File: multfree.htm

package info (click to toggle)
gap-ctbllib 1r1p3-2
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 17,612 kB
  • ctags: 287
  • sloc: sh: 501; makefile: 47
file content (1271 lines) | stat: -rw-r--r-- 51,852 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
        "http://www.w3.org/TR/html4/loose.dtd">
<html>
<meta name="GENERATOR" content="TtH 3.55">
 <style type="text/css"> div.p { margin-top: 7pt;}</style>
 <style type="text/css"><!--
 td div.comp { margin-top: -0.6ex; margin-bottom: -1ex;}
 td div.comb { margin-top: -0.6ex; margin-bottom: -.6ex;}
 td div.hrcomp { line-height: 0.9; margin-top: -0.8ex; margin-bottom: -1ex;}
 td div.norm {line-height:normal;}
 span.roman {font-family: serif; font-style: normal; font-weight: normal;} 
 span.overacc2 {position: relative;  left: .8em; top: -1.2ex;}
 span.overacc1 {position: relative;  left: .6em; top: -1.2ex;} --></style>
 

         
<title> Multiplicity-Free Permutation Characters in GAP</title>
 
<h1 align="center">Multiplicity-Free Permutation Characters in GAP </h1>
  <body bgcolor="FFFFFF"> 

<div class="p"><!----></div>

<h3 align="center"> T<font size="-2">HOMAS</font> B<font size="-2">REUER</font> <br />
<i>Lehrstuhl D f&#252;r Mathematik</i> <br />
<i>RWTH, 52056 Aachen, Germany</i> </h3>

<div class="p"><!----></div>

<h3 align="center">October 6th, 2000 </h3>

<div class="p"><!----></div>


<div class="p"><!----></div>
This note shows a few examples of <font face="helvetica">GAP</font> computations concerning
multiplicity-free permutation characters,
with an emphasis on the classification of the faithful multiplicity-free
permutation characters of the sporadic simple groups and their automorphism
groups given in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>].

<div class="p"><!----></div>
For examples on <font face="helvetica">GAP</font> computations with permutation characters in general,
see the note&nbsp;[<a href="#ctblpope" name="CITEctblpope">Bre</a>].

<div class="p"><!----></div>
For further questions about <font face="helvetica">GAP</font>, consult its

 <a href="link">Reference Manual</a>;
in particular, for the description of the commands for character tables,
see the chapter&nbsp;"Character Tables".

<div class="p"><!----></div>
Section&nbsp;<a href="#database">1</a> of this note shows how to interpret the individual
data available in the database.
In Section&nbsp;<a href="#explM23">2</a>, the main idea is to gather information from
the database as a whole, by filtering items with suitable properties.
Finally, Section&nbsp;<a href="#permcharinfo">3</a> gives an impression how <font face="helvetica">GAP</font>
can be used to obtain results such as the classification of described
in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>].

<div class="p"><!----></div>



<div class="p"><!----></div>

<h1>Contents </h1><a href="#tth_sEc1"
>1&nbsp; The Database of Multiplicity-Free Characters</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc1.1"
>1.1&nbsp; The Faithful Multiplicity-Free Permutation Characters of M<sub>11</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc1.2"
>1.2&nbsp; The Faithful Multiplicity-Free Permutation Characters of M<sub>12</sub>.2</a><br />
<a href="#tth_sEc2"
>2&nbsp; Using the Database</a><br />
<a href="#tth_sEc3"
>3&nbsp; Using the Functions to Compute Multiplicity-Free Permutation Characters</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.1"
>3.1&nbsp; Using Tables of Marks</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.2"
>3.2&nbsp; Dealing with Possible Permutation Characters</a><br />


<div class="p"><!----></div>

<div class="p"><!----></div>

 <h2><a name="tth_sEc1">
1</a>&nbsp;&nbsp;The Database of Multiplicity-Free Characters</h2><a name="database">
</a>

<div class="p"><!----></div>
The database lists, for each group G that is either a sporadic simple
group or an automorphism group of a sporadic simple group,
a description of all conjugacy classes of subgroups H of G such that
the action of G on the right cosets of H is a faithful and
multiplicity-free permutation representation of G,
plus the permutation character of this representation.
The format how this information is stored is explained below,
subtleties such as possibly equal characters for different classes of
subgroups are discussed in Section&nbsp;<a href="#explM23">2</a>.

<div class="p"><!----></div>
(A <font face="helvetica">GAP</font> database providing more information about most of these
representations is in preparation;
this will cover, i.a., the character tables of the endomorphism rings of
these representations and the permutation representations themselves.)

<div class="p"><!----></div>
The data is stored in the file <tt>multfree.dat</tt>,
which is part of the Character Table Library&nbsp;[<a href="#CTblLib" name="CITECTblLib">Bre04</a>] of the <font face="helvetica">GAP</font>
system&nbsp;[<a href="#GAP4" name="CITEGAP4">GAP04</a>] as well as the file you are currently reading.
We load this <font face="helvetica">GAP</font> package and the data file into <font face="helvetica">GAP</font>&nbsp;4.
Afterwards the function <tt>MultFreePermChars</tt> is available.

<div class="p"><!----></div>

<pre>
    gap&#62; LoadPackage( "ctbllib" );
    true
    gap&#62; ReadPackage( "ctbllib", "tst/multfree.dat" );
    true

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc1.1">
1.1</a>&nbsp;&nbsp;The Faithful Multiplicity-Free Permutation Characters of
M<sub>11</sub></h3><a name="simple">
</a>

<div class="p"><!----></div>
We start with the inspection of the Mathieu group M<sub>11</sub>,
as an example of a <b>simple</b> group that is dealt with in the database.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "M11" );
    [ rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), rank := 2, 
          subgroup := "$A_6.2_3$", ATLAS := "1a+10a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), rank := 3, 
          subgroup := "$A_6 \\leq A_6.2_3$", ATLAS := "1a+10a+11a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ), rank := 2, 
          subgroup := "$L_2(11)$", ATLAS := "1a+11a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ), rank := 6, 
          subgroup := "$11:5 \\leq L_2(11)$", ATLAS := "1a+11a+16ab+45a+55a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ), rank := 3, 
          subgroup := "$3^2:Q_8.2$", ATLAS := "1a+10a+44a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), rank := 4, 
          subgroup := "$3^2:8 \\leq 3^2:Q_8.2$", ATLAS := "1a+10a+44a+55a" ), 
      rec( group := "$M_{11}$", character := Character( CharacterTable( "M11" ), 
            [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ), rank := 4, 
          subgroup := "$A_5.2$", ATLAS := "1a+10a+11a+44a" ) ]
    gap&#62; List( info, x -&#62; x.rank );
    [ 2, 3, 2, 6, 3, 4, 4 ]
    gap&#62; chars:= List( info, x -&#62; x.character );;
    gap&#62; degrees:= List( chars, x -&#62; x[1] );
    [ 11, 22, 12, 144, 55, 110, 66 ]

</pre>

<div class="p"><!----></div>
We see that M<sub>11</sub> has seven multiplicity-free permutation characters,
of the ranks and degrees listed above.
(Note that for <b>multiplicity-free</b> permutation characters,
the rank is equal to the number of irreducible constituents.)
More precisely, there are exactly seven conjugacy classes of subgroups of
M<sub>11</sub> such that the permutation action on the cosets of these subgroups
is faithful and multiplicity-free.

