1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<meta name="GENERATOR" content="TtH 3.55">
<style type="text/css"> div.p { margin-top: 7pt;}</style>
<style type="text/css"><!--
td div.comp { margin-top: -0.6ex; margin-bottom: -1ex;}
td div.comb { margin-top: -0.6ex; margin-bottom: -.6ex;}
td div.hrcomp { line-height: 0.9; margin-top: -0.8ex; margin-bottom: -1ex;}
td div.norm {line-height:normal;}
span.roman {font-family: serif; font-style: normal; font-weight: normal;}
span.overacc2 {position: relative; left: .8em; top: -1.2ex;}
span.overacc1 {position: relative; left: .6em; top: -1.2ex;} --></style>
<title> Multiplicity-Free Permutation Characters in GAP</title>
<h1 align="center">Multiplicity-Free Permutation Characters in GAP </h1>
<body bgcolor="FFFFFF">
<div class="p"><!----></div>
<h3 align="center"> T<font size="-2">HOMAS</font> B<font size="-2">REUER</font> <br />
<i>Lehrstuhl D für Mathematik</i> <br />
<i>RWTH, 52056 Aachen, Germany</i> </h3>
<div class="p"><!----></div>
<h3 align="center">October 6th, 2000 </h3>
<div class="p"><!----></div>
<div class="p"><!----></div>
This note shows a few examples of <font face="helvetica">GAP</font> computations concerning
multiplicity-free permutation characters,
with an emphasis on the classification of the faithful multiplicity-free
permutation characters of the sporadic simple groups and their automorphism
groups given in [<a href="#BL96" name="CITEBL96">BL96</a>].
<div class="p"><!----></div>
For examples on <font face="helvetica">GAP</font> computations with permutation characters in general,
see the note [<a href="#ctblpope" name="CITEctblpope">Bre</a>].
<div class="p"><!----></div>
For further questions about <font face="helvetica">GAP</font>, consult its
<a href="link">Reference Manual</a>;
in particular, for the description of the commands for character tables,
see the chapter "Character Tables".
<div class="p"><!----></div>
Section <a href="#database">1</a> of this note shows how to interpret the individual
data available in the database.
In Section <a href="#explM23">2</a>, the main idea is to gather information from
the database as a whole, by filtering items with suitable properties.
Finally, Section <a href="#permcharinfo">3</a> gives an impression how <font face="helvetica">GAP</font>
can be used to obtain results such as the classification of described
in [<a href="#BL96" name="CITEBL96">BL96</a>].
<div class="p"><!----></div>
<div class="p"><!----></div>
<h1>Contents </h1><a href="#tth_sEc1"
>1 The Database of Multiplicity-Free Characters</a><br />
<a href="#tth_sEc1.1"
>1.1 The Faithful Multiplicity-Free Permutation Characters of M<sub>11</sub></a><br />
<a href="#tth_sEc1.2"
>1.2 The Faithful Multiplicity-Free Permutation Characters of M<sub>12</sub>.2</a><br />
<a href="#tth_sEc2"
>2 Using the Database</a><br />
<a href="#tth_sEc3"
>3 Using the Functions to Compute Multiplicity-Free Permutation Characters</a><br />
<a href="#tth_sEc3.1"
>3.1 Using Tables of Marks</a><br />
<a href="#tth_sEc3.2"
>3.2 Dealing with Possible Permutation Characters</a><br />
<div class="p"><!----></div>
<div class="p"><!----></div>
<h2><a name="tth_sEc1">
1</a> The Database of Multiplicity-Free Characters</h2><a name="database">
</a>
<div class="p"><!----></div>
The database lists, for each group G that is either a sporadic simple
group or an automorphism group of a sporadic simple group,
a description of all conjugacy classes of subgroups H of G such that
the action of G on the right cosets of H is a faithful and
multiplicity-free permutation representation of G,
plus the permutation character of this representation.
The format how this information is stored is explained below,
subtleties such as possibly equal characters for different classes of
subgroups are discussed in Section <a href="#explM23">2</a>.
<div class="p"><!----></div>
(A <font face="helvetica">GAP</font> database providing more information about most of these
representations is in preparation;
this will cover, i.a., the character tables of the endomorphism rings of
these representations and the permutation representations themselves.)
<div class="p"><!----></div>
The data is stored in the file <tt>multfree.dat</tt>,
which is part of the Character Table Library [<a href="#CTblLib" name="CITECTblLib">Bre04</a>] of the <font face="helvetica">GAP</font>
system [<a href="#GAP4" name="CITEGAP4">GAP04</a>] as well as the file you are currently reading.
We load this <font face="helvetica">GAP</font> package and the data file into <font face="helvetica">GAP</font> 4.
Afterwards the function <tt>MultFreePermChars</tt> is available.
<div class="p"><!----></div>
<pre>
gap> LoadPackage( "ctbllib" );
true
gap> ReadPackage( "ctbllib", "tst/multfree.dat" );
true
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc1.1">
1.1</a> The Faithful Multiplicity-Free Permutation Characters of
M<sub>11</sub></h3><a name="simple">
</a>
<div class="p"><!----></div>
We start with the inspection of the Mathieu group M<sub>11</sub>,
as an example of a <b>simple</b> group that is dealt with in the database.
<div class="p"><!----></div>
<pre>
gap> info:= MultFreePermChars( "M11" );
[ rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ),
[ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), rank := 2,
subgroup := "$A_6.2_3$", ATLAS := "1a+10a" ),
rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ),
[ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), rank := 3,
subgroup := "$A_6 \\leq A_6.2_3$", ATLAS := "1a+10a+11a" ),
rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ),
[ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ), rank := 2,
subgroup := "$L_2(11)$", ATLAS := "1a+11a" ),
rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ),
[ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ), rank := 6,
subgroup := "$11:5 \\leq L_2(11)$", ATLAS := "1a+11a+16ab+45a+55a" ),
rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ),
[ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ), rank := 3,
subgroup := "$3^2:Q_8.2$", ATLAS := "1a+10a+44a" ),
rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ),
[ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), rank := 4,
subgroup := "$3^2:8 \\leq 3^2:Q_8.2$", ATLAS := "1a+10a+44a+55a" ),
rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ),
[ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ), rank := 4,
subgroup := "$A_5.2$", ATLAS := "1a+10a+11a+44a" ) ]
gap> List( info, x -> x.rank );
[ 2, 3, 2, 6, 3, 4, 4 ]
gap> chars:= List( info, x -> x.character );;
gap> degrees:= List( chars, x -> x[1] );
[ 11, 22, 12, 144, 55, 110, 66 ]
</pre>
<div class="p"><!----></div>
We see that M<sub>11</sub> has seven multiplicity-free permutation characters,
of the ranks and degrees listed above.
