File: multfre2.htm

package info (click to toggle)
gap-ctbllib 1r1p3-4
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 17,616 kB
  • ctags: 286
  • sloc: sh: 501; makefile: 49
file content (3147 lines) | stat: -rw-r--r-- 131,416 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
        "http://www.w3.org/TR/html4/loose.dtd">
<html>
<meta name="GENERATOR" content="TtH 3.55">
 <style type="text/css"> div.p { margin-top: 7pt;}</style>
 <style type="text/css"><!--
 td div.comp { margin-top: -0.6ex; margin-bottom: -1ex;}
 td div.comb { margin-top: -0.6ex; margin-bottom: -.6ex;}
 td div.hrcomp { line-height: 0.9; margin-top: -0.8ex; margin-bottom: -1ex;}
 td div.norm {line-height:normal;}
 span.roman {font-family: serif; font-style: normal; font-weight: normal;} 
 span.overacc2 {position: relative;  left: .8em; top: -1.2ex;}
 span.overacc1 {position: relative;  left: .6em; top: -1.2ex;} --></style>
 

         
<title> Multiplicity-Free Permutation Characters in GAP, part 2</title>
 
<h1 align="center">Multiplicity-Free Permutation Characters in GAP, part 2 </h1>
  <body bgcolor="FFFFFF"> 

<div class="p"><!----></div>

<h3 align="center"> T<font size="-2">HOMAS</font> B<font size="-2">REUER</font> <br />
<i>Lehrstuhl D f&#252;r Mathematik</i> <br />
<i>RWTH, 52056 Aachen, Germany</i> </h3>

<div class="p"><!----></div>

<h3 align="center">July 21th, 2003 </h3>

<div class="p"><!----></div>


<div class="p"><!----></div>
We complete the classification of the multiplicity-free permutation
actions of nearly simple groups that involve a sporadic simple group,
which had been started in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>] and&nbsp;[<a href="#LM03" name="CITELM03">LM</a>].

<div class="p"><!----></div>



<div class="p"><!----></div>

<h1>Contents </h1><a href="#tth_sEc1"
>1&nbsp; Introduction</a><br />
<a href="#tth_sEc2"
>2&nbsp; The Approach</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc2.1"
>2.1&nbsp; Computing Possible Permutation Characters</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc2.2"
>2.2&nbsp; Verifying the Candidates</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc2.3"
>2.3&nbsp; Isoclinic Groups</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc2.4"
>2.4&nbsp; Tests for <font face="helvetica">GAP</font></a><br />
<a href="#tth_sEc3"
>3&nbsp; The Groups</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.1"
>3.1&nbsp; G = 2.M<sub>12</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.2"
>3.2&nbsp; G = 2.M<sub>12</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.3"
>3.3&nbsp; G = 2.M<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.4"
>3.4&nbsp; G = 2.M<sub>22</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.5"
>3.5&nbsp; G = 3.M<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.6"
>3.6&nbsp; G = 3.M<sub>22</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.7"
>3.7&nbsp; G = 4.M<sub>22</sub> and G = 12.M<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.8"
>3.8&nbsp; G = 4.M<sub>22</sub>.2 and G = 12.M<sub>22</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.9"
>3.9&nbsp; G = 6.M<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.10"
>3.10&nbsp; G = 6.M<sub>22</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.11"
>3.11&nbsp; G = 2.J<sub>2</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.12"
>3.12&nbsp; G = 2.J<sub>2</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.13"
>3.13&nbsp; G = 2.HS</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.14"
>3.14&nbsp; G = 2.HS.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.15"
>3.15&nbsp; G = 3.J<sub>3</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.16"
>3.16&nbsp; G = 3.J<sub>3</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.17"
>3.17&nbsp; G = 3.McL</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.18"
>3.18&nbsp; G = 3.McL.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.19"
>3.19&nbsp; G = 2.Ru</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.20"
>3.20&nbsp; G = 2.Suz</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.21"
>3.21&nbsp; G = 2.Suz.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.22"
>3.22&nbsp; G = 3.Suz</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.23"
>3.23&nbsp; G = 3.Suz.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.24"
>3.24&nbsp; G = 6.Suz</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.25"
>3.25&nbsp; G = 6.Suz.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.26"
>3.26&nbsp; G = 3.ON</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.27"
>3.27&nbsp; G = 3.ON.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.28"
>3.28&nbsp; G = 2.Fi<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.29"
>3.29&nbsp; G = 2.Fi<sub>22</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.30"
>3.30&nbsp; G = 3.Fi<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.31"
>3.31&nbsp; G = 3.Fi<sub>22</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.32"
>3.32&nbsp; G = 6.Fi<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.33"
>3.33&nbsp; G = 6.Fi<sub>22</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.34"
>3.34&nbsp; G = 2.Co<sub>1</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.35"
>3.35&nbsp; G = 3.F<sub>3+</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.36"
>3.36&nbsp; G = 3.F<sub>3+</sub>.2</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc3.37"
>3.37&nbsp; G = 2.B</a><br />
<a href="#tth_sEc4"
>4&nbsp; Appendix: Explicit Computations with Groups</a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc4.1"
>4.1&nbsp; 2<sup>4</sup>:A<sub>6</sub> type subgroups in 2.M<sub>22</sub></a><br />
&nbsp;&nbsp;&nbsp;&nbsp;<a href="#tth_sEc4.2"
>4.2&nbsp; 2<sup>4</sup>:S<sub>5</sub> type subgroups in M<sub>22</sub>.2</a><br />


<div class="p"><!----></div>

<div class="p"><!----></div>

 <h2><a name="tth_sEc1">
1</a>&nbsp;&nbsp;Introduction</h2>

<div class="p"><!----></div>
In&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>], the multiplicity-free permutation characters of the sporadic
simple groups and their automorphism groups were classified.
Based on this list,
the multiplicity-free permutation characters of the central extensions of the
sporadic simple groups were classified in&nbsp;[<a href="#LM03" name="CITELM03">LM</a>].

<div class="p"><!----></div>
The purpose of this writeup is to show how the multiplicity-free
permutation characters of the automorphic extensions of the central
extensions of the sporadic simple groups can be computed,
to verify the calculations in&nbsp;[<a href="#LM03" name="CITELM03">LM</a>] (and to correct an error,
see Section&nbsp;<a href="#LMerror">3.32</a>),
and to provide a testfile for the <font face="helvetica">GAP</font> functions and the database.

<div class="p"><!----></div>
The database has been extended in the sense that also most of the character
tables of the multiplicity-free permutation modules of the sporadic simple
groups and their automorphic and central extensions have been computed,
see&nbsp;[<a href="#Hoe01" name="CITEHoe01">H&#246;h01</a>,<a href="#Mue03" name="CITEMue03">M&#252;l03</a>] for details.

<div class="p"><!----></div>

 <h2><a name="tth_sEc2">
2</a>&nbsp;&nbsp;The Approach</h2>

<div class="p"><!----></div>
Suppose that a group G contains a normal subgroup N.
If &#960; is a faithful multiplicity-free permutation character of G
then &#960; =  1<sub>U</sub><sup>G</sup> for a subgroup U of G that intersects N trivially,
so &#960; contains a constituent 1<sub>UN</sub><sup>G</sup> of degree &#960;(1) / &#124;N&#124;,
which can be viewed as a multiplicity-free permutation character of the
factor group G / N.
Moreover, no constituent of the difference &#960;&#8722; 1<sub>UN</sub><sup>G</sup> has N in its
kernel.

<div class="p"><!----></div>
So if we know all multiplicity-free permutation characters of the factor group
G / N then we can compute all candidates for multiplicity-free permutation
characters of G by "filling up" each such character
[&#63717;&#960;] with a linear combination of characters not containing N
in their kernels, of total degree (&#124;N&#124;&#8722;1) &#183;&#960;(1), and such that the
sum is a possible permutation character of G.
For this situation, <font face="helvetica">GAP</font> provides a special variant of the function
<tt>PermChars</tt>.
In a second step, the candidates are inspected whether the required point
stabilizers (and if yes, how many conjugacy classes of them) exist.
Finally, the permutation characters are verified by explicit induction from
the character tables of the point stabilizers.

<div class="p"><!----></div>
The multiplicity-free permutation actions of the sporadic simple groups
and their automorphism groups are known by&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>],
so this approach is suitable for these groups.

<div class="p"><!----></div>
For central extensions of sporadic simple groups, the multiplicity-free
permutation characters have been classified in&nbsp;[<a href="#LM03" name="CITELM03">LM</a>];
this note describes a slightly different approach,
so we will give an independent confirmation of their results.

<div class="p"><!----></div>
First we load the Character Table Library&nbsp;[<a href="#CTblLib" name="CITECTblLib">Bre04b</a>]
of the <font face="helvetica">GAP</font> system&nbsp;[<a href="#GAP4" name="CITEGAP4">GAP04</a>],
read the file with <font face="helvetica">GAP</font> functions for computing multiplicity-free
permutation characters,
and the known data for the sporadic simple groups and their automorphism
groups.

<div class="p"><!----></div>

<pre>
    gap&#62; LoadPackage( "ctbllib" );
    true
    gap&#62; RereadPackage( "ctbllib", "tst/multfree.g" );
    true
    gap&#62; RereadPackage( "ctbllib", "tst/multfree.dat" );
    true

</pre>

<div class="p"><!----></div>
In order to compare the results computed below with the database that is
already available, we load also this database.

<div class="p"><!----></div>

<pre>
    gap&#62; RereadPackage( "ctbllib", "tst/multfre2.dat" );
    true

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc2.1">
2.1</a>&nbsp;&nbsp;Computing Possible Permutation Characters</h3>

<div class="p"><!----></div>
Then we define the <font face="helvetica">GAP</font> functions that are needed in the following.

<div class="p"><!----></div>
<tt>FaithfulCandidates</tt> takes the character table <tt>tbl</tt> of a group G
and the name <tt>factname</tt> of a factor group F of G for which the
multiplicity-free permutation characters are known,
and returns a list of lists, the entry at the i-th position being
the list of possible permutation characters of G that are multiplicity-free
and such that the sum of all constituents that are characters of F is the
i-th multiplicity-free permutation character of F.
As a side-effect, if the i-th entry is nonempty then information is printed
about the structure of the point-stabilizer in F and the number of
candidates found.

<div class="p"><!----></div>

<pre>
    gap&#62; FaithfulCandidates:= function( tbl, factname )
    &#62;    local factinfo, factchars, facttbl, fus, sizeN, faith, i;
    &#62; 
    &#62;    # Fetch the data for the factor group.
    &#62;    factinfo:= MultFreePermChars( factname );
    &#62;    factchars:= List( factinfo, x -&#62; x.character );
    &#62;    facttbl:= UnderlyingCharacterTable( factchars[1] );
    &#62;    fus:= GetFusionMap( tbl, facttbl );
    &#62;    sizeN:= Size( tbl ) / Size( facttbl );
    &#62; 
    &#62;    # Compute faithful possible permutation characters.
    &#62;    faith:= List( factchars, pi -&#62; PermChars( tbl,
    &#62;                      rec( torso:= [ sizeN * pi[1] ],
    &#62;                           normalsubgroup:= ClassPositionsOfKernel( fus ),
    &#62;                           nonfaithful:= pi{ fus } ) ) );
    &#62; 
    &#62;    # Take only the multiplicity-free ones.
    &#62;    faith:= List( faith, x -&#62; Filtered( x, pi -&#62; ForAll( Irr( tbl ),
    &#62;                      chi -&#62; ScalarProduct( tbl, pi, chi ) &lt; 2 ) ) );
    &#62; 
    &#62;    # Print info about the candidates.
    &#62;    for i in [ 1 .. Length( faith ) ] do
    &#62;      if not IsEmpty( faith[i] ) then
    &#62;        Print( i, ":  subgroup ", factinfo[i].subgroup,
    &#62;               ", degree ", faith[i][1][1],
    &#62;               " (", Length( faith[i] ), " cand.)\n" );
    &#62;      fi;
    &#62;    od;
    &#62; 
    &#62;    # Return the candidates.
    &#62;    return faith;
    &#62;    end;;

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc2.2">
2.2</a>&nbsp;&nbsp;Verifying the Candidates</h3>

<div class="p"><!----></div>
In the verification step, we check which of the given candidates of G
are induced from a given subgroup S.
For that, we use the following function.
Its arguments are the character table <tt>s</tt> of S,
the character tables <tt>tbl2</tt> and <tt>tbl</tt> of G and its derived subgroup
G<sup>&#8242;</sup> of index 2
(if G is perfect then <tt>0</tt> must be entered for <tt>tbl2</tt>),
the list <tt>candidates</tt> of characters of G,
and one of the strings <tt>"all"</tt>, <tt>"extending"</tt>, which means that we consider
either all possible class fusions of <tt>s</tt> into <tt>tbl2</tt> or only those whose
image does not lie in G<sup>&#8242;</sup>.
Note that the table of the derived subgroup of G is needed because
we want to express the decomposition of the permutation characters
relative to G<sup>&#8242;</sup>.

<div class="p"><!----></div>
The idea is that we know that n different permutation characters arise
from subgroups isomorphic with S (with the additional property that the
image of the embedding of S into G is not contained in G<sup>&#8242;</sup>
if the last argument is <tt>"extending"</tt>), and that <tt>candidates</tt> is a set
of possible permutation characters, of length n.
If the possible fusions between the character tables <tt>s</tt> and <tt>tbl2</tt>
lead to exactly to the given n permutation characters then we have proved
that they are in fact the permutation characters of G in question.
In this case, <tt>VerifyCandidates</tt> prints information about the decomposition
of the permutation characters.
If none of <tt>candidates</tt> arises from the possible embeddings of S into G
then the function prints that S does not occur.
In all other cases, the function signals an error (so this will not happen
in the calls to this function below).

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates:= function( s, tbl, tbl2, candidates, admissible )
    &#62;    local fus, der, pi;
    &#62; 
    &#62;    if tbl2 = 0 then
    &#62;      tbl2:= tbl;
    &#62;    fi;
    &#62; 
    &#62;    # Compute the possible class fusions, and induce the trivial character.
    &#62;    fus:= PossibleClassFusions( s, tbl2 );
    &#62;    if admissible = "extending" then
    &#62;      der:= Set( GetFusionMap( tbl, tbl2 ) );
    &#62;      fus:= Filtered( fus, map -&#62; not IsSubset( der, map ) );
    &#62;    fi;
    &#62;    pi:= Set( List( fus, map -&#62; Induced( s, tbl2,
    &#62;            [ TrivialCharacter( s ) ], map )[1] ) );
    &#62; 
    &#62;    # Compare the two lists.
    &#62;    if pi = SortedList( candidates ) then
    &#62;      Print( "G = ", Identifier( tbl2 ), ":  point stabilizer ",
    &#62;             Identifier( s ), ", ranks ",
    &#62;             List( pi, x -&#62; Length( ConstituentsOfCharacter(x) ) ), "\n" );
    &#62;      if Size( tbl ) = Size( tbl2 ) then
    &#62;        Print( PermCharInfo( tbl, pi ).ATLAS, "\n" );
    &#62;      else
    &#62;        Print( PermCharInfoRelative( tbl, tbl2, pi ).ATLAS, "\n" );
    &#62;      fi;
    &#62;    elif IsEmpty( Intersection( pi, candidates ) ) then
    &#62;      Print( "G = ", Identifier( tbl2 ), ":  no ", Identifier( s ), "\n" );
    &#62;    else
    &#62;      Error( "problem with verify" );
    &#62;    fi;
    &#62;    end;;

</pre>

<div class="p"><!----></div>
Since in most cases the character tables of possible point stabilizers
are contained in the <font face="helvetica">GAP</font> Character Table Library,
the above function provides an easy test.
Alternatively, we could compute <em>all</em> faithful possible permutation
characters (not only the multiplicity-free ones)
of the degree in question;
if there are as many different such characters as are known to be induced
from point stabilizers <em>and</em> if no other subgroups of this index
exist then the characters are indeed permutation characters,
and we can compare them with the multiplicity-free characters computed
before.

<div class="p"><!----></div>
In the verification of the candidates, the following situations occur.

<div class="p"><!----></div>

  <b>Lemma 1</b> <em><a name="situationI">
</a>
Let &#934;\colon [^G] &#8594; G be a group epimorphism,
with K = ker(&#934;) cyclic of order m,
and let H be a subgroup of G such that m is coprime to the order
of the commutator factor group of H.
If it is known that &#934;<sup>&#8722;1</sup>(H) is a direct product of H with K
then the preimages under &#934; of the G-conjugates of H
in [^G] contain one [^G]-class of subgroups
that are isomorphic with H and intersect trivially with K.
(This holds for example if the order of the Schur multiplier of H
is coprime to m.)

<div class="p"><!----></div>
</em>
  <b>Lemma 2</b> <em><a name="situationII">
</a>
Let &#934;\colon [^G] &#8594; G be a group epimorphism,
with K = ker(&#934;) of order 3, such that the derived subgroup
G<sup>&#8242;</sup> of G has index 2 in G
and such that K is not central in G.
Consider a subgroup H of G with a subgroup H<sub>0</sub> = H &#8745;G<sup>&#8242;</sup>
of index 2 in H, and such that it is known that the preimage
&#934;<sup>&#8722;1</sup>(H<sub>0</sub>) is a direct product of H<sub>0</sub> with K.
(This holds for example if the order of the Schur multiplier of H<sub>0</sub>
is coprime to 3.)
Then each complement of K in &#934;<sup>&#8722;1</sup>(H<sub>0</sub>)
extends in &#934;<sup>&#8722;1</sup>(H) to exactly one complement of K
that is isomorphic with H.