<div class="p"><!----></div>
For displaying the characters compatibly with the character table of M<sub>11</sub>,
we can use the <tt>Display</tt> operation.
Note that the column and row ordering of character tables in <font face="helvetica">GAP</font>
is compatible with that of the tables in the  A<font size="-2">TLAS</font> of Finite Groups
([<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>]).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M11" );
    CharacterTable( "M11" )
    gap&#62; Display( tbl, rec( chars:= chars ) );
    M11
    
         2   4  4  1  3  .  1  3  3   .   .
         3   2  1  2  .  .  1  .  .   .   .
         5   1  .  .  .  1  .  .  .   .   .
        11   1  .  .  .  .  .  .  .   1   1
    
            1a 2a 3a 4a 5a 6a 8a 8b 11a 11b
        2P  1a 1a 3a 2a 5a 3a 4a 4a 11b 11a
        3P  1a 2a 1a 4a 5a 2a 8a 8b 11a 11b
        5P  1a 2a 3a 4a 1a 6a 8b 8a 11a 11b
       11P  1a 2a 3a 4a 5a 6a 8a 8b  1a  1a
    
    Y.1     11  3  2  3  1  .  1  1   .   .
    Y.2     22  6  4  2  2  .  .  .   .   .
    Y.3     12  4  3  .  2  1  .  .   1   1
    Y.4    144  .  .  .  4  .  .  .   1   1
    Y.5     55  7  1  3  .  1  1  1   .   .
    Y.6    110  6  2  2  .  .  2  2   .   .
    Y.7     66 10  3  2  1  1  .  .   .   .

</pre>

<div class="p"><!----></div>
The <tt>subgroup</tt> component of each record in <tt>info</tt> describes
the isomorphism type of a subgroup U of M<sub>11</sub> such that the value &#960;
of the <tt>character</tt> component is induced from the trivial character of U;
in other words, U is a point stabilizer of the permutation representation
of M<sub>11</sub> with character &#960;.

<div class="p"><!----></div>
(Contrary to this example, in general it may happen that different classes of
subgroups induce the same permutation character,
and that these subgroups may also be nonisomorphic;
see Section&nbsp;<a href="#explM23">2</a> for details.)

<div class="p"><!----></div>

<pre>
    gap&#62; subgroups:= List( info, x -&#62; x.subgroup );
    [ "$A_6.2_3$", "$A_6 \\leq A_6.2_3$", "$L_2(11)$", "$11:5 \\leq L_2(11)$", 
      "$3^2:Q_8.2$", "$3^2:8 \\leq 3^2:Q_8.2$", "$A_5.2$" ]

</pre>

<div class="p"><!----></div>
Each entry is a <span class="roman">L</span><sup><span class="roman">A</span></sup><span class="roman">T</span><sub><span class="roman">E</span></sub><span class="roman">X</span> format string that is either a name of the
point stabilizer or has the form <tt>&lt;U&gt; \leq &lt;M&gt;</tt> where <tt>&lt;M&gt;</tt> is the name
of a maximal subgroup containing the point stabilizer <tt>&lt;U&gt;</tt> as a proper
subgroup; in the former case, the point stabilizer is itself maximal.

<div class="p"><!----></div>
Note that a backslash occurring in a <tt>subgroup</tt> string is escaped by another
backslash;
but only a single backslash is printed when the string is printed via
the function <tt>Print</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; Print( subgroups[2], "\n" );
    $A_6 \leq A_6.2_3$

</pre>

<div class="p"><!----></div>
Finally, the <tt>ATLAS</tt> component of each record in <tt>info</tt> describes the
<tt>character</tt> value in terms of its irreducible constituents,
as is computed by the function <tt>PermCharInfo</tt>.
Examples can be found in Section&nbsp;<a href="#permcharinfo">3</a>;
for details about the output format,
see the documentation for this function in the <font face="helvetica">GAP</font> Reference Manual.

<div class="p"><!----></div>

     <h3><a name="tth_sEc1.2">
1.2</a>&nbsp;&nbsp;The Faithful Multiplicity-Free Permutation Characters of
M<sub>12</sub>.2</h3>

<div class="p"><!----></div>
The automorphism group of a sporadic simple group G is either equal to G
or an upward extension of G by an outer automorphism of order 2.
The <b>nonsimple</b> automorphism group M<sub>12</sub>.2 of the Mathieu group M<sub>12</sub>
serves as an example of the latter situation.

<div class="p"><!----></div>
In addition to the aspects mentioned in Section&nbsp;<a href="#simple">1.1</a>,
here we meet the situation that a permutation character either is induced
from a permutation character of M<sub>12</sub> or extends such a
(not necessarily multiplicity-free) permutation character.
The former case occurs exactly if the corresponding point stabilizer lies in
M<sub>12</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "M12.2" );;
    gap&#62; Length( info );
    13
    gap&#62; info[1];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 24, 0, 8, 6, 0, 4, 4, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ), 
      rank := 3, subgroup := "$M_{11}$", ATLAS := "1a^{\\pm}+11ab" )
    gap&#62; info[2];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 144, 0, 16, 9, 0, 0, 4, 0, 1, 0, 0, 1, 12, 4, 0, 0, 2, 2, 0, 1, 1 ] ), 
      rank := 4, subgroup := "$L_2(11).2$", ATLAS := "1a^++11ab+55a^++66a^+" )

</pre>

<div class="p"><!----></div>
The first character in the list <tt>info</tt> is induced from the trivial character
of a subgroup of type M<sub>11</sub> inside M<sub>12</sub>,
the second character is induced from the trivial character of a L<sub>2</sub>(11).2
subgroup whose intersection with M<sub>12</sub> is of type L<sub>2</sub>(11).

<div class="p"><!----></div>
We can distinguish the two kinds of permutation characters by explicitly
using the character tables;
for example, a permutation character is induced from a subgroup of a normal
subgroup if and only if it vanishes outside the classes forming this
subgroup.