(Note that for <b>multiplicity-free</b> permutation characters,
the rank is equal to the number of irreducible constituents.)
More precisely, there are exactly seven conjugacy classes of subgroups of
M<sub>11</sub> such that the permutation action on the cosets of these subgroups
is faithful and multiplicity-free.
<div class="p"><!----></div>
For displaying the characters compatibly with the character table of M<sub>11</sub>,
we can use the <tt>Display</tt> operation.
Note that the column and row ordering of character tables in <font face="helvetica">GAP</font>
is compatible with that of the tables in the A<font size="-2">TLAS</font> of Finite Groups
([<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>]).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "M11" );
CharacterTable( "M11" )
gap> Display( tbl, rec( chars:= chars ) );
M11
2 4 4 1 3 . 1 3 3 . .
3 2 1 2 . . 1 . . . .
5 1 . . . 1 . . . . .
11 1 . . . . . . . 1 1
1a 2a 3a 4a 5a 6a 8a 8b 11a 11b
2P 1a 1a 3a 2a 5a 3a 4a 4a 11b 11a
3P 1a 2a 1a 4a 5a 2a 8a 8b 11a 11b
5P 1a 2a 3a 4a 1a 6a 8b 8a 11a 11b
11P 1a 2a 3a 4a 5a 6a 8a 8b 1a 1a
Y.1 11 3 2 3 1 . 1 1 . .
Y.2 22 6 4 2 2 . . . . .
Y.3 12 4 3 . 2 1 . . 1 1
Y.4 144 . . . 4 . . . 1 1
Y.5 55 7 1 3 . 1 1 1 . .
Y.6 110 6 2 2 . . 2 2 . .
Y.7 66 10 3 2 1 1 . . . .
</pre>
<div class="p"><!----></div>
The <tt>subgroup</tt> component of each record in <tt>info</tt> describes
the isomorphism type of a subgroup U of M<sub>11</sub> such that the value π
of the <tt>character</tt> component is induced from the trivial character of U;
in other words, U is a point stabilizer of the permutation representation
of M<sub>11</sub> with character π.
<div class="p"><!----></div>
(Contrary to this example, in general it may happen that different classes of
subgroups induce the same permutation character,
and that these subgroups may also be nonisomorphic;
see Section <a href="#explM23">2</a> for details.)
<div class="p"><!----></div>
<pre>
gap> subgroups:= List( info, x -> x.subgroup );
[ "$A_6.2_3$", "$A_6 \\leq A_6.2_3$", "$L_2(11)$", "$11:5 \\leq L_2(11)$",
"$3^2:Q_8.2$", "$3^2:8 \\leq 3^2:Q_8.2$", "$A_5.2$" ]
</pre>
<div class="p"><!----></div>
Each entry is a <span class="roman">L</span><sup><span class="roman">A</span></sup><span class="roman">T</span><sub><span class="roman">E</span></sub><span class="roman">X</span> format string that is either a name of the
point stabilizer or has the form <tt><U> \leq <M></tt> where <tt><M></tt> is the name
of a maximal subgroup containing the point stabilizer <tt><U></tt> as a proper
subgroup; in the former case, the point stabilizer is itself maximal.
<div class="p"><!----></div>
Note that a backslash occurring in a <tt>subgroup</tt> string is escaped by another
backslash;
but only a single backslash is printed when the string is printed via
the function <tt>Print</tt>.
<div class="p"><!----></div>
<pre>
gap> Print( subgroups[2], "\n" );
$A_6 \leq A_6.2_3$
</pre>
<div class="p"><!----></div>
Finally, the <tt>ATLAS</tt> component of each record in <tt>info</tt> describes the
<tt>character</tt> value in terms of its irreducible constituents,
as is computed by the function <tt>PermCharInfo</tt>.
Examples can be found in Section <a href="#permcharinfo">3</a>;
for details about the output format,
see the documentation for this function in the <font face="helvetica">GAP</font> Reference Manual.
<div class="p"><!----></div>
<h3><a name="tth_sEc1.2">
1.2</a> The Faithful Multiplicity-Free Permutation Characters of
M<sub>12</sub>.2</h3>
<div class="p"><!----></div>
The automorphism group of a sporadic simple group G is either equal to G
or an upward extension of G by an outer automorphism of order 2.
The <b>nonsimple</b> automorphism group M<sub>12</sub>.2 of the Mathieu group M<sub>12</sub>
serves as an example of the latter situation.
<div class="p"><!----></div>
In addition to the aspects mentioned in Section <a href="#simple">1.1</a>,
here we meet the situation that a permutation character either is induced
from a permutation character of M<sub>12</sub> or extends such a
(not necessarily multiplicity-free) permutation character.
The former case occurs exactly if the corresponding point stabilizer lies in
M<sub>12</sub>.
<div class="p"><!----></div>
<pre>
gap> info:= MultFreePermChars( "M12.2" );;
gap> Length( info );
13
gap> info[1];
rec( group := "$M_{12}.2$",
character := Character( CharacterTable( "M12.2" ),
[ 24, 0, 8, 6, 0, 4, 4, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ),
rank := 3, subgroup := "$M_{11}$", ATLAS := "1a^{\\pm}+11ab" )
gap> info[2];
rec( group := "$M_{12}.2$",
character := Character( CharacterTable( "M12.2" ),
[ 144, 0, 16, 9, 0, 0, 4, 0, 1, 0, 0, 1, 12, 4, 0, 0, 2, 2, 0, 1, 1 ] ),
rank := 4, subgroup := "$L_2(11).2$", ATLAS := "1a^++11ab+55a^++66a^+" )
</pre>
<div class="p"><!----></div>
The first character in the list <tt>info</tt> is induced from the trivial character
of a subgroup of type M<sub>11</sub> inside M<sub>12</sub>,
the second character is induced from the trivial character of a L<sub>2</sub>(11).2
subgroup whose intersection with M<sub>12</sub> is of type L<sub>2</sub>(11).
