> stores the fusion map <var>map</var> between the ordinary character tables
with identifier strings <var>from</var> and <var>to</var> in the record encoding the table
with identifier <var>from</var>.
If the string <var>text</var> is given then it is added as <code>text</code> component of the
fusion.
If the argument <var>spec</var> is given then it is added as <code>specification</code>
component of the fusion.
<p>
<code>ALF</code> changes the global list <code>LIBLIST.fusionsource</code>.
<p>
Note that the <code>ALF</code> statement should be placed in the file containing the
data for the table with identifier <var>from</var>.
<p>
<a name = "SSEC009.3"></a>
<li><code>LibraryFusion( </code><var>name</var><code>, </code><var>fus</var><code> ) F</code>
<p>
For a string <var>name</var> that is an <code>Identifier</code> value
(see&nbsp;<a href="../../../doc/htm/ref/CHAP069.htm#SSEC008.11">Identifier!for character tables</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference
Manual) of an ordinary character table in the <font face="Gill Sans,Helvetica,Arial">GAP</font> library,
and a record <var>fus</var> with the components
<code>name</code> (the identifier of the destination table, or this table itself),
<code>map</code> (the fusion map, a list of image positions),
and optionally <code>text</code> (a string containing information about the fusion)
and <code>specification</code> (a string or an integer),
<code>LibraryFusion</code> returns a string whose printed value can be used to add
the fusion in question to the library file containing the data for the
table with identifier <var>name</var>.
<p>
<var>name</var> may also be a character table, in this case its <code>Identifier</code> value
is used as string.
<p>
<pre>
gap&gt; s5:= CharacterTable( "S5" );
CharacterTable( "A5.2" )
gap&gt; fus:= PossibleClassFusions( a5, s5 );
[ [ 1, 2, 3, 4, 4 ] ]
gap&gt; fusion:= rec( name:= Identifier( s5 ), map:= fus[1], text:= "unique" );;
gap&gt; Print( LibraryFusion( "A5", fusion ) );
ALF("A5","A5.2",[1,2,3,4,4],[
"unique"
]);
</pre>
<p>
The last kind of changes is the addition of new character tables to the
<font face="Gill Sans,Helvetica,Arial">GAP</font> character table library.
Data files containing tables in library format
(i.e., in the form of calls to <code>MOT</code> or <code>MBT</code>)
can be produced using <code>PrintToLib</code>.
<p>
<a name = "SSEC009.4"></a>
<li><code>PrintToLib( </code><var>file</var><code>, </code><var>tbl</var><code> ) F</code>
<p>
prints the (ordinary or Brauer) character table <var>tbl</var> in library format
to the file <code></code><var>file</var><code>.tbl</code> or <var>file</var>
(if this has already the suffix <code>.tbl</code>), respectively.
<p>
If <var>tbl</var> is an ordinary table then the value of the attribute
<code>NamesOfFusionSources</code> is ignored by <code>PrintToLib</code>,
since for library tables this information is extracted from the source
files by the <code>maketbl</code> script.
<p>
<pre>
gap&gt; PrintToLib( "private", a5 );
</pre>
The above command appends the data of the table <code>a5</code> to the file
<code>private.tbl</code>;
the first lines printed to this file are
<pre>
SET_TABLEFILENAME("private");
MOT("A5",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5]"
],
[60,4,3,5,5],
[,[1,1,3,5,4],[1,2,1,5,4],,[1,2,3,1,1]],
[[1,1,1,1,1],[3,-1,0,-E(5)-E(5)^4,-E(5)^2-E(5)^3],
[GALOIS,[2,2]],[4,0,1,-1,-1],[5,1,-1,0,0]],
[(4,5)]);
ARC("A5","projectives",["2.A5",[[2,0,-1,E(5)+E(5)^4,E(5)^2+E(5)^3],
[GALOIS,[1,2]],[4,0,1,-1,-1],[6,0,0,1,1]],]);
ARC("A5","extInfo",["2","2"]);
</pre>
<p>
If you have an ordinary character table in library format which you want to
add to the table library, for example because it shall be accessible via
<code>CharacterTable</code> (see&nbsp;<a href="CHAP002.htm#SSEC002.1">CharacterTableFromLibrary</a>),
you must notify this table, i.e., tell <font face="Gill Sans,Helvetica,Arial">GAP</font> in which file it can be found,
and which names shall be admissible for it.
<p>
<a name = "SSEC009.5"></a>
<li><code>NotifyCharacterTable( </code><var>firstname</var><code>, </code><var>filename</var><code>, </code><var>othernames</var><code> ) F</code>
<p>
notifies a new ordinary table to the library.
This table has <code>Identifier</code> value <var>firstname</var>,
it is contained (in library format, see&nbsp;<a href="CHAP002.htm#SSEC009.4">PrintToLib</a>) in the file with
name <var>filename</var> (without suffix <code>.tbl</code>),
and the names contained in the list <var>othernames</var> are admissible for it.
<p>
If the initial part of <var>filename</var> is one of <code>&nbsp;/</code>, <code>/</code> or <code>./</code> then it is
interpreted as an <strong>absolute</strong> path.
Otherwise it is interpreted <strong>relative</strong> to the <code>data</code> directory of the
<code>ctbllib</code> package.
<p>
<code>NotifyCharacterTable</code> modifies the global variable <code>LIBLIST</code> for the
current <font face="Gill Sans,Helvetica,Arial">GAP</font> session,
after having checked that there is no other library table yet with an
admissible name equal to <var>firstname</var> or contained in <var>othernames</var>.
<p>
For example, let us change the name <code>A5</code> to <code>icos</code> wherever it occurs in
the file <code>private.tbl</code> that was produced above,
and then notify the ``new'' table in this file as follows.
(The name change is needed because <font face="Gill Sans,Helvetica,Arial">GAP</font> knows already a table with name
<code>A5</code> and would not accept to add another table with this name.)
<p>
<pre>
gap&gt; NotifyCharacterTable( "icos", "private", [] );
gap&gt; icos:= CharacterTable( "icos" );
CharacterTable( "icos" )
gap&gt; Display( icos );
icos