<div class="p"><!----></div>

<pre>
    gap&#62; m12:= CharacterTable( "M12" );;
    gap&#62; m122:= UnderlyingCharacterTable( info[1].character );;
    gap&#62; fus:= GetFusionMap( m12, m122 );
    [ 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12 ]
    gap&#62; outer:= Difference( [ 1 .. NrConjugacyClasses( m122 ) ], fus );
    [ 13, 14, 15, 16, 17, 18, 19, 20, 21 ]
    gap&#62; info[1].character{ outer };
    [ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
    gap&#62; info[2].character{ outer };
    [ 12, 4, 0, 0, 2, 2, 0, 1, 1 ]

</pre>

<div class="p"><!----></div>
A perhaps easier way is to look at the <tt>ATLAS</tt> components of the <tt>info</tt>
records.
Namely, the characters induced from subgroups of M<sub>12</sub> have both
linear characters of M<sub>12</sub>.2 as constituents,
which is expressed by the substring <tt>"1a^{\\pm}"</tt>.

<div class="p"><!----></div>
More generally, the <tt>ATLAS</tt> component lists the irreducible constituents
of the restriction to M<sub>12</sub>, where the two extensions of a character
to M<sub>12</sub>.2 are distinguished by a superscript +, &#8722;, or &#177;;
the latter means that both extensions occur.

<div class="p"><!----></div>
The <tt>ATLAS</tt> components describing the constituents relative to a subgroup
of index 2 can be computed using the <font face="helvetica">GAP</font> function
<tt>PermCharInfoRelative</tt>, see Section&nbsp;<a href="#permcharinfo">3</a>.

<div class="p"><!----></div>
It should be noted that the <tt>\leq</tt> substrings in the <tt>subgroup</tt> component
cannot be used to distinguish the two kinds of permutation characters,
since these substrings refer only to maximal subgroups <b>different from</b>
M<sub>12</sub>.
Examples are the first entry in <tt>info</tt> (see above), the fourth entry
(containing a character that is induced from a subgroup of type A<sub>6</sub>.2<sub>2</sub>
which lies in a A<sub>6</sub>.2<sup>2</sup> subgroup that is maximal in M<sub>11</sub>),
and the nineth entry (containing a character induced from a subgroup of
index 2 in a (2<sup>2</sup> &times;A<sub>5</sub>).2 subgroup that is maximal in M<sub>12</sub>.2.

<div class="p"><!----></div>

<pre>
    gap&#62; info[4];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 264, 24, 24, 12, 0, 4, 4, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ), 
      rank := 7, subgroup := "$A_6.2_2 \\leq A_6.2^2$", 
      ATLAS := "1a^{\\pm}+11ab+54a^{\\pm}+66a^{\\pm}" )
    gap&#62; info[9];
    rec( group := "$M_{12}.2$", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 792, 32, 24, 0, 6, 0, 2, 2, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0 ] ), 
      rank := 11, subgroup := "$(2 \\times A_5).2 \\leq (2^2 \\times A_5).2$", 
      ATLAS := "1a^++16ab+45a^++54a^{\\pm}+55a^-+66a^{\\pm}+99a^-+144a^++176a^-" )

</pre>

<div class="p"><!----></div>

 <h2><a name="tth_sEc2">
2</a>&nbsp;&nbsp;Using the Database</h2><a name="explM23">
</a>

<div class="p"><!----></div>
In this section, we study the complete list of multiplicity-free
permutation characters of the sporadic simple groups and their
automorphism groups as a whole.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "all" );;
    gap&#62; Length( info );
    267
    gap&#62; Length( Set( info ) );
    262
    gap&#62; chars:= List( info, x -&#62; x.character );;
    gap&#62; Length( Set( chars ) );
    261

</pre>

<div class="p"><!----></div>
We see that there are exactly 267 conjugacy classes of subgroups
such that the permutation representation on the cosets is multiplicity-free.
Only 262 of the <tt>info</tt> records are different,
and there is exactly one case where two different <tt>info</tt> records belong to
the same permutation character.

<div class="p"><!----></div>
Let us look where these multiple entries arise.

<div class="p"><!----></div>

<pre>
    gap&#62; distrib:= List( info, x -&#62; Position( chars, x.character ) );;
    gap&#62; ambiguous:= Filtered( InverseMap( distrib ), IsList );
    [ [ 12, 15 ], [ 40, 41 ], [ 83, 84 ], [ 88, 90 ], [ 132, 133 ], [ 202, 203 ] ]
    gap&#62; except:= Filtered( ambiguous, x -&#62; info[ x[1] ] &lt;&#62; info[ x[2] ] );
    [ [ 83, 84 ] ]
    gap&#62; ambiguous:= Difference( ambiguous, except );;
    gap&#62; info{ except[1] };
    [ rec( ATLAS := "1a+22a+230a", 
          character := Character( CharacterTable( "M23" ), 
            [ 253, 29, 10, 5, 3, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 ] ), 
          group := "$M_{23}$", rank := 3, subgroup := "$L_3(4).2_2$" ), 
      rec( ATLAS := "1a+22a+230a", 
          character := Character( CharacterTable( "M23" ), 
            [ 253, 29, 10, 5, 3, 2, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0 ] ), 
          group := "$M_{23}$", rank := 3, subgroup := "$2^4:A_7$" ) ]

</pre>

<div class="p"><!----></div>
So the Mathieu group M<sub>23</sub> contains two classes of maximal subgroups,
of the structures L<sub>3</sub>(4).2<sub>2</sub> and 2<sup>4</sup>:A<sub>7</sub>, respectively,
such that the characters of the permutation representations on the
cosets of these subgroups are equal.

<div class="p"><!----></div>
Furthermore, it is a consequence of the classification in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>]
that in all cases except this one,
the isomorphism types of the point stabilizers are uniquely determined
by the permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; ambiginfo:= info{ List( ambiguous, x -&#62; x[1] ) };;
    gap&#62; for pair in ambiginfo do
    &#62;      Print( pair.group, ", ", pair.subgroup, ", ", pair.ATLAS, "\n" );
    &#62; od;
    $M_{12}$, $A_6.2_1 \leq A_6.2^2$, 1a+11ab+54a+55a
    $M_{22}$, $A_7$, 1a+21a+154a
    $HS$, $U_3(5).2$, 1a+175a
    $McL$, $M_{22}$, 1a+22a+252a+1750a
    $Fi_{22}$, $O_7(3)$, 1a+429a+13650a

</pre>

<div class="p"><!----></div>
In the other five cases of ambiguities, the whole <tt>info</tt> records are
equal, and from the above list we conclude that for each pair,
the point stabilizers are isomorphic.
In fact the subgroups are conjugate in the outer automorphism groups
of the simple groups involved.

<div class="p"><!----></div>
Next let us look at the distribution of ranks.