<div class="p"><!----></div>
We can distinguish the two kinds of permutation characters by explicitly
using the character tables;
for example, a permutation character is induced from a subgroup of a normal
subgroup if and only if it vanishes outside the classes forming this
subgroup.
<div class="p"><!----></div>
<pre>
gap> m12:= CharacterTable( "M12" );;
gap> m122:= UnderlyingCharacterTable( info[1].character );;
gap> fus:= GetFusionMap( m12, m122 );
[ 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12 ]
gap> outer:= Difference( [ 1 .. NrConjugacyClasses( m122 ) ], fus );
[ 13, 14, 15, 16, 17, 18, 19, 20, 21 ]
gap> info[1].character{ outer };
[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
gap> info[2].character{ outer };
[ 12, 4, 0, 0, 2, 2, 0, 1, 1 ]
</pre>
<div class="p"><!----></div>
A perhaps easier way is to look at the <tt>ATLAS</tt> components of the <tt>info</tt>
records.
Namely, the characters induced from subgroups of M<sub>12</sub> have both
linear characters of M<sub>12</sub>.2 as constituents,
which is expressed by the substring <tt>"1a^{\\pm}"</tt>.
<div class="p"><!----></div>
More generally, the <tt>ATLAS</tt> component lists the irreducible constituents
of the restriction to M<sub>12</sub>, where the two extensions of a character
to M<sub>12</sub>.2 are distinguished by a superscript +, −, or ±;
the latter means that both extensions occur.
<div class="p"><!----></div>
The <tt>ATLAS</tt> components describing the constituents relative to a subgroup
of index 2 can be computed using the <font face="helvetica">GAP</font> function
<tt>PermCharInfoRelative</tt>, see Section <a href="#permcharinfo">3</a>.
<div class="p"><!----></div>
It should be noted that the <tt>\leq</tt> substrings in the <tt>subgroup</tt> component
cannot be used to distinguish the two kinds of permutation characters,
since these substrings refer only to maximal subgroups <b>different from</b>
M<sub>12</sub>.
Examples are the first entry in <tt>info</tt> (see above), the fourth entry
(containing a character that is induced from a subgroup of type A<sub>6</sub>.2<sub>2</sub>
which lies in a A<sub>6</sub>.2<sup>2</sup> subgroup that is maximal in M<sub>11</sub>),
and the nineth entry (containing a character induced from a subgroup of
index 2 in a (2<sup>2</sup> ×A<sub>5</sub>).2 subgroup that is maximal in M<sub>12</sub>.2.
<div class="p"><!----></div>
<pre>
gap> info[4];
rec( group := "$M_{12}.2$",
character := Character( CharacterTable( "M12.2" ),
[ 264, 24, 24, 12, 0, 4, 4, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ),
rank := 7, subgroup := "$A_6.2_2 \\leq A_6.2^2$",
ATLAS := "1a^{\\pm}+11ab+54a^{\\pm}+66a^{\\pm}" )
gap> info[9];
rec( group := "$M_{12}.2$",
character := Character( CharacterTable( "M12.2" ),
[ 792, 32, 24, 0, 6, 0, 2, 2, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0 ] ),
rank := 11, subgroup := "$(2 \\times A_5).2 \\leq (2^2 \\times A_5).2$",
ATLAS := "1a^++16ab+45a^++54a^{\\pm}+55a^-+66a^{\\pm}+99a^-+144a^++176a^-" )
</pre>
<div class="p"><!----></div>
<h2><a name="tth_sEc2">
2</a> Using the Database</h2><a name="explM23">
</a>
<div class="p"><!----></div>
In this section, we study the complete list of multiplicity-free
permutation characters of the sporadic simple groups and their
automorphism groups as a whole.
<div class="p"><!----></div>
<pre>
gap> info:= MultFreePermChars( "all" );;
gap> Length( info );
267
gap> Length( Set( info ) );
262
gap> chars:= List( info, x -> x.character );;
gap> Length( Set( chars ) );
261
</pre>
<div class="p"><!----></div>
We see that there are exactly 267 conjugacy classes of subgroups
such that the permutation representation on the cosets is multiplicity-free.
Only 262 of the <tt>info</tt> records are different,
and there is exactly one case where two different <tt>info</tt> records belong to
the same permutation character.
<div class="p"><!----></div>
Let us look where these multiple entries arise.
<div class="p"><!----></div>
<pre>
gap> distrib:= List( info, x -> Position( chars, x.character ) );;
gap> ambiguous:= Filtered( InverseMap( distrib ), IsList );
[ [ 12, 15 ], [ 40, 41 ], [ 83, 84 ], [ 88, 90 ], [ 132, 133 ], [ 202, 203 ] ]
gap> except:= Filtered( ambiguous, x -> info[ x[1] ] <> info[ x[2] ] );
[ [ 83, 84 ] ]
gap> ambiguous:= Difference( ambiguous, except );;
gap> info{ except[1] };
[ rec( ATLAS := "1a+22a+230a",
character := Character( CharacterTable( "M23" ),
[ 253, 29, 10, 5, 3, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 ] ),
group := "$M_{23}$", rank := 3, subgroup := "$L_3(4).2_2$" ),
rec( ATLAS := "1a+22a+230a",
character := Character( CharacterTable( "M23" ),
[ 253, 29, 10, 5, 3, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 ] ),
group := "$M_{23}$", rank := 3, subgroup := "$2^4:A_7$" ) ]
</pre>
<div class="p"><!----></div>
So the Mathieu group M<sub>23</sub> contains two classes of maximal subgroups,
of the structures L<sub>3</sub>(4).2<sub>2</sub> and 2<sup>4</sup>:A<sub>7</sub>, respectively,
such that the characters of the permutation representations on the
cosets of these subgroups are equal.
<div class="p"><!----></div>
Furthermore, it is a consequence of the classification in [<a href="#BL96" name="CITEBL96">BL96</a>]
that in all cases except this one,
the isomorphism types of the point stabilizers are uniquely determined
by the permutation characters.
