1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<meta name="GENERATOR" content="TtH 3.55">
<style type="text/css"> div.p { margin-top: 7pt;}</style>
<style type="text/css"><!--
td div.comp { margin-top: -0.6ex; margin-bottom: -1ex;}
td div.comb { margin-top: -0.6ex; margin-bottom: -.6ex;}
td div.hrcomp { line-height: 0.9; margin-top: -0.8ex; margin-bottom: -1ex;}
td div.norm {line-height:normal;}
span.roman {font-family: serif; font-style: normal; font-weight: normal;}
span.overacc2 {position: relative; left: .8em; top: -1.2ex;}
span.overacc1 {position: relative; left: .6em; top: -1.2ex;} --></style>
<title> Multiplicity-Free Permutation Characters in GAP, part 2</title>
<h1 align="center">Multiplicity-Free Permutation Characters in GAP, part 2 </h1>
<body bgcolor="FFFFFF">
<div class="p"><!----></div>
<h3 align="center"> T<font size="-2">HOMAS</font> B<font size="-2">REUER</font> <br />
<i>Lehrstuhl D für Mathematik</i> <br />
<i>RWTH, 52056 Aachen, Germany</i> </h3>
<div class="p"><!----></div>
<h3 align="center">July 21th, 2003 </h3>
<div class="p"><!----></div>
<div class="p"><!----></div>
We complete the classification of the multiplicity-free permutation
actions of nearly simple groups that involve a sporadic simple group,
which had been started in [<a href="#BL96" name="CITEBL96">BL96</a>] and [<a href="#LM03" name="CITELM03">LM</a>].
<div class="p"><!----></div>
<div class="p"><!----></div>
<h1>Contents </h1><a href="#tth_sEc1"
>1 Introduction</a><br />
<a href="#tth_sEc2"
>2 The Approach</a><br />
<a href="#tth_sEc2.1"
>2.1 Computing Possible Permutation Characters</a><br />
<a href="#tth_sEc2.2"
>2.2 Verifying the Candidates</a><br />
<a href="#tth_sEc2.3"
>2.3 Isoclinic Groups</a><br />
<a href="#tth_sEc2.4"
>2.4 Tests for <font face="helvetica">GAP</font></a><br />
<a href="#tth_sEc3"
>3 The Groups</a><br />
<a href="#tth_sEc3.1"
>3.1 G = 2.M<sub>12</sub></a><br />
<a href="#tth_sEc3.2"
>3.2 G = 2.M<sub>12</sub>.2</a><br />
<a href="#tth_sEc3.3"
>3.3 G = 2.M<sub>22</sub></a><br />
<a href="#tth_sEc3.4"
>3.4 G = 2.M<sub>22</sub>.2</a><br />
<a href="#tth_sEc3.5"
>3.5 G = 3.M<sub>22</sub></a><br />
<a href="#tth_sEc3.6"
>3.6 G = 3.M<sub>22</sub>.2</a><br />
<a href="#tth_sEc3.7"
>3.7 G = 4.M<sub>22</sub> and G = 12.M<sub>22</sub></a><br />
<a href="#tth_sEc3.8"
>3.8 G = 4.M<sub>22</sub>.2 and G = 12.M<sub>22</sub>.2</a><br />
<a href="#tth_sEc3.9"
>3.9 G = 6.M<sub>22</sub></a><br />
<a href="#tth_sEc3.10"
>3.10 G = 6.M<sub>22</sub>.2</a><br />
<a href="#tth_sEc3.11"
>3.11 G = 2.J<sub>2</sub></a><br />
<a href="#tth_sEc3.12"
>3.12 G = 2.J<sub>2</sub>.2</a><br />
<a href="#tth_sEc3.13"
>3.13 G = 2.HS</a><br />
<a href="#tth_sEc3.14"
>3.14 G = 2.HS.2</a><br />
<a href="#tth_sEc3.15"
>3.15 G = 3.J<sub>3</sub></a><br />
<a href="#tth_sEc3.16"
>3.16 G = 3.J<sub>3</sub>.2</a><br />
<a href="#tth_sEc3.17"
>3.17 G = 3.McL</a><br />
<a href="#tth_sEc3.18"
>3.18 G = 3.McL.2</a><br />
<a href="#tth_sEc3.19"
>3.19 G = 2.Ru</a><br />
<a href="#tth_sEc3.20"
>3.20 G = 2.Suz</a><br />
<a href="#tth_sEc3.21"
>3.21 G = 2.Suz.2</a><br />
<a href="#tth_sEc3.22"
>3.22 G = 3.Suz</a><br />
<a href="#tth_sEc3.23"
>3.23 G = 3.Suz.2</a><br />
<a href="#tth_sEc3.24"
>3.24 G = 6.Suz</a><br />
<a href="#tth_sEc3.25"
>3.25 G = 6.Suz.2</a><br />
<a href="#tth_sEc3.26"
>3.26 G = 3.ON</a><br />
<a href="#tth_sEc3.27"
>3.27 G = 3.ON.2</a><br />
<a href="#tth_sEc3.28"
>3.28 G = 2.Fi<sub>22</sub></a><br />
<a href="#tth_sEc3.29"
>3.29 G = 2.Fi<sub>22</sub>.2</a><br />
<a href="#tth_sEc3.30"
>3.30 G = 3.Fi<sub>22</sub></a><br />
<a href="#tth_sEc3.31"
>3.31 G = 3.Fi<sub>22</sub>.2</a><br />
<a href="#tth_sEc3.32"
>3.32 G = 6.Fi<sub>22</sub></a><br />
<a href="#tth_sEc3.33"
>3.33 G = 6.Fi<sub>22</sub>.2</a><br />
<a href="#tth_sEc3.34"
>3.34 G = 2.Co<sub>1</sub></a><br />
<a href="#tth_sEc3.35"
>3.35 G = 3.F<sub>3+</sub></a><br />
<a href="#tth_sEc3.36"
>3.36 G = 3.F<sub>3+</sub>.2</a><br />
<a href="#tth_sEc3.37"
>3.37 G = 2.B</a><br />
<a href="#tth_sEc4"
>4 Appendix: Explicit Computations with Groups</a><br />
<a href="#tth_sEc4.1"
>4.1 2<sup>4</sup>:A<sub>6</sub> type subgroups in 2.M<sub>22</sub></a><br />
<a href="#tth_sEc4.2"
>4.2 2<sup>4</sup>:S<sub>5</sub> type subgroups in M<sub>22</sub>.2</a><br />
<div class="p"><!----></div>
<div class="p"><!----></div>
<h2><a name="tth_sEc1">
1</a> Introduction</h2>
<div class="p"><!----></div>
In [<a href="#BL96" name="CITEBL96">BL96</a>], the multiplicity-free permutation characters of the sporadic
simple groups and their automorphism groups were classified.
Based on this list,
the multiplicity-free permutation characters of the central extensions of the
sporadic simple groups were classified in [<a href="#LM03" name="CITELM03">LM</a>].
<div class="p"><!----></div>
The purpose of this writeup is to show how the multiplicity-free
permutation characters of the automorphic extensions of the central
extensions of the sporadic simple groups can be computed,
to verify the calculations in [<a href="#LM03" name="CITELM03">LM</a>] (and to correct an error,
see Section <a href="#LMerror">3.32</a>),
and to provide a testfile for the <font face="helvetica">GAP</font> functions and the database.
<div class="p"><!----></div>
The database has been extended in the sense that also most of the character
tables of the multiplicity-free permutation modules of the sporadic simple
groups and their automorphic and central extensions have been computed,
see [<a href="#Hoe01" name="CITEHoe01">Höh01</a>,<a href="#Mue03" name="CITEMue03">Mül03</a>] for details.
<div class="p"><!----></div>
<h2><a name="tth_sEc2">
2</a> The Approach</h2>
<div class="p"><!----></div>
Suppose that a group G contains a normal subgroup N.
If π is a faithful multiplicity-free permutation character of G
then π = 1<sub>U</sub><sup>G</sup> for a subgroup U of G that intersects N trivially,
so π contains a constituent 1<sub>UN</sub><sup>G</sup> of degree π(1) / |N|,
which can be viewed as a multiplicity-free permutation character of the
factor group G / N.
Moreover, no constituent of the difference π− 1<sub>UN</sub><sup>G</sup> has N in its
kernel.
<div class="p"><!----></div>
So if we know all multiplicity-free permutation characters of the factor group
G / N then we can compute all candidates for multiplicity-free permutation
characters of G by "filling up" each such character
[π] with a linear combination of characters not containing N
in their kernels, of total degree (|N|−1) ·π(1), and such that the
sum is a possible permutation character of G.
For this situation, <font face="helvetica">GAP</font> provides a special variant of the function
<tt>PermChars</tt>.
In a second step, the candidates are inspected whether the required point
stabilizers (and if yes, how many conjugacy classes of them) exist.
Finally, the permutation characters are verified by explicit induction from
the character tables of the point stabilizers.
<div class="p"><!----></div>
The multiplicity-free permutation actions of the sporadic simple groups
and their automorphism groups are known by [<a href="#BL96" name="CITEBL96">BL96</a>],
so this approach is suitable for these groups.
<div class="p"><!----></div>
For central extensions of sporadic simple groups, the multiplicity-free
permutation characters have been classified in [<a href="#LM03" name="CITELM03">LM</a>];
this note describes a slightly different approach,
so we will give an independent confirmation of their results.
<div class="p"><!----></div>
First we load the Character Table Library [<a href="#CTblLib" name="CITECTblLib">Bre04b</a>]
of the <font face="helvetica">GAP</font> system [<a href="#GAP4" name="CITEGAP4">GAP04</a>],
read the file with <font face="helvetica">GAP</font> functions for computing multiplicity-free
permutation characters,
and the known data for the sporadic simple groups and their automorphism
groups.
<div class="p"><!----></div>
<pre>
gap> LoadPackage( "ctbllib" );
true
gap> RereadPackage( "ctbllib", "tst/multfree.g" );
true
gap> RereadPackage( "ctbllib", "tst/multfree.dat" );
true
</pre>
<div class="p"><!----></div>
In order to compare the results computed below with the database that is
already available, we load also this database.
<div class="p"><!----></div>
<pre>
gap> RereadPackage( "ctbllib", "tst/multfre2.dat" );
true
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc2.1">
2.1</a> Computing Possible Permutation Characters</h3>
<div class="p"><!----></div>
Then we define the <font face="helvetica">GAP</font> functions that are needed in the following.
<div class="p"><!----></div>
<tt>FaithfulCandidates</tt> takes the character table <tt>tbl</tt> of a group G
and the name <tt>factname</tt> of a factor group F of G for which the
multiplicity-free permutation characters are known,
and returns a list of lists, the entry at the i-th position being
the list of possible permutation characters of G that are multiplicity-free
and such that the sum of all constituents that are characters of F is the
i-th multiplicity-free permutation character of F.
As a side-effect, if the i-th entry is nonempty then information is printed
about the structure of the point-stabilizer in F and the number of
candidates found.
<div class="p"><!----></div>
<pre>
gap> FaithfulCandidates:= function( tbl, factname )
> local factinfo, factchars, facttbl, fus, sizeN, faith, i;
>
> # Fetch the data for the factor group.
> factinfo:= MultFreePermChars( factname );
> factchars:= List( factinfo, x -> x.character );
> facttbl:= UnderlyingCharacterTable( factchars[1] );
> fus:= GetFusionMap( tbl, facttbl );
> sizeN:= Size( tbl ) / Size( facttbl );
>
> # Compute faithful possible permutation characters.
> faith:= List( factchars, pi -> PermChars( tbl,
> rec( torso:= [ sizeN * pi[1] ],
> normalsubgroup:= ClassPositionsOfKernel( fus ),
> nonfaithful:= pi{ fus } ) ) );
>
> # Take only the multiplicity-free ones.
> faith:= List( faith, x -> Filtered( x, pi -> ForAll( Irr( tbl ),
> chi -> ScalarProduct( tbl, pi, chi ) < 2 ) ) );
>
> # Print info about the candidates.
> for i in [ 1 .. Length( faith ) ] do
> if not IsEmpty( faith[i] ) then
> Print( i, ": subgroup ", factinfo[i].subgroup,
> ", degree ", faith[i][1][1],
> " (", Length( faith[i] ), " cand.)\n" );
> fi;
> od;
>
> # Return the candidates.
> return faith;
> end;;
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc2.2">
2.2</a> Verifying the Candidates</h3>
<div class="p"><!----></div>
In the verification step, we check which of the given candidates of G
are induced from a given subgroup S.
For that, we use the following function.
Its arguments are the character table <tt>s</tt> of S,
the character tables <tt>tbl2</tt> and <tt>tbl</tt> of G and its derived subgroup
G<sup>′</sup> of index 2
(if G is perfect then <tt>0</tt> must be entered for <tt>tbl2</tt>),
the list <tt>candidates</tt> of characters of G,
and one of the strings <tt>"all"</tt>, <tt>"extending"</tt>, which means that we consider
either all possible class fusions of <tt>s</tt> into <tt>tbl2</tt> or only those whose
image does not lie in G<sup>′</sup>.
Note that the table of the derived subgroup of G is needed because
we want to express the decomposition of the permutation characters
relative to G<sup>′</sup>.
<div class="p"><!----></div>
The idea is that we know that n different permutation characters arise
from subgroups isomorphic with S (with the additional property that the
image of the embedding of S into G is not contained in G<sup>′</sup>
if the last argument is <tt>"extending"</tt>), and that <tt>candidates</tt> is a set
of possible permutation characters, of length n.
If the possible fusions between the character tables <tt>s</tt> and <tt>tbl2</tt>
lead to exactly to the given n permutation characters then we have proved
that they are in fact the permutation characters of G in question.
In this case, <tt>VerifyCandidates</tt> prints information about the decomposition
of the permutation characters.
If none of <tt>candidates</tt> arises from the possible embeddings of S into G
then the function prints that S does not occur.
In all other cases, the function signals an error (so this will not happen
in the calls to this function below).
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates:= function( s, tbl, tbl2, candidates, admissible )
> local fus, der, pi;
>
> if tbl2 = 0 then
> tbl2:= tbl;
> fi;
>
> # Compute the possible class fusions, and induce the trivial character.
> fus:= PossibleClassFusions( s, tbl2 );
> if admissible = "extending" then
> der:= Set( GetFusionMap( tbl, tbl2 ) );
> fus:= Filtered( fus, map -> not IsSubset( der, map ) );
> fi;
> pi:= Set( List( fus, map -> Induced( s, tbl2,
> [ TrivialCharacter( s ) ], map )[1] ) );
>
> # Compare the two lists.
> if pi = SortedList( candidates ) then
> Print( "G = ", Identifier( tbl2 ), ": point stabilizer ",
> Identifier( s ), ", ranks ",
> List( pi, x -> Length( ConstituentsOfCharacter(x) ) ), "\n" );
> if Size( tbl ) = Size( tbl2 ) then
> Print( PermCharInfo( tbl, pi ).ATLAS, "\n" );
> else
> Print( PermCharInfoRelative( tbl, tbl2, pi ).ATLAS, "\n" );
> fi;
> elif IsEmpty( Intersection( pi, candidates ) ) then
> Print( "G = ", Identifier( tbl2 ), ": no ", Identifier( s ), "\n" );
> else
> Error( "problem with verify" );
> fi;
> end;;
</pre>
<div class="p"><!----></div>
Since in most cases the character tables of possible point stabilizers
are contained in the <font face="helvetica">GAP</font> Character Table Library,
the above function provides an easy test.
Alternatively, we could compute <em>all</em> faithful possible permutation
characters (not only the multiplicity-free ones)
of the degree in question;
if there are as many different such characters as are known to be induced
from point stabilizers <em>and</em> if no other subgroups of this index
exist then the characters are indeed permutation characters,
and we can compare them with the multiplicity-free characters computed
before.
<div class="p"><!----></div>
In the verification of the candidates, the following situations occur.
<div class="p"><!----></div>
<b>Lemma 1</b> <em><a name="situationI">
</a>
Let Φ\colon [^G] → G be a group epimorphism,
with K = ker(Φ) cyclic of order m,
and let H be a subgroup of G such that m is coprime to the order
of the commutator factor group of H.
If it is known that Φ<sup>−1</sup>(H) is a direct product of H with K
then the preimages under Φ of the G-conjugates of H
in [^G] contain one [^G]-class of subgroups
that are isomorphic with H and intersect trivially with K.