<div class="p"><!----></div>

<pre>
    gap&#62; Collected( List( info, x -&#62; x.rank ) );
    [ [ 2, 11 ], [ 3, 31 ], [ 4, 25 ], [ 5, 43 ], [ 6, 24 ], [ 7, 21 ], 
      [ 8, 26 ], [ 9, 16 ], [ 10, 17 ], [ 11, 9 ], [ 12, 9 ], [ 13, 8 ], 
      [ 14, 4 ], [ 15, 3 ], [ 16, 3 ], [ 17, 5 ], [ 18, 5 ], [ 19, 2 ], 
      [ 20, 2 ], [ 23, 1 ], [ 26, 1 ], [ 34, 1 ] ]
    gap&#62; max:= Filtered( info, x -&#62; x.rank = 34 );;
    gap&#62; max[1].group;  max[1].subgroup;  max[1].character[1]; 
    "$F_{3+}.2$"
    "$O_{10}^-(2) \\leq O_{10}^-(2).2$"
    100354720284

</pre>

<div class="p"><!----></div>
The maximal rank, 34, is attained for a degree 100&nbsp;354&nbsp;720&nbsp;284
character of F<sub>3+</sub>.2 = Fi<sub>24</sub>.

<div class="p"><!----></div>
For the nonsimple automorphism groups of sporadic simple groups,
the simple group G involved is of index 2,
and each permutation characters either is induced from a character of G
or extends a permutation character of G.

<div class="p"><!----></div>

<pre>
    gap&#62; nonsimple:= Filtered( info,
    &#62;        x -&#62; not IsSimple( UnderlyingCharacterTable( x.character ) ) );;
    gap&#62; Length( nonsimple );
    120
    gap&#62; ind:= Filtered( nonsimple, x -&#62; ScalarProduct( x.character,
    &#62;              Irr( UnderlyingCharacterTable( x.character ) )[2] ) = 1 );;
    gap&#62; Length( ind );
    48

</pre>

<div class="p"><!----></div>
There are exactly 120 multiplicity-free permutation characters of
nonsimple automorphism groups of sporadic simple groups,
and 48 of them are induced from characters of the simple groups.
(Note that the second irreducible character of the <font face="helvetica">GAP</font> character tables
in question is the unique nontrivial linear character.)

<div class="p"><!----></div>

<pre>
    gap&#62; ind[1];
    rec( ATLAS := "1a^{\\pm}+11ab", 
      character := Character( CharacterTable( "M12.2" ), 
        [ 24, 0, 8, 6, 0, 4, 4, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ), 
      group := "$M_{12}.2$", rank := 3, subgroup := "$M_{11}$" )
    gap&#62; ForAll( ind, x -&#62; x.ATLAS{ [ 1 .. 8 ] } = "1a^{\\pm}" );
    true

</pre>

<div class="p"><!----></div>
Another possibility to select the induced characters is to check whether
the initial part of the <tt>ATLAS</tt> component is the string <tt>"1a^{\\pm}"</tt>.

<div class="p"><!----></div>

 <h2><a name="tth_sEc3">
3</a>&nbsp;&nbsp;Using the Functions to Compute Multiplicity-Free Permutation
Characters</h2><a name="permcharinfo">
</a>

<div class="p"><!----></div>
The functions <tt>MultFreeFromTOM</tt> and <tt>MultFree</tt> will be used later on.

<div class="p"><!----></div>
(The functions can also be found in the file <tt>multfree.g</tt>,
which can be downloaded from the same webpage where also this file can
be found.)

<div class="p"><!----></div>
For a character table <tt>tbl</tt> for which the table of marks is available in
the <font face="helvetica">GAP</font> library,
the function <tt>MultFreeFromTOM</tt> returns the list of all multiplicity-free
permutation characters of <tt>tbl</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "MultFreeFromTOM", function( tbl )
    &#62;     local tom,     # the table of marks
    &#62;           fus,     # fusion map from `t' to `tom'
    &#62;           perms;   # perm. characters of `t'
    &#62; 
    &#62;     if HasFusionToTom( tbl ) or HasUnderlyingGroup( tbl ) then
    &#62;       tom:= TableOfMarks( tbl );
    &#62;     else
    &#62;       Error( "no table of marks for character table &lt;tbl&#62; available" );
    &#62;     fi;
    &#62;     fus:= FusionCharTableTom( tbl, tom );
    &#62;     if fus = fail then
    &#62;       Error( "no unique fusion from &lt;tbl&#62; to the table of marks" );
    &#62;     fi;
    &#62;     perms:= PermCharsTom( tbl, tom );
    &#62;     return Filtered( perms,
    &#62;                x -&#62; ForAll( Irr( tbl ),
    &#62;                             y -&#62; ScalarProduct( tbl, x, y ) &lt;= 1 ) );
    &#62;     end );

</pre>

<div class="p"><!----></div>
<tt>TestPerm</tt> calls the <font face="helvetica">GAP</font> library functions <tt>TestPerm1</tt>, <tt>TestPerm2</tt>,
and <tt>TestPerm3</tt>; the return value is <tt>true</tt> if the argument <tt>pi</tt> is
a possible permutation character of the character table <tt>tbl</tt>,
and <tt>false</tt> otherwise.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "TestPerm", function( tbl, pi )
    &#62;     return     TestPerm1( tbl, pi ) = 0
    &#62;            and TestPerm2( tbl, pi ) = 0
    &#62;            and not IsEmpty( TestPerm3( tbl, [ pi ] ) );
    &#62;     end );

</pre>

<div class="p"><!----></div>
Let <tt>H</tt> be a character table, <tt>S</tt> be a list of characters of <tt>H</tt>,
<tt>psi</tt> a character of <tt>H</tt>, <tt>scprS</tt> a matrix, the i-th entry being the
coefficients of the decomposition of the induced character of <tt>S</tt>[i]
to a supergroup G, say, of <tt>H</tt>, <tt>scprpsi</tt> the decomposition of <tt>psi</tt>
induced to G, and <tt>k</tt> a positive integer.

<div class="p"><!----></div>
<tt>CharactersInducingWithBoundedMultiplicity</tt> returns the list
C( <tt>S</tt>, <tt>psi</tt>, <tt>k</tt> );
this is the list of all those characters <tt>psi</tt> + &#977; of
multiplicity at most <tt>k</tt> such that all constituents of &#977; are
contained in <tt>S</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; DeclareGlobalFunction( "CharactersInducingWithBoundedMultiplicity" );
    