     2  2  2  .  .  .
     3  1  .  1  .  .
     5  1  .  .  1  1

       1a 2a 3a 5a 5b
    2P 1a 1a 3a 5b 5a
    3P 1a 2a 1a 5b 5a
    5P 1a 2a 3a 1a 1a

X.1     1  1  1  1  1
X.2     3 -1  .  A *A
X.3     3 -1  . *A  A
X.4     4  .  1 -1 -1
X.5     5  1 -1  .  .

A = -E(5)-E(5)^4
  = (1-ER(5))/2 = -b5
</pre>
<p>
So the private table is treated as a library table.
Note that the table can be accessed only if it has been notified in the
current <font face="Gill Sans,Helvetica,Arial">GAP</font> session.
For frequently used private tables, it may be reasonable to put the
<code>NotifyCharacterTable</code> statements into your <code>.gaprc</code> file
(see&nbsp;<a href="../../../doc/htm/ref/CHAP003.htm#SECT004">The .gaprc File</a> in the <font face="Gill Sans,Helvetica,Arial">GAP</font> Reference Manual),
or into a file that is read via the <code>.gaprc</code> file.
For adding interesting character tables to the <font face="Gill Sans,Helvetica,Arial">GAP</font> distribution,
please send the tables to the e-mail address mentioned in the first paragraph
of this chapter.
<p>
<p>
[<a href = "chapters.htm">Up</a>] [<a href ="CHAP001.htm">Previous</a>] [<a href ="CHAP003.htm">Next</a>] [<a href = "theindex.htm">Index</a>]
<P>
<address>CTblLib manual<br>March 2004
</address></body></html>