<div class="p"><!----></div>
</em>
  <b>Lemma 3</b> <em><a name="situationIII">
</a>
Let &#934;\colon [^G] &#8594; G be a group epimorphism,
with K = ker(&#934;) of order 2.
Consider a subgroup H of G, with derived subgroup H<sup>&#8242;</sup>
of index 2 in H and such that
&#934;<sup>&#8722;1</sup>(H<sup>&#8242;</sup>) has the structure 2 &times;H<sup>&#8242;</sup>.

<ul>
<br />(i)
    Suppose that there is an element h  &#8712; H \H<sup>&#8242;</sup>
    such that the squares of the preimages of h in [^G] lie in
    the unique subgroup of index 2 in &#934;<sup>&#8722;1</sup>(H<sup>&#8242;</sup>).
    (This holds for example if the preimages of h are involutions.)
    Then &#934;<sup>&#8722;1</sup>(H) has the type K &times;H.
<br />(ii)
    If &#934;<sup>&#8722;1</sup>(H) has the type K &times;H then
    this group contains exactly two subgroups that are isomorphic with H.
<br />(iii)
    Suppose that case (ii) applies and that there is
    h  &#8712; H \H<sup>&#8242;</sup> whose two preimages are not conjugate
    in [^G] and such that none of the two subgroups of the type H in
    &#934;<sup>&#8722;1</sup>(H) contains elements in the two conjugacy classes
    that contain the preimages of h.
    Then the two subgroups of the type H induce different permutation
    characters of [^G], in particular exactly two conjugacy classes of
    subgroups of the type H in [^G] arise from the conjugates of H
    in G.</ul>

<div class="p"><!----></div>
</em>With character theoretic methods, we can check a weaker form of
Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(i).
Namely, the conditions are clearly satisfied if there is a conjugacy class
C of elements in H that is not contained in H<sup>&#8242;</sup>
and such that the class of [^G] that
contains the squares of the preimages of C is <em>not</em> contained
in the images of the classes of 2 &times;H<sup>&#8242;</sup> that lie outside
H<sup>&#8242;</sup>.

<div class="p"><!----></div>
The function <tt>CheckConditionsForLemma3</tt> tests this, and prints a message
if Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(i) applies becaue of this situation.
More precisely, the arguments are (in this order) the character tables of
H<sup>&#8242;</sup>, H, G, and [^G], and one of the strings <tt>"all"</tt>,
<tt>"extending"</tt>; the last argument means that either all embeddings of H
into G are considered or only those which do not lie inside the
derived subgroup of G.

<div class="p"><!----></div>
The function <em>assumes</em> that <tt>s0</tt> is the character table of the derived
subgroup of <tt>s</tt>, and that H<sup>&#8242;</sup> lifts to a direct product in [^G].

<div class="p"><!----></div>

<pre>
    gap&#62; CheckConditionsForLemma3:= function( s0, s, fact, tbl, admissible )
    &#62;    local s0fuss, sfusfact, der, outerins, outerinfact, preim, squares, dp, 
    &#62;          dpfustbl, s0indp, other, goodclasses;
    &#62; 
    &#62;    if Size( s ) &lt;&#62; 2 * Size( s0 ) then
    &#62;      Error( "&lt;s&#62; must be twice as large as &lt;s0&#62;" );
    &#62;    fi;
    &#62; 
    &#62;    s0fuss:= GetFusionMap( s0, s );
    &#62;    sfusfact:= PossibleClassFusions( s, fact );
    &#62;    if admissible = "extending" then
    &#62;      der:= ClassPositionsOfDerivedSubgroup( fact );
    &#62;      sfusfact:= Filtered( sfusfact, map -&#62; not IsSubset( der, map ) );
    &#62;    fi;
    &#62;    outerins:= Difference( [ 1 .. NrConjugacyClasses( s ) ], s0fuss );
    &#62;    outerinfact:= Set( List( sfusfact, map -&#62; Set( map{ outerins } ) ) );
    &#62;    if Length( outerinfact ) &lt;&#62; 1 then 
    &#62;      Error( "classes of `", s, "' inside `", fact, "' not determined" );
    &#62;    fi;
    &#62; 
    &#62;    preim:= Flat( InverseMap( GetFusionMap( tbl, fact ) ){ outerinfact[1] } );
    &#62;    squares:= Set( PowerMap( tbl, 2 ){ preim } );
    &#62;    dp:= s0 * CharacterTable( "Cyclic", 2 );
    &#62;    dpfustbl:= PossibleClassFusions( dp, tbl ); 
    &#62;    s0indp:= GetFusionMap( s0, dp );
    &#62;    other:= Difference( [ 1 .. NrConjugacyClasses( dp ) ], s0indp );
    &#62;    goodclasses:= List( dpfustbl, map -&#62; Intersection( squares,
    &#62;                            Difference( map{ s0indp }, map{ other } ) ) );
    &#62;    if not IsEmpty( Intersection( goodclasses ) ) then
    &#62;      Print( Identifier( tbl ), ":  ", Identifier( s ),
    &#62;             " lifts to a direct product,\n",
    &#62;             "proved by squares in ", Intersection( goodclasses ), ".\n" );
    &#62;    elif ForAll( goodclasses, IsEmpty ) then
    &#62;      Print( Identifier( tbl ), ":  ", Identifier( s ),
    &#62;             " lifts to a nonsplit extension.\n" );
    &#62;    else
    &#62;      Print( "sorry, no proof of the splitting!\n" );
    &#62;    fi;
    &#62;    end;;

</pre>

<div class="p"><!----></div>
Let us assume we are in the situation of Lemma&nbsp;<a href="#situationIII">2.3</a>.
Then &#934;<sup>&#8722;1</sup>(H) is a direct product
&#9001;z &#9002;&times;H, where z is an involution.
The derived subgroup of &#934;<sup>&#8722;1</sup>(H) is H<sub>0</sub>  &#8801; H<sup>&#8242;</sup>,
and &#934;<sup>&#8722;1</sup>(H) contains two subgroups H<sub>1</sub>, H<sub>2</sub>
which are isomorphic with H,
and such that H<sub>2</sub> = H<sub>0</sub> &#8746;{ h z; h  &#8712; H<sub>1</sub> \H<sub>0</sub> }.
If the embedding of H<sub>1</sub>, say, into [^G] has the properties
that an element outside H<sub>0</sub> is mapped into a class C of [^G]
that is different from z C and such that no element of H<sub>1</sub> lies in z C
then z C contains element of H<sub>2</sub> but C does not.
In particular, the permutation characters of the two actions of [^G]
on the cosets of H<sub>1</sub> and H<sub>2</sub>, respectively, are necessarily different.

<div class="p"><!----></div>
We check this with the following function.
Its arguments are one class fusion from the character table of H<sub>1</sub> to that
of [^G], the factor fusion from the character table of [^G] to
that of G,
and the list of positions of the classes of H<sub>0</sub> in the character table
of H<sub>1</sub>.
The return value is <tt>true</tt> if there are two different permutation characters,
and <tt>false</tt> if this cannot be proved using the criterion.

<div class="p"><!----></div>

<pre>
    gap&#62; NecessarilyDifferentPermChars:= function( fusion, factfus, inner )
    &#62;    local outer, inv;
    &#62; 
    &#62;    outer:= Difference( [ 1 .. Length( fusion ) ], inner );
    &#62;    fusion:= fusion{ outer };
    &#62;    inv:= Filtered( InverseMap( factfus ), IsList );
    &#62;    return ForAny( inv, pair -&#62; Length( Intersection( pair, fusion ) ) = 1 );
    &#62;    end;;

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc2.3">
2.3</a>&nbsp;&nbsp;Isoclinic Groups</h3>

<div class="p"><!----></div>
For dealing with the character tables of groups of the type 2.G.2 that are
isoclinic to those whose tables are printed in the  A<font size="-2">TLAS</font> ([<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>]),
it is necessary to store explicitly the factor fusion from 2.G.2 onto G.2
and the subgroup fusion from 2.G into 2.G.2,
in order to make the above functions work.
Note that these maps coincide for the two isoclinism types.

<div class="p"><!----></div>

<pre>
    gap&#62; IsoclinicTable:= function( tbl, tbl2, facttbl )
    &#62;    local subfus, factfus;
    &#62; 
    &#62;    subfus:= GetFusionMap( tbl, tbl2 );
    &#62;    factfus:= GetFusionMap( tbl2, facttbl );
    &#62;    tbl2:= CharacterTableIsoclinic( tbl2 );
    &#62;    StoreFusion( tbl, subfus, tbl2 );
    &#62;    StoreFusion( tbl2, factfus, facttbl );
    &#62;    return tbl2;
    &#62;    end;;

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc2.4">
2.4</a>&nbsp;&nbsp;Tests for <font face="helvetica">GAP</font></h3>

<div class="p"><!----></div>
With the following function, we check whether the characters computed here
coincide with the lists computed in&nbsp;[<a href="#LM03" name="CITELM03">LM</a>].

<div class="p"><!----></div>

<pre>
    gap&#62; CompareWithDatabase:= function( name, chars )
    &#62;    local info;
    &#62; 
    &#62;    info:= MultFreePermChars( name );
    &#62;    info:= List( info, x -&#62; x.character );;
    &#62;    if SortedList( info ) &lt;&#62; SortedList( Concatenation( chars ) ) then
    &#62;      Error( "contradiction 1 for ", name );
    &#62;    fi;
    &#62;    end;;

</pre>

<div class="p"><!----></div>
If the character tables of all maximal subgroups of G are known then
we could use alternatively the same method (and in fact the same <font face="helvetica">GAP</font>
functions) as in the classification in&nbsp;[<a href="#BL96" name="CITEBL96">BL96</a>].
This is shown in the following sections where applicable,
using the following function.

<div class="p"><!----></div>

<pre>
    gap&#62; CompareWithCandidatesByMaxes:= function( name, faith )
    &#62;    local tbl, poss;
    &#62; 
    &#62;    tbl:= CharacterTable( name );
    &#62;    if not HasMaxes( tbl ) then
    &#62;      Error( "no maxes stored for ", name );
    &#62;    fi;
    &#62;    poss:= PossiblePermutationCharactersWithBoundedMultiplicity( tbl, 1 );
    &#62;    poss:= List( poss.permcand, l -&#62; Filtered( l,
    &#62;                 pi -&#62; ClassPositionsOfKernel( pi ) = [ 1 ] ) );
    &#62;    if SortedList( Concatenation( poss ) )
    &#62;       &lt;&#62; SortedList( Concatenation( faith ) ) then
    &#62;      Error( "contradiction 2 for ", name );
    &#62;    fi;
    &#62;    end;;

</pre>

<div class="p"><!----></div>

 <h2><a name="tth_sEc3">
3</a>&nbsp;&nbsp;The Groups</h2>

<div class="p"><!----></div>
In the following,
we use  A<font size="-2">TLAS</font> notation (see&nbsp;[<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>]) for the names of the groups.
In particular, 2 &times;G and G &times;2 denote the direct product
of the group G with a cyclic group of order 2,
and G.2 and 2.G denote an upward and downward extension, respectively,
of G by a cyclic group of order 2, such that these groups are <em>not</em>
direct products.

<div class="p"><!----></div>
For groups of the structure 2.G.2 where the character table of G is
contained in the  A<font size="-2">TLAS</font>, we use the name 2.G.2 for the isoclinism type
whose character table is printed in the  A<font size="-2">TLAS</font>,
and (2.G.2)<sup>&#8727;</sup> for the other isoclinism type.

<div class="p"><!----></div>
Most of the computations that are shown in the following use only information
from the <font face="helvetica">GAP</font> Character Table Library.
The (few) explicit computations with groups are collected in
Section&nbsp;<a href="#explicit">4</a>.

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.1">
3.1</a>&nbsp;&nbsp;G = 2.M<sub>12</sub></h3>

<div class="p"><!----></div>
The group 2.M<sub>12</sub> has ten faithful multiplicity-free permutation actions,
with point stabilizers of the types M<sub>11</sub> (twice),
A<sub>6</sub>.2<sub>1</sub> (twice), 3<sup>2</sup>.2.S<sub>4</sub> (four classes), and  3<sup>2</sup>:2.A<sub>4</sub> (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.M12" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "M12" );;
    1:  subgroup $M_{11}$, degree 24 (1 cand.)
    2:  subgroup $M_{11}$, degree 24 (1 cand.)
    5:  subgroup $A_6.2_1 \leq A_6.2^2$, degree 264 (1 cand.)
    8:  subgroup $A_6.2_1 \leq A_6.2^2$, degree 264 (1 cand.)
    11:  subgroup $3^2.2.S_4$, degree 440 (2 cand.)
    12:  subgroup $3^2:2.A_4 \leq 3^2.2.S_4$, degree 880 (1 cand.)
    13:  subgroup $3^2.2.S_4$, degree 440 (2 cand.)
    14:  subgroup $3^2:2.A_4 \leq 3^2.2.S_4$, degree 880 (1 cand.)

</pre>

<div class="p"><!----></div>
There are two classes of M<sub>11</sub> subgroups in M<sub>12</sub> as well as in
2.M<sub>12</sub>, so we apply Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "M11" ), tbl, 0,
    &#62;        Concatenation( faith[1], faith[2] ), "all" );
    G = 2.M12:  point stabilizer M11, ranks [ 3, 3 ]
    [ "1a+11a+12a", "1a+11b+12a" ]

</pre>

<div class="p"><!----></div>
According to the list of maximal subgroups of 2.M<sub>12</sub>,
any A<sub>6</sub>.2<sup>2</sup> subgroup in M<sub>12</sub> lifts to a group of the structure
A<sub>6</sub>.D<sub>8</sub> in M<sub>12</sub>, which contains two conjugate subgroups of the type
A<sub>6</sub>.2<sub>1</sub>; so we get two classes of such subgroups, with the same permutation
character.

<div class="p"><!----></div>

<pre>
    gap&#62; Maxes( tbl );
    [ "2xM11", "2.M12M2", "A6.D8", "2.M12M4", "2.L2(11)", "2x3^2.2.S4", 
      "2.M12M7", "2.M12M8", "2.M12M9", "2.M12M10", "2.A4xS3" ]
    gap&#62; faith[5] = faith[8];
    true
    gap&#62; VerifyCandidates( CharacterTable( "A6.2_1" ), tbl, 0, faith[5], "all" );
    G = 2.M12:  point stabilizer A6.2_1, ranks [ 7 ]
    [ "1a+11ab+12a+54a+55a+120b" ]

</pre>

<div class="p"><!----></div>
The 3<sup>2</sup>.2.S<sub>4</sub> type subgroups of M<sub>12</sub> lift to direct products with
the centre of 2.M<sub>12</sub>, each such group contains two subgroups of the type
3<sup>2</sup>.2.S<sub>4</sub> which induce different permutation characters,
for example because the involutions in 3<sup>2</sup>.2.S<sub>4</sub> \3<sup>2</sup>.2.A<sub>4</sub>
lie in the two preimages of the class <tt>2B</tt> of M<sub>12</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "3^2.2.S4" );;
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; facttbl:= CharacterTable( "M12" );;
    gap&#62; factfus:= GetFusionMap( tbl, facttbl );;
    gap&#62; ForAll( PossibleClassFusions( s, tbl ),
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( s, tbl, 0, Concatenation( faith[11], faith[13] ), "all" );
    G = 2.M12:  point stabilizer 3^2.2.S4, ranks [ 7, 7, 9, 9 ]
    [ "1a+11a+54a+55a+99a+110ab", "1a+11b+54a+55a+99a+110ab",
      "1a+11a+12a+44ab+54a+55a+99a+120b", "1a+11b+12a+44ab+54a+55a+99a+120b" ]

</pre>

<div class="p"><!----></div>
Each 3<sup>2</sup>.2.S<sub>4</sub> type group contains a unique subgroup of the type
3<sup>2</sup>.2.A<sub>4</sub>, we get two classes of such subgroups, with
different permutation characters because already the corresponding characters
for M<sub>12</sub> are different; we verify the candidates by inducing the degree
two permutation characters of the 3<sup>2</sup>.2.S<sub>4</sub> type groups to 2.M<sub>12</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; fus:= PossibleClassFusions( s, tbl );;
    gap&#62; deg2:= PermChars( s, 2 );
    [ Character( CharacterTable( "3^2.2.S4" ), [ 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0 
         ] ) ]
    gap&#62; pi:= Set( List( fus, map -&#62; Induced( s, tbl, deg2, map )[1] ) );;
    gap&#62; pi = SortedList( Concatenation( faith[12], faith[14] ) );
    true
    gap&#62; PermCharInfo( tbl, pi ).ATLAS;
    [ "1a+11a+12a+44ab+45a+54a+55ac+99a+110ab+120ab", 
      "1a+11b+12a+44ab+45a+54a+55ab+99a+110ab+120ab" ]
    gap&#62; CompareWithDatabase( "2.M12", faith );
    gap&#62; CompareWithCandidatesByMaxes( "2.M12", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.2">
3.2</a>&nbsp;&nbsp;G = 2.M<sub>12</sub>.2</h3>

<div class="p"><!----></div>
The group 2.M<sub>12</sub>.2 that is printed in the  A<font size="-2">TLAS</font> has three faithful
multiplicity-free permutation actions,
with point stabilizers of the types M<sub>11</sub> and L<sub>2</sub>(11).2 (twice),
respectively.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "2.M12.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M12.2" );;
    1:  subgroup $M_{11}$, degree 48 (1 cand.)
    2:  subgroup $L_2(11).2$, degree 288 (2 cand.)