<div class="p"><!----></div>
<pre>
gap> ambiginfo:= info{ List( ambiguous, x -> x[1] ) };;
gap> for pair in ambiginfo do
> Print( pair.group, ", ", pair.subgroup, ", ", pair.ATLAS, "\n" );
> od;
$M_{12}$, $A_6.2_1 \leq A_6.2^2$, 1a+11ab+54a+55a
$M_{22}$, $A_7$, 1a+21a+154a
$HS$, $U_3(5).2$, 1a+175a
$McL$, $M_{22}$, 1a+22a+252a+1750a
$Fi_{22}$, $O_7(3)$, 1a+429a+13650a
</pre>
<div class="p"><!----></div>
In the other five cases of ambiguities, the whole <tt>info</tt> records are
equal, and from the above list we conclude that for each pair,
the point stabilizers are isomorphic.
In fact the subgroups are conjugate in the outer automorphism groups
of the simple groups involved.
<div class="p"><!----></div>
Next let us look at the distribution of ranks.
<div class="p"><!----></div>
<pre>
gap> Collected( List( info, x -> x.rank ) );
[ [ 2, 11 ], [ 3, 31 ], [ 4, 25 ], [ 5, 43 ], [ 6, 24 ], [ 7, 21 ],
[ 8, 26 ], [ 9, 16 ], [ 10, 17 ], [ 11, 9 ], [ 12, 9 ], [ 13, 8 ],
[ 14, 4 ], [ 15, 3 ], [ 16, 3 ], [ 17, 5 ], [ 18, 5 ], [ 19, 2 ],
[ 20, 2 ], [ 23, 1 ], [ 26, 1 ], [ 34, 1 ] ]
gap> max:= Filtered( info, x -> x.rank = 34 );;
gap> max[1].group; max[1].subgroup; max[1].character[1];
"$F_{3+}.2$"
"$O_{10}^-(2) \\leq O_{10}^-(2).2$"
100354720284
</pre>
<div class="p"><!----></div>
The maximal rank, 34, is attained for a degree 100 354 720 284
character of F<sub>3+</sub>.2 = Fi<sub>24</sub>.
<div class="p"><!----></div>
For the nonsimple automorphism groups of sporadic simple groups,
the simple group G involved is of index 2,
and each permutation characters either is induced from a character of G
or extends a permutation character of G.
<div class="p"><!----></div>
<pre>
gap> nonsimple:= Filtered( info,
> x -> not IsSimple( UnderlyingCharacterTable( x.character ) ) );;
gap> Length( nonsimple );
120
gap> ind:= Filtered( nonsimple, x -> ScalarProduct( x.character,
> Irr( UnderlyingCharacterTable( x.character ) )[2] ) = 1 );;
gap> Length( ind );
48
</pre>
<div class="p"><!----></div>
There are exactly 120 multiplicity-free permutation characters of
nonsimple automorphism groups of sporadic simple groups,
and 48 of them are induced from characters of the simple groups.
(Note that the second irreducible character of the <font face="helvetica">GAP</font> character tables
in question is the unique nontrivial linear character.)
<div class="p"><!----></div>
<pre>
gap> ind[1];
rec( ATLAS := "1a^{\\pm}+11ab",
character := Character( CharacterTable( "M12.2" ),
[ 24, 0, 8, 6, 0, 4, 4, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ),
group := "$M_{12}.2$", rank := 3, subgroup := "$M_{11}$" )
gap> ForAll( ind, x -> x.ATLAS{ [ 1 .. 8 ] } = "1a^{\\pm}" );
true
</pre>
<div class="p"><!----></div>
Another possibility to select the induced characters is to check whether
the initial part of the <tt>ATLAS</tt> component is the string <tt>"1a^{\\pm}"</tt>.
<div class="p"><!----></div>
<h2><a name="tth_sEc3">
3</a> Using the Functions to Compute Multiplicity-Free Permutation
Characters</h2><a name="permcharinfo">
</a>
<div class="p"><!----></div>
The functions <tt>MultFreeFromTOM</tt> and <tt>MultFree</tt> will be used later on.
<div class="p"><!----></div>
(The functions can also be found in the file <tt>multfree.g</tt>,
which can be downloaded from the same webpage where also this file can
be found.)
<div class="p"><!----></div>
For a character table <tt>tbl</tt> for which the table of marks is available in
the <font face="helvetica">GAP</font> library,
the function <tt>MultFreeFromTOM</tt> returns the list of all multiplicity-free
permutation characters of <tt>tbl</tt>.
<div class="p"><!----></div>
<pre>
gap> BindGlobal( "MultFreeFromTOM", function( tbl )
> local tom, # the table of marks
> fus, # fusion map from `t' to `tom'
> perms; # perm. characters of `t'
>
> if HasFusionToTom( tbl ) or HasUnderlyingGroup( tbl ) then
> tom:= TableOfMarks( tbl );
> else
> Error( "no table of marks for character table <tbl> available" );
> fi;
> fus:= FusionCharTableTom( tbl, tom );
> if fus = fail then
> Error( "no unique fusion from <tbl> to the table of marks" );
> fi;
> perms:= PermCharsTom( tbl, tom );
> return Filtered( perms,
> x -> ForAll( Irr( tbl ),
> y -> ScalarProduct( tbl, x, y ) <= 1 ) );
> end );
</pre>
<div class="p"><!----></div>
<tt>TestPerm</tt> calls the <font face="helvetica">GAP</font> library functions <tt>TestPerm1</tt>, <tt>TestPerm2</tt>,
and <tt>TestPerm3</tt>; the return value is <tt>true</tt> if the argument <tt>pi</tt> is
a possible permutation character of the character table <tt>tbl</tt>,
and <tt>false</tt> otherwise.
<div class="p"><!----></div>
<pre>
gap> BindGlobal( "TestPerm", function( tbl, pi )
> return TestPerm1( tbl, pi ) = 0
> and TestPerm2( tbl, pi ) = 0
> and not IsEmpty( TestPerm3( tbl, [ pi ] ) );
> end );
</pre>
<div class="p"><!----></div>
Let <tt>H</tt> be a character table, <tt>S</tt> be a list of characters of <tt>H</tt>,
<tt>psi</tt> a character of <tt>H</tt>, <tt>scprS</tt> a matrix, the i-th entry being the
coefficients of the decomposition of the induced character of <tt>S</tt>[i]
to a supergroup G, say, of <tt>H</tt>, <tt>scprpsi</tt> the decomposition of <tt>psi</tt>
induced to G, and <tt>k</tt> a positive integer.