    gap&#62; InstallGlobalFunction( CharactersInducingWithBoundedMultiplicity,
    &#62;     function( H, S, psi, scprS, scprpsi, k )
    &#62;     local result,       # the list $S( .. )$
    &#62;           chi,          # $\chi$
    &#62;           scprchi,      # decomposition of $\chi^G$
    &#62;           i,            # loop from `1' to `k'
    &#62;           allowed,      # indices of possible constituents
    &#62;           Sprime,       # $S^{\prime}_i$
    &#62;           scprSprime;   # decomposition of characters in $S^{\prime}_i$,
    &#62;                         # induced to $G$
    &#62; 
    &#62;     if IsEmpty( S ) then
    &#62; 
    &#62;       # Test whether `psi' is a possible permutation character.
    &#62;       if TestPerm( H, psi ) then
    &#62;         result:= [ psi ];
    &#62;       else
    &#62;         result:= [];
    &#62;       fi;
    &#62; 
    &#62;     else
    &#62; 
    &#62;       # Fix a character $\chi$.
    &#62;       chi     := S[1];
    &#62;       scprchi := scprS[1];
    &#62; 
    &#62;       # Form the union.
    &#62;       result:= CharactersInducingWithBoundedMultiplicity( H,
    &#62;                    S{ [ 2 .. Length( S ) ] }, psi,
    &#62;                    scprS{ [ 2 .. Length( S ) ] }, scprpsi, k );
    &#62;       for i in [ 1 .. k ] do
    &#62;         allowed    := Filtered( [ 2 .. Length( S ) ],
    &#62;                           j -&#62; Maximum( i * scprchi + scprS[j] ) &lt;= k );
    &#62;         Sprime     := S{ allowed };
    &#62;         scprSprime := scprS{ allowed };
    &#62; 
    &#62;         Append( result, CharactersInducingWithBoundedMultiplicity( H,
    &#62;                             Sprime, psi + i * chi,
    &#62;                             scprSprime, scprpsi + i * scprchi, k ) );
    &#62;       od;
    &#62; 
    &#62;     fi;
    &#62; 
    &#62;     return result;
    &#62;     end );

</pre>

<div class="p"><!----></div>
Let <tt>G</tt> and <tt>H</tt> be character tables of groups G and H, respectively,
such that H is a subgroup of G and the class fusion from <tt>H</tt> to <tt>G</tt>
is stored on <tt>H</tt>.
<tt>MultAtMost</tt> returns the list of all characters &#981;<sup>G</sup> of G
of multiplicity at most <tt>k</tt> such that &#981; is a possible permutation
character of H.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "MultAtMost", function( G, H, k )
    &#62;     local triv,     # $1_H$
    &#62;           permch,   # $(1_H)^G$
    &#62;           scpr1H,   # decomposition of $(1_H)^G$
    &#62;           rat,      # rational irreducible characters of $H$
    &#62;           ind,      # induced rational irreducible characters
    &#62;           mat,      # decomposition of `ind'
    &#62;           allowed,  # indices of possible constituents
    &#62;           S0,       # $S_0$
    &#62;           scprS0,   # decomposition of characters in $S_0$,
    &#62;                     # induced to $G$, with $Irr(G)$
    &#62;           cand;     # list of multiplicity-free candidates, result
    &#62; 
    &#62;     # Compute $(1_H)^G$ and its decomposition into irreducibles of $G$.
    &#62;     triv   := TrivialCharacter( H );
    &#62;     permch := Induced( H, G, [ triv ] );
    &#62;     scpr1H := MatScalarProducts( G, Irr( G ), permch )[1];
    &#62; 
    &#62;     # If $(1_H)^G$ has multiplicity larger than `k' then we are done.
    &#62;     if Maximum( scpr1H ) &#62; k then
    &#62;       return [];
    &#62;     fi;
    &#62; 
    &#62;     # Compute the set $S_0$ of all possible nontrivial
    &#62;     # rational constituents of a candidate of multiplicity at most `k',
    &#62;     # that is, all those rational irreducible characters of
    &#62;     # $H$ that induce to $G$ with multiplicity at most `k'.
    &#62;     rat:= RationalizedMat( Irr( H ) );
    &#62;     ind:= Induced( H, G, rat );
    &#62;     mat:= MatScalarProducts( G, Irr( G ), ind );
    &#62;     allowed:= Filtered( [ 1.. Length( mat ) ],
    &#62;                         x -&#62; Maximum( mat[x] + scpr1H ) &lt;= k );
    &#62;     S0     := rat{ allowed };
    &#62;     scprS0 := mat{ allowed };
    &#62; 
    &#62;     # Compute $C( S_0, 1_H, k )$.
    &#62;     cand:= CharactersInducingWithBoundedMultiplicity( H,
    &#62;                S0, triv, scprS0, scpr1H, k );
    &#62; 
    &#62;     # Induce the candidates to $G$, and return the sorted list.
    &#62;     cand:= Induced( H, G, cand );
    &#62;     Sort( cand );
    &#62;     return cand;
    &#62;     end );

</pre>

<div class="p"><!----></div>
<tt>MultFree</tt> returns <tt>MultAtMost( G, H, 1 )</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "MultFree", function( G, H )
    &#62;     return MultAtMost( G, H, 1 );
    &#62;     end );

</pre>

<div class="p"><!----></div>
Let <tt>tbl</tt> be a character table with known <tt>Maxes</tt> value,
and <tt>k</tt> a positive integer.
The function <tt>PossiblePermutationCharactersWithBoundedMultiplicity</tt>
returns a record with the following components.

<ul>
<br />identifier
    the <tt>Identifier</tt> value of <tt>tbl</tt>,
<br />maxnames
    the list of names of the maximal subgroups of <tt>tbl</tt>,
<br />permcand
    at the i-th position the list of those possible permutation
    characters of <tt>tbl</tt> whose multiplicity is at most <tt>k</tt>
    and which are induced from the i-th maximal subgroup of <tt>tbl</tt>,
    and
<br />k
    the given bound <tt>k</tt> for the multiplicity.</ul>

<div class="p"><!----></div>

<pre>
    gap&#62; BindGlobal( "PossiblePermutationCharactersWithBoundedMultiplicity",
    &#62;     function( tbl, k )
    &#62;     local permcand, # list of all mult. free perm. character candidates
    &#62;           maxname,  # loop over tables of maximal subgroups
    &#62;           max;      # one table of a maximal subgroup
    &#62; 
    &#62;     if not HasMaxes( tbl ) then
    &#62;       return fail;
    &#62;     fi;
    &#62; 
    &#62;     permcand:= [];
    &#62; 
    &#62;     # Loop over the tables of maximal subgroups.
    &#62;     for maxname in Maxes( tbl ) do
    &#62; 
    &#62;       max:= CharacterTable( maxname );
    &#62;       if max = fail or GetFusionMap( max, tbl ) = fail then
    &#62; 
    &#62;         Print( "#E  no fusion `", maxname, "' -&#62; `", Identifier( tbl ),
    &#62;                "' stored\n" );
    &#62;         Add( permcand, Unknown() );
    &#62; 
    &#62;       else
    &#62; 
    &#62;         # Compute the possible perm. characters inducing through `max'.
    &#62;         Add( permcand, MultAtMost( tbl, max, k ) );
    &#62; 
    &#62;       fi;
    &#62;     od;
    &#62; 
    &#62;     # Return the result record.
    &#62;     return rec( identifier := Identifier( tbl ),
    &#62;                 maxnames   := Maxes( tbl ),
    &#62;                 permcand   := permcand,
    &#62;                 k          := k );
    &#62;     end );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.1">
3.1</a>&nbsp;&nbsp;Using Tables of Marks</h3>