</pre>

<div class="p"><!----></div>
The two classes of subgroups of the type M<sub>11</sub> in 2.M<sub>12</sub> are fused in
2.M<sub>12</sub>.2, so we get one class of these subgroups.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "M11" ), tbl, tbl2, faith[1], "all" );
    G = 2.M12.2:  point stabilizer M11, ranks [ 5 ]
    [ "1a^{\\pm}+11ab+12a^{\\pm}" ]

</pre>

<div class="p"><!----></div>
The outer involutions in the maximal subgroups of the type L<sub>2</sub>(11).2
in M<sub>12</sub>.2 lift to involutions in 2.M<sub>12</sub>.2;
moreover, those subgroups of the type L<sub>2</sub>(11).2 that are novelties
(so the intersection with M<sub>12</sub> lies in M<sub>11</sub> subgroups)
contain <tt>2B</tt> elements which lift to involutions in 2.M<sub>12</sub>.2,
so the L<sub>2</sub>(11) subgroup lifts to a group of the type 2 &times;L<sub>2</sub>(11),
and Lemma&nbsp;<a href="#situationIII">2.3</a> yields two classes of subgroups.
The permutation characters are different, for example because
each each of the two candidates contains elements in one of the
two preimages of the class <tt>2B</tt>.

<div class="p"><!----></div>
(The function <tt>CheckConditionsForLemma3</tt> fails here,
because of the two classes of maximal subgroups L<sub>2</sub>(11).2 in M<sub>12</sub>.2.
One of them contains <tt>2A</tt> elements, the other contains <tt>2B</tt> elements.
Only the latter type of subgroups, whose intersection with M<sub>12</sub> is not
maximal in M<sub>12</sub>, lifts to subgroups of 2.M<sub>12</sub>.2 that contain
L<sub>2</sub>(11).2 subgroups.)

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "L2(11).2" );;
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; facttbl:= CharacterTable( "M12.2" );;
    gap&#62; factfus:= GetFusionMap( tbl2, facttbl );;
    gap&#62; ForAll( PossibleClassFusions( s, tbl2 ),
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[2], "all" );
    G = 2.M12.2:  point stabilizer L2(11).2, ranks [ 7, 7 ]
    [ "1a^++11ab+12a^{\\pm}+55a^++66a^++120b^-",
      "1a^++11ab+12a^{\\pm}+55a^++66a^++120b^+" ]
    gap&#62; CompareWithDatabase( "2.M12.2", faith );

</pre>

<div class="p"><!----></div>
The group (2.M<sub>12</sub>.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has one faithful multiplicity-free permutation action,
with point stabilizer of the type M<sub>11</sub>;
as this subgroup lies inside 2.M<sub>12</sub>, its existence is clear,
and the permutation character in both groups of the type 2.M<sub>12</sub>.2
is the same.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M12.2" );;
    1:  subgroup $M_{11}$, degree 48 (1 cand.)
    gap&#62; CompareWithDatabase( "Isoclinic(2.M12.2)", faith );

</pre>

<div class="p"><!----></div>
Note that in (2.M<sub>12</sub>.2)<sup>&#8727;</sup>,
the subgroup of the type (2 &times;L<sub>2</sub>(11)).2 is a nonsplit extension,
so the unique index 2 subgroup in this group contains the centre of
2.M<sub>12</sub>.2, in particular there is no subgroup of the type L<sub>2</sub>(11).2.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "L2(11).2" );;
    gap&#62; PossibleClassFusions( s, tbl2 );
    [  ]

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.3">
3.3</a>&nbsp;&nbsp;G = 2.M<sub>22</sub></h3><a name="libtbl">
</a>

<div class="p"><!----></div>
The group 2.M<sub>22</sub> has four faithful multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:A<sub>5</sub>, A<sub>7</sub> (twice),
and 2<sup>3</sup>:L<sub>3</sub>(2), by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.M22" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "M22" );;
    3:  subgroup $2^4:A_5 \leq 2^4:A_6$, degree 924 (1 cand.)
    4:  subgroup $A_7$, degree 352 (1 cand.)
    5:  subgroup $A_7$, degree 352 (1 cand.)
    7:  subgroup $2^3:L_3(2)$, degree 660 (1 cand.)

</pre>

<div class="p"><!----></div>
Note that one class of subgroups of the type 2<sup>4</sup>:A<sub>5</sub> in the maximal subgroup
of the type 2<sup>4</sup>:A<sub>6</sub> as well as the A<sub>7</sub> and 2<sup>3</sup>:L<sub>3</sub>(2) subgroups
lift to direct products in 2.M<sub>22</sub>.
A proof for 2<sup>4</sup>:A<sub>5</sub> using explicit computations with the group can be found
in Subsection&nbsp;<a href="#explicit1">4.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; Maxes( tbl );
    [ "2.L3(4)", "2.M22M2", "2xA7", "2xA7", "2.M22M5", "2x2^3:L3(2)", 
      "(2xA6).2_3", "2xL2(11)" ]
    gap&#62; s:= CharacterTable( "P1/G1/L1/V1/ext2" );;
    gap&#62; VerifyCandidates( s, tbl, 0, faith[3], "all" );
    G = 2.M22:  point stabilizer P1/G1/L1/V1/ext2, ranks [ 8 ]
    [ "1a+21a+55a+126ab+154a+210b+231a" ]
    gap&#62; faith[4] = faith[5];
    true
    gap&#62; VerifyCandidates( CharacterTable( "A7" ), tbl, 0, faith[4], "all" );
    G = 2.M22:  point stabilizer A7, ranks [ 5 ]
    [ "1a+21a+56a+120a+154a" ]
    gap&#62; VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[7], "all" );
    G = 2.M22:  point stabilizer 2^3:sl(3,2), ranks [ 7 ]
    [ "1a+21a+55a+99a+120a+154a+210b" ]
    gap&#62; CompareWithDatabase( "2.M22", faith );
    gap&#62; CompareWithCandidatesByMaxes( "2.M22", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.4">
3.4</a>&nbsp;&nbsp;G = 2.M<sub>22</sub>.2</h3><a name="2.M22.2">
</a>

<div class="p"><!----></div>
The group 2.M<sub>22</sub>.2 that is printed in the  A<font size="-2">TLAS</font> has eight faithful
multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:S<sub>5</sub> (twice), A<sub>7</sub>,
2<sup>3</sup>:L<sub>3</sub>(2) &times;2 (twice), 2<sup>3</sup>:L<sub>3</sub>(2), and L<sub>2</sub>(11).2 (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "2.M22.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M22.2" );;
    6:  subgroup $2^4:S_5 \leq 2^4:S_6$, degree 924 (2 cand.)
    7:  subgroup $A_7$, degree 704 (1 cand.)
    11:  subgroup $2^3:L_3(2) \times 2$, degree 660 (2 cand.)
    12:  subgroup $2^3:L_3(2) \leq 2^3:L_3(2) \times 2$, degree 1320 (2 cand.)
    16:  subgroup $L_2(11).2$, degree 1344 (2 cand.)

</pre>

<div class="p"><!----></div>
The character table of the 2<sup>4</sup>:S<sub>5</sub> type subgroup is contained in the <font face="helvetica">GAP</font>
Character Table Library,
with identifier <tt>w(d5)</tt> (cf.&nbsp;Subsection&nbsp;<a href="#explicit2">4.2</a>).

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "w(d5)" );;
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; facttbl:= CharacterTable( "M22.2" );;
    gap&#62; factfus:= GetFusionMap( tbl2, facttbl );;
    gap&#62; ForAll( PossibleClassFusions( s, tbl2 ),
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
    G = 2.M22.2:  point stabilizer w(d5), ranks [ 7, 7 ]
    [ "1a^++21a^++55a^++126ab+154a^++210b^-+231a^-",
      "1a^++21a^++55a^++126ab+154a^++210b^++231a^-" ]

</pre>

<div class="p"><!----></div>
The two classes of the type A<sub>7</sub> subgroups in 2.M<sub>22</sub> are fused
in 2.M<sub>22</sub>.2.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "A7" ), tbl, tbl2, faith[7], "all" );
    G = 2.M22.2:  point stabilizer A7, ranks [ 10 ]
    [ "1a^{\\pm}+21a^{\\pm}+56a^{\\pm}+120a^{\\pm}+154a^{\\pm}" ]

</pre>

<div class="p"><!----></div>
The preimages of the 2<sup>3</sup>:L<sub>3</sub>(2) &times;2 type subgroups of M<sub>22</sub>.2
in 2.M<sub>22</sub>.2 are direct products, by the discussion of 2.M<sub>22</sub>
and Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(i).
So Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(iii) yields two classes,
with different permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "2x2^3:L3(2)" );;
    gap&#62; s0:= CharacterTable( "2^3:sl(3,2)" );;
    gap&#62; s0fuss:= PossibleClassFusions( s0, s );;
    gap&#62; StoreFusion( s0, s0fuss[1], s );
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
    2.M22.2:  2x2^3:L3(2) lifts to a direct product,
    proved by squares in [ 1, 5, 14, 16 ].
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; ForAll( PossibleClassFusions( s, tbl2 ),
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
    G = 2.M22.2:  point stabilizer 2x2^3:L3(2), ranks [ 7, 7 ]
    [ "1a^++21a^++55a^++99a^++120a^-+154a^++210b^-",
      "1a^++21a^++55a^++99a^++120a^++154a^++210b^+" ]

</pre>

<div class="p"><!----></div>
There is one class of subgroups of the type 2<sup>3</sup>:L<sub>3</sub>(2) in 2.M<sub>22</sub>.
One of the two candidates of degree 1&nbsp;320 is excluded because it does not
arise from a possible class fusion.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "M22M6" );;
    gap&#62; fus:= PossibleClassFusions( s, tbl );;
    gap&#62; pi1320:= Set( List( fus, x -&#62; Induced( s, tbl2,
    &#62;                                  [ TrivialCharacter( s ) ], x )[1] ) );;
    gap&#62; IsSubset( faith[12], pi1320 );
    true
    gap&#62; faith[12]:= pi1320;;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[12], "all" );
    G = 2.M22.2:  point stabilizer 2^3:sl(3,2), ranks [ 14 ]
    [ "1a^{\\pm}+21a^{\\pm}+55a^{\\pm}+99a^{\\pm}+120a^{\\pm}+154a^{\\pm}+210b^{\\\
    pm}" ]

</pre>

<div class="p"><!----></div>
The preimages of the L<sub>2</sub>(11).2 type subgroups of M<sub>22</sub>.2 in 2.M<sub>22</sub>.2
are direct products by Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(i),
so Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(iii) yields two classes,
with different permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "L2(11).2" );;
    gap&#62; s0:= CharacterTable( "L2(11)" );;    
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
    2.M22.2:  L2(11).2 lifts to a direct product,
    proved by squares in [ 1, 4, 10, 13 ].
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; ForAll( PossibleClassFusions( s, tbl2 ),
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
    G = 2.M22.2:  point stabilizer L2(11).2, ranks [ 10, 10 ]
    [ "1a^++21a^-+55a^++56a^{\\pm}+120a^-+154a^++210a^-+231a^-+440a^+",
      "1a^++21a^-+55a^++56a^{\\pm}+120a^++154a^++210a^-+231a^-+440a^-" ]
    gap&#62; CompareWithDatabase( "2.M22.2", faith );

</pre>

<div class="p"><!----></div>
The group (2.M<sub>22</sub>.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types A<sub>7</sub> and 2<sup>3</sup>:L<sub>3</sub>(2).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M22.2" );;
    7:  subgroup $A_7$, degree 704 (1 cand.)
    12:  subgroup $2^3:L_3(2) \leq 2^3:L_3(2) \times 2$, degree 1320 (2 cand.)
    gap&#62; faith[12]:= Filtered( faith[12], chi -&#62; chi in pi1320 );;
    gap&#62; CompareWithDatabase( "Isoclinic(2.M22.2)", faith );

</pre>

<div class="p"><!----></div>
The two classes of subgroups lie inside 2.M<sub>22</sub>,
so their existence has been discussed already above.

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.5">
3.5</a>&nbsp;&nbsp;G = 3.M<sub>22</sub></h3>

<div class="p"><!----></div>
The group 3.M<sub>22</sub> has four faithful multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:A<sub>5</sub>, 2<sup>4</sup>:S<sub>5</sub>, 2<sup>3</sup>:L<sub>3</sub>(2),
and L<sub>2</sub>(11).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "3.M22" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "M22" );;
    3:  subgroup $2^4:A_5 \leq 2^4:A_6$, degree 1386 (1 cand.)
    6:  subgroup $2^4:S_5$, degree 693 (1 cand.)
    7:  subgroup $2^3:L_3(2)$, degree 990 (1 cand.)
    9:  subgroup $L_2(11)$, degree 2016 (1 cand.)

</pre>

<div class="p"><!----></div>
The existence of one class of each of these types follows from
Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[3], "all" );
    G = 3.M22:  point stabilizer P1/G1/L1/V1/ext2, ranks [ 13 ]
    [ "1a+21abc+55a+105abcd+154a+231abc" ]
    gap&#62; VerifyCandidates( CharacterTable( "M22M5" ), tbl, 0, faith[6], "all" );
    G = 3.M22:  point stabilizer 2^4:s5, ranks [ 10 ]
    [ "1a+21abc+55a+105abcd+154a" ]
    gap&#62; VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[7], "all" );
    G = 3.M22:  point stabilizer 2^3:sl(3,2), ranks [ 13 ]
    [ "1a+21abc+55a+99abc+105abcd+154a" ]
    gap&#62; VerifyCandidates( CharacterTable( "M22M8" ), tbl, 0, faith[9], "all" );
    G = 3.M22:  point stabilizer L2(11), ranks [ 16 ]
    [ "1a+21abc+55a+105abcd+154a+210abc+231abc" ]
    gap&#62; CompareWithDatabase( "3.M22", faith );
    gap&#62; CompareWithCandidatesByMaxes( "3.M22", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.6">
3.6</a>&nbsp;&nbsp;G = 3.M<sub>22</sub>.2</h3>

<div class="p"><!----></div>
The group 3.M<sub>22</sub>.2 has five faithful multiplicity-free permutation
actions, with point stabilizers of the types 2<sup>4</sup>:S<sub>5</sub>, 2<sup>5</sup>:S<sub>5</sub>,
2<sup>4</sup>:(A<sub>5</sub> &times;2), 2<sup>3</sup>:L<sub>3</sub>(2) &times;2, and L<sub>2</sub>(11).2.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "3.M22.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M22.2" );;
    6:  subgroup $2^4:S_5 \leq 2^4:S_6$, degree 1386 (1 cand.)
    8:  subgroup $2^5:S_5$, degree 693 (1 cand.)
    10:  subgroup $2^4:(A_5 \times 2) \leq 2^5:S_5$, degree 1386 (1 cand.)
    11:  subgroup $2^3:L_3(2) \times 2$, degree 990 (1 cand.)
    16:  subgroup $L_2(11).2$, degree 2016 (1 cand.)

</pre>

<div class="p"><!----></div>
Subgroups of these types exist by Lemma&nbsp;<a href="#situationII">2.2</a>.
The verification is straightforward in all cases
except that of 2<sup>4</sup>:(A<sub>5</sub> &times;2).