<div class="p"><!----></div>
<tt>CharactersInducingWithBoundedMultiplicity</tt> returns the list
C( <tt>S</tt>, <tt>psi</tt>, <tt>k</tt> );
this is the list of all those characters <tt>psi</tt> + ϑ of
multiplicity at most <tt>k</tt> such that all constituents of ϑ are
contained in <tt>S</tt>.
<div class="p"><!----></div>
<pre>
gap> DeclareGlobalFunction( "CharactersInducingWithBoundedMultiplicity" );
gap> InstallGlobalFunction( CharactersInducingWithBoundedMultiplicity,
> function( H, S, psi, scprS, scprpsi, k )
> local result, # the list $S( .. )$
> chi, # $\chi$
> scprchi, # decomposition of $\chi^G$
> i, # loop from `1' to `k'
> allowed, # indices of possible constituents
> Sprime, # $S^{\prime}_i$
> scprSprime; # decomposition of characters in $S^{\prime}_i$,
> # induced to $G$
>
> if IsEmpty( S ) then
>
> # Test whether `psi' is a possible permutation character.
> if TestPerm( H, psi ) then
> result:= [ psi ];
> else
> result:= [];
> fi;
>
> else
>
> # Fix a character $\chi$.
> chi := S[1];
> scprchi := scprS[1];
>
> # Form the union.
> result:= CharactersInducingWithBoundedMultiplicity( H,
> S{ [ 2 .. Length( S ) ] }, psi,
> scprS{ [ 2 .. Length( S ) ] }, scprpsi, k );
> for i in [ 1 .. k ] do
> allowed := Filtered( [ 2 .. Length( S ) ],
> j -> Maximum( i * scprchi + scprS[j] ) <= k );
> Sprime := S{ allowed };
> scprSprime := scprS{ allowed };
>
> Append( result, CharactersInducingWithBoundedMultiplicity( H,
> Sprime, psi + i * chi,
> scprSprime, scprpsi + i * scprchi, k ) );
> od;
>
> fi;
>
> return result;
> end );
</pre>
<div class="p"><!----></div>
Let <tt>G</tt> and <tt>H</tt> be character tables of groups G and H, respectively,
such that H is a subgroup of G and the class fusion from <tt>H</tt> to <tt>G</tt>
is stored on <tt>H</tt>.
<tt>MultAtMost</tt> returns the list of all characters ϕ<sup>G</sup> of G
of multiplicity at most <tt>k</tt> such that ϕ is a possible permutation
character of H.
<div class="p"><!----></div>
<pre>
gap> BindGlobal( "MultAtMost", function( G, H, k )
> local triv, # $1_H$
> permch, # $(1_H)^G$
> scpr1H, # decomposition of $(1_H)^G$
> rat, # rational irreducible characters of $H$
> ind, # induced rational irreducible characters
> mat, # decomposition of `ind'
> allowed, # indices of possible constituents
> S0, # $S_0$
> scprS0, # decomposition of characters in $S_0$,
> # induced to $G$, with $Irr(G)$
> cand; # list of multiplicity-free candidates, result
>
> # Compute $(1_H)^G$ and its decomposition into irreducibles of $G$.
> triv := TrivialCharacter( H );
> permch := Induced( H, G, [ triv ] );
> scpr1H := MatScalarProducts( G, Irr( G ), permch )[1];
>
> # If $(1_H)^G$ has multiplicity larger than `k' then we are done.
> if Maximum( scpr1H ) > k then
> return [];
> fi;
>
> # Compute the set $S_0$ of all possible nontrivial
> # rational constituents of a candidate of multiplicity at most `k',
> # that is, all those rational irreducible characters of
> # $H$ that induce to $G$ with multiplicity at most `k'.
> rat:= RationalizedMat( Irr( H ) );
> ind:= Induced( H, G, rat );
> mat:= MatScalarProducts( G, Irr( G ), ind );
> allowed:= Filtered( [ 1.. Length( mat ) ],
> x -> Maximum( mat[x] + scpr1H ) <= k );
> S0 := rat{ allowed };
> scprS0 := mat{ allowed };
>
> # Compute $C( S_0, 1_H, k )$.
> cand:= CharactersInducingWithBoundedMultiplicity( H,
> S0, triv, scprS0, scpr1H, k );
>
> # Induce the candidates to $G$, and return the sorted list.
> cand:= Induced( H, G, cand );
> Sort( cand );
> return cand;
> end );
</pre>
<div class="p"><!----></div>
<tt>MultFree</tt> returns <tt>MultAtMost( G, H, 1 )</tt>.
<div class="p"><!----></div>
<pre>
gap> BindGlobal( "MultFree", function( G, H )
> return MultAtMost( G, H, 1 );
> end );
</pre>
<div class="p"><!----></div>
Let <tt>tbl</tt> be a character table with known <tt>Maxes</tt> value,
and <tt>k</tt> a positive integer.
The function <tt>PossiblePermutationCharactersWithBoundedMultiplicity</tt>
returns a record with the following components.
<ul>
<br />identifier
the <tt>Identifier</tt> value of <tt>tbl</tt>,
<br />maxnames
the list of names of the maximal subgroups of <tt>tbl</tt>,
<br />permcand
at the i-th position the list of those possible permutation
characters of <tt>tbl</tt> whose multiplicity is at most <tt>k</tt>
and which are induced from the i-th maximal subgroup of <tt>tbl</tt>,
and
<br />k
the given bound <tt>k</tt> for the multiplicity.</ul>
<div class="p"><!----></div>
<pre>
gap> BindGlobal( "PossiblePermutationCharactersWithBoundedMultiplicity",
> function( tbl, k )
> local permcand, # list of all mult. free perm. character candidates
> maxname, # loop over tables of maximal subgroups
> max; # one table of a maximal subgroup
>
> if not HasMaxes( tbl ) then
> return fail;
> fi;
>
> permcand:= [];
>
> # Loop over the tables of maximal subgroups.
> for maxname in Maxes( tbl ) do
>
> max:= CharacterTable( maxname );
> if max = fail or GetFusionMap( max, tbl ) = fail then
>
> Print( "#E no fusion `", maxname, "' -> `", Identifier( tbl ),
> "' stored\n" );
> Add( permcand, Unknown() );
>
> else
>
> # Compute the possible perm. characters inducing through `max'.
> Add( permcand, MultAtMost( tbl, max, k ) );
>
> fi;
> od;
>
> # Return the result record.