(This holds for example if the order of the Schur multiplier of H
is coprime to m.)
<div class="p"><!----></div>
</em>
<b>Lemma 2</b> <em><a name="situationII">
</a>
Let Φ\colon [^G] → G be a group epimorphism,
with K = ker(Φ) of order 3, such that the derived subgroup
G<sup>′</sup> of G has index 2 in G
and such that K is not central in G.
Consider a subgroup H of G with a subgroup H<sub>0</sub> = H ∩G<sup>′</sup>
of index 2 in H, and such that it is known that the preimage
Φ<sup>−1</sup>(H<sub>0</sub>) is a direct product of H<sub>0</sub> with K.
(This holds for example if the order of the Schur multiplier of H<sub>0</sub>
is coprime to 3.)
Then each complement of K in Φ<sup>−1</sup>(H<sub>0</sub>)
extends in Φ<sup>−1</sup>(H) to exactly one complement of K
that is isomorphic with H.
<div class="p"><!----></div>
</em>
<b>Lemma 3</b> <em><a name="situationIII">
</a>
Let Φ\colon [^G] → G be a group epimorphism,
with K = ker(Φ) of order 2.
Consider a subgroup H of G, with derived subgroup H<sup>′</sup>
of index 2 in H and such that
Φ<sup>−1</sup>(H<sup>′</sup>) has the structure 2 ×H<sup>′</sup>.
<ul>
<br />(i)
Suppose that there is an element h ∈ H \H<sup>′</sup>
such that the squares of the preimages of h in [^G] lie in
the unique subgroup of index 2 in Φ<sup>−1</sup>(H<sup>′</sup>).
(This holds for example if the preimages of h are involutions.)
Then Φ<sup>−1</sup>(H) has the type K ×H.
<br />(ii)
If Φ<sup>−1</sup>(H) has the type K ×H then
this group contains exactly two subgroups that are isomorphic with H.
<br />(iii)
Suppose that case (ii) applies and that there is
h ∈ H \H<sup>′</sup> whose two preimages are not conjugate
in [^G] and such that none of the two subgroups of the type H in
Φ<sup>−1</sup>(H) contains elements in the two conjugacy classes
that contain the preimages of h.
Then the two subgroups of the type H induce different permutation
characters of [^G], in particular exactly two conjugacy classes of
subgroups of the type H in [^G] arise from the conjugates of H
in G.</ul>
<div class="p"><!----></div>
</em>With character theoretic methods, we can check a weaker form of
Lemma <a href="#situationIII">2.3</a> (i).
Namely, the conditions are clearly satisfied if there is a conjugacy class
C of elements in H that is not contained in H<sup>′</sup>
and such that the class of [^G] that
contains the squares of the preimages of C is <em>not</em> contained
in the images of the classes of 2 ×H<sup>′</sup> that lie outside
H<sup>′</sup>.
<div class="p"><!----></div>
The function <tt>CheckConditionsForLemma3</tt> tests this, and prints a message
if Lemma <a href="#situationIII">2.3</a> (i) applies becaue of this situation.
More precisely, the arguments are (in this order) the character tables of
H<sup>′</sup>, H, G, and [^G], and one of the strings <tt>"all"</tt>,
<tt>"extending"</tt>; the last argument means that either all embeddings of H
into G are considered or only those which do not lie inside the
derived subgroup of G.
<div class="p"><!----></div>
The function <em>assumes</em> that <tt>s0</tt> is the character table of the derived
subgroup of <tt>s</tt>, and that H<sup>′</sup> lifts to a direct product in [^G].
<div class="p"><!----></div>
<pre>
gap> CheckConditionsForLemma3:= function( s0, s, fact, tbl, admissible )
> local s0fuss, sfusfact, der, outerins, outerinfact, preim, squares, dp,
> dpfustbl, s0indp, other, goodclasses;
>
> if Size( s ) <> 2 * Size( s0 ) then
> Error( "<s> must be twice as large as <s0>" );
> fi;
>
> s0fuss:= GetFusionMap( s0, s );
> sfusfact:= PossibleClassFusions( s, fact );
> if admissible = "extending" then
> der:= ClassPositionsOfDerivedSubgroup( fact );
> sfusfact:= Filtered( sfusfact, map -> not IsSubset( der, map ) );
> fi;
> outerins:= Difference( [ 1 .. NrConjugacyClasses( s ) ], s0fuss );
> outerinfact:= Set( List( sfusfact, map -> Set( map{ outerins } ) ) );
> if Length( outerinfact ) <> 1 then
> Error( "classes of `", s, "' inside `", fact, "' not determined" );
> fi;
>
> preim:= Flat( InverseMap( GetFusionMap( tbl, fact ) ){ outerinfact[1] } );
> squares:= Set( PowerMap( tbl, 2 ){ preim } );
> dp:= s0 * CharacterTable( "Cyclic", 2 );
> dpfustbl:= PossibleClassFusions( dp, tbl );
> s0indp:= GetFusionMap( s0, dp );
> other:= Difference( [ 1 .. NrConjugacyClasses( dp ) ], s0indp );
> goodclasses:= List( dpfustbl, map -> Intersection( squares,
> Difference( map{ s0indp }, map{ other } ) ) );
> if not IsEmpty( Intersection( goodclasses ) ) then
> Print( Identifier( tbl ), ": ", Identifier( s ),
> " lifts to a direct product,\n",
> "proved by squares in ", Intersection( goodclasses ), ".\n" );
> elif ForAll( goodclasses, IsEmpty ) then
> Print( Identifier( tbl ), ": ", Identifier( s ),
> " lifts to a nonsplit extension.\n" );
> else
> Print( "sorry, no proof of the splitting!\n" );
> fi;
> end;;
</pre>
<div class="p"><!----></div>
Let us assume we are in the situation of Lemma <a href="#situationIII">2.3</a>.
Then Φ<sup>−1</sup>(H) is a direct product
〈z 〉×H, where z is an involution.
The derived subgroup of Φ<sup>−1</sup>(H) is H<sub>0</sub> ≡ H<sup>′</sup>,
and Φ<sup>−1</sup>(H) contains two subgroups H<sub>1</sub>, H<sub>2</sub>
which are isomorphic with H,
and such that H<sub>2</sub> = H<sub>0</sub> ∪{ h z; h ∈ H<sub>1</sub> \H<sub>0</sub> }.
If the embedding of H<sub>1</sub>, say, into [^G] has the properties
that an element outside H<sub>0</sub> is mapped into a class C of [^G]
that is different from z C and such that no element of H<sub>1</sub> lies in z C
then z C contains element of H<sub>2</sub> but C does not.
In particular, the permutation characters of the two actions of [^G]
on the cosets of H<sub>1</sub> and H<sub>2</sub>, respectively, are necessarily different.
<div class="p"><!----></div>
We check this with the following function.
Its arguments are one class fusion from the character table of H<sub>1</sub> to that
of [^G], the factor fusion from the character table of [^G] to
that of G,
and the list of positions of the classes of H<sub>0</sub> in the character table
of H<sub>1</sub>.
The return value is <tt>true</tt> if there are two different permutation characters,
and <tt>false</tt> if this cannot be proved using the criterion.
<div class="p"><!----></div>
<pre>
gap> NecessarilyDifferentPermChars:= function( fusion, factfus, inner )
> local outer, inv;
>
> outer:= Difference( [ 1 .. Length( fusion ) ], inner );
> fusion:= fusion{ outer };
> inv:= Filtered( InverseMap( factfus ), IsList );
> return ForAny( inv, pair -> Length( Intersection( pair, fusion ) ) = 1 );
> end;;
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc2.3">
2.3</a> Isoclinic Groups</h3>
<div class="p"><!----></div>
For dealing with the character tables of groups of the type 2.G.2 that are
isoclinic to those whose tables are printed in the A<font size="-2">TLAS</font> ([<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>]),
it is necessary to store explicitly the factor fusion from 2.G.2 onto G.2
and the subgroup fusion from 2.G into 2.G.2,
in order to make the above functions work.
Note that these maps coincide for the two isoclinism types.
<div class="p"><!----></div>
<pre>
gap> IsoclinicTable:= function( tbl, tbl2, facttbl )
> local subfus, factfus;
>
> subfus:= GetFusionMap( tbl, tbl2 );
> factfus:= GetFusionMap( tbl2, facttbl );
> tbl2:= CharacterTableIsoclinic( tbl2 );
> StoreFusion( tbl, subfus, tbl2 );
> StoreFusion( tbl2, factfus, facttbl );
> return tbl2;
> end;;
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc2.4">
2.4</a> Tests for <font face="helvetica">GAP</font></h3>
<div class="p"><!----></div>
With the following function, we check whether the characters computed here
coincide with the lists computed in [<a href="#LM03" name="CITELM03">LM</a>].
<div class="p"><!----></div>
<pre>
gap> CompareWithDatabase:= function( name, chars )
> local info;
>
> info:= MultFreePermChars( name );
> info:= List( info, x -> x.character );;
> if SortedList( info ) <> SortedList( Concatenation( chars ) ) then
> Error( "contradiction 1 for ", name );
> fi;
> end;;
</pre>
<div class="p"><!----></div>
If the character tables of all maximal subgroups of G are known then
we could use alternatively the same method (and in fact the same <font face="helvetica">GAP</font>
functions) as in the classification in [<a href="#BL96" name="CITEBL96">BL96</a>].
This is shown in the following sections where applicable,
using the following function.
<div class="p"><!----></div>
<pre>
gap> CompareWithCandidatesByMaxes:= function( name, faith )
> local tbl, poss;
>
> tbl:= CharacterTable( name );
> if not HasMaxes( tbl ) then
> Error( "no maxes stored for ", name );
> fi;
> poss:= PossiblePermutationCharactersWithBoundedMultiplicity( tbl, 1 );
> poss:= List( poss.permcand, l -> Filtered( l,
> pi -> ClassPositionsOfKernel( pi ) = [ 1 ] ) );
> if SortedList( Concatenation( poss ) )
> <> SortedList( Concatenation( faith ) ) then
> Error( "contradiction 2 for ", name );
> fi;
> end;;
</pre>
<div class="p"><!----></div>
<h2><a name="tth_sEc3">
3</a> The Groups</h2>
<div class="p"><!----></div>
In the following,
we use A<font size="-2">TLAS</font> notation (see [<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>]) for the names of the groups.
In particular, 2 ×G and G ×2 denote the direct product
of the group G with a cyclic group of order 2,
and G.2 and 2.G denote an upward and downward extension, respectively,
of G by a cyclic group of order 2, such that these groups are <em>not</em>
direct products.
<div class="p"><!----></div>
For groups of the structure 2.G.2 where the character table of G is
contained in the A<font size="-2">TLAS</font>, we use the name 2.G.2 for the isoclinism type
whose character table is printed in the A<font size="-2">TLAS</font>,
and (2.G.2)<sup>∗</sup> for the other isoclinism type.
<div class="p"><!----></div>
Most of the computations that are shown in the following use only information
from the <font face="helvetica">GAP</font> Character Table Library.
The (few) explicit computations with groups are collected in
Section <a href="#explicit">4</a>.
<div class="p"><!----></div>
<h3><a name="tth_sEc3.1">
3.1</a> G = 2.M<sub>12</sub></h3>
<div class="p"><!----></div>
The group 2.M<sub>12</sub> has ten faithful multiplicity-free permutation actions,
with point stabilizers of the types M<sub>11</sub> (twice),
A<sub>6</sub>.2<sub>1</sub> (twice), 3<sup>2</sup>.2.S<sub>4</sub> (four classes), and 3<sup>2</sup>:2.A<sub>4</sub> (twice).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.M12" );;
gap> faith:= FaithfulCandidates( tbl, "M12" );;
1: subgroup $M_{11}$, degree 24 (1 cand.)
2: subgroup $M_{11}$, degree 24 (1 cand.)
5: subgroup $A_6.2_1 \leq A_6.2^2$, degree 264 (1 cand.)
8: subgroup $A_6.2_1 \leq A_6.2^2$, degree 264 (1 cand.)
11: subgroup $3^2.2.S_4$, degree 440 (2 cand.)
12: subgroup $3^2:2.A_4 \leq 3^2.2.S_4$, degree 880 (1 cand.)
13: subgroup $3^2.2.S_4$, degree 440 (2 cand.)
14: subgroup $3^2:2.A_4 \leq 3^2.2.S_4$, degree 880 (1 cand.)
</pre>
<div class="p"><!----></div>
There are two classes of M<sub>11</sub> subgroups in M<sub>12</sub> as well as in
2.M<sub>12</sub>, so we apply Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "M11" ), tbl, 0,
> Concatenation( faith[1], faith[2] ), "all" );
G = 2.M12: point stabilizer M11, ranks [ 3, 3 ]
[ "1a+11a+12a", "1a+11b+12a" ]
</pre>
<div class="p"><!----></div>
According to the list of maximal subgroups of 2.M<sub>12</sub>,
any A<sub>6</sub>.2<sup>2</sup> subgroup in M<sub>12</sub> lifts to a group of the structure
A<sub>6</sub>.D<sub>8</sub> in M<sub>12</sub>, which contains two conjugate subgroups of the type
A<sub>6</sub>.2<sub>1</sub>; so we get two classes of such subgroups, with the same permutation
character.
<div class="p"><!----></div>
<pre>
gap> Maxes( tbl );
[ "2xM11", "2.M12M2", "A6.D8", "2.M12M4", "2.L2(11)", "2x3^2.2.S4",
"2.M12M7", "2.M12M8", "2.M12M9", "2.M12M10", "2.A4xS3" ]
gap> faith[5] = faith[8];
true
gap> VerifyCandidates( CharacterTable( "A6.2_1" ), tbl, 0, faith[5], "all" );
G = 2.M12: point stabilizer A6.2_1, ranks [ 7 ]
[ "1a+11ab+12a+54a+55a+120b" ]
</pre>
<div class="p"><!----></div>
The 3<sup>2</sup>.2.S<sub>4</sub> type subgroups of M<sub>12</sub> lift to direct products with
the centre of 2.M<sub>12</sub>, each such group contains two subgroups of the type
3<sup>2</sup>.2.S<sub>4</sub> which induce different permutation characters,
for example because the involutions in 3<sup>2</sup>.2.S<sub>4</sub> \3<sup>2</sup>.2.A<sub>4</sub>
lie in the two preimages of the class <tt>2B</tt> of M<sub>12</sub>.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "3^2.2.S4" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable( "M12" );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, 0, Concatenation( faith[11], faith[13] ), "all" );
G = 2.M12: point stabilizer 3^2.2.S4, ranks [ 7, 7, 9, 9 ]
[ "1a+11a+54a+55a+99a+110ab", "1a+11b+54a+55a+99a+110ab",
"1a+11a+12a+44ab+54a+55a+99a+120b", "1a+11b+12a+44ab+54a+55a+99a+120b" ]
</pre>
<div class="p"><!----></div>
Each 3<sup>2</sup>.2.S<sub>4</sub> type group contains a unique subgroup of the type
3<sup>2</sup>.2.A<sub>4</sub>, we get two classes of such subgroups, with
different permutation characters because already the corresponding characters
for M<sub>12</sub> are different; we verify the candidates by inducing the degree
two permutation characters of the 3<sup>2</sup>.2.S<sub>4</sub> type groups to 2.M<sub>12</sub>.
<div class="p"><!----></div>
<pre>
gap> fus:= PossibleClassFusions( s, tbl );;
gap> deg2:= PermChars( s, 2 );
[ Character( CharacterTable( "3^2.2.S4" ), [ 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0
] ) ]
gap> pi:= Set( List( fus, map -> Induced( s, tbl, deg2, map )[1] ) );;
gap> pi = SortedList( Concatenation( faith[12], faith[14] ) );
true
gap> PermCharInfo( tbl, pi ).ATLAS;
[ "1a+11a+12a+44ab+45a+54a+55ac+99a+110ab+120ab",
"1a+11b+12a+44ab+45a+54a+55ab+99a+110ab+120ab" ]
gap> CompareWithDatabase( "2.M12", faith );
gap> CompareWithCandidatesByMaxes( "2.M12", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.2">
3.2</a> G = 2.M<sub>12</sub>.2</h3>
<div class="p"><!----></div>
The group 2.M<sub>12</sub>.2 that is printed in the A<font size="-2">TLAS</font> has three faithful
multiplicity-free permutation actions,
with point stabilizers of the types M<sub>11</sub> and L<sub>2</sub>(11).2 (twice),
respectively.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "2.M12.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M12.2" );;
1: subgroup $M_{11}$, degree 48 (1 cand.)