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "w(d5)" ), tbl, tbl2, faith[6], "all" );
    G = 3.M22.2:  point stabilizer w(d5), ranks [ 9 ]
    [ "1a^++21a^+bc+55a^++105adbc+154a^++231a^-bc" ]
    gap&#62; VerifyCandidates( CharacterTable( "M22.2M4" ), tbl, tbl2, faith[8], "all" );
    G = 3.M22.2:  point stabilizer M22.2M4, ranks [ 7 ]
    [ "1a^++21a^+bc+55a^++105adbc+154a^+" ]
    gap&#62; VerifyCandidates( CharacterTable( "2x2^3:L3(2)" ), tbl, tbl2, faith[11], "all" );
    G = 3.M22.2:  point stabilizer 2x2^3:L3(2), ranks [ 9 ]
    [ "1a^++21a^+bc+55a^++99a^+bc+105adbc+154a^+" ]
    gap&#62; VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
    G = 3.M22.2:  point stabilizer L2(11).2, ranks [ 11 ]
    [ "1a^++21a^-bc+55a^++105adbc+154a^++210a^-bc+231a^-bc" ]

</pre>

<div class="p"><!----></div>
In the remaining case, we note that the 2<sup>4</sup>:(A<sub>5</sub> &times;2) type subgroup
has index 2 in the maximal subgroup of the type 2<sup>5</sup>:S<sub>5</sub>,
whose character table is available via the identifier <tt>M22.2M4</tt>.
It is sufficient to show that exactly one of the three index 2
subgroups in this group induces a multiplicity-free permutation character
of 3.M<sub>22</sub>.2,
and this can be done by inducing the degree 2 permutation characters
of 2<sup>5</sup>:S<sub>5</sub> to 3.M<sub>22</sub>.2.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "M22.2M4" );;
    gap&#62; lin:= LinearCharacters( s );
    [ Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ), 
      Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
          1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ] ), 
      Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 
          -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 ] ), 
      Character( CharacterTable( "M22.2M4" ), [ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 
          -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1 ] ) ]
    gap&#62; perms:= List( lin{ [ 2 .. 4 ] }, chi -&#62; chi + lin[1] );;
    gap&#62; sfustbl2:= PossibleClassFusions( s, tbl2 );;
    gap&#62; Length( sfustbl2 );
    2
    gap&#62; ind1:= Induced( s, tbl2, perms, sfustbl2[1] );;
    gap&#62; ind2:= Induced( s, tbl2, perms, sfustbl2[2] );;
    gap&#62; PermCharInfo( tbl2, ind1 ).ATLAS;
    [ "1ab+21ab+42aa+55ab+154ab+210ccdd", "1a+21ab+42a+55a+154a+210bcd+462a", 
      "1a+21aa+42a+55a+154a+210acd+462a" ]
    gap&#62; PermCharInfo( tbl2, ind2 ).ATLAS;
    [ "1a+21aa+42a+55a+154a+210acd+462a", "1a+21ab+42a+55a+154a+210bcd+462a", 
      "1ab+21ab+42aa+55ab+154ab+210ccdd" ]
    gap&#62; ind1[2] = ind2[2];
    true
    gap&#62; [ ind1[2] ] = faith[10];
    true
    gap&#62; CompareWithDatabase( "3.M22.2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.7">
3.7</a>&nbsp;&nbsp;G = 4.M<sub>22</sub> and G = 12.M<sub>22</sub></h3>

<div class="p"><!----></div>
The group 4.M<sub>22</sub> and hence also the group 12.M<sub>22</sub> has no
faithful multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "4.M22" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "2.M22" );;
    gap&#62; CompareWithDatabase( "4.M22", faith );
    gap&#62; CompareWithCandidatesByMaxes( "4.M22", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.8">
3.8</a>&nbsp;&nbsp;G = 4.M<sub>22</sub>.2 and G = 12.M<sub>22</sub>.2</h3>

<div class="p"><!----></div>
The two isoclinism types of groups of the type 4.M<sub>22</sub>.2 and hence also all
groups of the type 12.M<sub>22</sub>.2 have no faithful multiplicity-free
permutation actions.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "4.M22.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M22.2" );;
    gap&#62; CompareWithDatabase( "4.M22.2", faith );
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M22.2" );;
    gap&#62; CompareWithDatabase( "Isoclinic(4.M22.2)", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.9">
3.9</a>&nbsp;&nbsp;G = 6.M<sub>22</sub></h3>

<div class="p"><!----></div>
The group 6.M<sub>22</sub> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:A<sub>5</sub> and 2<sup>3</sup>:L<sub>3</sub>(2).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "6.M22" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "3.M22" );;
    1:  subgroup $2^4:A_5 \rightarrow (M_{22},3)$, degree 2772 (1 cand.)
    3:  subgroup $2^3:L_3(2) \rightarrow (M_{22},7)$, degree 1980 (1 cand.)

</pre>

<div class="p"><!----></div>
The existence of one class of each of these subgroups follows from the
treatment of 2.M<sub>22</sub> and 3.M<sub>22</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "P1/G1/L1/V1/ext2" ), tbl, 0, faith[1], "all" );
    G = 6.M22:  point stabilizer P1/G1/L1/V1/ext2, ranks [ 22 ]
    [ "1a+21abc+55a+105abcd+126abcdef+154a+210bef+231abc" ]
    gap&#62; VerifyCandidates( CharacterTable( "M22M6" ), tbl, 0, faith[3], "all" );
    G = 6.M22:  point stabilizer 2^3:sl(3,2), ranks [ 17 ]
    [ "1a+21abc+55a+99abc+105abcd+120a+154a+210b+330de" ]
    gap&#62; CompareWithDatabase( "6.M22", faith );
    gap&#62; CompareWithCandidatesByMaxes( "6.M22", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.10">
3.10</a>&nbsp;&nbsp;G = 6.M<sub>22</sub>.2</h3>

<div class="p"><!----></div>
The group 6.M<sub>22</sub>.2 that is printed in the  A<font size="-2">TLAS</font> has six faithful
multiplicity-free permutation actions,
with point stabilizers of the types 2<sup>4</sup>:S<sub>5</sub> (twice),
2<sup>3</sup>:L<sub>3</sub>(2) &times;2 (twice), and L<sub>2</sub>(11).2 (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "6.M22.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M22.2" );;
    6:  subgroup $2^4:S_5 \leq 2^4:S_6$, degree 2772 (2 cand.)
    11:  subgroup $2^3:L_3(2) \times 2$, degree 1980 (2 cand.)
    16:  subgroup $L_2(11).2$, degree 4032 (2 cand.)

</pre>

<div class="p"><!----></div>
We know that 2.M<sub>22</sub>.2 contains two classes of subgroups isomorphic with
each of the required point stabilizers, so we apply Lemma&nbsp;<a href="#situationII">2.2</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "w(d5)" );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
    G = 6.M22.2:  point stabilizer w(d5), ranks [ 14, 14 ]
    [ "1a^++21a^+bc+55a^++105adbc+126abcfde+154a^++210b^-ef+231a^-bc",
      "1a^++21a^+bc+55a^++105adbc+126abcfde+154a^++210b^+ef+231a^-bc" ]

</pre>

<div class="p"><!----></div>
(Since 6.M<sub>22</sub> contains subgroups of the type 2<sup>3</sup>:L<sub>3</sub>(2) &times;2
in which we are not interested,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>
for this case.)

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "2x2^3:L3(2)" );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
    G = 6.M22.2:  point stabilizer 2x2^3:L3(2), ranks [ 12, 12 ]
    [ "1a^++21a^+bc+55a^++99a^+bc+105adbc+120a^-+154a^++210b^-+330de",
      "1a^++21a^+bc+55a^++99a^+bc+105adbc+120a^++154a^++210b^++330de" ]
    gap&#62; VerifyCandidates( CharacterTable( "L2(11).2" ), tbl, tbl2, faith[16], "all" );
    G = 6.M22.2:  point stabilizer L2(11).2, ranks [ 20, 20 ]
    [ "1a^++21a^-bc+55a^++56a^{\\pm}+66abcd+105adbc+120a^-bc+154a^++210a^-cdgjhi+2\
    31a^-bc+440a^+",
      "1a^++21a^-bc+55a^++56a^{\\pm}+66abcd+105adbc+120a^+bc+154a^++210a^-cdgjhi+2\
    31a^-bc+440a^-" ]
    gap&#62; CompareWithDatabase( "6.M22.2", faith );

</pre>

<div class="p"><!----></div>
The group (6.M<sub>22</sub>.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has no faithful multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "M22.2" );;
    gap&#62; CompareWithDatabase( "Isoclinic(6.M22.2)", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.11">
3.11</a>&nbsp;&nbsp;G = 2.J<sub>2</sub></h3>

<div class="p"><!----></div>
The group 2.J<sub>2</sub> has one faithful multiplicity-free permutation action,
with point stabilizer of the type U<sub>3</sub>(3), by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.J2" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "J2" );;
    1:  subgroup $U_3(3)$, degree 200 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "U3(3)" ), tbl, 0, faith[1], "all" );
    G = 2.J2:  point stabilizer U3(3), ranks [ 5 ]
    [ "1a+36a+50ab+63a" ]
    gap&#62; CompareWithDatabase( "2.J2", faith );
    gap&#62; CompareWithCandidatesByMaxes( "2.J2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.12">
3.12</a>&nbsp;&nbsp;G = 2.J<sub>2</sub>.2</h3>

<div class="p"><!----></div>
The group 2.J<sub>2</sub>.2 that is printed in the  A<font size="-2">TLAS</font> has no faithful
multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "2.J2.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "J2.2" );;
    gap&#62; CompareWithDatabase( "2.J2.2", faith );

</pre>

<div class="p"><!----></div>
The group (2.J<sub>2</sub>.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has four faithful multiplicity-free permutation actions,
with point stabilizers of the types U<sub>3</sub>(3).2 (twice) and
3.A<sub>6</sub>.2<sub>3</sub> (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; facttbl:= CharacterTable( "J2.2" );;
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "J2.2" );;
    1:  subgroup $U_3(3).2$, degree 200 (1 cand.)
    5:  subgroup $3.A_6.2_3 \leq 3.A_6.2^2$, degree 1120 (1 cand.)

</pre>

<div class="p"><!----></div>
The existence of two classes of each of these subgroups follows from
Lemma&nbsp;<a href="#situationIII">2.3</a>.
(Note that the Schur multiplier of U<sub>3</sub>(3) is trivial and 6.A<sub>6</sub>
does not admit an automorphic extension that has a factor group A<sub>6</sub>.2<sub>3</sub>.)

<div class="p"><!----></div>

<pre>
    gap&#62; s0:= CharacterTable( "U3(3)" );;
    gap&#62; s:= CharacterTable( "U3(3).2" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
    Isoclinic(2.J2.2):  U3(3).2 lifts to a direct product,
    proved by squares in [ 1, 3, 8, 16 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[1], "all" );
    G = Isoclinic(2.J2.2):  point stabilizer U3(3).2, ranks [ 4 ]
    [ "1a^++36a^++50ab+63a^+" ]
    gap&#62; s0:= CharacterTable( "3.A6" );;
    gap&#62; s:= CharacterTable( "3.A6.2_3" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
    Isoclinic(2.J2.2):  3.A6.2_3 lifts to a direct product,
    proved by squares in [ 3, 10, 16, 25 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[5], "all" );
    G = Isoclinic(2.J2.2):  point stabilizer 3.A6.2_3, ranks [ 12 ]
    [ "1a^++14c^{\\pm}+21ab+50ab+63a^{\\pm}+90a^++126a^++175a^-+216a^{\\pm}" ]
    gap&#62; faith[1]:= faith[1]{ [ 1, 1 ] };;
    gap&#62; faith[5]:= faith[5]{ [ 1, 1 ] };;
    gap&#62; CompareWithDatabase( "Isoclinic(2.J2.2)", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.13">
3.13</a>&nbsp;&nbsp;G = 2.HS</h3>

<div class="p"><!----></div>
The group 2.HS has five faithful multiplicity-free permutation actions,
with point stabilizers of the types U<sub>3</sub>(5) (twice), A<sub>8</sub>,
and M<sub>11</sub> (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.HS" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "HS" );;
    3:  subgroup $U_3(5) \leq U_3(5).2$, degree 704 (1 cand.)
    5:  subgroup $U_3(5) \leq U_3(5).2$, degree 704 (1 cand.)
    8:  subgroup $A_8 \leq A_8.2$, degree 4400 (1 cand.)
    10:  subgroup $M_{11}$, degree 11200 (1 cand.)
    11:  subgroup $M_{11}$, degree 11200 (1 cand.)

</pre>

<div class="p"><!----></div>
Lemma&nbsp;<a href="#situationI">2.1</a> applies in all cases; note that 2.HS does not admit
an embedding of 2.A<sub>8</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "U3(5)" ), tbl, 0,
    &#62;       Concatenation( faith[3], faith[5] ), "all" );
    G = 2.HS:  point stabilizer U3(5), ranks [ 6, 6 ]
    [ "1a+22a+154c+175a+176ab", "1a+22a+154b+175a+176ab" ]
    gap&#62; PossibleClassFusions( CharacterTable( "2.A8" ), tbl );
    [  ]
    gap&#62; VerifyCandidates( CharacterTable( "A8" ), tbl, 0, faith[8], "all" );
    G = 2.HS:  point stabilizer A8, ranks [ 13 ]
    [ "1a+22a+77a+154abc+175a+176ab+693a+770a+924ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "M11" ), tbl, 0,
    &#62;       Concatenation( faith[10], faith[11] ), "all" );
    G = 2.HS:  point stabilizer M11, ranks [ 16, 16 ]
    [ "1a+22a+56a+77a+154c+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a",
      "1a+22a+56a+77a+154b+175a+176ab+616ab+770a+825a+1056a+1980ab+2520a" ]
    gap&#62; CompareWithDatabase( "2.HS", faith );
    gap&#62; CompareWithCandidatesByMaxes( "2.HS", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.14">
3.14</a>&nbsp;&nbsp;G = 2.HS.2</h3>

<div class="p"><!----></div>
The group 2.HS.2 that is printed in the  A<font size="-2">TLAS</font> has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types A<sub>8</sub> &times;2 (twice)
and A<sub>8</sub>.2 (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable("2.HS.2");;
    gap&#62; faith:= FaithfulCandidates( tbl2, "HS.2" );;
    10:  subgroup $A_8 \times 2 \leq A_8.2 \times 2$, degree 4400 (1 cand.)
    11:  subgroup $A_8.2 \leq A_8.2 \times 2$, degree 4400 (1 cand.)

</pre>

<div class="p"><!----></div>
The existence of two classes of subgroups for each candidate follows from
Lemma&nbsp;<a href="#situationIII">2.3</a>.
(Since there are A<sub>8</sub> &times;2 type subgroups inside 2.HS in which we are
not interested,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.)

<div class="p"><!----></div>

<pre>
    gap&#62; facttbl:= CharacterTable( "HS.2" );;
    gap&#62; factfus:= GetFusionMap( tbl2, facttbl );;
    gap&#62; s0:= CharacterTable( "A8");;
    gap&#62; s:= s0 * CharacterTable( "Cyclic", 2 );
    CharacterTable( "A8xC2" )
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
    2.HS.2:  A8xC2 lifts to a direct product,
    proved by squares in [ 1, 6, 13, 20, 30 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[10], "extending" );
    G = 2.HS.2:  point stabilizer A8xC2, ranks [ 10 ]
    [ "1a^++22a^++77a^++154a^+bc+175a^++176ab+693a^++770a^++924ab" ]
    gap&#62; s:= CharacterTable( "A8.2" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
    2.HS.2:  A8.2 lifts to a direct product,
    proved by squares in [ 1, 6, 13 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[11], "all" );
    G = 2.HS.2:  point stabilizer A8.2, ranks [ 10 ]
    [ "1a^++22a^-+77a^++154a^+bc+175a^++176ab+693a^++770a^-+924ab" ]
    gap&#62; faith[10]:= faith[10]{ [ 1, 1 ] };;
    gap&#62; faith[11]:= faith[11]{ [ 1, 1 ] };;
    gap&#62; CompareWithDatabase( "2.HS.2", faith );

</pre>

<div class="p"><!----></div>
The group (2.HS.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has no faithful multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "HS.2" );;
    gap&#62; CompareWithDatabase( "Isoclinic(2.HS.2)", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.15">
3.15</a>&nbsp;&nbsp;G = 3.J<sub>3</sub></h3>

<div class="p"><!----></div>
The group 3.J<sub>3</sub> has no faithful multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "3.J3" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "J3" );;
    gap&#62; CompareWithDatabase( "3.J3", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.16">
3.16</a>&nbsp;&nbsp;G = 3.J<sub>3</sub>.2</h3>

<div class="p"><!----></div>
The group 3.J<sub>3</sub>.2 has no faithful multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "3.J3.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "J3.2" );;
    gap&#62; CompareWithDatabase( "3.J3.2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.17">
3.17</a>&nbsp;&nbsp;G = 3.McL</h3>

<div class="p"><!----></div>
The group 3.McL has one faithful multiplicity-free permutation action,
with point stabilizer of the type 2.A<sub>8</sub>, by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "3.McL" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "McL" );;
    6:  subgroup $2.A_8$, degree 66825 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "2.A8" ), tbl, 0, faith[6], "all" );
    G = 3.McL:  point stabilizer 2.A8, ranks [ 14 ]
    [ "1a+252a+1750a+2772ab+5103abc+5544a+6336ab+8064ab+9625a" ]
    gap&#62; CompareWithDatabase( "3.McL", faith );
    gap&#62; CompareWithCandidatesByMaxes( "3.McL", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.18">
3.18</a>&nbsp;&nbsp;G = 3.McL.2</h3>

<div class="p"><!----></div>
The group 3.McL.2 has one faithful multiplicity-free permutation action,
with point stabilizer of the type (2.A<sub>8</sub>.2)<sup>&#8727;</sup>,
by Lemma&nbsp;<a href="#situationII">2.2</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "3.McL.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "McL.2" );;
    9:  subgroup $2.S_8$, degree 66825 (1 cand.)
    gap&#62; s:= CharacterTable( "Isoclinic(2.A8.2)" );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[9], "all" );
    G = 3.McL.2:  point stabilizer Isoclinic(2.A8.2), ranks [ 10 ]
    [ "1a^++252a^++1750a^++2772ab+5103a^+bc+5544a^++6336ab+8064ab+9625a^+" ]
    gap&#62; CompareWithDatabase( "3.McL.2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.19">
3.19</a>&nbsp;&nbsp;G = 2.Ru</h3>

<div class="p"><!----></div>
The group 2.Ru has one faithful multiplicity-free permutation action,
with point stabilizer of the type <sup>2</sup>F<sub>4</sub>(2)<sup>&#8242;</sup>,
by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.Ru" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "Ru" );;
    2:  subgroup ${^2F_4(2)^{\prime}} \leq {^2F_4(2)^{\prime}}.2$, degree 16240 (
    1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "2F4(2)'" ), tbl, 0, faith[2], "all" );
    G = 2.Ru:  point stabilizer 2F4(2)', ranks [ 9 ]
    [ "1a+28ab+406a+783a+3276a+3654a+4032ab" ]
    gap&#62; CompareWithDatabase( "2.Ru", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.20">
3.20</a>&nbsp;&nbsp;G = 2.Suz</h3>

<div class="p"><!----></div>
The group 2.Suz has one faithful multiplicity-free permutation action,
with point stabilizer of the type U<sub>5</sub>(2), by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.Suz" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "Suz" );;
    4:  subgroup $U_5(2)$, degree 65520 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[4], "all" );
    G = 2.Suz:  point stabilizer U5(2), ranks [ 10 ]
    [ "1a+143a+364abc+5940a+12012a+14300a+16016ab" ]
    gap&#62; CompareWithDatabase( "2.Suz", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.21">
3.21</a>&nbsp;&nbsp;G = 2.Suz.2</h3>

<div class="p"><!----></div>
The group 2.Suz.2 that is printed in the  A<font size="-2">TLAS</font> has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types U<sub>5</sub>(2).2 (twice)
and 3<sup>5</sup>:(M<sub>11</sub> &times;2) (twice), respectively.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "2.Suz.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Suz.2" );;
    8:  subgroup $U_5(2).2$, degree 65520 (1 cand.)
    12:  subgroup $3^5:(M_{11} \times 2)$, degree 465920 (1 cand.)