> return rec( identifier := Identifier( tbl ),
> maxnames := Maxes( tbl ),
> permcand := permcand,
> k := k );
> end );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.1">
3.1</a> Using Tables of Marks</h3>
<div class="p"><!----></div>
As a small example for the computation of multiplicity-free permutation
characters from the table of marks of a group, we consider the alternating
group A<sub>5</sub>.
Its character table as well as its table of marks are accessible from the
respective <font face="helvetica">GAP</font> library, via the identifier <tt>A5</tt>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "A5" );;
gap> chars:= MultFreeFromTOM( tbl );
[ Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ),
Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ),
Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ),
Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]
</pre>
<div class="p"><!----></div>
As the <font face="helvetica">GAP</font> databases do not provide information about the isomorphism
types of arbitrary subgroups, there is no way to compute automatically the
<tt>subgroup</tt> strings as contained in the database of multiplicity-free
permutation characters (cf. Section <a href="#database">1</a>).
Of course it is easy to see that the above characters of A<sub>5</sub> are induced
from the trivial characters of the cyclic group of order 5,
the dihedral groups of orders 6 and 10, the alternating group A<sub>4</sub>,
and the group A<sub>5</sub> itself, respectively.
<div class="p"><!----></div>
The <tt>ATLAS</tt> information used in the database records can be computed
using the <font face="helvetica">GAP</font> function <tt>PermCharInfo</tt>.
<div class="p"><!----></div>
<pre>
gap> PermCharInfo( tbl, chars ).ATLAS;
[ "1a+3ab+5a", "1a+4a+5a", "1a+5a", "1a+4a", "1a" ]
</pre>
<div class="p"><!----></div>
As an example for a nonsimple group, we repeat the computation of
all multiplicity-free permutation characters of M<sub>12</sub>.2,
using the <font face="helvetica">GAP</font> table of marks.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "M12.2" );;
gap> chars:= MultFreeFromTOM( tbl );;
gap> lib:= MultFreePermChars( "M12.2" );;
gap> Length( lib ); Length( chars );
13
15
gap> Difference( chars, List( lib, x -> x.character ) );
[ Character( CharacterTable( "M12.2" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), Character( CharacterTable( "M12.2" ),
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]
</pre>
<div class="p"><!----></div>
This confirms the classification for M<sub>12</sub>.2, since the additional
characters found from the table of marks are not faithful.
<div class="p"><!----></div>
The corresponding <tt>ATLAS</tt> information is computed using the <font face="helvetica">GAP</font> function
<tt>PermCharInfoRelative</tt>, since the constituents shall be listed relative to
the simple group M<sub>12</sub>.
<div class="p"><!----></div>
<pre>
gap> tblsimple:= CharacterTable( "M12" );;
gap> PermCharInfoRelative( tblsimple, tbl, chars ).ATLAS;
[ "1a^++16ab+45a^-+54a^{\\pm}+55a^{\\pm}bc+66a^++99a^{\\pm}+144a^++176a^+",
"1a^++11ab+45a^-+54a^{\\pm}+55a^++66a^{\\pm}+99a^-+120a^{\\pm}+144a^{\\pm}",
"1a^{\\pm}+11ab+45a^{\\pm}+54a^{\\pm}+55a^{\\pm}bc+99a^{\\pm}+120a^{\\pm}",
"1a^++16ab+45a^++54a^{\\pm}+55a^-+66a^{\\pm}+99a^-+144a^++176a^-",
"1a^++16ab+45a^-+54a^{\\pm}+66a^++99a^-+144a^+",
"1a^++11ab+54a^{\\pm}+55a^++66a^++99a^-+144a^+",
"1a^{\\pm}+11ab+54a^{\\pm}+55a^{\\pm}+99a^{\\pm}",
"1a^++16ab+45a^++54a^{\\pm}+66a^++144a^+",
"1a^{\\pm}+11ab+54a^{\\pm}+66a^{\\pm}", "1a^++16ab+45a^++66a^+",
"1a^++11ab+55a^++66a^+", "1a^{\\pm}+11ab+54a^{\\pm}", "1a^{\\pm}+11ab",
"1a^{\\pm}", "1a^+" ]
</pre>
<div class="p"><!----></div>
For more information about tables of marks, see [<a href="#Pfe97" name="CITEPfe97">Pfe97</a>].
<div class="p"><!----></div>
<h3><a name="tth_sEc3.2">
3.2</a> Dealing with Possible Permutation Characters</h3>
<div class="p"><!----></div>
In this section, we deal with <b>possible permutation characters</b>,
that is, characters that have certain properties of permutation
characters but for which no subgroups need to exist from whose trivial
characters they are induced.
For more information about such characters, see the section
"Possible Permutation Characters" in the <font face="helvetica">GAP</font> Reference Manual,
the paper [<a href="#BP98copy" name="CITEBP98copy">BP98</a>], and the note [<a href="#ctblpope" name="CITEctblpope">Bre</a>].
<div class="p"><!----></div>
We can compute possible permutation characters from the character table
of the group in question, the table of marks need not be available.
The problem is of course that for classifying the permutation characters,
we have to decide which of the candidates are in fact permutation
characters.
<div class="p"><!----></div>
Here we show only two small examples that could also be handled via
tables of marks.
(The <font face="helvetica">GAP</font> code shown uses only standard functions lists, such as
<tt>List</tt>, <tt>Filtered</tt>, and <tt>ForAll</tt>, and functions for character tables,
such as <tt>Irr</tt> and <tt>ScalarProduct</tt>;
if you are not familiar with these functions, consult the corresponding
sections in the <font face="helvetica">GAP</font> Reference Manual.)
<div class="p"><!----></div>
The first example is the Mathieu group M<sub>11</sub> that has been inspected
already in Section <a href="#simple">1.1</a>.
This group is small enough for the computation of all possible permutation
characters, and then filtering out the multiplicity-free ones.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "M11" );;
gap> perms:= PermChars( tbl );;
gap> multfree:= Filtered( perms,
> x -> ForAll( Irr( tbl ), chi -> ScalarProduct( chi, x ) <= 1 ) );
[ Character( CharacterTable( "M11" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),
Character( CharacterTable( "M11" ), [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ),
Character( CharacterTable( "M11" ), [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ) ]
gap> Length( multfree );
8
</pre>
<div class="p"><!----></div>
Comparing this list with the seven faithful multiplicity-free permutation
characters of M<sub>11</sub> shown in Section <a href="#simple">1.1</a>,
we see that all candidates are in fact permutation characters.