2: subgroup $L_2(11).2$, degree 288 (2 cand.)
</pre>
<div class="p"><!----></div>
The two classes of subgroups of the type M<sub>11</sub> in 2.M<sub>12</sub> are fused in
2.M<sub>12</sub>.2, so we get one class of these subgroups.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "M11" ), tbl, tbl2, faith[1], "all" );
G = 2.M12.2: point stabilizer M11, ranks [ 5 ]
[ "1a^{\\pm}+11ab+12a^{\\pm}" ]
</pre>
<div class="p"><!----></div>
The outer involutions in the maximal subgroups of the type L<sub>2</sub>(11).2
in M<sub>12</sub>.2 lift to involutions in 2.M<sub>12</sub>.2;
moreover, those subgroups of the type L<sub>2</sub>(11).2 that are novelties
(so the intersection with M<sub>12</sub> lies in M<sub>11</sub> subgroups)
contain <tt>2B</tt> elements which lift to involutions in 2.M<sub>12</sub>.2,
so the L<sub>2</sub>(11) subgroup lifts to a group of the type 2 ×L<sub>2</sub>(11),
and Lemma <a href="#situationIII">2.3</a> yields two classes of subgroups.
The permutation characters are different, for example because
each each of the two candidates contains elements in one of the
two preimages of the class <tt>2B</tt>.
<div class="p"><!----></div>
(The function <tt>CheckConditionsForLemma3</tt> fails here,
because of the two classes of maximal subgroups L<sub>2</sub>(11).2 in M<sub>12</sub>.2.
One of them contains <tt>2A</tt> elements, the other contains <tt>2B</tt> elements.
Only the latter type of subgroups, whose intersection with M<sub>12</sub> is not
maximal in M<sub>12</sub>, lifts to subgroups of 2.M<sub>12</sub>.2 that contain
L<sub>2</sub>(11).2 subgroups.)
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "L2(11).2" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable( "M12.2" );;
gap> factfus:= GetFusionMap( tbl2, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[2], "all" );
G = 2.M12.2: point stabilizer L2(11).2, ranks [ 7, 7 ]
[ "1a^++11ab+12a^{\\pm}+55a^++66a^++120b^-",
"1a^++11ab+12a^{\\pm}+55a^++66a^++120b^+" ]
gap> CompareWithDatabase( "2.M12.2", faith );
</pre>
<div class="p"><!----></div>
The group (2.M<sub>12</sub>.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has one faithful multiplicity-free permutation action,
with point stabilizer of the type M<sub>11</sub>;
as this subgroup lies inside 2.M<sub>12</sub>, its existence is clear,
and the permutation character in both groups of the type 2.M<sub>12</sub>.2
is the same.
<div class="p"><!----></div>
<pre>
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M12.2" );;
1: subgroup $M_{11}$, degree 48 (1 cand.)
gap> CompareWithDatabase( "Isoclinic(2.M12.2)", faith );
</pre>
<div class="p"><!----></div>
Note that in (2.M<sub>12</sub>.2)<sup>∗</sup>,
the subgroup of the type (2 ×L<sub>2</sub>(11)).2 is a nonsplit extension,
so the unique index 2 subgroup in this group contains the centre of
2.M<sub>12</sub>.2, in particular there is no subgroup of the type L<sub>2</sub>(11).2.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "L2(11).2" );;
gap> PossibleClassFusions( s, tbl2 );
[ ]
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.3">
3.3</a> G = 2.M<sub>22</sub></h3><a name="libtbl">
</a>
<div class="p"><!----></div>
The group 2.M<sub>22</sub> has four faithful multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:A<sub>5</sub>, A<sub>7</sub> (twice),
and 2<sup>3</sup>:L<sub>3</sub>(2), by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.M22" );;
gap> faith:= FaithfulCandidates( tbl, "M22" );;
3: subgroup $2^4:A_5 \leq 2^4:A_6$, degree 924 (1 cand.)
4: subgroup $A_7$, degree 352 (1 cand.)
5: subgroup $A_7$, degree 352 (1 cand.)
7: subgroup $2^3:L_3(2)$, degree 660 (1 cand.)
</pre>
<div class="p"><!----></div>
Note that one class of subgroups of the type 2<sup>4</sup>:A<sub>5</sub> in the maximal subgroup
of the type 2<sup>4</sup>:A<sub>6</sub> as well as the A<sub>7</sub> and 2<sup>3</sup>:L<sub>3</sub>(2) subgroups
lift to direct products in 2.M<sub>22</sub>.
A proof for 2<sup>4</sup>:A<sub>5</sub> using explicit computations with the group can be found
in Subsection <a href="#explicit1">4.1</a>.
<div class="p"><!----></div>
<pre>
gap> Maxes( tbl );
[ "2.L3(4)", "2.M22M2", "2xA7", "2xA7", "2.M22M5", "2x2^3:L3(2)",
"(2xA6).2_3", "2xL2(11)" ]
gap> s:= CharacterTable( "P1/G1/L1/V1/ext2" );;
gap> VerifyCandidates( s, tbl, 0, faith[3], "all" );
G = 2.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 8 ]
[ "1a+21a+55a+126ab+154a+210b+231a" ]
gap> faith[4] = faith[5];
true
gap> VerifyCandidates( CharacterTable( "A7" ), tbl, 0, faith[4], "all" );
G = 2.M22: point stabilizer A7, ranks [ 5 ]
[ "1a+21a+56a+120a+154a" ]
gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[7], "all" );
G = 2.M22: point stabilizer 2^3:sl(3,2), ranks [ 7 ]
[ "1a+21a+55a+99a+120a+154a+210b" ]
gap> CompareWithDatabase( "2.M22", faith );
gap> CompareWithCandidatesByMaxes( "2.M22", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.4">
3.4</a> G = 2.M<sub>22</sub>.2</h3><a name="2.M22.2">
</a>
<div class="p"><!----></div>
The group 2.M<sub>22</sub>.2 that is printed in the A<font size="-2">TLAS</font> has eight faithful
multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:S<sub>5</sub> (twice), A<sub>7</sub>,
2<sup>3</sup>:L<sub>3</sub>(2) ×2 (twice), 2<sup>3</sup>:L<sub>3</sub>(2), and L<sub>2</sub>(11).2 (twice).
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "2.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
6: subgroup $2^4:S_5 \leq 2^4:S_6$, degree 924 (2 cand.)
7: subgroup $A_7$, degree 704 (1 cand.)
11: subgroup $2^3:L_3(2) \times 2$, degree 660 (2 cand.)
12: subgroup $2^3:L_3(2) \leq 2^3:L_3(2) \times 2$, degree 1320 (2 cand.)
16: subgroup $L_2(11).2$, degree 1344 (2 cand.)
</pre>
<div class="p"><!----></div>
The character table of the 2<sup>4</sup>:S<sub>5</sub> type subgroup is contained in the <font face="helvetica">GAP</font>
Character Table Library,
with identifier <tt>w(d5)</tt> (cf. Subsection <a href="#explicit2">4.2</a>).
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "w(d5)" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable( "M22.2" );;
gap> factfus:= GetFusionMap( tbl2, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
G = 2.M22.2: point stabilizer w(d5), ranks [ 7, 7 ]
[ "1a^++21a^++55a^++126ab+154a^++210b^-+231a^-",
"1a^++21a^++55a^++126ab+154a^++210b^++231a^-" ]
</pre>
<div class="p"><!----></div>
The two classes of the type A<sub>7</sub> subgroups in 2.M<sub>22</sub> are fused
in 2.M<sub>22</sub>.2.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "A7" ), tbl, tbl2, faith[7], "all" );
G = 2.M22.2: point stabilizer A7, ranks [ 10 ]
[ "1a^{\\pm}+21a^{\\pm}+56a^{\\pm}+120a^{\\pm}+154a^{\\pm}" ]
</pre>
<div class="p"><!----></div>
The preimages of the 2<sup>3</sup>:L<sub>3</sub>(2) ×2 type subgroups of M<sub>22</sub>.2
in 2.M<sub>22</sub>.2 are direct products, by the discussion of 2.M<sub>22</sub>
and Lemma <a href="#situationIII">2.3</a> (i).
So Lemma <a href="#situationIII">2.3</a> (iii) yields two classes,
with different permutation characters.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "2x2^3:L3(2)" );;
gap> s0:= CharacterTable( "2^3:sl(3,2)" );;
gap> s0fuss:= PossibleClassFusions( s0, s );;
gap> StoreFusion( s0, s0fuss[1], s );
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
2.M22.2: 2x2^3:L3(2) lifts to a direct product,
proved by squares in [ 1, 5, 14, 16 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
G = 2.M22.2: point stabilizer 2x2^3:L3(2), ranks [ 7, 7 ]
[ "1a^++21a^++55a^++99a^++120a^-+154a^++210b^-",
"1a^++21a^++55a^++99a^++120a^++154a^++210b^+" ]
</pre>
<div class="p"><!----></div>
There is one class of subgroups of the type 2<sup>3</sup>:L<sub>3</sub>(2) in 2.M<sub>22</sub>.
One of the two candidates of degree 1 320 is excluded because it does not
arise from a possible class fusion.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "M22M6" );;
gap> fus:= PossibleClassFusions( s, tbl );;
gap> pi1320:= Set( List( fus, x -> Induced( s, tbl2,
> [ TrivialCharacter( s ) ], x )[1] ) );;
gap> IsSubset( faith[12], pi1320 );
true
gap> faith[12]:= pi1320;;
gap> VerifyCandidates( s, tbl, tbl2, faith[12], "all" );
G = 2.M22.2: point stabilizer 2^3:sl(3,2), ranks [ 14 ]
[ "1a^{\\pm}+21a^{\\pm}+55a^{\\pm}+99a^{\\pm}+120a^{\\pm}+154a^{\\pm}+210b^{\\\
pm}" ]
</pre>
<div class="p"><!----></div>
The preimages of the L<sub>2</sub>(11).2 type subgroups of M<sub>22</sub>.2 in 2.M<sub>22</sub>.2
are direct products by Lemma <a href="#situationIII">2.3</a> (i),
so Lemma <a href="#situationIII">2.3</a> (iii) yields two classes,
with different permutation characters.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "L2(11).2" );;
gap> s0:= CharacterTable( "L2(11)" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.M22.2: L2(11).2 lifts to a direct product,
proved by squares in [ 1, 4, 10, 13 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> ForAll( PossibleClassFusions( s, tbl2 ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 2.M22.2: point stabilizer L2(11).2, ranks [ 10, 10 ]
[ "1a^++21a^-+55a^++56a^{\\pm}+120a^-+154a^++210a^-+231a^-+440a^+",
"1a^++21a^-+55a^++56a^{\\pm}+120a^++154a^++210a^-+231a^-+440a^-" ]
gap> CompareWithDatabase( "2.M22.2", faith );
</pre>
<div class="p"><!----></div>
The group (2.M<sub>22</sub>.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types A<sub>7</sub> and 2<sup>3</sup>:L<sub>3</sub>(2).
<div class="p"><!----></div>
<pre>
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
7: subgroup $A_7$, degree 704 (1 cand.)
12: subgroup $2^3:L_3(2) \leq 2^3:L_3(2) \times 2$, degree 1320 (2 cand.)
gap> faith[12]:= Filtered( faith[12], chi -> chi in pi1320 );;
gap> CompareWithDatabase( "Isoclinic(2.M22.2)", faith );
</pre>
<div class="p"><!----></div>
The two classes of subgroups lie inside 2.M<sub>22</sub>,
so their existence has been discussed already above.
<div class="p"><!----></div>
<h3><a name="tth_sEc3.5">
3.5</a> G = 3.M<sub>22</sub></h3>
<div class="p"><!----></div>
The group 3.M<sub>22</sub> has four faithful multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:A<sub>5</sub>, 2<sup>4</sup>:S<sub>5</sub>, 2<sup>3</sup>:L<sub>3</sub>(2),
and L<sub>2</sub>(11).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "3.M22" );;
gap> faith:= FaithfulCandidates( tbl, "M22" );;
3: subgroup $2^4:A_5 \leq 2^4:A_6$, degree 1386 (1 cand.)
6: subgroup $2^4:S_5$, degree 693 (1 cand.)
7: subgroup $2^3:L_3(2)$, degree 990 (1 cand.)
9: subgroup $L_2(11)$, degree 2016 (1 cand.)
</pre>
<div class="p"><!----></div>
The existence of one class of each of these types follows from
Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[3], "all" );
G = 3.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 13 ]
[ "1a+21abc+55a+105abcd+154a+231abc" ]
gap> VerifyCandidates( CharacterTable( "M22M5" ), tbl, 0, faith[6], "all" );
G = 3.M22: point stabilizer 2^4:s5, ranks [ 10 ]
[ "1a+21abc+55a+105abcd+154a" ]
gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[7], "all" );
G = 3.M22: point stabilizer 2^3:sl(3,2), ranks [ 13 ]
[ "1a+21abc+55a+99abc+105abcd+154a" ]
gap> VerifyCandidates( CharacterTable( "M22M8" ), tbl, 0, faith[9], "all" );
G = 3.M22: point stabilizer L2(11), ranks [ 16 ]
[ "1a+21abc+55a+105abcd+154a+210abc+231abc" ]
gap> CompareWithDatabase( "3.M22", faith );
gap> CompareWithCandidatesByMaxes( "3.M22", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.6">
3.6</a> G = 3.M<sub>22</sub>.2</h3>
<div class="p"><!----></div>
The group 3.M<sub>22</sub>.2 has five faithful multiplicity-free permutation
actions, with point stabilizers of the types 2<sup>4</sup>:S<sub>5</sub>, 2<sup>5</sup>:S<sub>5</sub>,
2<sup>4</sup>:(A<sub>5</sub> ×2), 2<sup>3</sup>:L<sub>3</sub>(2) ×2, and L<sub>2</sub>(11).2.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "3.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
6: subgroup $2^4:S_5 \leq 2^4:S_6$, degree 1386 (1 cand.)
8: subgroup $2^5:S_5$, degree 693 (1 cand.)
10: subgroup $2^4:(A_5 \times 2) \leq 2^5:S_5$, degree 1386 (1 cand.)
11: subgroup $2^3:L_3(2) \times 2$, degree 990 (1 cand.)
16: subgroup $L_2(11).2$, degree 2016 (1 cand.)
</pre>
<div class="p"><!----></div>
Subgroups of these types exist by Lemma <a href="#situationII">2.2</a>.
The verification is straightforward in all cases
except that of 2<sup>4</sup>:(A<sub>5</sub> ×2).
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "w(d5)" ), tbl, tbl2, faith[6], "all" );
G = 3.M22.2: point stabilizer w(d5), ranks [ 9 ]
[ "1a^++21a^+bc+55a^++105adbc+154a^++231a^-bc" ]
gap> VerifyCandidates( CharacterTable( "M22.2M4" ), tbl, tbl2, faith[8], "all" );
G = 3.M22.2: point stabilizer M22.2M4, ranks [ 7 ]
[ "1a^++21a^+bc+55a^++105adbc+154a^+" ]
gap> VerifyCandidates( CharacterTable( "2x2^3:L3(2)" ), tbl, tbl2, faith[11], "all" );
G = 3.M22.2: point stabilizer 2x2^3:L3(2), ranks [ 9 ]
[ "1a^++21a^+bc+55a^++99a^+bc+105adbc+154a^+" ]
gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 3.M22.2: point stabilizer L2(11).2, ranks [ 11 ]
[ "1a^++21a^-bc+55a^++105adbc+154a^++210a^-bc+231a^-bc" ]
</pre>
<div class="p"><!----></div>
In the remaining case, we note that the 2<sup>4</sup>:(A<sub>5</sub> ×2) type subgroup
has index 2 in the maximal subgroup of the type 2<sup>5</sup>:S<sub>5</sub>,
whose character table is available via the identifier <tt>M22.2M4</tt>.