</pre>

<div class="p"><!----></div>
We verify the conditions of Lemma&nbsp;<a href="#situationIII">2.3</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; s0:= CharacterTable( "U5(2)" );;
    gap&#62; s:= CharacterTable( "U5(2).2" );; 
    gap&#62; facttbl:= CharacterTable( "Suz.2" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
    2.Suz.2:  U5(2).2 lifts to a direct product,
    proved by squares in [ 1, 8, 13, 19, 31, 44 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[8], "all" );
    G = 2.Suz.2:  point stabilizer U5(2).2, ranks [ 8 ]
    [ "1a^++143a^-+364a^+bc+5940a^++12012a^-+14300a^-+16016ab" ]
    gap&#62; s0:= CharacterTable( "SuzM5" );
    CharacterTable( "3^5:M11" )
    gap&#62; s:= CharacterTable( "Suz.2M6" );
    CharacterTable( "3^5:(M11x2)" )
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
    2.Suz.2:  3^5:(M11x2) lifts to a direct product,
    proved by squares in [ 1, 4, 8, 10, 19, 22, 26, 39 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[12], "all" );
    G = 2.Suz.2:  point stabilizer 3^5:(M11x2), ranks [ 14 ]
    [ "1a^++364a^{\\pm}bc+5940a^++12012a^-+14300a^-+15015ab+15795a^++16016ab+54054\
    a^++100100a^-b^{\\pm}" ]
    gap&#62; faith[8]:= faith[8]{ [ 1, 1 ] };;
    gap&#62; faith[12]:= faith[12]{ [ 1, 1 ] };;
    gap&#62; CompareWithDatabase( "2.Suz.2", faith );

</pre>

<div class="p"><!----></div>
The group (2.Suz.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has no faithful multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Suz.2" );;
    gap&#62; CompareWithDatabase( "Isoclinic(2.Suz.2)", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.22">
3.22</a>&nbsp;&nbsp;G = 3.Suz</h3>

<div class="p"><!----></div>
The group 3.Suz has four faithful multiplicity-free permutation actions,
with point stabilizers of the types G<sub>2</sub>(4), U<sub>5</sub>(2),
2<sup>1+6</sup><sub>&#8722;</sub>.U<sub>4</sub>(2), and 2<sup>4+6</sup>:3A<sub>6</sub>, respectively,
by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "3.Suz" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "Suz" );;
    1:  subgroup $G_2(4)$, degree 5346 (1 cand.)
    4:  subgroup $U_5(2)$, degree 98280 (1 cand.)
    5:  subgroup $2^{1+6}_-.U_4(2)$, degree 405405 (1 cand.)
    6:  subgroup $2^{4+6}:3A_6$, degree 1216215 (1 cand.)
    gap&#62; Maxes( tbl );
    [ "3xG2(4)", "3^2.U4(3).2_3'", "3xU5(2)", "3x2^(1+6)_-.U4(2)", "3^6.M11", 
      "3xJ2.2", "3x2^(4+6).3A6", "(A4x3.L3(4)).2", "3x2^(2+8):(A5xS3)", 
      "3xM12.2", "3.3^(2+4):2(A4x2^2).2", "(3.A6xA5):2", "(3^(1+2):4xA6).2", 
      "3xL3(3).2", "3xL3(3).2", "3xL2(25)", "3.A7" ]
    gap&#62; VerifyCandidates( CharacterTable( "G2(4)" ), tbl, 0, faith[1], "all" );
    G = 3.Suz:  point stabilizer G2(4), ranks [ 7 ]
    [ "1a+66ab+780a+1001a+1716ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[4], "all" );
    G = 3.Suz:  point stabilizer U5(2), ranks [ 14 ]
    [ "1a+78ab+143a+364a+1365ab+4290ab+5940a+12012a+14300a+27027ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "SuzM4" ), tbl, 0, faith[5], "all" );
    G = 3.Suz:  point stabilizer 2^1+6.u4q2, ranks [ 23 ]
    [ "1a+66ab+143a+429ab+780a+1716ab+3432a+5940a+6720ab+14300a+18954abc+25025a+42\
    900ab+64350cd+66560a" ]
    gap&#62; VerifyCandidates( CharacterTable( "SuzM7" ), tbl, 0, faith[6], "all" );
    G = 3.Suz:  point stabilizer 2^4+6:3a6, ranks [ 27 ]
    [ "1a+364a+780a+1001a+1365ab+4290ab+5940a+12012a+14300a+15795a+25025a+27027ab+\
    42900ab+66560a+75075a+85800ab+88452a+100100a+104247ab+139776ab" ]
    gap&#62; CompareWithDatabase( "3.Suz", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.23">
3.23</a>&nbsp;&nbsp;G = 3.Suz.2</h3>

<div class="p"><!----></div>
The group 3.Suz.2 has four faithful multiplicity-free permutation actions,
with point stabilizers of the types G<sub>2</sub>(4).2, U<sub>5</sub>(2).2,
2<sup>1+6</sup><sub>&#8722;</sub>.U<sub>4</sub>(2).2, and 2<sup>4+6</sup>:3S<sub>6</sub>, respectively.
We know from the treatment of 3.Suz that we can apply
Lemma&nbsp;<a href="#situationII">2.2</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "3.Suz.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Suz.2" );;
    1:  subgroup $G_2(4).2$, degree 5346 (1 cand.)
    8:  subgroup $U_5(2).2$, degree 98280 (1 cand.)
    10:  subgroup $2^{1+6}_-.U_4(2).2$, degree 405405 (1 cand.)
    13:  subgroup $2^{4+6}:3S_6$, degree 1216215 (1 cand.)
    gap&#62; Maxes( CharacterTable( "Suz.2" ) );
    [ "Suz", "G2(4).2", "3_2.U4(3).(2^2)_{133}", "U5(2).2", "2^(1+6)_-.U4(2).2", 
      "3^5:(M11x2)", "J2.2x2", "2^(4+6):3S6", "(A4xL3(4):2_3):2", 
      "2^(2+8):(S5xS3)", "M12.2x2", "3^(2+4):2(S4xD8)", "(A6:2_2xA5).2", 
      "(3^2:8xA6).2", "L2(25).2_2", "A7.2" ]
    gap&#62; VerifyCandidates( CharacterTable( "G2(4).2" ), tbl, tbl2, faith[1], "all" );
    G = 3.Suz.2:  point stabilizer G2(4).2, ranks [ 5 ]
    [ "1a^++66ab+780a^++1001a^++1716ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );
    G = 3.Suz.2:  point stabilizer U5(2).2, ranks [ 10 ]
    [ "1a^++78ab+143a^-+364a^++1365ab+4290ab+5940a^++12012a^-+14300a^-+27027ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "Suz.2M5" ), tbl, tbl2, faith[10], "all" );
    G = 3.Suz.2:  point stabilizer 2^(1+6)_-.U4(2).2, ranks [ 16 ]
    [ "1a^++66ab+143a^-+429ab+780a^++1716ab+3432a^++5940a^++6720ab+14300a^-+18954a\
    ^-bc+25025a^++42900ab+64350cd+66560a^+" ]
    gap&#62; VerifyCandidates( CharacterTable( "Suz.2M8" ), tbl, tbl2, faith[13], "all" );
    G = 3.Suz.2:  point stabilizer 2^(4+6):3S6, ranks [ 20 ]
    [ "1a^++364a^++780a^++1001a^++1365ab+4290ab+5940a^++12012a^-+14300a^-+15795a^+\
    +25025a^++27027ab+42900ab+66560a^++75075a^++85800ab+88452a^++100100a^++104247a\
    b+139776ab" ]
    gap&#62; CompareWithDatabase( "3.Suz.2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.24">
3.24</a>&nbsp;&nbsp;G = 6.Suz</h3>

<div class="p"><!----></div>
The group 6.Suz has one faithful multiplicity-free permutation action,
with point stabilizer of the type U<sub>5</sub>(2), by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "6.Suz" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "2.Suz" );;
    1:  subgroup $U_5(2) \rightarrow (Suz,4)$, degree 196560 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "U5(2)" ), tbl, 0, faith[1], "all" );
    G = 6.Suz:  point stabilizer U5(2), ranks [ 26 ]
    [ "1a+12ab+78ab+143a+364abc+924ab+1365ab+4290ab+4368ab+5940a+12012a+14300a+160\
    16ab+27027ab+27456ab" ]
    gap&#62; CompareWithDatabase( "6.Suz", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.25">
3.25</a>&nbsp;&nbsp;G = 6.Suz.2</h3>

<div class="p"><!----></div>
The group 6.Suz.2 that is printed in the  A<font size="-2">TLAS</font> has two faithful
multiplicity-free permutation actions,
with point stabilizers of the type U<sub>5</sub>(2).2 (twice).
We know from the treatment of 6.Suz that we can apply
Lemma&nbsp;<a href="#situationII">2.2</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "6.Suz.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Suz.2" );;
    8:  subgroup $U_5(2).2$, degree 196560 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "U5(2).2" ), tbl, tbl2, faith[8], "all" );
    G = 6.Suz.2:  point stabilizer U5(2).2, ranks [ 16 ]
    [ "1a^++12ab+78ab+143a^-+364a^+bc+924ab+1365ab+4290ab+4368ab+5940a^++12012a^-+\
    14300a^-+16016ab+27027ab+27456ab" ]
    gap&#62; faith[8]:= faith[8]{ [ 1, 1 ] };;
    gap&#62; CompareWithDatabase( "6.Suz.2", faith );

</pre>

<div class="p"><!----></div>
It follows from the treatment of 2.Suz.2 that the group (6.Suz.2)<sup>&#8727;</sup>
of the isoclinism type that is not printed in the  A<font size="-2">TLAS</font> does not have a
faithful multiplicity-free permutation action.

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.26">
3.26</a>&nbsp;&nbsp;G = 3.ON</h3>

<div class="p"><!----></div>
The group 3.ON has four faithful multiplicity-free permutation actions,
with point stabilizers of the types L<sub>3</sub>(7).2 (twice) and L<sub>3</sub>(7) (twice).
(The Schur multiplier of L<sub>3</sub>(7).2 is trivial, so the L<sub>3</sub>(7) type
subgroups lift to direct products with the centre of 3.ON, that is,
we can apply Lemma&nbsp;<a href="#situationI">2.1</a>.)

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "3.ON" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "ON" );;
    1:  subgroup $L_3(7).2$, degree 368280 (1 cand.)
    2:  subgroup $L_3(7) \leq L_3(7).2$, degree 736560 (1 cand.)
    3:  subgroup $L_3(7).2$, degree 368280 (1 cand.)
    4:  subgroup $L_3(7) \leq L_3(7).2$, degree 736560 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "L3(7).2" ), tbl, 0,
    &#62;        Concatenation( faith[1], faith[3] ), "all" );
    G = 3.ON:  point stabilizer L3(7).2, ranks [ 11, 11 ]
    [ "1a+495ab+10944a+26752a+32395b+52668a+58653bc+63612ab",
      "1a+495cd+10944a+26752a+32395a+52668a+58653bc+63612ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "L3(7)" ), tbl, 0,
    &#62;        Concatenation( faith[2], faith[4] ), "all" );
    G = 3.ON:  point stabilizer L3(7), ranks [ 15, 15 ]
    [ "1a+495ab+10944a+26752a+32395b+37696a+52668a+58653bc+63612ab+85064a+122760ab\
    ",
      "1a+495cd+10944a+26752a+32395a+37696a+52668a+58653bc+63612ab+85064a+122760ab\
    " ]
    gap&#62; CompareWithDatabase( "3.ON", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.27">
3.27</a>&nbsp;&nbsp;G = 3.ON.2</h3>

<div class="p"><!----></div>
The group 3.ON.2 has no faithful multiplicity-free permutation action.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "3.ON.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "ON.2" );;
    gap&#62; CompareWithDatabase( "3.ON.2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.28">
3.28</a>&nbsp;&nbsp;G = 2.Fi<sub>22</sub></h3>

<div class="p"><!----></div>
The group 2.Fi<sub>22</sub> has seven faithful multiplicity-free permutation
actions, with point stabilizers of the types O<sub>7</sub>(3) (twice), O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>
(twice), O<sub>8</sub><sup>+</sup>(2):3, and O<sub>8</sub><sup>+</sup>(2):2 (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.Fi22" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "Fi22" );;
    2:  subgroup $O_7(3)$, degree 28160 (2 cand.)
    3:  subgroup $O_7(3)$, degree 28160 (2 cand.)
    4:  subgroup $O_8^+(2).3.2$, degree 123552 (2 cand.)
    5:  subgroup $O_8^+(2).3 \leq O_8^+(2).3.2$, degree 247104 (1 cand.)
    6:  subgroup $O_8^+(2).2 \leq O_8^+(2).3.2$, degree 370656 (2 cand.)

</pre>

<div class="p"><!----></div>
The two classes of maximal subgroups of the type O<sub>7</sub>(3) in Fi<sub>22</sub> induce
the same permutation character and lift to two classes of the type
2 &times;O<sub>7</sub>(3) in 2.Fi<sub>22</sub>.
We get the same two candidates for these two classes.
One of them belongs to the first class of O<sub>7</sub>(3) subgroups in 2.Fi<sub>22</sub>,
the other candidate belongs to the second class;
this can be seen from the fact that the outer automorphism of Fi<sub>22</sub>
swaps the two classes of O<sub>7</sub>(3) subgroups, and the lift of this automorphism
to 2.Fi<sub>22</sub> interchanges the candidates
-this action can be read off from the embedding of 2.Fi<sub>22</sub> into any group
of the type 2.Fi<sub>22</sub>.2.

<div class="p"><!----></div>

<pre>
    gap&#62; faith[2] = faith[3];
    true
    gap&#62; tbl2:= CharacterTable("2.Fi22.2");;
    gap&#62; embed:= GetFusionMap( tbl, tbl2 );;
    gap&#62; swapped:= Filtered( InverseMap( embed ), IsList );
    [ [ 3, 4 ], [ 17, 18 ], [ 25, 26 ], [ 27, 28 ], [ 33, 34 ], [ 36, 37 ], 
      [ 42, 43 ], [ 51, 52 ], [ 59, 60 ], [ 63, 65 ], [ 64, 66 ], [ 71, 72 ], 
      [ 73, 75 ], [ 74, 76 ], [ 81, 82 ], [ 85, 87 ], [ 86, 88 ], [ 89, 90 ], 
      [ 93, 94 ], [ 95, 98 ], [ 96, 97 ], [ 99, 100 ], [ 103, 104 ], 
      [ 107, 110 ], [ 108, 109 ], [ 113, 114 ] ]
    gap&#62; perm:= Product( List( swapped, pair -&#62; ( pair[1], pair[2] ) ) );;
    gap&#62; Permuted( faith[2][1], perm ) = faith[2][2];
    true
    gap&#62; VerifyCandidates( CharacterTable( "O7(3)" ), tbl, 0, faith[2], "all" );
    G = 2.Fi22:  point stabilizer O7(3), ranks [ 5, 5 ]
    [ "1a+352a+429a+13650a+13728b", "1a+352a+429a+13650a+13728a" ]
    gap&#62; faith[2]:= [ faith[2][1] ];;
    gap&#62; faith[3]:= [ faith[3][2] ];;

</pre>

<div class="p"><!----></div>
All involutions in Fi<sub>22</sub> lift to involutions in 2.Fi<sub>22</sub>,
so the preimages of the maximal subgroups of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>
in Fi<sub>22</sub> have the type 2 &times;O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>.
We apply Lemma&nbsp;<a href="#situationIII">2.3</a>, using that the two subgroups of the type
O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> contain involutions outside O<sub>8</sub><sup>+</sup>(2) which lie in the two
nonconjugate preimages of the class <tt>2A</tt> of Fi<sub>22</sub>;
this proves the existence of the two candidates of degree 123&nbsp;552.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "O8+(2).S3" );;
    gap&#62; s0:= CharacterTable( "O8+(2).3" );;
    gap&#62; facttbl:= CharacterTable( "Fi22" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl, "all" );
    2.Fi22:  O8+(2).3.2 lifts to a direct product,
    proved by squares in [ 1, 8, 10, 12, 20, 23, 30, 46, 55, 61, 91 ].
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; factfus:= GetFusionMap( tbl, facttbl );;
    gap&#62; ForAll( PossibleClassFusions( s, tbl ),
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, 0, faith[4], "all" );
    G = 2.Fi22:  point stabilizer O8+(2).3.2, ranks [ 6, 6 ]
    [ "1a+3080a+13650a+13728b+45045a+48048c",
      "1a+3080a+13650a+13728a+45045a+48048b" ]

</pre>

<div class="p"><!----></div>
The existence of one class of O<sub>8</sub><sup>+</sup>(2).3 subgroups follows from
Lemma&nbsp;<a href="#situationI">2.1</a>, and the proof for O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> also establishes
two classes of O<sub>8</sub><sup>+</sup>(2).2 subgroups, with different permutation characters,

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, 0, faith[5], "all" );
    G = 2.Fi22:  point stabilizer O8+(2).3, ranks [ 11 ]
    [ "1a+1001a+3080a+10725a+13650a+13728ab+45045a+48048bc+50050a" ]
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[6], "all" );
    G = 2.Fi22:  point stabilizer O8+(2).2, ranks [ 11, 11 ]
    [ "1a+352a+429a+3080a+13650a+13728b+45045a+48048ac+75075a+123200a",
      "1a+352a+429a+3080a+13650a+13728a+45045a+48048ab+75075a+123200a" ]
    gap&#62; CompareWithDatabase( "2.Fi22", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.29">
3.29</a>&nbsp;&nbsp;G = 2.Fi<sub>22</sub>.2</h3>

<div class="p"><!----></div>
The group 2.Fi<sub>22</sub>.2 that is printed in the  A<font size="-2">TLAS</font> has seven faithful
multiplicity-free permutation actions,
with point stabilizers of the types O<sub>7</sub>(3), O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>,
O<sub>8</sub><sup>+</sup>(2):3 &times;2 (twice), O<sub>8</sub><sup>+</sup>(2):2, and <sup>2</sup>F<sub>4</sub>(2) (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "2.Fi22.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
    3:  subgroup $O_7(3)$, degree 56320 (1 cand.)
    5:  subgroup $O_8^+(2).3.2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
    1 cand.)
    6:  subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
    1 cand.)
    10:  subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
    16:  subgroup ${^2F_4(2)}$, degree 7185024 (1 cand.)