Without this information, we have to show, for each candidate,
the existence of a subgroup that serves as the point stabilizer.
<div class="p"><!----></div>
Additionally, if we are interested in the subgroup information contained in
the database (cf. the <tt>subgroup</tt> components of the <tt>info</tt> records in
Section <a href="#database">1</a>), we want to relate the point stabilizers to the
maximal subgroups of M<sub>11</sub>.
<div class="p"><!----></div>
In the case of the sporadic simple groups and their automorphism groups,
we can use the fact that for many of these groups,
the character tables of all maximal subgroups and the class fusions of these
tables are known.
Since each multiplicity-free permutation character of a group is either
trivial or induced from a multiplicity-free permutation character of a
maximal subgroup, we can thus reduce our problem to the computation of
multiplicity-free possible permutation characters of all maximal subgroups.
(That this really is a reduction can be read in [<a href="#BL96" name="CITEBL96">BL96</a>].)
This approach is implemented in the function <tt>MultFree</tt>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "M11" );
CharacterTable( "M11" )
gap> maxes:= Maxes( tbl );
[ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
gap> name:= maxes[1];;
gap> MultFree( tbl, CharacterTable( name ) );
[ Character( CharacterTable( "M11" ), [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ]
</pre>
<div class="p"><!----></div>
The function <tt>MultFree</tt> computes all multiplicity-free characters of
the given character table that are induced from possible permutation
characters of the given character table of a subgroup.
(Note that these characters need not necessarily be faithful.)
If we loop over all classes of maximal subgroups then we get all
candidates for M<sub>11</sub>,
together with the information in which maximal subgroup the hypothetical
point stabilizer lies.
<div class="p"><!----></div>
<pre>
gap> cand:= [];;
gap> for name in maxes do
> max:= CharacterTable( name );
> Append( cand, List( MultFree( tbl, max ),
> chi -> [ name, Size( tbl ) / Size( max ), chi ] ) );
> od;
gap> cand;
[ [ "A6.2_3", 11, Character( CharacterTable( "M11" ),
[ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ) ],
[ "A6.2_3", 11, Character( CharacterTable( "M11" ),
[ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ) ],
[ "A6.2_3", 11, Character( CharacterTable( "M11" ),
[ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ],
[ "L2(11)", 12, Character( CharacterTable( "M11" ),
[ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ) ],
[ "L2(11)", 12, Character( CharacterTable( "M11" ),
[ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ) ],
[ "3^2:Q8.2", 55, Character( CharacterTable( "M11" ),
[ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ) ],
[ "3^2:Q8.2", 55, Character( CharacterTable( "M11" ),
[ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ],
[ "A5.2", 66, Character( CharacterTable( "M11" ),
[ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ) ] ]
gap> Length( cand ); Length( Set( cand, x -> x[3] ) );
8
7
</pre>
<div class="p"><!----></div>
We immediately see that the candidates of degrees 11, 12, 55, and 66
are permutation characters,
since they are obtained by inducing the trivial characters of the
maximal subgroups.
The permutation characters of degrees 22 and 144 can be established
in two steps.
First we note that the group A<sub>6</sub>.2<sub>3</sub> contains the subgroup A<sub>6</sub> of index
2,
and the group L<sub>2</sub>(11) contains a class of subgroups of index 12,
of isomorphism type 11:5.
Second the possible permutation characters of degrees 2 and 12
of these maximal subgroups of M<sub>11</sub> are uniquely determined,
and inducing these characters to M<sub>11</sub> yields in fact multiplicity-free
characters.
<div class="p"><!----></div>
<pre>
gap> max1:= CharacterTable( maxes[1] );;
gap> perms1:= PermChars( max1, [ 2 ] );
[ Character( CharacterTable( "A6.2_3" ), [ 2, 2, 2, 2, 2, 0, 0, 0 ] ) ]
gap> perms1[1]^tbl = cand[2][3];
true
gap> max2:= CharacterTable( maxes[2] );;
gap> perms2:= PermChars( max2, [ 12 ] );
[ Character( CharacterTable( "L2(11)" ), [ 12, 0, 0, 2, 2, 0, 1, 1 ] ) ]
gap> perms2[1]^tbl = cand[5][3];
true
</pre>
<div class="p"><!----></div>
The last candidate to deal with is the degree 110 character,
which might be induced from a subgroup of A<sub>6</sub>.2<sub>3</sub> or 3<sup>2</sup>:Q<sub>8</sub>.2
or both.
Let us first look at the possible permutation characters of degree 10
of A<sub>6</sub>.2<sub>3</sub>.
<div class="p"><!----></div>
<pre>
gap> PermChars( max1, [ 10 ] );
[ Character( CharacterTable( "A6.2_3" ), [ 10, 2, 1, 2, 0, 0, 2, 2 ] ),
Character( CharacterTable( "A6.2_3" ), [ 10, 2, 1, 2, 0, 2, 0, 0 ] ) ]
gap> OrdersClassRepresentatives( max1 );
[ 1, 2, 3, 4, 5, 4, 8, 8 ]
</pre>
<div class="p"><!----></div>
There are two possibilities, and only the first induces the candidate of
degree 110.
The latter follows from the fact that the nonzero character value of the
candidate on classes of element order 8 means that the
hypothetical point stabilizer contains elements of order 8,
cf. the <tt>Display</tt> call in Section <a href="#simple">1.1</a>.
<div class="p"><!----></div>
The group A<sub>6</sub>.2<sub>3</sub> has a unique class of subgroups of index 10,
which are the Sylow 3 normalizers, of type 3<sup>2</sup>:Q<sub>8</sub>.
Since Q<sub>8</sub> has no elements of order 8,
the first candidate is <b>not</b> a permutation character.
<div class="p"><!----></div>
The remaining subgroup from which the degree 110 character can be induced
is 3<sup>2</sup>:Q<sub>8</sub>.2;
this group has three index 2 subgroups, and the candidate is in fact
induced from the trivial character of one of these subgroups.