It is sufficient to show that exactly one of the three index 2
subgroups in this group induces a multiplicity-free permutation character
of 3.M<sub>22</sub>.2,
and this can be done by inducing the degree 2 permutation characters
of 2<sup>5</sup>:S<sub>5</sub> to 3.M<sub>22</sub>.2.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "M22.2M4" );;
gap> lin:= LinearCharacters( s );
[ Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),
Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ] ),
Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1,
-1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 ] ),
Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1 ] ) ]
gap> perms:= List( lin{ [ 2 .. 4 ] }, chi -> chi + lin[1] );;
gap> sfustbl2:= PossibleClassFusions( s, tbl2 );;
gap> Length( sfustbl2 );
2
gap> ind1:= Induced( s, tbl2, perms, sfustbl2[1] );;
gap> ind2:= Induced( s, tbl2, perms, sfustbl2[2] );;
gap> PermCharInfo( tbl2, ind1 ).ATLAS;
[ "1ab+21ab+42aa+55ab+154ab+210ccdd", "1a+21ab+42a+55a+154a+210bcd+462a",
"1a+21aa+42a+55a+154a+210acd+462a" ]
gap> PermCharInfo( tbl2, ind2 ).ATLAS;
[ "1a+21aa+42a+55a+154a+210acd+462a", "1a+21ab+42a+55a+154a+210bcd+462a",
"1ab+21ab+42aa+55ab+154ab+210ccdd" ]
gap> ind1[2] = ind2[2];
true
gap> [ ind1[2] ] = faith[10];
true
gap> CompareWithDatabase( "3.M22.2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.7">
3.7</a> G = 4.M<sub>22</sub> and G = 12.M<sub>22</sub></h3>
<div class="p"><!----></div>
The group 4.M<sub>22</sub> and hence also the group 12.M<sub>22</sub> has no
faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "4.M22" );;
gap> faith:= FaithfulCandidates( tbl, "2.M22" );;
gap> CompareWithDatabase( "4.M22", faith );
gap> CompareWithCandidatesByMaxes( "4.M22", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.8">
3.8</a> G = 4.M<sub>22</sub>.2 and G = 12.M<sub>22</sub>.2</h3>
<div class="p"><!----></div>
The two isoclinism types of groups of the type 4.M<sub>22</sub>.2 and hence also all
groups of the type 12.M<sub>22</sub>.2 have no faithful multiplicity-free
permutation actions.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "4.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
gap> CompareWithDatabase( "4.M22.2", faith );
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
gap> CompareWithDatabase( "Isoclinic(4.M22.2)", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.9">
3.9</a> G = 6.M<sub>22</sub></h3>
<div class="p"><!----></div>
The group 6.M<sub>22</sub> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:A<sub>5</sub> and 2<sup>3</sup>:L<sub>3</sub>(2).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "6.M22" );;
gap> faith:= FaithfulCandidates( tbl, "3.M22" );;
1: subgroup $2^4:A_5 \rightarrow (M_{22},3)$, degree 2772 (1 cand.)
3: subgroup $2^3:L_3(2) \rightarrow (M_{22},7)$, degree 1980 (1 cand.)
</pre>
<div class="p"><!----></div>
The existence of one class of each of these subgroups follows from the
treatment of 2.M<sub>22</sub> and 3.M<sub>22</sub>.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[1], "all" );
G = 6.M22: point stabilizer P1/G1/L1/V1/ext2, ranks [ 22 ]
[ "1a+21abc+55a+105abcd+126abcdef+154a+210bef+231abc" ]
gap> VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[3], "all" );
G = 6.M22: point stabilizer 2^3:sl(3,2), ranks [ 17 ]
[ "1a+21abc+55a+99abc+105abcd+120a+154a+210b+330de" ]
gap> CompareWithDatabase( "6.M22", faith );
gap> CompareWithCandidatesByMaxes( "6.M22", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.10">
3.10</a> G = 6.M<sub>22</sub>.2</h3>
<div class="p"><!----></div>
The group 6.M<sub>22</sub>.2 that is printed in the A<font size="-2">TLAS</font> has six faithful
multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:S<sub>5</sub> (twice),
2<sup>3</sup>:L<sub>3</sub>(2) ×2 (twice), and L<sub>2</sub>(11).2 (twice).
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "6.M22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
6: subgroup $2^4:S_5 \leq 2^4:S_6$, degree 2772 (2 cand.)
11: subgroup $2^3:L_3(2) \times 2$, degree 1980 (2 cand.)
16: subgroup $L_2(11).2$, degree 4032 (2 cand.)
</pre>
<div class="p"><!----></div>
We know that 2.M<sub>22</sub>.2 contains two classes of subgroups isomorphic with
each of the required point stabilizers, so we apply Lemma <a href="#situationII">2.2</a>.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "w(d5)" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
G = 6.M22.2: point stabilizer w(d5), ranks [ 14, 14 ]
[ "1a^++21a^+bc+55a^++105adbc+126abcfde+154a^++210b^-ef+231a^-bc",
"1a^++21a^+bc+55a^++105adbc+126abcfde+154a^++210b^+ef+231a^-bc" ]
</pre>
<div class="p"><!----></div>
(Since 6.M<sub>22</sub> contains subgroups of the type 2<sup>3</sup>:L<sub>3</sub>(2) ×2
in which we are not interested,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>
for this case.)
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "2x2^3:L3(2)" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
G = 6.M22.2: point stabilizer 2x2^3:L3(2), ranks [ 12, 12 ]
[ "1a^++21a^+bc+55a^++99a^+bc+105adbc+120a^-+154a^++210b^-+330de",
"1a^++21a^+bc+55a^++99a^+bc+105adbc+120a^++154a^++210b^++330de" ]
gap> VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
G = 6.M22.2: point stabilizer L2(11).2, ranks [ 20, 20 ]
[ "1a^++21a^-bc+55a^++56a^{\\pm}+66abcd+105adbc+120a^-bc+154a^++210a^-cdgjhi+2\
31a^-bc+440a^+",
"1a^++21a^-bc+55a^++56a^{\\pm}+66abcd+105adbc+120a^+bc+154a^++210a^-cdgjhi+2\
31a^-bc+440a^-" ]
gap> CompareWithDatabase( "6.M22.2", faith );
</pre>
<div class="p"><!----></div>
The group (6.M<sub>22</sub>.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has no faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "M22.2" );;
gap> CompareWithDatabase( "Isoclinic(6.M22.2)", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.11">
3.11</a> G = 2.J<sub>2</sub></h3>
<div class="p"><!----></div>
The group 2.J<sub>2</sub> has one faithful multiplicity-free permutation action,
with point stabilizer of the type U<sub>3</sub>(3), by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.J2" );;
gap> faith:= FaithfulCandidates( tbl, "J2" );;
1: subgroup $U_3(3)$, degree 200 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U3(3)" ), tbl, 0, faith[1], "all" );
G = 2.J2: point stabilizer U3(3), ranks [ 5 ]
[ "1a+36a+50ab+63a" ]
gap> CompareWithDatabase( "2.J2", faith );
gap> CompareWithCandidatesByMaxes( "2.J2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.12">
3.12</a> G = 2.J<sub>2</sub>.2</h3>
<div class="p"><!----></div>
The group 2.J<sub>2</sub>.2 that is printed in the A<font size="-2">TLAS</font> has no faithful
multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "2.J2.2" );;
gap> faith:= FaithfulCandidates( tbl2, "J2.2" );;
gap> CompareWithDatabase( "2.J2.2", faith );
</pre>
<div class="p"><!----></div>
The group (2.J<sub>2</sub>.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has four faithful multiplicity-free permutation actions,
with point stabilizers of the types U<sub>3</sub>(3).2 (twice) and
3.A<sub>6</sub>.2<sub>3</sub> (twice).
<div class="p"><!----></div>
<pre>
gap> facttbl:= CharacterTable( "J2.2" );;
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "J2.2" );;
1: subgroup $U_3(3).2$, degree 200 (1 cand.)
5: subgroup $3.A_6.2_3 \leq 3.A_6.2^2$, degree 1120 (1 cand.)
</pre>
<div class="p"><!----></div>
The existence of two classes of each of these subgroups follows from
Lemma <a href="#situationIII">2.3</a>.
(Note that the Schur multiplier of U<sub>3</sub>(3) is trivial and 6.A<sub>6</sub>
does not admit an automorphic extension that has a factor group A<sub>6</sub>.2<sub>3</sub>.)
<div class="p"><!----></div>
<pre>
gap> s0:= CharacterTable( "U3(3)" );;
gap> s:= CharacterTable( "U3(3).2" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
Isoclinic(2.J2.2): U3(3).2 lifts to a direct product,
proved by squares in [ 1, 3, 8, 16 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[1], "all" );
G = Isoclinic(2.J2.2): point stabilizer U3(3).2, ranks [ 4 ]
[ "1a^++36a^++50ab+63a^+" ]
gap> s0:= CharacterTable( "3.A6" );;
gap> s:= CharacterTable( "3.A6.2_3" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
Isoclinic(2.J2.2): 3.A6.2_3 lifts to a direct product,
proved by squares in [ 3, 10, 16, 25 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[5], "all" );
G = Isoclinic(2.J2.2): point stabilizer 3.A6.2_3, ranks [ 12 ]
[ "1a^++14c^{\\pm}+21ab+50ab+63a^{\\pm}+90a^++126a^++175a^-+216a^{\\pm}" ]
gap> faith[1]:= faith[1]{ [ 1, 1 ] };;
gap> faith[5]:= faith[5]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "Isoclinic(2.J2.2)", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.13">
3.13</a> G = 2.HS</h3>
<div class="p"><!----></div>
The group 2.HS has five faithful multiplicity-free permutation actions,
with point stabilizers of the types U<sub>3</sub>(5) (twice), A<sub>8</sub>,
and M<sub>11</sub> (twice).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.HS" );;
gap> faith:= FaithfulCandidates( tbl, "HS" );;
3: subgroup $U_3(5) \leq U_3(5).2$, degree 704 (1 cand.)
5: subgroup $U_3(5) \leq U_3(5).2$, degree 704 (1 cand.)
8: subgroup $A_8 \leq A_8.2$, degree 4400 (1 cand.)
10: subgroup $M_{11}$, degree 11200 (1 cand.)
11: subgroup $M_{11}$, degree 11200 (1 cand.)
</pre>
<div class="p"><!----></div>
Lemma <a href="#situationI">2.1</a> applies in all cases; note that 2.HS does not admit
an embedding of 2.A<sub>8</sub>.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "U3(5)" ), tbl, 0,
> Concatenation( faith[3], faith[5] ), "all" );
G = 2.HS: point stabilizer U3(5), ranks [ 6, 6 ]
[ "1a+22a+154c+175a+176ab", "1a+22a+154b+175a+176ab" ]
gap> PossibleClassFusions( CharacterTable( "2.A8" ), tbl );
[ ]
gap> VerifyCandidates( CharacterTable( "A8" ), tbl, 0, faith[8], "all" );
G = 2.HS: point stabilizer A8, ranks [ 13 ]
[ "1a+22a+77a+154abc+175a+176ab+693a+770a+924ab" ]
gap> VerifyCandidates( CharacterTable( "M11" ), tbl, 0,
> Concatenation( faith[10], faith[11] ), "all" );
G = 2.HS: point stabilizer M11, ranks [ 16, 16 ]
[ "1a+22a+56a+77a+154c+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a",
"1a+22a+56a+77a+154b+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a" ]
gap> CompareWithDatabase( "2.HS", faith );
gap> CompareWithCandidatesByMaxes( "2.HS", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.14">
3.14</a> G = 2.HS.2</h3>
<div class="p"><!----></div>
The group 2.HS.2 that is printed in the A<font size="-2">TLAS</font> has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types A<sub>8</sub> ×2 (twice)
and A<sub>8</sub>.2 (twice).
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable("2.HS.2");;
gap> faith:= FaithfulCandidates( tbl2, "HS.2" );;
10: subgroup $A_8 \times 2 \leq A_8.2 \times 2$, degree 4400 (1 cand.)
11: subgroup $A_8.2 \leq A_8.2 \times 2$, degree 4400 (1 cand.)
</pre>
<div class="p"><!----></div>
The existence of two classes of subgroups for each candidate follows from
Lemma <a href="#situationIII">2.3</a>.
(Since there are A<sub>8</sub> ×2 type subgroups inside 2.HS in which we are
not interested,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.)
<div class="p"><!----></div>
<pre>
gap> facttbl:= CharacterTable( "HS.2" );;
gap> factfus:= GetFusionMap( tbl2, facttbl );;
gap> s0:= CharacterTable( "A8");;
gap> s:= s0 * CharacterTable( "Cyclic", 2 );
CharacterTable( "A8xC2" )
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.HS.2: A8xC2 lifts to a direct product,
proved by squares in [ 1, 6, 13, 20, 30 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[10], "extending" );
G = 2.HS.2: point stabilizer A8xC2, ranks [ 10 ]
[ "1a^++22a^++77a^++154a^+bc+175a^++176ab+693a^++770a^++924ab" ]
gap> s:= CharacterTable( "A8.2" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
2.HS.2: A8.2 lifts to a direct product,
proved by squares in [ 1, 6, 13 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "all" );
G = 2.HS.2: point stabilizer A8.2, ranks [ 10 ]
[ "1a^++22a^-+77a^++154a^+bc+175a^++176ab+693a^++770a^-+924ab" ]
gap> faith[10]:= faith[10]{ [ 1, 1 ] };;
gap> faith[11]:= faith[11]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "2.HS.2", faith );
</pre>
<div class="p"><!----></div>
The group (2.HS.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has no faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "HS.2" );;
gap> CompareWithDatabase( "Isoclinic(2.HS.2)", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.15">
3.15</a> G = 3.J<sub>3</sub></h3>
<div class="p"><!----></div>
The group 3.J<sub>3</sub> has no faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "3.J3" );;
gap> faith:= FaithfulCandidates( tbl, "J3" );;
gap> CompareWithDatabase( "3.J3", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.16">
3.16</a> G = 3.J<sub>3</sub>.2</h3>
<div class="p"><!----></div>
The group 3.J<sub>3</sub>.2 has no faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "3.J3.2" );;
gap> faith:= FaithfulCandidates( tbl2, "J3.2" );;
gap> CompareWithDatabase( "3.J3.2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.17">
3.17</a> G = 3.McL</h3>
<div class="p"><!----></div>
The group 3.McL has one faithful multiplicity-free permutation action,
with point stabilizer of the type 2.A<sub>8</sub>, by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "3.McL" );;
gap> faith:= FaithfulCandidates( tbl, "McL" );;
6: subgroup $2.A_8$, degree 66825 (1 cand.)
gap> VerifyCandidates( CharacterTable( "2.A8" ), tbl, 0, faith[6], "all" );
G = 3.McL: point stabilizer 2.A8, ranks [ 14 ]
[ "1a+252a+1750a+2772ab+5103abc+5544a+6336ab+8064ab+9625a" ]
gap> CompareWithDatabase( "3.McL", faith );
gap> CompareWithCandidatesByMaxes( "3.McL", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.18">
3.18</a> G = 3.McL.2</h3>
<div class="p"><!----></div>
The group 3.McL.2 has one faithful multiplicity-free permutation action,
with point stabilizer of the type (2.A<sub>8</sub>.2)<sup>∗</sup>,
by Lemma <a href="#situationII">2.2</a>.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "3.McL.2" );;
gap> faith:= FaithfulCandidates( tbl2, "McL.2" );;
9: subgroup $2.S_8$, degree 66825 (1 cand.)
gap> s:= CharacterTable( "Isoclinic(2.A8.2)" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[9], "all" );
G = 3.McL.2: point stabilizer Isoclinic(2.A8.2), ranks [ 10 ]
[ "1a^++252a^++1750a^++2772ab+5103a^+bc+5544a^++6336ab+8064ab+9625a^+" ]
gap> CompareWithDatabase( "3.McL.2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.19">
3.19</a> G = 2.Ru</h3>
<div class="p"><!----></div>
The group 2.Ru has one faithful multiplicity-free permutation action,
with point stabilizer of the type <sup>2</sup>F<sub>4</sub>(2)<sup>′</sup>,
by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.Ru" );;
gap> faith:= FaithfulCandidates( tbl, "Ru" );;
2: subgroup ${^2F_4(2)^{\prime}} \leq {^2F_4(2)^{\prime}}.2$, degree 16240 (
1 cand.)
gap> VerifyCandidates( CharacterTable( "2F4(2)'" ), tbl, 0, faith[2], "all" );
G = 2.Ru: point stabilizer 2F4(2)', ranks [ 9 ]
[ "1a+28ab+406a+783a+3276a+3654a+4032ab" ]
gap> CompareWithDatabase( "2.Ru", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.20">
3.20</a> G = 2.Suz</h3>
<div class="p"><!----></div>
The group 2.Suz has one faithful multiplicity-free permutation action,
with point stabilizer of the type U<sub>5</sub>(2), by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.Suz" );;
gap> faith:= FaithfulCandidates( tbl, "Suz" );;
4: subgroup $U_5(2)$, degree 65520 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[4], "all" );
G = 2.Suz: point stabilizer U5(2), ranks [ 10 ]
[ "1a+143a+364abc+5940a+12012a+14300a+16016ab" ]
gap> CompareWithDatabase( "2.Suz", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.21">
3.21</a> G = 2.Suz.2</h3>
<div class="p"><!----></div>
The group 2.Suz.2 that is printed in the A<font size="-2">TLAS</font> has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types U<sub>5</sub>(2).2 (twice)
and 3<sup>5</sup>:(M<sub>11</sub> ×2) (twice), respectively.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "2.Suz.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
8: subgroup $U_5(2).2$, degree 65520 (1 cand.)