<div class="p"><!----></div>
As a small example for the computation of multiplicity-free permutation
characters from the table of marks of a group, we consider the alternating
group A<sub>5</sub>.
Its character table as well as its table of marks are accessible from the
respective <font face="helvetica">GAP</font> library, via the identifier <tt>A5</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "A5" );;
    gap&#62; chars:= MultFreeFromTOM( tbl );
    [ Character( CharacterTable( "A5" ), [ 12, 0, 0, 2, 2 ] ), 
      Character( CharacterTable( "A5" ), [ 10, 2, 1, 0, 0 ] ), 
      Character( CharacterTable( "A5" ), [ 6, 2, 0, 1, 1 ] ), 
      Character( CharacterTable( "A5" ), [ 5, 1, 2, 0, 0 ] ), 
      Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ) ]

</pre>

<div class="p"><!----></div>
As the <font face="helvetica">GAP</font> databases do not provide information about the isomorphism
types of arbitrary subgroups, there is no way to compute automatically the
<tt>subgroup</tt> strings as contained in the database of multiplicity-free
permutation characters (cf.&nbsp;Section&nbsp;<a href="#database">1</a>).
Of course it is easy to see that the above characters of A<sub>5</sub> are induced
from the trivial characters of the cyclic group of order 5,
the dihedral groups of orders 6 and 10, the alternating group A<sub>4</sub>,
and the group A<sub>5</sub> itself, respectively.

<div class="p"><!----></div>
The <tt>ATLAS</tt> information used in the database records can be computed
using the <font face="helvetica">GAP</font> function <tt>PermCharInfo</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; PermCharInfo( tbl, chars ).ATLAS;
    [ "1a+3ab+5a", "1a+4a+5a", "1a+5a", "1a+4a", "1a" ]

</pre>

<div class="p"><!----></div>
As an example for a nonsimple group, we repeat the computation of
all multiplicity-free permutation characters of M<sub>12</sub>.2,
using the <font face="helvetica">GAP</font> table of marks.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M12.2" );;
    gap&#62; chars:= MultFreeFromTOM( tbl );;
    gap&#62; lib:= MultFreePermChars( "M12.2" );;
    gap&#62; Length( lib );  Length( chars );
    13
    15
    gap&#62; Difference( chars, List( lib, x -&#62; x.character ) );
    [ Character( CharacterTable( "M12.2" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
          1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), Character( CharacterTable( "M12.2" ), 
        [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ]

</pre>

<div class="p"><!----></div>
This confirms the classification for M<sub>12</sub>.2, since the additional
characters found from the table of marks are not faithful.

<div class="p"><!----></div>
The corresponding <tt>ATLAS</tt> information is computed using the <font face="helvetica">GAP</font> function
<tt>PermCharInfoRelative</tt>, since the constituents shall be listed relative to
the simple group M<sub>12</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; tblsimple:= CharacterTable( "M12" );;
    gap&#62; PermCharInfoRelative( tblsimple, tbl, chars ).ATLAS;
    [ "1a^++16ab+45a^-+54a^{\\pm}+55a^{\\pm}bc+66a^++99a^{\\pm}+144a^++176a^+", 
      "1a^++11ab+45a^-+54a^{\\pm}+55a^++66a^{\\pm}+99a^-+120a^{\\pm}+144a^{\\pm}",
      "1a^{\\pm}+11ab+45a^{\\pm}+54a^{\\pm}+55a^{\\pm}bc+99a^{\\pm}+120a^{\\pm}", 
      "1a^++16ab+45a^++54a^{\\pm}+55a^-+66a^{\\pm}+99a^-+144a^++176a^-", 
      "1a^++16ab+45a^-+54a^{\\pm}+66a^++99a^-+144a^+", 
      "1a^++11ab+54a^{\\pm}+55a^++66a^++99a^-+144a^+", 
      "1a^{\\pm}+11ab+54a^{\\pm}+55a^{\\pm}+99a^{\\pm}", 
      "1a^++16ab+45a^++54a^{\\pm}+66a^++144a^+", 
      "1a^{\\pm}+11ab+54a^{\\pm}+66a^{\\pm}", "1a^++16ab+45a^++66a^+", 
      "1a^++11ab+55a^++66a^+", "1a^{\\pm}+11ab+54a^{\\pm}", "1a^{\\pm}+11ab", 
      "1a^{\\pm}", "1a^+" ]

</pre>

<div class="p"><!----></div>
For more information about tables of marks, see&nbsp;[<a href="#Pfe97" name="CITEPfe97">Pfe97</a>].

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.2">
3.2</a>&nbsp;&nbsp;Dealing with Possible Permutation Characters</h3>

<div class="p"><!----></div>
In this section, we deal with <b>possible permutation characters</b>,
that is, characters that have certain properties of permutation
characters but for which no subgroups need to exist from whose trivial
characters they are induced.
For more information about such characters, see the section
"Possible Permutation Characters" in the <font face="helvetica">GAP</font> Reference Manual,
the paper&nbsp;[<a href="#BP98copy" name="CITEBP98copy">BP98</a>], and the note&nbsp;[<a href="#ctblpope" name="CITEctblpope">Bre</a>].

<div class="p"><!----></div>
We can compute possible permutation characters from the character table
of the group in question, the table of marks need not be available.
The problem is of course that for classifying the permutation characters,
we have to decide which of the candidates are in fact permutation
characters.

<div class="p"><!----></div>
Here we show only two small examples that could also be handled via
tables of marks.
(The <font face="helvetica">GAP</font> code shown uses only standard functions lists, such as
<tt>List</tt>, <tt>Filtered</tt>, and <tt>ForAll</tt>, and functions for character tables,
such as <tt>Irr</tt> and <tt>ScalarProduct</tt>;
if you are not familiar with these functions, consult the corresponding
sections in the <font face="helvetica">GAP</font> Reference Manual.)

<div class="p"><!----></div>
The first example is the Mathieu group M<sub>11</sub> that has been inspected
already in Section&nbsp;<a href="#simple">1.1</a>.
This group is small enough for the computation of all possible permutation
characters, and then filtering out the multiplicity-free ones.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M11" );;
    gap&#62; perms:= PermChars( tbl );;
    gap&#62; multfree:= Filtered( perms,
    &#62;        x -&#62; ForAll( Irr( tbl ), chi -&#62; ScalarProduct( chi, x ) &lt;= 1 ) );
    [ Character( CharacterTable( "M11" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), 
      Character( CharacterTable( "M11" ), [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ), 
      Character( CharacterTable( "M11" ), [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ) ]
    gap&#62; Length( multfree );
    8

</pre>

<div class="p"><!----></div>
Comparing this list with the seven faithful multiplicity-free permutation
characters of M<sub>11</sub> shown in Section&nbsp;<a href="#simple">1.1</a>,
we see that all candidates are in fact permutation characters.
Without this information, we have to show, for each candidate,
the existence of a subgroup that serves as the point stabilizer.