</pre>

<div class="p"><!----></div>
The third, fifth, and tenth multiplicity-free permutation character of
Fi<sub>22</sub>.2 are induced from subgroups of the types O<sub>7</sub>(3), O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>,
and O<sub>8</sub><sup>+</sup>(2).2 that lie inside Fi<sub>22</sub>, and we have discussed above that
these groups lift to direct products in 2.Fi<sub>22</sub>.
In fact all such subgroups of 2.Fi<sub>22</sub>.2 lie inside 2.Fi<sub>22</sub>,
and the two classes of such subgroups in 2.Fi<sub>22</sub> are fused in
2.Fi<sub>22</sub>.2, hence we get only one class of these subgroups.

<div class="p"><!----></div>

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "O7(3)" ), tbl, tbl2, faith[3], "all" );
    G = 2.Fi22.2:  point stabilizer O7(3), ranks [ 9 ]
    [ "1a^{\\pm}+352a^{\\pm}+429a^{\\pm}+13650a^{\\pm}+13728ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, tbl2, faith[5], "all" );
    G = 2.Fi22.2:  point stabilizer O8+(2).3.2, ranks [ 10 ]
    [ "1a^{\\pm}+3080a^{\\pm}+13650a^{\\pm}+13728ab+45045a^{\\pm}+48048bc" ]
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, tbl2, faith[10], "all" );
    G = 2.Fi22.2:  point stabilizer O8+(2).2, ranks [ 20 ]
    [ "1a^{\\pm}+352a^{\\pm}+429a^{\\pm}+3080a^{\\pm}+13650a^{\\pm}+13728ab+45045a\
    ^{\\pm}+48048a^{\\pm}bc+75075a^{\\pm}+123200a^{\\pm}" ]

</pre>

<div class="p"><!----></div>
The sixth multiplicity-free permutation character of Fi<sub>22</sub>.2
is induced from a subgroup of the type O<sub>8</sub><sup>+</sup>(2).3 &times;2 that does not lie
inside Fi<sub>22</sub>.
As we have discussed above, the O<sub>8</sub><sup>+</sup>(2).3 type subgroup of Fi<sub>22</sub>
lifts to a subgroup of the type 2 &times;O<sub>8</sub><sup>+</sup>(2).3 in 2.Fi<sub>22</sub>,
and the outer involutions in the subgroup O<sub>8</sub><sup>+</sup>(2).3 &times;2 of Fi<sub>22</sub>.2
lift to involutions in 2.Fi<sub>22</sub>.2, so there are two subgroups of the type
O<sub>8</sub><sup>+</sup>(2).3 &times;2 not containing the centre of 2.Fi<sub>22</sub>.2,
which induce the same permutation character.
Since also 2.Fi<sub>22</sub> contains subgroups of the type O<sub>8</sub><sup>+</sup>(2).3 &times;2,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );
    G = 2.Fi22.2:  point stabilizer O8+(2).3xC2, ranks [ 9 ]
    [ "1a^++1001a^-+3080a^++10725a^++13650a^++13728ab+45045a^++48048bc+50050a^+" ]
    gap&#62; faith[6]:= faith[6]{ [ 1, 1 ] };;

</pre>

<div class="p"><!----></div>
By Lemma&nbsp;<a href="#situationIII">2.3</a>, the subgroup <sup>2</sup>F<sub>4</sub>(2) of Fi<sub>22</sub>.2 lifts
to 2 &times;<sup>2</sup>F<sub>4</sub>(2) in 2.Fi<sub>22</sub>.2;
for that, note that the class <tt>4D</tt> of <sup>2</sup>F<sub>4</sub>(2) does not lie inside
<sup>2</sup>F<sub>4</sub>(2)<sup>&#8242;</sup> and the preimages in 2.Fi<sub>22</sub>.2 of the images in
Fi<sub>22</sub>.2 square into the subgroup <sup>2</sup>F<sub>4</sub>(2)<sup>&#8242;</sup> of the direct
product 2 &times;<sup>2</sup>F<sub>4</sub>(2)<sup>&#8242;</sup>.
Since the group 2 &times;<sup>2</sup>F<sub>4</sub>(2) contains two subgroups of the type
<sup>2</sup>F<sub>4</sub>(2), with normalizer 2 &times;<sup>2</sup>F<sub>4</sub>(2), there are two classes
of such subgroups, which induce the same permutation character.

<div class="p"><!----></div>

<pre>
    gap&#62; facttbl:= CharacterTable( "Fi22.2" );;
    gap&#62; s0:= CharacterTable( "2F4(2)'" );;
    gap&#62; s:= CharacterTable( "2F4(2)" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "all" );
    2.Fi22.2:  2F4(2)'.2 lifts to a direct product,
    proved by squares in [ 5, 38, 53 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[16], "all" );
    G = 2.Fi22.2:  point stabilizer 2F4(2)'.2, ranks [ 13 ]
    [ "1a^++1001a^++1430a^++13650a^++30030a^++133056a^{\\pm}+289575a^-+400400ab+57\
    9150a^++675675a^-+1201200a^-+1663200ab" ]
    gap&#62; faith[16]:= faith[16]{ [ 1, 1 ] };;
    gap&#62; CompareWithDatabase( "2.Fi22.2", faith );

</pre>

<div class="p"><!----></div>
The group (2.Fi<sub>22</sub>.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has seven faithful multiplicity-free permutation actions,
with point stabilizers of the types O<sub>7</sub>(3), O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (three times),
and O<sub>8</sub><sup>+</sup>(2):2 (three times).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
    3:  subgroup $O_7(3)$, degree 56320 (1 cand.)
    5:  subgroup $O_8^+(2).3.2 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
    1 cand.)
    7:  subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 247104 (
    1 cand.)
    10:  subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
    11:  subgroup $O_8^+(2).2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)

</pre>

<div class="p"><!----></div>
The characters arising from the third, fifth, and tenth multiplicity-free
permutation character of Fi<sub>22</sub>.2 are induced from subgroups of
2.Fi<sub>22</sub>, so these actions have been verified above.

<div class="p"><!----></div>
The seventh multiplicity-free permutation character of Fi<sub>22</sub>.2 is induced
from an O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type subgroup that does not lie inside Fi<sub>22</sub>.
By Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(i), this subgroup lifts to a direct
product in (2.Fi<sub>22</sub>.2)<sup>&#8727;</sup>;
this yields two actions
(because the O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type subgroups have index 2 in their normalizer),
which induce the same permutation character.
Note that the involutions in O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> \O<sub>8</sub><sup>+</sup>(2) lie in the
class <tt>2F</tt> of Fi<sub>22</sub>.2, and these elements lift to involutions in
(2.Fi<sub>22</sub>.2)<sup>&#8727;</sup>.
Since also 2.Fi<sub>22</sub> contains subgroups of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.

<div class="p"><!----></div>
This argument also proves the existence of two classes of O<sub>8</sub><sup>+</sup>(2):2 type
subgroups that are not contained in 2.Fi<sub>22</sub>;
they arise from the 11th multiplicity-free permutation character
of Fi<sub>22</sub>.2.

<div class="p"><!----></div>

<pre>
    gap&#62; s0:= CharacterTable( "O8+(2).3" );;
    gap&#62; s:= CharacterTable( "O8+(2).S3" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl2, "extending" );
    Isoclinic(2.Fi22.2):  O8+(2).3.2 lifts to a direct product,
    proved by squares in [ 1, 7, 9, 11, 18, 21, 26, 39, 47, 52, 73 ].
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
    G = Isoclinic(2.Fi22.2):  point stabilizer O8+(2).3.2, ranks [ 9 ]
    [ "1a^++1001a^++3080a^++10725a^-+13650a^++13728ab+45045a^++48048bc+50050a^-" ]
    gap&#62; faith[7]:= faith[7]{ [ 1, 1 ] };;
    gap&#62; s:= CharacterTable( "O8+(2).2" );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[11], "extending" );
    G = Isoclinic(2.Fi22.2):  point stabilizer O8+(2).2, ranks [ 19 ]
    [ "1a^++352a^{\\pm}+429a^{\\pm}+1001a^++3080a^++10725a^-+13650a^++13728ab+4504\
    5a^++48048a^{\\pm}bc+50050a^-+75075a^{\\pm}+123200a^{\\pm}" ]
    gap&#62; faith[11]:= faith[11]{ [ 1, 1 ] };;
    gap&#62; CompareWithDatabase( "Isoclinic(2.Fi22.2)", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.30">
3.30</a>&nbsp;&nbsp;G = 3.Fi<sub>22</sub></h3>

<div class="p"><!----></div>
The group 3.Fi<sub>22</sub> has six faithful multiplicity-free permutation actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>, O<sub>8</sub><sup>+</sup>(2):3 (twice),
O<sub>8</sub><sup>+</sup>(2):2, 2<sup>6</sup>:S<sub>6</sub>(2), and <sup>2</sup>F<sub>4</sub>(2).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "3.Fi22" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "Fi22" );;
    4:  subgroup $O_8^+(2).3.2$, degree 185328 (1 cand.)
    5:  subgroup $O_8^+(2).3 \leq O_8^+(2).3.2$, degree 370656 (2 cand.)
    6:  subgroup $O_8^+(2).2 \leq O_8^+(2).3.2$, degree 555984 (1 cand.)
    8:  subgroup $2^6:S_6(2)$, degree 2084940 (1 cand.)
    9:  subgroup ${^2F_4(2)^{\prime}}$, degree 10777536 (1 cand.)

</pre>

<div class="p"><!----></div>
The preimages of the maximal subgroups of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> in Fi<sub>22</sub>
have the type 3 &times;O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>,
because the Schur multiplier of O<sub>8</sub><sup>+</sup>(2) has order 4 and the only central
extension of S<sub>3</sub> by a group of order 3 is 3 &times;S<sub>3</sub>.
Each such preimage contains one subgroup of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>
with one subgroup of the type O<sub>8</sub><sup>+</sup>(2).3,
two conjugate O<sub>8</sub><sup>+</sup>(2).3 subgroups which are not contained in O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub>,
and one class of O<sub>8</sub><sup>+</sup>(2).2 subgroups.
The two classes of O<sub>8</sub><sup>+</sup>(2).3 subgroups contain elements of order 3
outside O<sub>8</sub><sup>+</sup>(2) which lie in nonconjugate preimages of the class <tt>3A</tt>
of Fi<sub>22</sub>, so we get two classes of O<sub>8</sub><sup>+</sup>(2).3 subgroups in 3.Fi<sub>22</sub>
which induce different permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).S3" ), tbl, 0, faith[4], "all" );
    G = 3.Fi22:  point stabilizer O8+(2).3.2, ranks [ 10 ]
    [ "1a+351ab+3080a+13650a+19305ab+42120ab+45045a" ]
    gap&#62; s:= CharacterTable( "O8+(2).3" );;
    gap&#62; fus:= PossibleClassFusions( s, tbl );;
    gap&#62; facttbl:= CharacterTable( "Fi22" );;
    gap&#62; factfus:= GetFusionMap( tbl, facttbl );;
    gap&#62; outer:= Difference( [ 1 .. NrConjugacyClasses( s ) ],
    &#62;                ClassPositionsOfDerivedSubgroup( s ) );;
    gap&#62; outerfus:= List( fus, map -&#62; map{ outer } );
    [ [ 13, 13, 18, 18, 46, 46, 50, 50, 59, 59, 75, 75, 95, 95, 98, 98, 95, 95,
          116, 116, 142, 142, 148, 148, 157, 157, 160, 160 ],
      [ 14, 15, 18, 18, 47, 48, 51, 52, 59, 59, 76, 77, 96, 97, 99, 100, 96, 97,
          116, 116, 143, 144, 149, 150, 158, 159, 161, 162 ],
      [ 15, 14, 18, 18, 48, 47, 52, 51, 59, 59, 77, 76, 97, 96, 100, 99, 97, 96,
          116, 116, 144, 143, 150, 149, 159, 158, 162, 161 ] ]
    gap&#62; preim:= InverseMap( factfus )[5];
    [ 13, 14, 15 ]
    gap&#62; List( outerfus, x -&#62; List( preim, i -&#62; i in x ) );
    [ [ true, false, false ], [ false, true, true ], [ false, true, true ] ]
    gap&#62; VerifyCandidates( s, tbl, 0, faith[5], "all" );
    G = 3.Fi22:  point stabilizer O8+(2).3, ranks [ 11, 17 ]
    [ "1a+1001a+3080a+10725a+13650a+27027ab+45045a+50050a+96525ab",
      "1a+351ab+1001a+3080a+7722ab+10725a+13650a+19305ab+42120ab+45045a+50050a+540\
    54ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[6], "all" );
    G = 3.Fi22:  point stabilizer O8+(2).2, ranks [ 17 ]
    [ "1a+351ab+429a+3080a+13650a+19305ab+27027ab+42120ab+45045a+48048a+75075a+965\
    25ab" ]

</pre>

<div class="p"><!----></div>
Lemma&nbsp;<a href="#situationI">2.1</a> applies to the maximal subgroups of the types
2<sup>6</sup>:S<sub>6</sub>(2) and <sup>2</sup>F<sub>4</sub>(2)<sup>&#8242;</sup> in Fi<sub>22</sub> and their preimages
in 3.Fi<sub>22</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "2^6:s6f2" ), tbl, 0, faith[8], "all" );
    G = 3.Fi22:  point stabilizer 2^6:s6f2, ranks [ 24 ]
    [ "1a+351ab+429a+1430a+3080a+13650a+19305ab+27027ab+30030a+42120ab+45045a+7507\
    5a+96525ab+123552ab+205920a+320320a+386100ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "2F4(2)'" ), tbl, 0, faith[9], "all" );
    G = 3.Fi22:  point stabilizer 2F4(2)', ranks [ 25 ]
    [ "1a+1001a+1430a+13650a+19305ab+27027ab+30030a+51975ab+289575a+386100ab+40040\
    0ab+405405ab+579150a+675675a+1201200a+1351350efgh" ]
    gap&#62; CompareWithDatabase( "3.Fi22", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.31">
3.31</a>&nbsp;&nbsp;G = 3.Fi<sub>22</sub>.2</h3>

<div class="p"><!----></div>
The group 3.Fi<sub>22</sub>.2 has seven faithful multiplicity-free permutation
actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> &times;2,
O<sub>8</sub><sup>+</sup>(2):3 &times;2, O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (twice), O<sub>8</sub><sup>+</sup>(2):2 &times;2,
2<sup>7</sup>:S<sub>6</sub>(2), and <sup>2</sup>F<sub>4</sub>(2).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "3.Fi22.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
    4:  subgroup $O_8^+(2).3.2 \times 2$, degree 185328 (1 cand.)
    6:  subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 370656 (
    1 cand.)
    7:  subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 370656 (
    2 cand.)
    8:  subgroup $O_8^+(2).2 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 555984 (
    1 cand.)
    9:  subgroup $O_8^+(2).3 \leq O_8^+(2).3.2 \times 2$, degree 741312 (1 cand.)
    14:  subgroup $2^7:S_6(2)$, degree 2084940 (1 cand.)
    16:  subgroup ${^2F_4(2)}$, degree 10777536 (1 cand.)