12: subgroup $3^5:(M_{11} \times 2)$, degree 465920 (1 cand.)
</pre>
<div class="p"><!----></div>
We verify the conditions of Lemma <a href="#situationIII">2.3</a>.
<div class="p"><!----></div>
<pre>
gap> s0:= CharacterTable( "U5(2)" );;
gap> s:= CharacterTable( "U5(2).2" );;
gap> facttbl:= CharacterTable( "Suz.2" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.Suz.2: U5(2).2 lifts to a direct product,
proved by squares in [ 1, 8, 13, 19, 31, 44 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[8], "all" );
G = 2.Suz.2: point stabilizer U5(2).2, ranks [ 8 ]
[ "1a^++143a^-+364a^+bc+5940a^++12012a^-+14300a^-+16016ab" ]
gap> s0:= CharacterTable( "SuzM5" );
CharacterTable( "3^5:M11" )
gap> s:= CharacterTable( "Suz.2M6" );
CharacterTable( "3^5:(M11x2)" )
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.Suz.2: 3^5:(M11x2) lifts to a direct product,
proved by squares in [ 1, 4, 8, 10, 19, 22, 26, 39 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[12], "all" );
G = 2.Suz.2: point stabilizer 3^5:(M11x2), ranks [ 14 ]
[ "1a^++364a^{\\pm}bc+5940a^++12012a^-+14300a^-+15015ab+15795a^++16016ab+54054\
a^++100100a^-b^{\\pm}" ]
gap> faith[8]:= faith[8]{ [ 1, 1 ] };;
gap> faith[12]:= faith[12]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "2.Suz.2", faith );
</pre>
<div class="p"><!----></div>
The group (2.Suz.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has no faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
gap> CompareWithDatabase( "Isoclinic(2.Suz.2)", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.22">
3.22</a> G = 3.Suz</h3>
<div class="p"><!----></div>
The group 3.Suz has four faithful multiplicity-free permutation actions,
with point stabilizers of the types G<sub>2</sub>(4), U<sub>5</sub>(2),
2<sup>1+6</sup><sub>−</sub>.U<sub>4</sub>(2), and 2<sup>4+6</sup>:3A<sub>6</sub>, respectively,
by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "3.Suz" );;
gap> faith:= FaithfulCandidates( tbl, "Suz" );;
1: subgroup $G_2(4)$, degree 5346 (1 cand.)
4: subgroup $U_5(2)$, degree 98280 (1 cand.)
5: subgroup $2^{1+6}_-.U_4(2)$, degree 405405 (1 cand.)
6: subgroup $2^{4+6}:3A_6$, degree 1216215 (1 cand.)
gap> Maxes( tbl );
[ "3xG2(4)", "3^2.U4(3).2_3'", "3xU5(2)", "3x2^(1+6)_-.U4(2)", "3^6.M11",
"3xJ2.2", "3x2^(4+6).3A6", "(A4x3.L3(4)).2", "3x2^(2+8):(A5xS3)",
"3xM12.2", "3.3^(2+4):2(A4x2^2).2", "(3.A6xA5):2", "(3^(1+2):4xA6).2",
"3xL3(3).2", "3xL3(3).2", "3xL2(25)", "3.A7" ]
gap> VerifyCandidates( CharacterTable( "G2(4)" ), tbl, 0, faith[1], "all" );
G = 3.Suz: point stabilizer G2(4), ranks [ 7 ]
[ "1a+66ab+780a+1001a+1716ab" ]
gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[4], "all" );
G = 3.Suz: point stabilizer U5(2), ranks [ 14 ]
[ "1a+78ab+143a+364a+1365ab+4290ab+5940a+12012a+14300a+27027ab" ]
gap> VerifyCandidates( CharacterTable( "SuzM4" ), tbl, 0, faith[5], "all" );
G = 3.Suz: point stabilizer 2^1+6.u4q2, ranks [ 23 ]
[ "1a+66ab+143a+429ab+780a+1716ab+3432a+5940a+6720ab+14300a+18954abc+25025a+42\
900ab+64350cd+66560a" ]
gap> VerifyCandidates( CharacterTable( "SuzM7" ), tbl, 0, faith[6], "all" );
G = 3.Suz: point stabilizer 2^4+6:3a6, ranks [ 27 ]
[ "1a+364a+780a+1001a+1365ab+4290ab+5940a+12012a+14300a+15795a+25025a+27027ab+\
42900ab+66560a+75075a+85800ab+88452a+100100a+104247ab+139776ab" ]
gap> CompareWithDatabase( "3.Suz", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.23">
3.23</a> G = 3.Suz.2</h3>
<div class="p"><!----></div>
The group 3.Suz.2 has four faithful multiplicity-free permutation actions,
with point stabilizers of the types G<sub>2</sub>(4).2, U<sub>5</sub>(2).2,
2<sup>1+6</sup><sub>−</sub>.U<sub>4</sub>(2).2, and 2<sup>4+6</sup>:3S<sub>6</sub>, respectively.
We know from the treatment of 3.Suz that we can apply
Lemma <a href="#situationII">2.2</a>.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "3.Suz.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
1: subgroup $G_2(4).2$, degree 5346 (1 cand.)
8: subgroup $U_5(2).2$, degree 98280 (1 cand.)
10: subgroup $2^{1+6}_-.U_4(2).2$, degree 405405 (1 cand.)
13: subgroup $2^{4+6}:3S_6$, degree 1216215 (1 cand.)
gap> Maxes( CharacterTable( "Suz.2" ) );
[ "Suz", "G2(4).2", "3_2.U4(3).(2^2)_{133}", "U5(2).2", "2^(1+6)_-.U4(2).2",
"3^5:(M11x2)", "J2.2x2", "2^(4+6):3S6", "(A4xL3(4):2_3):2",
"2^(2+8):(S5xS3)", "M12.2x2", "3^(2+4):2(S4xD8)", "(A6:2_2xA5).2",
"(3^2:8xA6).2", "L2(25).2_2", "A7.2" ]
gap> VerifyCandidates( CharacterTable( "G2(4).2" ), tbl, tbl2, faith[1], "all" );
G = 3.Suz.2: point stabilizer G2(4).2, ranks [ 5 ]
[ "1a^++66ab+780a^++1001a^++1716ab" ]
gap> VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );
G = 3.Suz.2: point stabilizer U5(2).2, ranks [ 10 ]
[ "1a^++78ab+143a^-+364a^++1365ab+4290ab+5940a^++12012a^-+14300a^-+27027ab" ]
gap> VerifyCandidates( CharacterTable( "Suz.2M5" ), tbl, tbl2, faith[10], "all" );
G = 3.Suz.2: point stabilizer 2^(1+6)_-.U4(2).2, ranks [ 16 ]
[ "1a^++66ab+143a^-+429ab+780a^++1716ab+3432a^++5940a^++6720ab+14300a^-+18954a\
^-bc+25025a^++42900ab+64350cd+66560a^+" ]
gap> VerifyCandidates( CharacterTable( "Suz.2M8" ), tbl, tbl2, faith[13], "all" );
G = 3.Suz.2: point stabilizer 2^(4+6):3S6, ranks [ 20 ]
[ "1a^++364a^++780a^++1001a^++1365ab+4290ab+5940a^++12012a^-+14300a^-+15795a^+\
+25025a^++27027ab+42900ab+66560a^++75075a^++85800ab+88452a^++100100a^++104247a\
b+139776ab" ]
gap> CompareWithDatabase( "3.Suz.2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.24">
3.24</a> G = 6.Suz</h3>
<div class="p"><!----></div>
The group 6.Suz has one faithful multiplicity-free permutation action,
with point stabilizer of the type U<sub>5</sub>(2), by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "6.Suz" );;
gap> faith:= FaithfulCandidates( tbl, "2.Suz" );;
1: subgroup $U_5(2) \rightarrow (Suz,4)$, degree 196560 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[1], "all" );
G = 6.Suz: point stabilizer U5(2), ranks [ 26 ]
[ "1a+12ab+78ab+143a+364abc+924ab+1365ab+4290ab+4368ab+5940a+12012a+14300a+160\
16ab+27027ab+27456ab" ]
gap> CompareWithDatabase( "6.Suz", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.25">
3.25</a> G = 6.Suz.2</h3>
<div class="p"><!----></div>
The group 6.Suz.2 that is printed in the A<font size="-2">TLAS</font> has two faithful
multiplicity-free permutation actions,
with point stabilizers of the type U<sub>5</sub>(2).2 (twice).
We know from the treatment of 6.Suz that we can apply
Lemma <a href="#situationII">2.2</a>.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "6.Suz.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Suz.2" );;
8: subgroup $U_5(2).2$, degree 196560 (1 cand.)
gap> VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );
G = 6.Suz.2: point stabilizer U5(2).2, ranks [ 16 ]
[ "1a^++12ab+78ab+143a^-+364a^+bc+924ab+1365ab+4290ab+4368ab+5940a^++12012a^-+\
14300a^-+16016ab+27027ab+27456ab" ]
gap> faith[8]:= faith[8]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "6.Suz.2", faith );
</pre>
<div class="p"><!----></div>
It follows from the treatment of 2.Suz.2 that the group (6.Suz.2)<sup>∗</sup>
of the isoclinism type that is not printed in the A<font size="-2">TLAS</font> does not have a
faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<h3><a name="tth_sEc3.26">
3.26</a> G = 3.ON</h3>
<div class="p"><!----></div>
The group 3.ON has four faithful multiplicity-free permutation actions,
with point stabilizers of the types L<sub>3</sub>(7).2 (twice) and L<sub>3</sub>(7) (twice).
(The Schur multiplier of L<sub>3</sub>(7).2 is trivial, so the L<sub>3</sub>(7) type
subgroups lift to direct products with the centre of 3.ON, that is,
we can apply Lemma <a href="#situationI">2.1</a>.)
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "3.ON" );;
gap> faith:= FaithfulCandidates( tbl, "ON" );;
1: subgroup $L_3(7).2$, degree 368280 (1 cand.)
2: subgroup $L_3(7) \leq L_3(7).2$, degree 736560 (1 cand.)
3: subgroup $L_3(7).2$, degree 368280 (1 cand.)
4: subgroup $L_3(7) \leq L_3(7).2$, degree 736560 (1 cand.)
gap> VerifyCandidates( CharacterTable( "L3(7).2" ), tbl, 0,
> Concatenation( faith[1], faith[3] ), "all" );
G = 3.ON: point stabilizer L3(7).2, ranks [ 11, 11 ]
[ "1a+495ab+10944a+26752a+32395b+52668a+58653bc+63612ab",
"1a+495cd+10944a+26752a+32395a+52668a+58653bc+63612ab" ]
gap> VerifyCandidates( CharacterTable( "L3(7)" ), tbl, 0,
> Concatenation( faith[2], faith[4] ), "all" );
G = 3.ON: point stabilizer L3(7), ranks [ 15, 15 ]
[ "1a+495ab+10944a+26752a+32395b+37696a+52668a+58653bc+63612ab+85064a+122760ab\
",
"1a+495cd+10944a+26752a+32395a+37696a+52668a+58653bc+63612ab+85064a+122760ab\
" ]
gap> CompareWithDatabase( "3.ON", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.27">
3.27</a> G = 3.ON.2</h3>
<div class="p"><!----></div>
The group 3.ON.2 has no faithful multiplicity-free permutation action.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "3.ON.2" );;
gap> faith:= FaithfulCandidates( tbl2, "ON.2" );;
gap> CompareWithDatabase( "3.ON.2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.28">
3.28</a> G = 2.Fi<sub>22</sub></h3>
<div class="p"><!----></div>
The group 2.Fi<sub>22</sub> has seven faithful multiplicity-free permutation
actions, with point stabilizers of the types O<sub>7</sub>(3) (twice), O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>
(twice), O<sub>8</sub><sup>+</sup>(2):3, and O<sub>8</sub><sup>+</sup>(2):2 (twice).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.Fi22" );;
gap> faith:= FaithfulCandidates( tbl, "Fi22" );;
2: subgroup $O_7(3)$, degree 28160 (2 cand.)
3: subgroup $O_7(3)$, degree 28160 (2 cand.)
4: subgroup $O_8^+(2).3.2$, degree 123552 (2 cand.)
5: subgroup $O_8^+(2).3 \leq O_8^+(2).3.2$, degree 247104 (1 cand.)
6: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2$, degree 370656 (2 cand.)
</pre>
<div class="p"><!----></div>
The two classes of maximal subgroups of the type O<sub>7</sub>(3) in Fi<sub>22</sub> induce
the same permutation character and lift to two classes of the type
2 ×O<sub>7</sub>(3) in 2.Fi<sub>22</sub>.
We get the same two candidates for these two classes.
One of them belongs to the first class of O<sub>7</sub>(3) subgroups in 2.Fi<sub>22</sub>,
the other candidate belongs to the second class;
this can be seen from the fact that the outer automorphism of Fi<sub>22</sub>
swaps the two classes of O<sub>7</sub>(3) subgroups, and the lift of this automorphism
to 2.Fi<sub>22</sub> interchanges the candidates
-this action can be read off from the embedding of 2.Fi<sub>22</sub> into any group
of the type 2.Fi<sub>22</sub>.2.
<div class="p"><!----></div>
<pre>
gap> faith[2] = faith[3];
true
gap> tbl2:= CharacterTable("2.Fi22.2");;
gap> embed:= GetFusionMap( tbl, tbl2 );;
gap> swapped:= Filtered( InverseMap( embed ), IsList );
[ [ 3, 4 ], [ 17, 18 ], [ 25, 26 ], [ 27, 28 ], [ 33, 34 ], [ 36, 37 ],
[ 42, 43 ], [ 51, 52 ], [ 59, 60 ], [ 63, 65 ], [ 64, 66 ], [ 71, 72 ],
[ 73, 75 ], [ 74, 76 ], [ 81, 82 ], [ 85, 87 ], [ 86, 88 ], [ 89, 90 ],
[ 93, 94 ], [ 95, 98 ], [ 96, 97 ], [ 99, 100 ], [ 103, 104 ],
[ 107, 110 ], [ 108, 109 ], [ 113, 114 ] ]
gap> perm:= Product( List( swapped, pair -> ( pair[1], pair[2] ) ) );;
gap> Permuted( faith[2][1], perm ) = faith[2][2];
true
gap> VerifyCandidates( CharacterTable( "O7(3)" ), tbl, 0, faith[2], "all" );
G = 2.Fi22: point stabilizer O7(3), ranks [ 5, 5 ]
[ "1a+352a+429a+13650a+13728b", "1a+352a+429a+13650a+13728a" ]
gap> faith[2]:= [ faith[2][1] ];;
gap> faith[3]:= [ faith[3][2] ];;
</pre>
<div class="p"><!----></div>
All involutions in Fi<sub>22</sub> lift to involutions in 2.Fi<sub>22</sub>,
so the preimages of the maximal subgroups of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>
in Fi<sub>22</sub> have the type 2 ×O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>.