<div class="p"><!----></div>
Additionally, if we are interested in the subgroup information contained in
the database (cf.&nbsp;the <tt>subgroup</tt> components of the <tt>info</tt> records in
Section&nbsp;<a href="#database">1</a>), we want to relate the point stabilizers to the
maximal subgroups of M<sub>11</sub>.

<div class="p"><!----></div>
In the case of the sporadic simple groups and their automorphism groups,
we can use the fact that for many of these groups,
the character tables of all maximal subgroups and the class fusions of these
tables are known.
Since each multiplicity-free permutation character of a group is either
trivial or induced from a multiplicity-free permutation character of a
maximal subgroup, we can thus reduce our problem to the computation of
multiplicity-free possible permutation characters of all maximal subgroups.
(That this really is a reduction can be read in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>].)
This approach is implemented in the function <tt>MultFree</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M11" );
    CharacterTable( "M11" )
    gap&#62; maxes:= Maxes( tbl );
    [ "A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4" ]
    gap&#62; name:= maxes[1];;
    gap&#62; MultFree( tbl, CharacterTable( name ) );
    [ Character( CharacterTable( "M11" ), [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ]

</pre>

<div class="p"><!----></div>
The function <tt>MultFree</tt> computes all multiplicity-free characters of
the given character table that are induced from possible permutation
characters of the given character table of a subgroup.
(Note that these characters need not necessarily be faithful.)
If we loop over all classes of maximal subgroups then we get all
candidates for M<sub>11</sub>,
together with the information in which maximal subgroup the hypothetical
point stabilizer lies.

<div class="p"><!----></div>

<pre>
    gap&#62; cand:= [];;
    gap&#62; for name in maxes do
    &#62;      max:= CharacterTable( name );
    &#62;      Append( cand, List( MultFree( tbl, max ),
    &#62;                     chi -&#62; [ name, Size( tbl ) / Size( max ), chi ] ) );
    &#62; od;
    gap&#62; cand;
    [ [ "A6.2_3", 11, Character( CharacterTable( "M11" ), 
            [ 11, 3, 2, 3, 1, 0, 1, 1, 0, 0 ] ) ], 
      [ "A6.2_3", 11, Character( CharacterTable( "M11" ), 
            [ 22, 6, 4, 2, 2, 0, 0, 0, 0, 0 ] ) ], 
      [ "A6.2_3", 11, Character( CharacterTable( "M11" ), 
            [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ], 
      [ "L2(11)", 12, Character( CharacterTable( "M11" ), 
            [ 12, 4, 3, 0, 2, 1, 0, 0, 1, 1 ] ) ], 
      [ "L2(11)", 12, Character( CharacterTable( "M11" ), 
            [ 144, 0, 0, 0, 4, 0, 0, 0, 1, 1 ] ) ], 
      [ "3^2:Q8.2", 55, Character( CharacterTable( "M11" ), 
            [ 55, 7, 1, 3, 0, 1, 1, 1, 0, 0 ] ) ], 
      [ "3^2:Q8.2", 55, Character( CharacterTable( "M11" ), 
            [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ], 
      [ "A5.2", 66, Character( CharacterTable( "M11" ), 
            [ 66, 10, 3, 2, 1, 1, 0, 0, 0, 0 ] ) ] ]
    gap&#62; Length( cand );  Length( Set( cand, x -&#62; x[3] ) );
    8
    7

</pre>

<div class="p"><!----></div>
We immediately see that the candidates of degrees 11, 12, 55, and 66
are permutation characters,
since they are obtained by inducing the trivial characters of the
maximal subgroups.
The permutation characters of degrees 22 and 144 can be established
in two steps.
First we note that the group A<sub>6</sub>.2<sub>3</sub> contains the subgroup A<sub>6</sub> of index
2,
and the group L<sub>2</sub>(11) contains a class of subgroups of index 12,
of isomorphism type 11:5.
Second the possible permutation characters of degrees 2 and 12
of these maximal subgroups of M<sub>11</sub> are uniquely determined,
and inducing these characters to M<sub>11</sub> yields in fact multiplicity-free
characters.

<div class="p"><!----></div>

<pre>
    gap&#62; max1:= CharacterTable( maxes[1] );;
    gap&#62; perms1:= PermChars( max1, [ 2 ] );
    [ Character( CharacterTable( "A6.2_3" ), [ 2, 2, 2, 2, 2, 0, 0, 0 ] ) ]
    gap&#62; perms1[1]^tbl = cand[2][3];
    true
    gap&#62; max2:= CharacterTable( maxes[2] );;
    gap&#62; perms2:= PermChars( max2, [ 12 ] );
    [ Character( CharacterTable( "L2(11)" ), [ 12, 0, 0, 2, 2, 0, 1, 1 ] ) ]
    gap&#62; perms2[1]^tbl = cand[5][3];
    true

</pre>

<div class="p"><!----></div>
The last candidate to deal with is the degree 110 character,
which might be induced from a subgroup of A<sub>6</sub>.2<sub>3</sub> or 3<sup>2</sup>:Q<sub>8</sub>.2
or both.
Let us first look at the possible permutation characters of degree 10
of A<sub>6</sub>.2<sub>3</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; PermChars( max1, [ 10 ] );
    [ Character( CharacterTable( "A6.2_3" ), [ 10, 2, 1, 2, 0, 0, 2, 2 ] ), 
      Character( CharacterTable( "A6.2_3" ), [ 10, 2, 1, 2, 0, 2, 0, 0 ] ) ]
    gap&#62; OrdersClassRepresentatives( max1 );
    [ 1, 2, 3, 4, 5, 4, 8, 8 ]

</pre>

<div class="p"><!----></div>
There are two possibilities, and only the first induces the candidate of
degree 110.
The latter follows from the fact that the nonzero character value of the
candidate on classes of element order 8 means that the
hypothetical point stabilizer contains elements of order 8,
cf.&nbsp;the <tt>Display</tt> call in Section&nbsp;<a href="#simple">1.1</a>.

<div class="p"><!----></div>
The group A<sub>6</sub>.2<sub>3</sub> has a unique class of subgroups of index 10,
which are the Sylow 3 normalizers, of type 3<sup>2</sup>:Q<sub>8</sub>.
Since Q<sub>8</sub> has no elements of order 8,
the first candidate is <b>not</b> a permutation character.

<div class="p"><!----></div>
The remaining subgroup from which the degree 110 character can be induced
is 3<sup>2</sup>:Q<sub>8</sub>.2;
this group has three index 2 subgroups, and the candidate is in fact
induced from the trivial character of one of these subgroups.