<div class="p"><!----></div>
<pre>
gap> max3:= CharacterTable( maxes[3] );;
gap> classes:= SizesConjugacyClasses( max3 );;
gap> Filtered( ClassPositionsOfNormalSubgroups( max3 ),
> x -> Sum( classes{ x } ) = Size( max3 ) / 2 );
[ [ 1, 2, 4, 5, 6 ], [ 1, 2, 3, 4, 5, 7 ], [ 1, 2, 4, 5, 8, 9 ] ]
gap> perms3:= PermChars( max3, [ 2 ] );
[ Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 0, 2, 2, 0, 0, 2, 2 ] ),
Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 0, 2, 2, 2, 0, 0, 0 ] ),
Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 2, 2, 2, 0, 2, 0, 0 ] ) ]
gap> induced:= List( perms3, x -> x^tbl );
[ Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 110, 6, 2, 6, 0, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M11" ), [ 110, 14, 2, 2, 0, 2, 0, 0, 0, 0 ] ) ]
gap> Position( induced, cand[3][3] );
1
</pre>
<div class="p"><!----></div>
Putting these considerations together, we thus get a confirmation of the
classification for M<sub>11</sub>.
<div class="p"><!----></div>
As a second example, we look at the group M<sub>12</sub>.2.
The database contains 13 characters,
and the approach using <tt>MultFree</tt> yields 17 different characters.
We are interested in disproving the candidates that are not
permutation characters.
<div class="p"><!----></div>
<pre>
gap> info:= MultFreePermChars( "M12.2" );;
gap> perms:= Set( List( info, x -> x.character ) );;
gap> Length( info ); Length( perms );
13
13
gap> tbl:= CharacterTable( "M12.2" );;
gap> maxes:= Maxes( tbl );
[ "M12", "L2(11).2", "M12.2M3", "(2^2xA5):2", "D8.(S4x2)", "4^2:D12.2",
"3^(1+2):D8", "S4xS3", "A5.2" ]
gap> cand:= [];;
gap> for name in maxes do
> max:= CharacterTable( name );
> Append( cand, List( MultFree( tbl, max ),
> chi -> [ name, Size( tbl ) / Size( max ), chi ] ) );
> od;
gap> Length( cand ); Length( Set( List( cand, x -> x[3] ) ) );
25
17
gap> toexclude:= Set( Filtered( cand, x -> not x[3] in perms ) );
[ [ "M12", 2, Character( CharacterTable( "M12.2" ),
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ],
[ "M12", 2, Character( CharacterTable( "M12.2" ),
[ 440, 0, 24, 8, 8, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
] ) ],
[ "M12", 2, Character( CharacterTable( "M12.2" ), [ 1320, 0, 8, 6, 0, 8, 0,
0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ],
[ "M12", 2, Character( CharacterTable( "M12.2" ),
[ 1320, 0, 24, 6, 0, 4, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
] ) ] ]
</pre>
<div class="p"><!----></div>
Clearly the degree 2 character is a permutation character,
but as it is not faithful, it is not contained in the database.
<div class="p"><!----></div>
The other three characters are all induced from candidates of the maximal
subgroup M<sub>12</sub>,
and we may use the same approach for M<sub>12</sub> in order to find out whether
they can be permutation characters.
<div class="p"><!----></div>
<pre>
gap> m12:= CharacterTable( "M12" );;
gap> subcand:= [];;
gap> submaxes:= Maxes( m12 );
[ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7", "2xS5",
"M8.S4", "4^2:D12", "A4xS3" ]
gap> for name in submaxes do
> max:= CharacterTable( name );
> Append( subcand, MultFree( m12, max ) );
> od;
gap> induced:= List( subcand, x -> x^tbl );;
gap> Intersection( induced, List( toexclude, x -> x[3] ) );
[ ]
</pre>
<div class="p"><!----></div>
Thus none of the candidates in the list <tt>toexclude</tt> is a permutation
character.
<div class="p"><!----></div>
<div class="p"><!----></div>
<div class="p"><!----></div>
<h2>References</h2>
<dl compact="compact">
<dt><a href="#CITEBL96" name="BL96">[BL96]</a></dt><dd>
Thomas Breuer and Klaus Lux, <em>The multiplicity-free permutation characters
of the sporadic simple groups and their automorphism groups</em>, Comm. Alg.
<b>24</b> (1996), no. 7, 2293-2316.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEBP98copy" name="BP98copy">[BP98]</a></dt><dd>
Thomas Breuer and Götz Pfeiffer, <em>Finding Possible
Permutation Characters</em>, J. Symbolic Comput. <b>26</b> (1998),
343-354.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEctblpope" name="ctblpope">[Bre]</a></dt><dd>
Thomas Breuer, <em>Permutation Characters in <font face="helvetica">GAP</font></em>, <br />
<a href="http://www.math.rwth-aachen.de/LDFM/homes/Thomas.Breuer/ctbllib/doc/ctblpope.htm"><tt>http://www.math.rwth-aachen.de/LDFM/homes/Thomas.Breuer/ctbllib/doc/ctblpope.htm</tt></a>.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITECTblLib" name="CTblLib">[Bre04]</a></dt><dd>
Thomas Breuer, <em>Manual for the <font face="helvetica">GAP</font> Character Table Library, Version
1.1</em>, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany,
2004.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITECCN85" name="CCN85">[CCN<sup>+</sup>85]</a></dt><dd>
J[ohn] H. Conway, R[obert] T. Curtis, S[imon] P. Norton, R[ichard] A. Parker,
and R[obert] A. Wilson, <em>Atlas of finite groups</em>, Oxford University
Press, 1985.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEGAP4" name="GAP4">[GAP04]</a></dt><dd>
The GAP Group, <em>GAP - Groups, Algorithms, and Programming, Version
4.4</em>, 2004, <a href="http://www.gap-system.org"><tt>http://www.gap-system.org</tt></a>.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEPfe97" name="Pfe97">[Pfe97]</a></dt><dd>
G. Pfeiffer, <em>The Subgroups of M<sub>24</sub>, or How to Compute the
Table of Marks of a Finite Group</em>, Experiment. Math. <b>6</b>
(1997), no. 3, 247-270.</dd>
</dl>
<div class="p"><!----></div>
<div class="p"><!----></div>
<br /><br /><hr /><small>File translated from
T<sub><font size="-1">E</font></sub>X
by <a href="http://hutchinson.belmont.ma.us/tth/">
T<sub><font size="-1">T</font></sub>H</a>,
version 3.55.<br />On 31 Mar 2004, 10:54.</small>
</html>
|