</pre>

<div class="p"><!----></div>
Let H be a subgroup of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> &times;2 in Fi<sub>22</sub>.2;
it induces the 4th multiplicity-free permutation character of Fi<sub>22</sub>.2.
The intersection of H with Fi<sub>22</sub> is of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>;
it lifts to a direct product in 3.Fi<sub>22</sub>, which contains one subgroup
of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> that is normal in the preimage of H.
By Lemma&nbsp;<a href="#situationII">2.2</a>, we get one class of subgroups of the type
O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> &times;2 in 3.Fi<sub>22</sub>.2.
The same argument yields one class of each of the types O<sub>8</sub><sup>+</sup>(2):3 &times;2
and O<sub>8</sub><sup>+</sup>(2):2 &times;2,
which arise from the 6th and 8th multiplicity-free permutation character
of Fi<sub>22</sub>.2, respectively.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "O8+(2).S3" ) * CharacterTable( "Cyclic", 2 );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[4], "all" );
    G = 3.Fi22.2:  point stabilizer O8+(2).3.2xC2, ranks [ 7 ]
    [ "1a^++351ab+3080a^++13650a^++19305ab+42120ab+45045a^+" ]
    gap&#62; s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[6], "all" );
    G = 3.Fi22.2:  point stabilizer O8+(2).3xC2, ranks [ 12 ]
    [ "1a^++351ab+1001a^-+3080a^++7722ab+10725a^++13650a^++19305ab+42120ab+45045a^\
    ++50050a^++54054ab" ]
    gap&#62; s:= CharacterTable( "O8+(2).2" ) * CharacterTable( "Cyclic", 2 );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[8], "all" );
    G = 3.Fi22.2:  point stabilizer O8+(2).2xC2, ranks [ 12 ]
    [ "1a^++351ab+429a^++3080a^++13650a^++19305ab+27027ab+42120ab+45045a^++48048a^\
    ++75075a^++96525ab" ]

</pre>

<div class="p"><!----></div>
Let H be a subgroup of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> in Fi<sub>22</sub>.2 that is not
contained in Fi<sub>22</sub>; it induces the 7-th multiplicity-free
permutation character of Fi<sub>22</sub>.2.
The intersection of H with Fi<sub>22</sub> is of the type O<sub>8</sub><sup>+</sup>(2):3;
it lifts to a direct product in 3.Fi<sub>22</sub>, which contains four subgroups
of the type O<sub>8</sub><sup>+</sup>(2):3,
three of them not containing the centre of 3.Fi<sub>22</sub>.
By Lemma&nbsp;<a href="#situationII">2.2</a>, we get three subgroups of the type
O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> in 3.Fi<sub>22</sub>.2, two of which are conjugate;
they induce two different permutation characters, so we get two classes.

<div class="p"><!----></div>
(Since there are O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> type subgroups also inside 3.Fi<sub>22</sub>,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.)

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "O8+(2).S3" );;
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; facttbl:= CharacterTable("Fi22.2");;
    gap&#62; sfustbl2:= PossibleClassFusions( s, tbl2,
    &#62;        rec( permchar:= faith[7][1] ) );;
    gap&#62; ForAll( sfustbl2,
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
    G = 3.Fi22.2:  point stabilizer O8+(2).3.2, ranks [ 9, 12 ]
    [ "1a^++1001a^++3080a^++10725a^-+13650a^++27027ab+45045a^++50050a^-+96525ab",
      "1a^++351ab+1001a^++3080a^++7722ab+10725a^-+13650a^++19305ab+42120ab+45045a^\
    ++50050a^-+54054ab" ]

</pre>

<div class="p"><!----></div>
The nineth multiplicity-free permutation character of Fi<sub>22</sub>.2
is induced from a subgroup of the type O<sub>8</sub><sup>+</sup>(2).3 that lies inside Fi<sub>22</sub>
and is known to lift to s group of the type 3 &times;O<sub>8</sub><sup>+</sup>(2).3
in 3.Fi<sub>22</sub>.
All subgroups of index three in this group either contain the centre of
3.Fi<sub>22</sub> or have the type O<sub>8</sub><sup>+</sup>(2).3, and it turns out that the
permutation characters of 3.Fi<sub>22</sub>.2 induced from these subgroups are
not multiplicity-free.
So the candidate can be excluded.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, tbl2, faith[9], "all" );
    G = 3.Fi22.2:  no O8+(2).3
    gap&#62; faith[9]:= [];;

</pre>

<div class="p"><!----></div>
Lemma&nbsp;<a href="#situationII">2.2</a> guarantees the existence of one class of subgroups
of each of the types 2<sup>7</sup>:S<sub>6</sub>(2) and <sup>2</sup>F<sub>4</sub>(2).

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "2^7:S6(2)" ), tbl, tbl2, faith[14], "all" );
    G = 3.Fi22.2:  point stabilizer 2^7:S6(2), ranks [ 17 ]
    [ "1a^++351ab+429a^++1430a^++3080a^++13650a^++19305ab+27027ab+30030a^++42120ab\
    +45045a^++75075a^++96525ab+123552ab+205920a^++320320a^++386100ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );
    G = 3.Fi22.2:  point stabilizer 2F4(2)'.2, ranks [ 17 ]
    [ "1a^++1001a^++1430a^++13650a^++19305ab+27027ab+30030a^++51975ab+289575a^-+38\
    6100ab+400400ab+405405ab+579150a^++675675a^-+1201200a^-+1351350efgh" ]
    gap&#62; CompareWithDatabase( "3.Fi22.2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.32">
3.32</a>&nbsp;&nbsp;G = 6.Fi<sub>22</sub></h3><a name="LMerror">
</a>

<div class="p"><!----></div>
The group 6.Fi<sub>22</sub> has six faithful multiplicity-free permutation actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (twice),
O<sub>8</sub><sup>+</sup>(2):3 (twice), and O<sub>8</sub><sup>+</sup>(2):2 (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "6.Fi22" );;
    gap&#62; facttbl:= CharacterTable( "3.Fi22" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "3.Fi22" );;
    1:  subgroup $O_8^+(2):S_3 \rightarrow (Fi_{22},4)$, degree 370656 (2 cand.)
    2:  subgroup $O_8^+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
    3:  subgroup $O_8^+(2):3 \rightarrow (Fi_{22},5)$, degree 741312 (1 cand.)
    4:  subgroup $O_8^+(2):2 \rightarrow (Fi_{22},6)$, degree 1111968 (2 cand.)

</pre>

<div class="p"><!----></div>
From the discussion of the cases 2.Fi<sub>22</sub> and 3.Fi<sub>22</sub>,
we conclude that the maximal subgroups of the type O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> lift to
groups of the type 6 &times;O<sub>8</sub><sup>+</sup>(2).S<sub>3</sub> in 6.Fi<sub>22</sub>.
So Lemma&nbsp;<a href="#situationIII">2.3</a>&nbsp;(iii) yields two classes of O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type
subgroups, which induce different permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "O8+(2).S3" );;
    gap&#62; s0:= CharacterTable( "O8+(2).3" );;
    gap&#62; CheckConditionsForLemma3( s0, s, facttbl, tbl, "all" );       
    6.Fi22:  O8+(2).3.2 lifts to a direct product,
    proved by squares in [ 1, 22, 28, 30, 46, 55, 76, 104, 131, 141, 215 ].
    gap&#62; derpos:= ClassPositionsOfDerivedSubgroup( s );;
    gap&#62; factfus:= GetFusionMap( tbl, facttbl );; 
    gap&#62; ForAll( PossibleClassFusions( s, tbl ),
    &#62;        map -&#62; NecessarilyDifferentPermChars( map, factfus, derpos ) );
    true
    gap&#62; VerifyCandidates( s, tbl, 0, faith[1], "all" );
    G = 6.Fi22:  point stabilizer O8+(2).3.2, ranks [ 14, 14 ]
    [ "1a+351ab+3080a+13650a+13728b+19305ab+42120ab+45045a+48048c+61776cd", 
      "1a+351ab+3080a+13650a+13728a+19305ab+42120ab+45045a+48048b+61776ab" ]

</pre>

<div class="p"><!----></div>
Each subgroup of the type O<sub>8</sub><sup>+</sup>(2):3 in 3.Fi<sub>22</sub> lifts to a direct product
in 6.Fi<sub>22</sub>, which yields one action;
as the two constituents that are permutation characters of 3.Fi<sub>22</sub>
are different,
we get two different permutation characters induced from O<sub>8</sub><sup>+</sup>(2):3.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).3" ), tbl, 0,
    &#62;        Concatenation( faith[2], faith[3] ), "all" );
    G = 6.Fi22:  point stabilizer O8+(2).3, ranks [ 17, 25 ]
    [ "1a+1001a+3080a+10725a+13650a+13728ab+27027ab+45045a+48048bc+50050a+96525ab+\
    123552cd", 
      "1a+351ab+1001a+3080a+7722ab+10725a+13650a+13728ab+19305ab+42120ab+45045a+48\
    048bc+50050a+54054ab+61776abcd" ]

</pre>

<div class="p"><!----></div>
Each subgroup of the type O<sub>8</sub><sup>+</sup>(2):2 in 3.Fi<sub>22</sub> lifts to a direct product
in 6.Fi<sub>22</sub>, which yields two actions; the permutation characters are
different by the argument used for O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "O8+(2).2" ), tbl, 0, faith[4], "all" );
    G = 6.Fi22:  point stabilizer O8+(2).2, ranks [ 25, 25 ]
    [ "1a+351ab+352a+429a+3080a+13650a+13728b+19305ab+27027ab+42120ab+45045a+48048\
    ac+61776cd+75075a+96525ab+123200a+123552cd", 
      "1a+351ab+352a+429a+3080a+13650a+13728a+19305ab+27027ab+42120ab+45045a+48048\
    ab+61776ab+75075a+96525ab+123200a+123552cd" ]
    gap&#62; CompareWithDatabase( "6.Fi22", faith );

</pre>

<div class="p"><!----></div>
(Note that the rank 17 permutation character above was missing in the first
version of&nbsp;[<a href="#LM03" name="CITELM03">LM</a>].)

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.33">
3.33</a>&nbsp;&nbsp;G = 6.Fi<sub>22</sub>.2</h3>

<div class="p"><!----></div>
The group 6.Fi<sub>22</sub>.2 that is printed in the  A<font size="-2">TLAS</font> has four faithful
multiplicity-free permutation actions,
with point stabilizers of the types O<sub>8</sub><sup>+</sup>(2):3 &times;2 (twice)
and <sup>2</sup>F<sub>4</sub>(2) (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "6.Fi22.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
    6:  subgroup $O_8^+(2).3 \times 2 \leq O_8^+(2).3.2 \times 2$, degree 741312 (
    1 cand.)
    16:  subgroup ${^2F_4(2)}$, degree 21555072 (1 cand.)

</pre>

<div class="p"><!----></div>
Each O<sub>8</sub><sup>+</sup>(2):3 &times;2 type subgroup of 3.Fi<sub>22</sub>.2 gives rise to two
subgroups of the same type in 6.Fi<sub>22</sub>.2, so we get two classes inducing
the same permutation character.
(Since there are O<sub>8</sub><sup>+</sup>(2).3 &times;2 type subgroups also inside 6.Fi<sub>22</sub>,
we must use <tt>"extending"</tt> as the last argument of <tt>VerifyCandidates</tt>.)

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "O8+(2).3" ) * CharacterTable( "Cyclic", 2 );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[6], "extending" );
    G = 6.Fi22.2:  point stabilizer O8+(2).3xC2, ranks [ 16 ]
    [ "1a^++351ab+1001a^-+3080a^++7722ab+10725a^++13650a^++13728ab+19305ab+42120ab\
    +45045a^++48048bc+50050a^++54054ab+61776adbc" ]

</pre>

<div class="p"><!----></div>
The subgroup of the type 6 &times;<sup>2</sup>F<sub>4</sub>(2)<sup>&#8242;</sup> of 6.Fi<sub>22</sub> extends
to 6 &times;<sup>2</sup>F<sub>4</sub>(2) in 6.Fi<sub>22</sub>.2, which contains two subgroups
of the type <sup>2</sup>F<sub>4</sub>(2), by Lemma&nbsp;<a href="#situationIII">2.3</a>;
so we get two classes of such subgroups,
which induce the same permutation character.

<div class="p"><!----></div>

<pre>
    gap&#62; VerifyCandidates( CharacterTable( "2F4(2)" ), tbl, tbl2, faith[16], "all" );
    G = 6.Fi22.2:  point stabilizer 2F4(2)'.2, ranks [ 22 ]
    [ "1a^++1001a^++1430a^++13650a^++19305ab+27027ab+30030a^++51975ab+133056a^{\\p\
    m}+289575a^-+386100ab+400400ab+405405ab+579150a^++675675a^-+1201200a^-+1351350\
    efgh+1663200ab+1796256adbc" ]
    gap&#62; faith[6]:= faith[6]{ [ 1, 1 ] };;
    gap&#62; faith[16]:= faith[16]{ [ 1, 1 ] };;
    gap&#62; CompareWithDatabase( "6.Fi22.2", faith );

</pre>

<div class="p"><!----></div>
The group (6.Fi<sub>22</sub>.2)<sup>&#8727;</sup> of the isoclinism type that is not printed
in the  A<font size="-2">TLAS</font> has two faithful multiplicity-free permutation actions,
with point stabilizers of the type O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> (twice).

<div class="p"><!----></div>

<pre>
    gap&#62; facttbl:= CharacterTable( "Fi22.2" );;
    gap&#62; tbl2:= IsoclinicTable( tbl, tbl2, facttbl );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "Fi22.2" );;
    7:  subgroup $O_8^+(2).S_3 \leq O_8^+(2).3.2 \times 2$, degree 741312 (
    2 cand.)

</pre>

<div class="p"><!----></div>
The existence of O<sub>8</sub><sup>+</sup>(2):S<sub>3</sub> type subgroups (not contained in 6.Fi<sub>22</sub>)
follows from Lemma&nbsp;<a href="#situationII">2.2</a> and the existence of these subgroups in
(2.Fi<sub>22</sub>.2)<sup>&#8727;</sup>; we get one class for each of the two classes in
(2.Fi<sub>22</sub>.2)<sup>&#8727;</sup>, with different permutation characters.

<div class="p"><!----></div>

<pre>
    gap&#62; s:= CharacterTable( "O8+(2).S3" );;
    gap&#62; VerifyCandidates( s, tbl, tbl2, faith[7], "extending" );
    G = Isoclinic(6.Fi22.2):  point stabilizer O8+(2).3.2, ranks [ 12, 16 ]
    [ "1a^++1001a^++3080a^++10725a^-+13650a^++13728ab+27027ab+45045a^++48048bc+500\
    50a^-+96525ab+123552cd", 
      "1a^++351ab+1001a^++3080a^++7722ab+10725a^-+13650a^++13728ab+19305ab+42120ab\
    +45045a^++48048bc+50050a^-+54054ab+61776adbc" ]
    gap&#62; CompareWithDatabase( "Isoclinic(6.Fi22.2)", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.34">
3.34</a>&nbsp;&nbsp;G = 2.Co<sub>1</sub></h3>

<div class="p"><!----></div>
The group 2.Co<sub>1</sub> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Co<sub>2</sub> and Co<sub>3</sub>,
respectively, by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.Co1" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "Co1" );;
    1:  subgroup $Co_2$, degree 196560 (1 cand.)
    5:  subgroup $Co_3$, degree 16773120 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "Co2" ), tbl, 0, faith[1], "all" );
    G = 2.Co1:  point stabilizer Co2, ranks [ 7 ]
    [ "1a+24a+299a+2576a+17250a+80730a+95680a" ]
    gap&#62; VerifyCandidates( CharacterTable( "Co3" ), tbl, 0, faith[5], "all" );
    G = 2.Co1:  point stabilizer Co3, ranks [ 12 ]
    [ "1a+24a+299a+2576a+17250a+80730a+95680a+376740a+1841840a+2417415a+5494125a+6\
    446440a" ]
    gap&#62; CompareWithDatabase( "2.Co1", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.35">
3.35</a>&nbsp;&nbsp;G = 3.F<sub>3+</sub></h3>

<div class="p"><!----></div>
The group 3.F<sub>3+</sub> has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Fi<sub>23</sub> and O<sub>10</sub><sup>&#8722;</sup>(2),
respectively, by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "3.F3+" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "F3+" );;
    1:  subgroup $Fi_{23}$, degree 920808 (1 cand.)
    2:  subgroup $O_{10}^-(2)$, degree 150532080426 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[1], "all" );
    G = 3.F3+:  point stabilizer Fi23, ranks [ 7 ]
    [ "1a+783ab+57477a+249458a+306153ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "O10-(2)" ), tbl, 0, faith[2], "all" );
    G = 3.F3+:  point stabilizer O10-(2), ranks [ 43 ]
    [ "1a+783ab+8671a+57477a+64584ab+249458a+306153ab+555611a+1666833a+6724809ab+1\
    9034730ab+35873145a+43779879ab+48893768a+79452373a+195019461ab+203843871ab+415\
    098112a+1050717096ab+1264015025a+1540153692a+1818548820ab+2346900864a+32086535\
    25a+10169903744a+10726070355ab+13904165275a+15016498497ab+17161712568a+2109675\
    1104ab" ]
    gap&#62; CompareWithDatabase( "3.F3+", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.36">
3.36</a>&nbsp;&nbsp;G = 3.F<sub>3+</sub>.2</h3>

<div class="p"><!----></div>
The group 3.F<sub>3+</sub>.2 has two faithful multiplicity-free permutation actions,
with point stabilizers of the types Fi<sub>23</sub> &times;2 and O<sub>10</sub><sup>&#8722;</sup>(2).2,
respectively, by Lemma&nbsp;<a href="#situationII">2.2</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl2:= CharacterTable( "3.F3+.2" );;
    gap&#62; faith:= FaithfulCandidates( tbl2, "F3+.2" );;
    1:  subgroup $Fi_{23} \times 2$, degree 920808 (1 cand.)
    3:  subgroup $O_{10}^-(2).2$, degree 150532080426 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "2xFi23" ), tbl, tbl2, faith[1], "all" );
    G = 3.F3+.2:  point stabilizer 2xFi23, ranks [ 5 ]
    [ "1a^++783ab+57477a^++249458a^++306153ab" ]
    gap&#62; VerifyCandidates( CharacterTable( "O10-(2).2" ), tbl, tbl2, faith[3], "all" );
    G = 3.F3+.2:  point stabilizer O10-(2).2, ranks [ 30 ]
    [ "1a^++783ab+8671a^-+57477a^++64584ab+249458a^++306153ab+555611a^-+1666833a^+\
    +6724809ab+19034730ab+35873145a^++43779879ab+48893768a^-+79452373a^++195019461\
    ab+203843871ab+415098112a^-+1050717096ab+1264015025a^++1540153692a^++181854882\
    0ab+2346900864a^-+3208653525a^++10169903744a^-+10726070355ab+13904165275a^++15\
    016498497ab+17161712568a^++21096751104ab" ]
    gap&#62; CompareWithDatabase( "3.F3+.2", faith );

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc3.37">
3.37</a>&nbsp;&nbsp;G = 2.B</h3>

<div class="p"><!----></div>
The group 2.B has one faithful multiplicity-free permutation action,
with point stabilizer of the type Fi<sub>23</sub>, by Lemma&nbsp;<a href="#situationI">2.1</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.B" );;
    gap&#62; faith:= FaithfulCandidates( tbl, "B" );;
    4:  subgroup $Fi_{23}$, degree 2031941058560000 (1 cand.)
    gap&#62; VerifyCandidates( CharacterTable( "Fi23" ), tbl, 0, faith[4], "all" );
    G = 2.B:  point stabilizer Fi23, ranks [ 34 ]
    [ "1a+4371a+96255a+96256a+9458750a+10506240a+63532485a+347643114a+356054375a+4\
    10132480a+4221380670a+4275362520a+8844386304a+9287037474a+13508418144a+3665765\
    3760a+108348770530a+309720864375a+635966233056a+864538761216a+1095935366250a+4\
    322693806080a+6145833622500a+6619124890560a+10177847623680a+12927978301875a+38\
    348970335820a+60780833777664a+89626740328125a+110949141022720a+211069033500000\
    a+284415522641250b+364635285437500a+828829551513600a" ]
    gap&#62; CompareWithDatabase( "2.B", faith );

</pre>

<div class="p"><!----></div>

 <h2><a name="tth_sEc4">
4</a>&nbsp;&nbsp;Appendix: Explicit Computations with Groups</h2><a name="explicit">
</a>

<div class="p"><!----></div>
Only in the proofs for the groups involving M<sub>22</sub>, explicit computations
with the groups were necessary.
These computations are collected in this appendix.