<div class="p"><!----></div>

<pre>
    gap&#62; max3:= CharacterTable( maxes[3] );;
    gap&#62; classes:= SizesConjugacyClasses( max3 );;
    gap&#62; Filtered( ClassPositionsOfNormalSubgroups( max3 ),
    &#62;              x -&#62; Sum( classes{ x } ) = Size( max3 ) / 2 );
    [ [ 1, 2, 4, 5, 6 ], [ 1, 2, 3, 4, 5, 7 ], [ 1, 2, 4, 5, 8, 9 ] ]
    gap&#62; perms3:= PermChars( max3, [ 2 ] );
    [ Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 0, 2, 2, 0, 0, 2, 2 ] ), 
      Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 0, 2, 2, 2, 0, 0, 0 ] ), 
      Character( CharacterTable( "3^2:Q8.2" ), [ 2, 2, 2, 2, 2, 0, 2, 0, 0 ] ) ]
    gap&#62; induced:= List( perms3, x -&#62; x^tbl );
    [ Character( CharacterTable( "M11" ), [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 6, 2, 6, 0, 0, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M11" ), [ 110, 14, 2, 2, 0, 2, 0, 0, 0, 0 ] ) ]
    gap&#62; Position( induced, cand[3][3] );
    1

</pre>

<div class="p"><!----></div>
Putting these considerations together, we thus get a confirmation of the
classification for M<sub>11</sub>.

<div class="p"><!----></div>
As a second example, we look at the group M<sub>12</sub>.2.
The database contains 13 characters,
and the approach using <tt>MultFree</tt> yields 17 different characters.
We are interested in disproving the candidates that are not
permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; info:= MultFreePermChars( "M12.2" );;
    gap&#62; perms:= Set( List( info, x -&#62; x.character ) );;
    gap&#62; Length( info );  Length( perms );
    13
    13
    gap&#62; tbl:= CharacterTable( "M12.2" );;
    gap&#62; maxes:= Maxes( tbl );
    [ "M12", "L2(11).2", "M12.2M3", "(2^2xA5):2", "D8.(S4x2)", "4^2:D12.2", 
      "3^(1+2):D8", "S4xS3", "A5.2" ]
    gap&#62; cand:= [];;
    gap&#62; for name in maxes do
    &#62;      max:= CharacterTable( name );
    &#62;      Append( cand, List( MultFree( tbl, max ),
    &#62;                     chi -&#62; [ name, Size( tbl ) / Size( max ), chi ] ) );
    &#62; od;
    gap&#62; Length( cand );  Length( Set( List( cand, x -&#62; x[3] ) ) );
    25
    17
    gap&#62; toexclude:= Set( Filtered( cand, x -&#62; not x[3] in perms ) );
    [ [ "M12", 2, Character( CharacterTable( "M12.2" ), 
            [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ], 
      [ "M12", 2, Character( CharacterTable( "M12.2" ), 
            [ 440, 0, 24, 8, 8, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
             ] ) ], 
      [ "M12", 2, Character( CharacterTable( "M12.2" ), [ 1320, 0, 8, 6, 0, 8, 0, 
              0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ) ], 
      [ "M12", 2, Character( CharacterTable( "M12.2" ), 
            [ 1320, 0, 24, 6, 0, 4, 0, 0, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
             ] ) ] ]

</pre>

<div class="p"><!----></div>
Clearly the degree 2 character is a permutation character,
but as it is not faithful, it is not contained in the database.

<div class="p"><!----></div>
The other three characters are all induced from candidates of the maximal
subgroup M<sub>12</sub>,
and we may use the same approach for M<sub>12</sub> in order to find out whether
they can be permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; m12:= CharacterTable( "M12" );;
    gap&#62; subcand:= [];;
    gap&#62; submaxes:= Maxes( m12 );
    [ "M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7", "2xS5", 
      "M8.S4", "4^2:D12", "A4xS3" ]
    gap&#62; for name in submaxes do
    &#62;      max:= CharacterTable( name );
    &#62;      Append( subcand, MultFree( m12, max ) );
    &#62; od;
    gap&#62; induced:= List( subcand, x -&#62; x^tbl );;
    gap&#62; Intersection( induced, List( toexclude, x -&#62; x[3] ) );
    [  ]

</pre>

<div class="p"><!----></div>
Thus none of the candidates in the list <tt>toexclude</tt> is a permutation
character.

<div class="p"><!----></div>

<div class="p"><!----></div>

<div class="p"><!----></div>


<h2>References</h2>

<dl compact="compact">
 <dt><a href="#CITEBL96" name="BL96">[BL96]</a></dt><dd>
Thomas Breuer and Klaus Lux, <em>The multiplicity-free permutation characters
  of the sporadic simple groups and their automorphism groups</em>, Comm. Alg.
  <b>24</b> (1996), no.&nbsp;7, 2293-2316.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEBP98copy" name="BP98copy">[BP98]</a></dt><dd>
Thomas Breuer and G&#246;tz Pfeiffer, <em>Finding Possible
  Permutation Characters</em>, J. Symbolic Comput. <b>26</b> (1998),
  343-354.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEctblpope" name="ctblpope">[Bre]</a></dt><dd>
Thomas Breuer, <em>Permutation Characters in <font face="helvetica">GAP</font></em>, <br />
  <a href="http://www.math.rwth-aachen.de/LDFM/homes/Thomas.Breuer/ctbllib/doc/ctblpope.htm"><tt>http://www.math.rwth-aachen.de/LDFM/homes/Thomas.Breuer/ctbllib/doc/ctblpope.htm</tt></a>.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITECTblLib" name="CTblLib">[Bre04]</a></dt><dd>
Thomas Breuer, <em>Manual for the <font face="helvetica">GAP</font> Character Table Library, Version
  1.1</em>, Lehrstuhl D f&#252;r Mathematik, Rheinisch
  Westf&#228;lische Technische Hochschule, Aachen, Germany,
  2004.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITECCN85" name="CCN85">[CCN<sup>+</sup>85]</a></dt><dd>
J[ohn]&nbsp;H. Conway, R[obert]&nbsp;T. Curtis, S[imon]&nbsp;P. Norton, R[ichard]&nbsp;A. Parker,
  and R[obert]&nbsp;A. Wilson, <em>Atlas of finite groups</em>, Oxford University
  Press, 1985.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEGAP4" name="GAP4">[GAP04]</a></dt><dd>
The GAP&nbsp;Group, <em>GAP - Groups, Algorithms, and Programming, Version
  4.4</em>, 2004, <a href="http://www.gap-system.org"><tt>http://www.gap-system.org</tt></a>.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEPfe97" name="Pfe97">[Pfe97]</a></dt><dd>
G.&nbsp;Pfeiffer, <em>The Subgroups of M<sub>24</sub>, or How to Compute the
  Table of Marks of a Finite Group</em>, Experiment. Math. <b>6</b>
  (1997), no.&nbsp;3, 247-270.</dd>
</dl>


<div class="p"><!----></div>

<div class="p"><!----></div>

<br /><br /><hr /><small>File translated from
T<sub><font size="-1">E</font></sub>X
by <a href="http://hutchinson.belmont.ma.us/tth/">
T<sub><font size="-1">T</font></sub>H</a>,
version 3.55.<br />On 31 Mar 2004, 10:54.</small>
</html>