We apply Lemma <a href="#situationIII">2.3</a>, using that the two subgroups of the type
O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> contain involutions outside O<sub>8</sub><sup>+</sup>(2) which lie in the two
nonconjugate preimages of the class <tt>2A</tt> of Fi<sub>22</sub>;
this proves the existence of the two candidates of degree 123 552.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> s0:= CharacterTable( "O8+(2).3" );;
gap> facttbl:= CharacterTable( "Fi22" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl, "all" );
2.Fi22: O8+(2).3.2 lifts to a direct product,
proved by squares in [ 1, 8, 10, 12, 20, 23, 30, 46, 55, 61, 91 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, 0, faith[4], "all" );
G = 2.Fi22: point stabilizer O8+(2).3.2, ranks [ 6, 6 ]
[ "1a+3080a+13650a+13728b+45045a+48048c",
"1a+3080a+13650a+13728a+45045a+48048b" ]
</pre>
<div class="p"><!----></div>
The existence of one class of O<sub>8</sub><sup>+</sup>(2).3 subgroups follows from
Lemma <a href="#situationI">2.1</a>, and the proof for O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> also establishes
two classes of O<sub>8</sub><sup>+</sup>(2).2 subgroups, with different permutation characters,
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, 0, faith[5], "all" );
G = 2.Fi22: point stabilizer O8+(2).3, ranks [ 11 ]
[ "1a+1001a+3080a+10725a+13650a+13728ab+45045a+48048bc+50050a" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[6], "all" );
G = 2.Fi22: point stabilizer O8+(2).2, ranks [ 11, 11 ]
[ "1a+352a+429a+3080a+13650a+13728b+45045a+48048ac+75075a+123200a",
"1a+352a+429a+3080a+13650a+13728a+45045a+48048ab+75075a+123200a" ]
gap> CompareWithDatabase( "2.Fi22", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.29">
3.29</a> G = 2.Fi<sub>22</sub>.2</h3>
<div class="p"><!----></div>
The group 2.Fi<sub>22</sub>.2 that is printed in the A<font size="-2">TLAS</font> has seven faithful
multiplicity-free permutation actions,
with point stabilizers of the types O<sub>7</sub>(3), O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>,
O<sub>8</sub><sup>+</sup>(2):3 ×2 (twice), O<sub>8</sub><sup>+</sup>(2):2, and <sup>2</sup>F<sub>4</sub>(2) (twice).
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "2.Fi22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
3: subgroup $O_7(3)$, degree 56320 (1 cand.)
5: subgroup $O_8^+(2).3.2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
6: subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
10: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
16: subgroup ${^2F_4(2)}$, degree 7185024 (1 cand.)
</pre>
<div class="p"><!----></div>
The third, fifth, and tenth multiplicity-free permutation character of
Fi<sub>22</sub>.2 are induced from subgroups of the types O<sub>7</sub>(3), O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>,
and O<sub>8</sub><sup>+</sup>(2).2 that lie inside Fi<sub>22</sub>, and we have discussed above that
these groups lift to direct products in 2.Fi<sub>22</sub>.
In fact all such subgroups of 2.Fi<sub>22</sub>.2 lie inside 2.Fi<sub>22</sub>,
and the two classes of such subgroups in 2.Fi<sub>22</sub> are fused in
2.Fi<sub>22</sub>.2, hence we get only one class of these subgroups.
<div class="p"><!----></div>
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "O7(3)" ), tbl, tbl2, faith[3], "all" );
G = 2.Fi22.2: point stabilizer O7(3), ranks [ 9 ]
[ "1a^{\\pm}+352a^{\\pm}+429a^{\\pm}+13650a^{\\pm}+13728ab" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, tbl2, faith[5], "all" );
G = 2.Fi22.2: point stabilizer O8+(2).3.2, ranks [ 10 ]
[ "1a^{\\pm}+3080a^{\\pm}+13650a^{\\pm}+13728ab+45045a^{\\pm}+48048bc" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, tbl2, faith[10], "all" );
G = 2.Fi22.2: point stabilizer O8+(2).2, ranks [ 20 ]
[ "1a^{\\pm}+352a^{\\pm}+429a^{\\pm}+3080a^{\\pm}+13650a^{\\pm}+13728ab+45045a\
^{\\pm}+48048a^{\\pm}bc+75075a^{\\pm}+123200a^{\\pm}" ]
</pre>
<div class="p"><!----></div>
The sixth multiplicity-free permutation character of Fi<sub>22</sub>.2
is induced from a subgroup of the type O<sub>8</sub><sup>+</sup>(2).3 ×2 that does not lie
inside Fi<sub>22</sub>.
As we have discussed above, the O<sub>8</sub><sup>+</sup>(2).3 type subgroup of Fi<sub>22</sub>
lifts to a subgroup of the type 2 ×O<sub>8</sub><sup>+</sup>(2).3 in 2.Fi<sub>22</sub>,
and the outer involutions in the subgroup O<sub>8</sub><sup>+</sup>(2).3 ×2 of Fi<sub>22</sub>.2
lift to involutions in 2.Fi<sub>22</sub>.2, so there are two subgroups of the type
O<sub>8</sub><sup>+</sup>(2).3 ×2 not containing the centre of 2.Fi<sub>22</sub>.2,
which induce the same permutation character.
Since also 2.Fi<sub>22</sub> contains subgroups of the type O<sub>8</sub><sup>+</sup>(2).3 ×2,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );
G = 2.Fi22.2: point stabilizer O8+(2).3xC2, ranks [ 9 ]
[ "1a^++1001a^-+3080a^++10725a^++13650a^++13728ab+45045a^++48048bc+50050a^+" ]
gap> faith[6]:= faith[6]{ [ 1, 1 ] };;
</pre>
<div class="p"><!----></div>
By Lemma <a href="#situationIII">2.3</a>, the subgroup <sup>2</sup>F<sub>4</sub>(2) of Fi<sub>22</sub>.2 lifts
to 2 ×<sup>2</sup>F<sub>4</sub>(2) in 2.Fi<sub>22</sub>.2;
for that, note that the class <tt>4D</tt> of <sup>2</sup>F<sub>4</sub>(2) does not lie inside
<sup>2</sup>F<sub>4</sub>(2)<sup>′</sup> and the preimages in 2.Fi<sub>22</sub>.2 of the images in
Fi<sub>22</sub>.2 square into the subgroup <sup>2</sup>F<sub>4</sub>(2)<sup>′</sup> of the direct
product 2 ×<sup>2</sup>F<sub>4</sub>(2)<sup>′</sup>.
Since the group 2 ×<sup>2</sup>F<sub>4</sub>(2) contains two subgroups of the type
<sup>2</sup>F<sub>4</sub>(2), with normalizer 2 ×<sup>2</sup>F<sub>4</sub>(2), there are two classes
of such subgroups, which induce the same permutation character.
<div class="p"><!----></div>
<pre>
gap> facttbl:= CharacterTable( "Fi22.2" );;
gap> s0:= CharacterTable( "2F4(2)'" );;
gap> s:= CharacterTable( "2F4(2)" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
2.Fi22.2: 2F4(2)'.2 lifts to a direct product,
proved by squares in [ 5, 38, 53 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[16], "all" );
G = 2.Fi22.2: point stabilizer 2F4(2)'.2, ranks [ 13 ]
[ "1a^++1001a^++1430a^++13650a^++30030a^++133056a^{\\pm}+289575a^-+400400ab+57\
9150a^++675675a^-+1201200a^-+1663200ab" ]
gap> faith[16]:= faith[16]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "2.Fi22.2", faith );
</pre>
<div class="p"><!----></div>
The group (2.Fi<sub>22</sub>.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has seven faithful multiplicity-free permutation actions,
with point stabilizers of the types O<sub>7</sub>(3), O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (three times),
and O<sub>8</sub><sup>+</sup>(2):2 (three times).
<div class="p"><!----></div>
<pre>
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
3: subgroup $O_7(3)$, degree 56320 (1 cand.)
5: subgroup $O_8^+(2).3.2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
7: subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
1 cand.)
10: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
11: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
</pre>
<div class="p"><!----></div>
The characters arising from the third, fifth, and tenth multiplicity-free
permutation character of Fi<sub>22</sub>.2 are induced from subgroups of
2.Fi<sub>22</sub>, so these actions have been verified above.
<div class="p"><!----></div>
The seventh multiplicity-free permutation character of Fi<sub>22</sub>.2 is induced
from an O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type subgroup that does not lie inside Fi<sub>22</sub>.
By Lemma <a href="#situationIII">2.3</a> (i), this subgroup lifts to a direct
product in (2.Fi<sub>22</sub>.2)<sup>∗</sup>;
this yields two actions
(because the O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type subgroups have index 2 in their normalizer),
which induce the same permutation character.
Note that the involutions in O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> \O<sub>8</sub><sup>+</sup>(2) lie in the
class <tt>2F</tt> of Fi<sub>22</sub>.2, and these elements lift to involutions in
(2.Fi<sub>22</sub>.2)<sup>∗</sup>.
Since also 2.Fi<sub>22</sub> contains subgroups of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.
<div class="p"><!----></div>
This argument also proves the existence of two classes of O<sub>8</sub><sup>+</sup>(2):2 type
subgroups that are not contained in 2.Fi<sub>22</sub>;
they arise from the 11th multiplicity-free permutation character
of Fi<sub>22</sub>.2.
<div class="p"><!----></div>
<pre>
gap> s0:= CharacterTable( "O8+(2).3" );;
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
Isoclinic(2.Fi22.2): O8+(2).3.2 lifts to a direct product,
proved by squares in [ 1, 7, 9, 11, 18, 21, 26, 39, 47, 52, 73 ].
gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
G = Isoclinic(2.Fi22.2): point stabilizer O8+(2).3.2, ranks [ 9 ]
[ "1a^++1001a^++3080a^++10725a^-+13650a^++13728ab+45045a^++48048bc+50050a^-" ]
gap> faith[7]:= faith[7]{ [ 1, 1 ] };;
gap> s:= CharacterTable( "O8+(2).2" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
G = Isoclinic(2.Fi22.2): point stabilizer O8+(2).2, ranks [ 19 ]
[ "1a^++352a^{\\pm}+429a^{\\pm}+1001a^++3080a^++10725a^-+13650a^++13728ab+4504\
5a^++48048a^{\\pm}bc+50050a^-+75075a^{\\pm}+123200a^{\\pm}" ]
gap> faith[11]:= faith[11]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "Isoclinic(2.Fi22.2)", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.30">
3.30</a> G = 3.Fi<sub>22</sub></h3>
<div class="p"><!----></div>
The group 3.Fi<sub>22</sub> has six faithful multiplicity-free permutation actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>, O<sub>8</sub><sup>+</sup>(2):3 (twice),
O<sub>8</sub><sup>+</sup>(2):2, 2<sup>6</sup>:S<sub>6</sub>(2), and <sup>2</sup>F<sub>4</sub>(2).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "3.Fi22" );;
gap> faith:= FaithfulCandidates( tbl, "Fi22" );;
4: subgroup $O_8^+(2).3.2$, degree 185328 (1 cand.)
5: subgroup $O_8^+(2).3 \leq O_8^+(2).3.2$, degree 370656 (2 cand.)
6: subgroup $O_8^+(2).2 \leq O_8^+(2).3.2$, degree 555984 (1 cand.)
8: subgroup $2^6:S_6(2)$, degree 2084940 (1 cand.)
9: subgroup ${^2F_4(2)^{\prime}}$, degree 10777536 (1 cand.)
</pre>
<div class="p"><!----></div>
The preimages of the maximal subgroups of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> in Fi<sub>22</sub>
have the type 3 ×O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>,
because the Schur multiplier of O<sub>8</sub><sup>+</sup>(2) has order 4 and the only central
extension of S<sub>3</sub> by a group of order 3 is 3 ×S<sub>3</sub>.
Each such preimage contains one subgroup of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>
with one subgroup of the type O<sub>8</sub><sup>+</sup>(2).3,
two conjugate O<sub>8</sub><sup>+</sup>(2).3 subgroups which are not contained in O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>,
and one class of O<sub>8</sub><sup>+</sup>(2).2 subgroups.
The two classes of O<sub>8</sub><sup>+</sup>(2).3 subgroups contain elements of order 3
outside O<sub>8</sub><sup>+</sup>(2) which lie in nonconjugate preimages of the class <tt>3A</tt>
of Fi<sub>22</sub>, so we get two classes of O<sub>8</sub><sup>+</sup>(2).3 subgroups in 3.Fi<sub>22</sub>
which induce different permutation characters.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, 0, faith[4], "all" );
G = 3.Fi22: point stabilizer O8+(2).3.2, ranks [ 10 ]
[ "1a+351ab+3080a+13650a+19305ab+42120ab+45045a" ]
gap> s:= CharacterTable( "O8+(2).3" );;
gap> fus:= PossibleClassFusions( s, tbl );;
gap> facttbl:= CharacterTable( "Fi22" );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> outer:= Difference( [ 1 .. NrConjugacyClasses( s ) ],
> ClassPositionsOfDerivedSubgroup( s ) );;
gap> outerfus:= List( fus, map -> map{ outer } );
[ [ 13, 13, 18, 18, 46, 46, 50, 50, 59, 59, 75, 75, 95, 95, 98, 98, 95, 95,
116, 116, 142, 142, 148, 148, 157, 157, 160, 160 ],
[ 14, 15, 18, 18, 47, 48, 51, 52, 59, 59, 76, 77, 96, 97, 99, 100, 96, 97,
116, 116, 143, 144, 149, 150, 158, 159, 161, 162 ],
[ 15, 14, 18, 18, 48, 47, 52, 51, 59, 59, 77, 76, 97, 96, 100, 99, 97, 96,
116, 116, 144, 143, 150, 149, 159, 158, 162, 161 ] ]
gap> preim:= InverseMap( factfus )[5];
[ 13, 14, 15 ]
gap> List( outerfus, x -> List( preim, i -> i in x ) );
[ [ true, false, false ], [ false, true, true ], [ false, true, true ] ]
gap> VerifyCandidates( s, tbl, 0, faith[5], "all" );
G = 3.Fi22: point stabilizer O8+(2).3, ranks [ 11, 17 ]
[ "1a+1001a+3080a+10725a+13650a+27027ab+45045a+50050a+96525ab",
"1a+351ab+1001a+3080a+7722ab+10725a+13650a+19305ab+42120ab+45045a+50050a+540\
54ab" ]
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[6], "all" );
G = 3.Fi22: point stabilizer O8+(2).2, ranks [ 17 ]
[ "1a+351ab+429a+3080a+13650a+19305ab+27027ab+42120ab+45045a+48048a+75075a+965\
25ab" ]
</pre>
<div class="p"><!----></div>
Lemma <a href="#situationI">2.1</a> applies to the maximal subgroups of the types
2<sup>6</sup>:S<sub>6</sub>(2) and <sup>2</sup>F<sub>4</sub>(2)<sup>′</sup> in Fi<sub>22</sub> and their preimages
in 3.Fi<sub>22</sub>.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "2^6:s6f2" ), tbl, 0, faith[8], "all" );
G = 3.Fi22: point stabilizer 2^6:s6f2, ranks [ 24 ]
[ "1a+351ab+429a+1430a+3080a+13650a+19305ab+27027ab+30030a+42120ab+45045a+7507\
5a+96525ab+123552ab+205920a+320320a+386100ab" ]
gap> VerifyCandidates( CharacterTable( "2F4(2)'" ), tbl, 0, faith[9], "all" );
G = 3.Fi22: point stabilizer 2F4(2)', ranks [ 25 ]
[ "1a+1001a+1430a+13650a+19305ab+27027ab+30030a+51975ab+289575a+386100ab+40040\
0ab+405405ab+579150a+675675a+1201200a+1351350efgh" ]
gap> CompareWithDatabase( "3.Fi22", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.31">
3.31</a> G = 3.Fi<sub>22</sub>.2</h3>
<div class="p"><!----></div>
The group 3.Fi<sub>22</sub>.2 has seven faithful multiplicity-free permutation
actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> ×2,
O<sub>8</sub><sup>+</sup>(2):3 ×2, O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (twice), O<sub>8</sub><sup>+</sup>(2):2 ×2,
2<sup>7</sup>:S<sub>6</sub>(2), and <sup>2</sup>F<sub>4</sub>(2).
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "3.Fi22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
4: subgroup $O_8^+(2).3.2 \times 2$, degree 185328 (1 cand.)