<div class="p"><!----></div>

     <h3><a name="tth_sEc4.1">
4.1</a>&nbsp;&nbsp;2<sup>4</sup>:A<sub>6</sub> type subgroups in 2.M<sub>22</sub></h3><a name="explicit1">
</a>

<div class="p"><!----></div>
We show that the preimage in 2.M<sub>22</sub> of each maximal subgroup of the type
2<sup>4</sup>:A<sub>6</sub> in M<sub>22</sub> contains one class of subgroups of the type
2 &times;2<sup>4</sup>:A<sub>5</sub>.
For that, we first note that there are two classes of subgroups of the type
2<sup>4</sup>:A<sub>5</sub> inside 2<sup>4</sup>:A<sub>6</sub>, and that the A<sub>5</sub> subgroups lift to groups
of the type 2 &times;A<sub>5</sub> because 2.M<sub>22</sub> does not admit an embedding of
2.A<sub>6</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "2.M22" );;
    gap&#62; PossibleClassFusions( CharacterTable( "2.A6" ), tbl );
    [  ]

</pre>

<div class="p"><!----></div>
Now we fetch a permutation representation of 2.M<sub>22</sub> on 352 points,
from the  A<font size="-2">TLAS</font> of Group Representations (see&nbsp;[<a href="#AGR" name="CITEAGR">Wil</a>]),
via the <font face="helvetica">GAP</font> package AtlasRep (see&nbsp;[<a href="#AtlasRep" name="CITEAtlasRep">Bre04a</a>]),
and compute generators for the second class of maximal subgroups,
via the straight line program for M<sub>22</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; LoadPackage( "atlasrep" );
    true
    gap&#62; gens:= OneAtlasGeneratingSet( "2.M22", NrMovedPoints, 352 );;
    gap&#62; slp:= AtlasStraightLineProgram( "M22", "maxes", 2 );;
    gap&#62; sgens:= ResultOfStraightLineProgram( slp.program, gens.generators );;
    gap&#62; s:= Group( sgens );;  Size( s );
    11520
    gap&#62; 2^5 * 360;
    11520

</pre>

<div class="p"><!----></div>
The subgroup acts intransitively on the 352 points.
We switch to the representation on 192 points,
and compute the normal subgroup N of order 2<sup>5</sup>.

<div class="p"><!----></div>

<pre>
    gap&#62; orbs:= Orbits( s, MovedPoints( s ) );;           
    gap&#62; List( orbs, Length );             
    [ 160, 192 ]
    gap&#62; s:= Action( s, orbs[2] );;
    gap&#62; Size( s );       
    11520
    gap&#62; syl2:= SylowSubgroup( s, 2 );;
    gap&#62; repeat
    &#62;   x:= Random( syl2 );                      
    &#62;   n:= NormalClosure( s, SubgroupNC( s, [ x ] ) );
    &#62; until Size( n ) = 32; 

</pre>

<div class="p"><!----></div>
The point stabilizer S in this group has type A<sub>5</sub>,
and generates together with N one of the desired subgroups of the type
2<sup>5</sup>:A<sub>5</sub>.
However, S does not normalize a subgroup of order 2<sup>4</sup>,
and so there is no subgroup of the type 2<sup>4</sup>:A<sub>5</sub>.

<div class="p"><!----></div>

<pre>
    gap&#62; stab:= Stabilizer( s, 192 );;
    gap&#62; sub:= ClosureGroup( n, stab );;
    gap&#62; Size( sub );
    1920
    gap&#62; Set( List( Elements( n ),
    &#62;         x -&#62; Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) ) );
    [ 1, 2, 32 ]

</pre>

<div class="p"><!----></div>
A representative of the other class of A<sub>5</sub> type subgroups can be found
by taking an element x of order three that is not conjugate to one in S,
and to choose an element y of order five such that the product is an
involution.

<div class="p"><!----></div>

<pre>
    gap&#62; syl3:= SylowSubgroup( s, 3 );;
    gap&#62; repeat three:= Random( stab ); until Order( three ) = 3;
    gap&#62; repeat other:= Random( syl3 );
    &#62;        until Order( other ) = 3 and not IsConjugate( s, three, other );
    gap&#62; syl5:= SylowSubgroup( s, 5 );;
    gap&#62; repeat y:= Random( syl5 )^Random( s ); until Order( other*y ) = 2;
    gap&#62; a5:= Group( other, y );;
    gap&#62; IsConjugate( s, a5, stab );
    false
    gap&#62; sub:= ClosureGroup( n, a5 );;
    gap&#62; Size( sub );
    1920
    gap&#62; Set( List( Elements( n ),
    &#62;         x -&#62; Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) ) );
    [ 1, 2, 16, 32 ]

</pre>

<div class="p"><!----></div>
This proves the existence of one class of the desired subgroups.
Finally, we show that the character table of these groups is indeed
the one we used in Section&nbsp;<a href="#libtbl">3.3</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; g:= First( Elements( n ), 
    &#62;       x -&#62; Size( NormalClosure( sub, SubgroupNC( sub, [ x ] ) ) ) = 16 );;
    gap&#62; compl:= ClosureGroup( a5, g );;             
    gap&#62; Size( compl );
    960
    gap&#62; tbl:= CharacterTable( compl );;
    gap&#62; IsRecord( TransformingPermutationsCharacterTables( tbl,
    &#62;        CharacterTable( "P1/G1/L1/V1/ext2" ) ) );
    true

</pre>

<div class="p"><!----></div>

     <h3><a name="tth_sEc4.2">
4.2</a>&nbsp;&nbsp;2<sup>4</sup>:S<sub>5</sub> type subgroups in M<sub>22</sub>.2</h3><a name="explicit2">
</a>

<div class="p"><!----></div>
A maximal subgroup of the type 2<sup>4</sup>:S<sub>6</sub> in M<sub>22</sub>.2 is perhaps easiest
found as the point stabilizer in the degree 77 permutation representation.
In order to find its index 6 subgroups,
the degree 22 permutation representation of M<sub>22</sub>.2 is more suitable
because the restriction to the 2<sup>4</sup>:S<sub>6</sub> type subgroup has orbits of the
lengths 6 and 16, where the action of the orbit of length 6 is the
natural permutation action of S<sub>6</sub>.

<div class="p"><!----></div>
So we choose the sum of the two representations, of total degree 99.
For convenience, we find this representation as the point stabilizer in the
degree 100 representation of HS.2, which is contained in the  A<font size="-2">TLAS</font>
of Group Representations (see&nbsp;[<a href="#AGR" name="CITEAGR">Wil</a>]).

<div class="p"><!----></div>

<pre>
    gap&#62; gens:= OneAtlasGeneratingSet( "HS.2", NrMovedPoints, 100 );;
    gap&#62; stab:= Stabilizer( Group( gens.generators ), 100 );;
    gap&#62; orbs:= Orbits( stab, MovedPoints( stab ) );;
    gap&#62; List( orbs, Length );
    [ 77, 22 ]
    gap&#62; pnt:= First( orbs, x -&#62; Length( x ) = 77 )[1];;
    gap&#62; m:= Stabilizer( stab, pnt );;
    gap&#62; Size( m );
    11520

</pre>

<div class="p"><!----></div>
Now we find two nonconjugate subgroups of the type 2<sup>4</sup>:S<sub>5</sub> as the stabilizer
of a point and of a total in S<sub>6</sub>, respectively (cf.&nbsp;[<a href="#CCN85" name="CITECCN85">CCN<sup>+</sup>85</a>,p.&nbsp;4]).

<div class="p"><!----></div>

<pre>
    gap&#62; orbs:= Orbits( m, MovedPoints( m ) );;
    gap&#62; List( orbs, Length );
    [ 60, 16, 6, 16 ]
    gap&#62; six:= First( orbs, x -&#62; Length( x ) = 6 );;
    gap&#62; p:= ( six[1], six[2] )( six[3], six[4] )( six[5], six[6] );;
    gap&#62; conj:= ( six[2], six[4], six[5], six[6], six[3] );;
    gap&#62; total:= List( [ 0 .. 4 ], i -&#62; p^( conj^i ) );;
    gap&#62; stab1:= Stabilizer( m, six[1] );;
    gap&#62; stab2:= Stabilizer( m, Set( total ), OnSets );;
    gap&#62; IsConjugate( m, stab1, stab2 );
    false

</pre>

<div class="p"><!----></div>
We identify the character tables of the two groups in the <font face="helvetica">GAP</font> Character
Table Library.

<div class="p"><!----></div>

<pre>
    gap&#62; s1:= CharacterTable( stab1 );;
    gap&#62; s2:= CharacterTable( stab2 );;
    gap&#62; NrConjugacyClasses( s1 );  NrConjugacyClasses( s2 );
    12
    18
    gap&#62; lib1:= CharacterTable( "2^4:s5" );;
    gap&#62; IsRecord( TransformingPermutationsCharacterTables( lib1, s1 ) );
    true
    gap&#62; lib2:= CharacterTable( "w(d5)" );;                              
    gap&#62; IsRecord( TransformingPermutationsCharacterTables( lib2, s2 ) );
    true

</pre>

<div class="p"><!----></div>
The first subgroup does not lead to multiplicity-free permutation characters
of 2.M<sub>22</sub>.2.
Note that there are two classes of subgroups of this type in M<sub>22</sub>.2,
one of them is contained in M<sub>22</sub> and the other is not.
The action on the cosets of the former is multiplicity-free,
but it does not lift to a multiplicity-free candidate of 2.M<sub>22</sub>.2;
and the action on the cosets of the latter is not multiplicity-free.

<div class="p"><!----></div>

<pre>
    gap&#62; tbl:= CharacterTable( "M22" );;
    gap&#62; tbl2:= CharacterTable( "M22.2" );;
    gap&#62; s1fustbl2:= PossibleClassFusions( s1, tbl2 );
    [ [ 1, 2, 2, 4, 4, 2, 5, 3, 7, 5, 10, 6 ], 
      [ 1, 2, 12, 15, 4, 2, 5, 3, 16, 15, 17, 6 ] ]
    gap&#62; pi:= List( s1fustbl2, map -&#62; Induced( s1, tbl2,
    &#62;             [ TrivialCharacter( s1 ) ], map )[1] );
    [ Character( CharacterTable( "M22.2" ), [ 462, 46, 12, 6, 6, 2, 4, 0, 0, 2, 
          0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] ), 
      Character( CharacterTable( "M22.2" ), [ 462, 30, 12, 2, 2, 2, 0, 0, 0, 0, 
          0, 56, 0, 0, 12, 2, 2, 0, 0, 0, 0 ] ) ]
    gap&#62; PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;
    [ "1a^{\\pm}+21a^{\\pm}+55a^{\\pm}+154a^{\\pm}", 
      "1a^++21(a^+)^{2}+55a^++154a^++210a^+" ]

</pre>

<div class="p"><!----></div>
So only the second type of 2<sup>4</sup>:S<sub>5</sub> type subgroups can lift to the
multiplicity-free candidate in question,
and this situation is dealt with in Section&nbsp;<a href="#2.M22.2">3.4</a>.

<div class="p"><!----></div>

<pre>
    gap&#62; s2fustbl2:= PossibleClassFusions( s2, tbl2 );;
    gap&#62; pi:= List( s2fustbl2, map -&#62; Induced( s2, tbl2,
    &#62;             [ TrivialCharacter( s2 ) ], map )[1] );
    [ Character( CharacterTable( "M22.2" ), [ 462, 30, 3, 2, 2, 2, 3, 0, 0, 0, 0,  
          28, 20, 4, 8, 1, 2, 0, 1, 0, 0 ] ) ]
    gap&#62; PermCharInfoRelative( tbl, tbl2, pi ).ATLAS;
    [ "1a^++21a^++55a^++154a^++231a^-" ]

</pre>

<div class="p"><!----></div>


<h2>References</h2>

<dl compact="compact">
 <dt><a href="#CITEBL96" name="BL96">[BL96]</a></dt><dd>
Thomas Breuer and Klaus Lux, <em>The multiplicity-free permutation characters
  of the sporadic simple groups and their automorphism groups</em>, Comm. Alg.
  <b>24</b> (1996), no.&nbsp;7, 2293-2316.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEAtlasRep" name="AtlasRep">[Bre04a]</a></dt><dd>
Thomas Breuer, <em>Manual for the <font face="helvetica">GAP</font> 4 Package AtlasRep, Version 1.2</em>,
  Lehrstuhl D f&#252;r Mathematik, Rheinisch
  Westf&#228;lische Technische Hochschule, Aachen, Germany,
  2004.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITECTblLib" name="CTblLib">[Bre04b]</a></dt><dd>
Thomas Breuer, <em>Manual for the <font face="helvetica">GAP</font> Character Table Library, Version
  1.1</em>, Lehrstuhl D f&#252;r Mathematik, Rheinisch
  Westf&#228;lische Technische Hochschule, Aachen, Germany,
  2004.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITECCN85" name="CCN85">[CCN<sup>+</sup>85]</a></dt><dd>
J[ohn]&nbsp;H. Conway, R[obert]&nbsp;T. Curtis, S[imon]&nbsp;P. Norton, R[ichard]&nbsp;A. Parker,
  and R[obert]&nbsp;A. Wilson, <em>Atlas of finite groups</em>, Oxford University
  Press, 1985.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEGAP4" name="GAP4">[GAP04]</a></dt><dd>
The GAP&nbsp;Group, <em>GAP - Groups, Algorithms, and Programming, Version
  4.4</em>, 2004, <a href="http://www.gap-system.org"><tt>http://www.gap-system.org</tt></a>.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEHoe01" name="Hoe01">[H&#246;h01]</a></dt><dd>
Ines H&#246;hler, <em>Vielfachheitsfreie Permutationsdarstellungen und die
  Invarianten zugeh&#246;riger Graphen</em>, Examensarbeit, Lehrstuhl D
  f&#252;r Mathematik, Rheinisch Westf&#228;lische
  Technische Hochschule, Aachen, Germany, 2001.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITELM03" name="LM03">[LM]</a></dt><dd>
S.&nbsp;A. Linton and Z.&nbsp;E. Mpono, <em>Multiplicity-free permutation characters of
  covering groups of sporadic simple groups</em>.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEMue03" name="Mue03">[M&#252;l03]</a></dt><dd>
J&#252;rgen M&#252;ller, <em>On endomorphism rings and character tables</em>,
  Habilitationsschrift, Lehrstuhl D f&#252;r Mathematik,
  Rheinisch Westf&#228;lische Technische Hochschule,
  Aachen, Germany, 2003.

<div class="p"><!----></div>
</dd>
 <dt><a href="#CITEAGR" name="AGR">[Wil]</a></dt><dd>
Robert&nbsp;A. Wilson, <em>ATLAS of Finite Group Representations</em>,
  <a href="http://www.mat.bham.ac.uk/atlas/"><tt>http://www.mat.bham.ac.uk/atlas/</tt></a>.</dd>
</dl>


<div class="p"><!----></div>

<div class="p"><!----></div>

<br /><br /><hr /><small>File translated from
T<sub><font size="-1">E</font></sub>X
by <a href="http://hutchinson.belmont.ma.us/tth/">
T<sub><font size="-1">T</font></sub>H</a>,
version 3.55.<br />On 31 Mar 2004, 10:54.</small>
</html>