6: subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 370656 (
1 cand.)
7: subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 370656 (
2 cand.)
8: subgroup $O_8^+(2).2 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 555984 (
1 cand.)
9: subgroup $O_8^+(2).3 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
14: subgroup $2^7:S_6(2)$, degree 2084940 (1 cand.)
16: subgroup ${^2F_4(2)}$, degree 10777536 (1 cand.)
</pre>
<div class="p"><!----></div>
Let H be a subgroup of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> ×2 in Fi<sub>22</sub>.2;
it induces the 4th multiplicity-free permutation character of Fi<sub>22</sub>.2.
The intersection of H with Fi<sub>22</sub> is of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>;
it lifts to a direct product in 3.Fi<sub>22</sub>, which contains one subgroup
of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> that is normal in the preimage of H.
By Lemma <a href="#situationII">2.2</a>, we get one class of subgroups of the type
O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> ×2 in 3.Fi<sub>22</sub>.2.
The same argument yields one class of each of the types O<sub>8</sub><sup>+</sup>(2):3 ×2
and O<sub>8</sub><sup>+</sup>(2):2 ×2,
which arise from the 6th and 8th multiplicity-free permutation character
of Fi<sub>22</sub>.2, respectively.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "O8+(2).S3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[4], "all" );
G = 3.Fi22.2: point stabilizer O8+(2).3.2xC2, ranks [ 7 ]
[ "1a^++351ab+3080a^++13650a^++19305ab+42120ab+45045a^+" ]
gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
G = 3.Fi22.2: point stabilizer O8+(2).3xC2, ranks [ 12 ]
[ "1a^++351ab+1001a^-+3080a^++7722ab+10725a^++13650a^++19305ab+42120ab+45045a^\
++50050a^++54054ab" ]
gap> s:= CharacterTable( "O8+(2).2" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[8], "all" );
G = 3.Fi22.2: point stabilizer O8+(2).2xC2, ranks [ 12 ]
[ "1a^++351ab+429a^++3080a^++13650a^++19305ab+27027ab+42120ab+45045a^++48048a^\
++75075a^++96525ab" ]
</pre>
<div class="p"><!----></div>
Let H be a subgroup of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> in Fi<sub>22</sub>.2 that is not
contained in Fi<sub>22</sub>; it induces the 7-th multiplicity-free
permutation character of Fi<sub>22</sub>.2.
The intersection of H with Fi<sub>22</sub> is of the type O<sub>8</sub><sup>+</sup>(2):3;
it lifts to a direct product in 3.Fi<sub>22</sub>, which contains four subgroups
of the type O<sub>8</sub><sup>+</sup>(2):3,
three of them not containing the centre of 3.Fi<sub>22</sub>.
By Lemma <a href="#situationII">2.2</a>, we get three subgroups of the type
O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> in 3.Fi<sub>22</sub>.2, two of which are conjugate;
they induce two different permutation characters, so we get two classes.
<div class="p"><!----></div>
(Since there are O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> type subgroups also inside 3.Fi<sub>22</sub>,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.)
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> facttbl:= CharacterTable("Fi22.2");;
gap> sfustbl2:= PossibleClassFusions( s, tbl2,
> rec( permchar:= faith[7][1] ) );;
gap> ForAll( sfustbl2,
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
G = 3.Fi22.2: point stabilizer O8+(2).3.2, ranks [ 9, 12 ]
[ "1a^++1001a^++3080a^++10725a^-+13650a^++27027ab+45045a^++50050a^-+96525ab",
"1a^++351ab+1001a^++3080a^++7722ab+10725a^-+13650a^++19305ab+42120ab+45045a^\
++50050a^-+54054ab" ]
</pre>
<div class="p"><!----></div>
The nineth multiplicity-free permutation character of Fi<sub>22</sub>.2
is induced from a subgroup of the type O<sub>8</sub><sup>+</sup>(2).3 that lies inside Fi<sub>22</sub>
and is known to lift to s group of the type 3 ×O<sub>8</sub><sup>+</sup>(2).3
in 3.Fi<sub>22</sub>.
All subgroups of index three in this group either contain the centre of
3.Fi<sub>22</sub> or have the type O<sub>8</sub><sup>+</sup>(2).3, and it turns out that the
permutation characters of 3.Fi<sub>22</sub>.2 induced from these subgroups are
not multiplicity-free.
So the candidate can be excluded.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, tbl2, faith[9], "all" );
G = 3.Fi22.2: no O8+(2).3
gap> faith[9]:= [];;
</pre>
<div class="p"><!----></div>
Lemma <a href="#situationII">2.2</a> guarantees the existence of one class of subgroups
of each of the types 2<sup>7</sup>:S<sub>6</sub>(2) and <sup>2</sup>F<sub>4</sub>(2).
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "2^7:S6(2)" ), tbl, tbl2, faith[14], "all" );
G = 3.Fi22.2: point stabilizer 2^7:S6(2), ranks [ 17 ]
[ "1a^++351ab+429a^++1430a^++3080a^++13650a^++19305ab+27027ab+30030a^++42120ab\
+45045a^++75075a^++96525ab+123552ab+205920a^++320320a^++386100ab" ]
gap> VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );
G = 3.Fi22.2: point stabilizer 2F4(2)'.2, ranks [ 17 ]
[ "1a^++1001a^++1430a^++13650a^++19305ab+27027ab+30030a^++51975ab+289575a^-+38\
6100ab+400400ab+405405ab+579150a^++675675a^-+1201200a^-+1351350efgh" ]
gap> CompareWithDatabase( "3.Fi22.2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.32">
3.32</a> G = 6.Fi<sub>22</sub></h3><a name="LMerror">
</a>
<div class="p"><!----></div>
The group 6.Fi<sub>22</sub> has six faithful multiplicity-free permutation actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (twice),
O<sub>8</sub><sup>+</sup>(2):3 (twice), and O<sub>8</sub><sup>+</sup>(2):2 (twice).
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "6.Fi22" );;
gap> facttbl:= CharacterTable( "3.Fi22" );;
gap> faith:= FaithfulCandidates( tbl, "3.Fi22" );;
1: subgroup $O_8^+(2):S_3 \rightarrow (Fi_{22},4)$, degree 370656 (2 cand.)
2: subgroup $O_8^+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
3: subgroup $O_8^+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
4: subgroup $O_8^+(2):2 \rightarrow (Fi_{22},6)$, degree 1111968 (2 cand.)
</pre>
<div class="p"><!----></div>
From the discussion of the cases 2.Fi<sub>22</sub> and 3.Fi<sub>22</sub>,
we conclude that the maximal subgroups of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> lift to
groups of the type 6 ×O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> in 6.Fi<sub>22</sub>.
So Lemma <a href="#situationIII">2.3</a> (iii) yields two classes of O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type
subgroups, which induce different permutation characters.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> s0:= CharacterTable( "O8+(2).3" );;
gap> CheckConditionsForLemma3( s0, s, facttbl, tbl, "all" );
6.Fi22: O8+(2).3.2 lifts to a direct product,
proved by squares in [ 1, 22, 28, 30, 46, 55, 76, 104, 131, 141, 215 ].
gap> derpos:= ClassPositionsOfDerivedSubgroup( s );;
gap> factfus:= GetFusionMap( tbl, facttbl );;
gap> ForAll( PossibleClassFusions( s, tbl ),
> map -> NecessarilyDifferentPermChars( map, factfus, derpos ) );
true
gap> VerifyCandidates( s, tbl, 0, faith[1], "all" );
G = 6.Fi22: point stabilizer O8+(2).3.2, ranks [ 14, 14 ]
[ "1a+351ab+3080a+13650a+13728b+19305ab+42120ab+45045a+48048c+61776cd",
"1a+351ab+3080a+13650a+13728a+19305ab+42120ab+45045a+48048b+61776ab" ]
</pre>
<div class="p"><!----></div>
Each subgroup of the type O<sub>8</sub><sup>+</sup>(2):3 in 3.Fi<sub>22</sub> lifts to a direct product
in 6.Fi<sub>22</sub>, which yields one action;
as the two constituents that are permutation characters of 3.Fi<sub>22</sub>
are different,
we get two different permutation characters induced from O<sub>8</sub><sup>+</sup>(2):3.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, 0,
> Concatenation( faith[2], faith[3] ), "all" );
G = 6.Fi22: point stabilizer O8+(2).3, ranks [ 17, 25 ]
[ "1a+1001a+3080a+10725a+13650a+13728ab+27027ab+45045a+48048bc+50050a+96525ab+\
123552cd",
"1a+351ab+1001a+3080a+7722ab+10725a+13650a+13728ab+19305ab+42120ab+45045a+48\
048bc+50050a+54054ab+61776abcd" ]
</pre>
<div class="p"><!----></div>
Each subgroup of the type O<sub>8</sub><sup>+</sup>(2):2 in 3.Fi<sub>22</sub> lifts to a direct product
in 6.Fi<sub>22</sub>, which yields two actions; the permutation characters are
different by the argument used for O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[4], "all" );
G = 6.Fi22: point stabilizer O8+(2).2, ranks [ 25, 25 ]
[ "1a+351ab+352a+429a+3080a+13650a+13728b+19305ab+27027ab+42120ab+45045a+48048\
ac+61776cd+75075a+96525ab+123200a+123552cd",
"1a+351ab+352a+429a+3080a+13650a+13728a+19305ab+27027ab+42120ab+45045a+48048\
ab+61776ab+75075a+96525ab+123200a+123552cd" ]
gap> CompareWithDatabase( "6.Fi22", faith );
</pre>
<div class="p"><!----></div>
(Note that the rank 17 permutation character above was missing in the first
version of [<a href="#LM03" name="CITELM03">LM</a>].)
<div class="p"><!----></div>
<h3><a name="tth_sEc3.33">
3.33</a> G = 6.Fi<sub>22</sub>.2</h3>
<div class="p"><!----></div>
The group 6.Fi<sub>22</sub>.2 that is printed in the A<font size="-2">TLAS</font> has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):3 ×2 (twice)
and <sup>2</sup>F<sub>4</sub>(2) (twice).
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "6.Fi22.2" );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
6: subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (
1 cand.)
16: subgroup ${^2F_4(2)}$, degree 21555072 (1 cand.)
</pre>
<div class="p"><!----></div>
Each O<sub>8</sub><sup>+</sup>(2):3 ×2 type subgroup of 3.Fi<sub>22</sub>.2 gives rise to two
subgroups of the same type in 6.Fi<sub>22</sub>.2, so we get two classes inducing
the same permutation character.
(Since there are O<sub>8</sub><sup>+</sup>(2).3 ×2 type subgroups also inside 6.Fi<sub>22</sub>,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.)
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
gap> VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );
G = 6.Fi22.2: point stabilizer O8+(2).3xC2, ranks [ 16 ]
[ "1a^++351ab+1001a^-+3080a^++7722ab+10725a^++13650a^++13728ab+19305ab+42120ab\
+45045a^++48048bc+50050a^++54054ab+61776adbc" ]
</pre>
<div class="p"><!----></div>
The subgroup of the type 6 ×<sup>2</sup>F<sub>4</sub>(2)<sup>′</sup> of 6.Fi<sub>22</sub> extends
to 6 ×<sup>2</sup>F<sub>4</sub>(2) in 6.Fi<sub>22</sub>.2, which contains two subgroups
of the type <sup>2</sup>F<sub>4</sub>(2), by Lemma <a href="#situationIII">2.3</a>;
so we get two classes of such subgroups,
which induce the same permutation character.
<div class="p"><!----></div>
<pre>
gap> VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );
G = 6.Fi22.2: point stabilizer 2F4(2)'.2, ranks [ 22 ]
[ "1a^++1001a^++1430a^++13650a^++19305ab+27027ab+30030a^++51975ab+133056a^{\\p\
m}+289575a^-+386100ab+400400ab+405405ab+579150a^++675675a^-+1201200a^-+1351350\
efgh+1663200ab+1796256adbc" ]
gap> faith[6]:= faith[6]{ [ 1, 1 ] };;
gap> faith[16]:= faith[16]{ [ 1, 1 ] };;
gap> CompareWithDatabase( "6.Fi22.2", faith );
</pre>
<div class="p"><!----></div>
The group (6.Fi<sub>22</sub>.2)<sup>∗</sup> of the isoclinism type that is not printed
in the A<font size="-2">TLAS</font> has two faithful multiplicity-free permutation actions,
with point stabilizers of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (twice).
<div class="p"><!----></div>
<pre>
gap> facttbl:= CharacterTable( "Fi22.2" );;
gap> tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
gap> faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
7: subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 741312 (
2 cand.)
</pre>
<div class="p"><!----></div>
The existence of O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type subgroups (not contained in 6.Fi<sub>22</sub>)
follows from Lemma <a href="#situationII">2.2</a> and the existence of these subgroups in
(2.Fi<sub>22</sub>.2)<sup>∗</sup>; we get one class for each of the two classes in
(2.Fi<sub>22</sub>.2)<sup>∗</sup>, with different permutation characters.
<div class="p"><!----></div>
<pre>
gap> s:= CharacterTable( "O8+(2).S3" );;
gap> VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
G = Isoclinic(6.Fi22.2): point stabilizer O8+(2).3.2, ranks [ 12, 16 ]
[ "1a^++1001a^++3080a^++10725a^-+13650a^++13728ab+27027ab+45045a^++48048bc+500\
50a^-+96525ab+123552cd",
"1a^++351ab+1001a^++3080a^++7722ab+10725a^-+13650a^++13728ab+19305ab+42120ab\
+45045a^++48048bc+50050a^-+54054ab+61776adbc" ]
gap> CompareWithDatabase( "Isoclinic(6.Fi22.2)", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.34">
3.34</a> G = 2.Co<sub>1</sub></h3>
<div class="p"><!----></div>
The group 2.Co<sub>1</sub> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Co<sub>2</sub> and Co<sub>3</sub>,
respectively, by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.Co1" );;
gap> faith:= FaithfulCandidates( tbl, "Co1" );;
1: subgroup $Co_2$, degree 196560 (1 cand.)
5: subgroup $Co_3$, degree 16773120 (1 cand.)
gap> VerifyCandidates( CharacterTable( "Co2" ), tbl, 0, faith[1], "all" );
G = 2.Co1: point stabilizer Co2, ranks [ 7 ]
[ "1a+24a+299a+2576a+17250a+80730a+95680a" ]
gap> VerifyCandidates( CharacterTable( "Co3" ), tbl, 0, faith[5], "all" );
G = 2.Co1: point stabilizer Co3, ranks [ 12 ]
[ "1a+24a+299a+2576a+17250a+80730a+95680a+376740a+1841840a+2417415a+5494125a+6\
446440a" ]
gap> CompareWithDatabase( "2.Co1", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.35">
3.35</a> G = 3.F<sub>3+</sub></h3>
<div class="p"><!----></div>
The group 3.F<sub>3+</sub> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Fi<sub>23</sub> and O<sub>10</sub><sup>−</sup>(2),
respectively, by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "3.F3+" );;
gap> faith:= FaithfulCandidates( tbl, "F3+" );;
1: subgroup $Fi_{23}$, degree 920808 (1 cand.)
2: subgroup $O_{10}^-(2)$, degree 150532080426 (1 cand.)
gap> VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[1], "all" );
G = 3.F3+: point stabilizer Fi23, ranks [ 7 ]
[ "1a+783ab+57477a+249458a+306153ab" ]
gap> VerifyCandidates( CharacterTable( "O10-(2)" ), tbl, 0, faith[2], "all" );
G = 3.F3+: point stabilizer O10-(2), ranks [ 43 ]
[ "1a+783ab+8671a+57477a+64584ab+249458a+306153ab+555611a+1666833a+6724809ab+1\
9034730ab+35873145a+43779879ab+48893768a+79452373a+195019461ab+203843871ab+415\
098112a+1050717096ab+1264015025a+1540153692a+1818548820ab+2346900864a+32086535\
25a+10169903744a+10726070355ab+13904165275a+15016498497ab+17161712568a+2109675\
1104ab" ]
gap> CompareWithDatabase( "3.F3+", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.36">
3.36</a> G = 3.F<sub>3+</sub>.2</h3>
<div class="p"><!----></div>
The group 3.F<sub>3+</sub>.2 has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Fi<sub>23</sub> ×2 and O<sub>10</sub><sup>−</sup>(2).2,
respectively, by Lemma <a href="#situationII">2.2</a>.
<div class="p"><!----></div>
<pre>
gap> tbl2:= CharacterTable( "3.F3+.2" );;
gap> faith:= FaithfulCandidates( tbl2, "F3+.2" );;
1: subgroup $Fi_{23} \times 2$, degree 920808 (1 cand.)
3: subgroup $O_{10}^-(2).2$, degree 150532080426 (1 cand.)
gap> VerifyCandidates( CharacterTable( "2xFi23" ), tbl, tbl2, faith[1], "all" );
G = 3.F3+.2: point stabilizer 2xFi23, ranks [ 5 ]
[ "1a^++783ab+57477a^++249458a^++306153ab" ]
gap> VerifyCandidates( CharacterTable( "O10-(2).2" ), tbl, tbl2, faith[3], "all" );
G = 3.F3+.2: point stabilizer O10-(2).2, ranks [ 30 ]
[ "1a^++783ab+8671a^-+57477a^++64584ab+249458a^++306153ab+555611a^-+1666833a^+\
+6724809ab+19034730ab+35873145a^++43779879ab+48893768a^-+79452373a^++195019461\
ab+203843871ab+415098112a^-+1050717096ab+1264015025a^++1540153692a^++181854882\
0ab+2346900864a^-+3208653525a^++10169903744a^-+10726070355ab+13904165275a^++15\
016498497ab+17161712568a^++21096751104ab" ]
gap> CompareWithDatabase( "3.F3+.2", faith );
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc3.37">
3.37</a> G = 2.B</h3>
<div class="p"><!----></div>
The group 2.B has one faithful multiplicity-free permutation action,
with point stabilizer of the type Fi<sub>23</sub>, by Lemma <a href="#situationI">2.1</a>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.B" );;
gap> faith:= FaithfulCandidates( tbl, "B" );;
4: subgroup $Fi_{23}$, degree 2031941058560000 (1 cand.)
gap> VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[4], "all" );
G = 2.B: point stabilizer Fi23, ranks [ 34 ]
[ "1a+4371a+96255a+96256a+9458750a+10506240a+63532485a+347643114a+356054375a+4\
10132480a+4221380670a+4275362520a+8844386304a+9287037474a+13508418144a+3665765\
3760a+108348770530a+309720864375a+635966233056a+864538761216a+1095935366250a+4\
322693806080a+6145833622500a+6619124890560a+10177847623680a+12927978301875a+38\
348970335820a+60780833777664a+89626740328125a+110949141022720a+211069033500000\
a+284415522641250b+364635285437500a+828829551513600a" ]
gap> CompareWithDatabase( "2.B", faith );
</pre>
<div class="p"><!----></div>
<h2><a name="tth_sEc4">
4</a> Appendix: Explicit Computations with Groups</h2><a name="explicit">
</a>
<div class="p"><!----></div>
Only in the proofs for the groups involving M<sub>22</sub>, explicit computations
with the groups were necessary.
These computations are collected in this appendix.
<div class="p"><!----></div>
<h3><a name="tth_sEc4.1">
4.1</a> 2<sup>4</sup>:A<sub>6</sub> type subgroups in 2.M<sub>22</sub></h3><a name="explicit1">
</a>
<div class="p"><!----></div>
We show that the preimage in 2.M<sub>22</sub> of each maximal subgroup of the type
2<sup>4</sup>:A<sub>6</sub> in M<sub>22</sub> contains one class of subgroups of the type
2 ×2<sup>4</sup>:A<sub>5</sub>.
For that, we first note that there are two classes of subgroups of the type
2<sup>4</sup>:A<sub>5</sub> inside 2<sup>4</sup>:A<sub>6</sub>, and that the A<sub>5</sub> subgroups lift to groups
of the type 2 ×A<sub>5</sub> because 2.M<sub>22</sub> does not admit an embedding of
2.A<sub>6</sub>.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "2.M22" );;
gap> PossibleClassFusions( CharacterTable( "2.A6" ), tbl );
[ ]
</pre>
<div class="p"><!----></div>
Now we fetch a permutation representation of 2.M<sub>22</sub> on 352 points,
from the A<font size="-2">TLAS</font> of Group Representations (see [<a href="#AGR" name="CITEAGR">Wil</a>]),
via the <font face="helvetica">GAP</font> package AtlasRep (see [<a href="#AtlasRep" name="CITEAtlasRep">Bre04a</a>]),
and compute generators for the second class of maximal subgroups,
via the straight line program for M<sub>22</sub>.
<div class="p"><!----></div>
<pre>
gap> LoadPackage( "atlasrep" );
true
gap> gens:= OneAtlasGeneratingSet( "2.M22", NrMovedPoints, 352 );;
gap> slp:= AtlasStraightLineProgram( "M22", "maxes", 2 );;
gap> sgens:= ResultOfStraightLineProgram( slp.program, gens.generators );;
gap> s:= Group( sgens );; Size( s );
11520
gap> 2^5 * 360;
11520
</pre>
<div class="p"><!----></div>
The subgroup acts intransitively on the 352 points.
We switch to the representation on 192 points,
and compute the normal subgroup N of order 2<sup>5</sup>.
<div class="p"><!----></div>
<pre>
gap> orbs:= Orbits( s, MovedPoints( s ) );;
gap> List( orbs, Length );
[ 160, 192 ]
gap> s:= Action( s, orbs[2] );;
gap> Size( s );
11520
gap> syl2:= SylowSubgroup( s, 2 );;
gap> repeat
> x:= Random( syl2 );
> n:= NormalClosure( s, SubgroupNC( s, [ x ] ) );
> until Size( n ) = 32;
</pre>
<div class="p"><!----></div>
The point stabilizer S in this group has type A<sub>5</sub>,
and generates together with N one of the desired subgroups of the type
2<sup>5</sup>:A<sub>5</sub>.
However, S does not normalize a subgroup of order 2<sup>4</sup>,
and so there is no subgroup of the type 2<sup>4</sup>:A<sub>5</sub>.
<div class="p"><!----></div>
<pre>
gap> stab:= Stabilizer( s, 192 );;
gap> sub:= ClosureGroup( n, stab );;
gap> Size( sub );
1920
gap> Set( List( Elements( n ),
> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) ) );
[ 1, 2, 32 ]
</pre>
<div class="p"><!----></div>
A representative of the other class of A<sub>5</sub> type subgroups can be found
by taking an element x of order three that is not conjugate to one in S,
and to choose an element y of order five such that the product is an
involution.
<div class="p"><!----></div>
<pre>
gap> syl3:= SylowSubgroup( s, 3 );;
gap> repeat three:= Random( stab ); until Order( three ) = 3;
gap> repeat other:= Random( syl3 );
> until Order( other ) = 3 and not IsConjugate( s, three, other );
gap> syl5:= SylowSubgroup( s, 5 );;
gap> repeat y:= Random( syl5 )^Random( s ); until Order( other*y ) = 2;
gap> a5:= Group( other, y );;
gap> IsConjugate( s, a5, stab );
false
gap> sub:= ClosureGroup( n, a5 );;
gap> Size( sub );
1920
gap> Set( List( Elements( n ),
> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) ) );
[ 1, 2, 16, 32 ]
</pre>
<div class="p"><!----></div>
This proves the existence of one class of the desired subgroups.
Finally, we show that the character table of these groups is indeed
the one we used in Section <a href="#libtbl">3.3</a>.
<div class="p"><!----></div>
<pre>
gap> g:= First( Elements( n ),
> x -> Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) = 16 );;
gap> compl:= ClosureGroup( a5, g );;
gap> Size( compl );
960
gap> tbl:= CharacterTable( compl );;
gap> IsRecord( TransformingPermutationsCharacterTables( tbl,
> CharacterTable( "P1/G1/L1/V1/ext2" ) ) );
true
</pre>
<div class="p"><!----></div>
<h3><a name="tth_sEc4.2">
4.2</a> 2<sup>4</sup>:S<sub>5</sub> type subgroups in M<sub>22</sub>.2</h3><a name="explicit2">
</a>
<div class="p"><!----></div>
A maximal subgroup of the type 2<sup>4</sup>:S<sub>6</sub> in M<sub>22</sub>.2 is perhaps easiest
found as the point stabilizer in the degree 77 permutation representation.
In order to find its index 6 subgroups,
the degree 22 permutation representation of M<sub>22</sub>.2 is more suitable
because the restriction to the 2<sup>4</sup>:S<sub>6</sub> type subgroup has orbits of the
lengths 6 and 16, where the action of the orbit of length 6 is the
natural permutation action of S<sub>6</sub>.
<div class="p"><!----></div>
So we choose the sum of the two representations, of total degree 99.
For convenience, we find this representation as the point stabilizer in the
degree 100 representation of HS.2, which is contained in the A<font size="-2">TLAS</font>
of Group Representations (see [<a href="#AGR" name="CITEAGR">Wil</a>]).
<div class="p"><!----></div>
<pre>
gap> gens:= OneAtlasGeneratingSet( "HS.2", NrMovedPoints, 100 );;
gap> stab:= Stabilizer( Group( gens.generators ), 100 );;
gap> orbs:= Orbits( stab, MovedPoints( stab ) );;
gap> List( orbs, Length );
[ 77, 22 ]
gap> pnt:= First( orbs, x -> Length( x ) = 77 )[1];;
gap> m:= Stabilizer( stab, pnt );;
gap> Size( m );
11520
</pre>
<div class="p"><!----></div>
Now we find two nonconjugate subgroups of the type 2<sup>4</sup>:S<sub>5</sub> as the stabilizer
of a point and of a total in S<sub>6</sub>, respectively (cf. [<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>,p. 4]).
<div class="p"><!----></div>
<pre>
gap> orbs:= Orbits( m, MovedPoints( m ) );;
gap> List( orbs, Length );
[ 60, 16, 6, 16 ]
gap> six:= First( orbs, x -> Length( x ) = 6 );;
gap> p:= ( six[1], six[2] )( six[3], six[4] )( six[5], six[6] );;
gap> conj:= ( six[2], six[4], six[5], six[6], six[3] );;
gap> total:= List( [ 0 .. 4 ], i -> p^( conj^i ) );;
gap> stab1:= Stabilizer( m, six[1] );;
gap> stab2:= Stabilizer( m, Set( total ), OnSets );;
gap> IsConjugate( m, stab1, stab2 );
false
</pre>
<div class="p"><!----></div>
We identify the character tables of the two groups in the <font face="helvetica">GAP</font> Character
Table Library.
<div class="p"><!----></div>
<pre>
gap> s1:= CharacterTable( stab1 );;
gap> s2:= CharacterTable( stab2 );;
gap> NrConjugacyClasses( s1 ); NrConjugacyClasses( s2 );
12
18
gap> lib1:= CharacterTable( "2^4:s5" );;
gap> IsRecord( TransformingPermutationsCharacterTables( lib1, s1 ) );
true
gap> lib2:= CharacterTable( "w(d5)" );;
gap> IsRecord( TransformingPermutationsCharacterTables( lib2, s2 ) );
true
</pre>
<div class="p"><!----></div>
The first subgroup does not lead to multiplicity-free permutation characters
of 2.M<sub>22</sub>.2.
Note that there are two classes of subgroups of this type in M<sub>22</sub>.2,
one of them is contained in M<sub>22</sub> and the other is not.
The action on the cosets of the former is multiplicity-free,
but it does not lift to a multiplicity-free candidate of 2.M<sub>22</sub>.2;
and the action on the cosets of the latter is not multiplicity-free.
<div class="p"><!----></div>
<pre>
gap> tbl:= CharacterTable( "M22" );;
gap> tbl2:= CharacterTable( "M22.2" );;
gap> s1fustbl2:= PossibleClassFusions( s1, tbl2 );
[ [ 1, 2, 2, 4, 4, 2, 5, 3, 7, 5, 10, 6 ],
[ 1, 2, 12, 15, 4, 2, 5, 3, 16, 15, 17, 6 ] ]
gap> pi:= List( s1fustbl2, map -> Induced( s1, tbl2,
> [ TrivialCharacter( s1 ) ], map )[1] );
[ Character( CharacterTable( "M22.2" ), [ 462, 46, 12, 6, 6, 2, 4, 0, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ),
Character( CharacterTable( "M22.2" ), [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0,
0, 56, 0, 0, 12, 2, 2, 0, 0, 0, 0 ] ) ]
gap> PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;
[ "1a^{\\pm}+21a^{\\pm}+55a^{\\pm}+154a^{\\pm}",
"1a^++21(a^+)^{2}+55a^++154a^++210a^+" ]
</pre>
<div class="p"><!----></div>
So only the second type of 2<sup>4</sup>:S<sub>5</sub> type subgroups can lift to the
multiplicity-free candidate in question,
and this situation is dealt with in Section <a href="#2.M22.2">3.4</a>.
<div class="p"><!----></div>
<pre>
gap> s2fustbl2:= PossibleClassFusions( s2, tbl2 );;
gap> pi:= List( s2fustbl2, map -> Induced( s2, tbl2,
> [ TrivialCharacter( s2 ) ], map )[1] );
[ Character( CharacterTable( "M22.2" ), [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0,
28, 20, 4, 8, 1, 2, 0, 1, 0, 0 ] ) ]
gap> PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;
[ "1a^++21a^++55a^++154a^++231a^-" ]
</pre>
<div class="p"><!----></div>
<h2>References</h2>
<dl compact="compact">
<dt><a href="#CITEBL96" name="BL96">[BL96]</a></dt><dd>
Thomas Breuer and Klaus Lux, <em>The multiplicity-free permutation characters
of the sporadic simple groups and their automorphism groups</em>, Comm. Alg.
<b>24</b> (1996), no. 7, 2293-2316.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEAtlasRep" name="AtlasRep">[Bre04a]</a></dt><dd>
Thomas Breuer, <em>Manual for the <font face="helvetica">GAP</font> 4 Package AtlasRep, Version 1.2</em>,
Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany,
2004.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITECTblLib" name="CTblLib">[Bre04b]</a></dt><dd>
Thomas Breuer, <em>Manual for the <font face="helvetica">GAP</font> Character Table Library, Version
1.1</em>, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany,
2004.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITECCN85" name="CCN85">[CCN<sup>+</sup>85]</a></dt><dd>
J[ohn] H. Conway, R[obert] T. Curtis, S[imon] P. Norton, R[ichard] A. Parker,
and R[obert] A. Wilson, <em>Atlas of finite groups</em>, Oxford University
Press, 1985.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEGAP4" name="GAP4">[GAP04]</a></dt><dd>
The GAP Group, <em>GAP - Groups, Algorithms, and Programming, Version
4.4</em>, 2004, <a href="http://www.gap-system.org"><tt>http://www.gap-system.org</tt></a>.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEHoe01" name="Hoe01">[Höh01]</a></dt><dd>
Ines Höhler, <em>Vielfachheitsfreie Permutationsdarstellungen und die
Invarianten zugehöriger Graphen</em>, Examensarbeit, Lehrstuhl D
für Mathematik, Rheinisch Westfälische
Technische Hochschule, Aachen, Germany, 2001.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITELM03" name="LM03">[LM]</a></dt><dd>
S. A. Linton and Z. E. Mpono, <em>Multiplicity-free permutation characters of
covering groups of sporadic simple groups</em>.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEMue03" name="Mue03">[Mül03]</a></dt><dd>
Jürgen Müller, <em>On endomorphism rings and character tables</em>,
Habilitationsschrift, Lehrstuhl D für Mathematik,
Rheinisch Westfälische Technische Hochschule,
Aachen, Germany, 2003.
<div class="p"><!----></div>
</dd>
<dt><a href="#CITEAGR" name="AGR">[Wil]</a></dt><dd>
Robert A. Wilson, <em>ATLAS of Finite Group Representations</em>,
<a href="http://www.mat.bham.ac.uk/atlas/"><tt>http://www.mat.bham.ac.uk/atlas/</tt></a>.</dd>
</dl>
<div class="p"><!----></div>
<div class="p"><!----></div>
<br /><br /><hr /><small>File translated from
T<sub><font size="-1">E</font></sub>X
by <a href="http://hutchinson.belmont.ma.us/tth/">
T<sub><font size="-1">T</font></sub>H</a>,
version 3.55.<br />On 31 Mar 2004, 10:54.</small>
</html>
|