1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%A basic.tex DESIGN documentation Leonard Soicher
%
%
%
\def\DESIGN{\sf DESIGN}
\def\GRAPE{\sf GRAPE}
\def\nauty{\it nauty}
\def\Aut{{\rm Aut}\,}
\def\x{\times}
\Chapter{Determining basic properties of block designs}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The functions for basic properties}
\>IsBlockDesign( <obj> )
This boolean function returns `true' if and only if <obj>, which can be
an object of arbitrary type, is a block design.
\beginexample
gap> IsBlockDesign(5);
false
gap> IsBlockDesign( BlockDesign(2,[[1],[1,2],[1,2]]) );
true
\endexample
\>IsBinaryBlockDesign( <D> )
This boolean function returns `true' if and only if the block design
<D> is *binary*, that is, if no block of <D> has a repeated element.
\beginexample
gap> IsBinaryBlockDesign( BlockDesign(2,[[1],[1,2],[1,2]]) );
true
gap> IsBinaryBlockDesign( BlockDesign(2,[[1],[1,2],[1,2,2]]) );
false
\endexample
\>IsSimpleBlockDesign( <D> )
This boolean function returns `true' if and only if the block design
<D> is *simple*, that is, if no block of <D> is repeated.
\beginexample
gap> IsSimpleBlockDesign( BlockDesign(2,[[1],[1,2],[1,2]]) );
false
gap> IsSimpleBlockDesign( BlockDesign(2,[[1],[1,2],[1,2,2]]) );
true
\endexample
\>IsConnectedBlockDesign( <D> )
This boolean function returns `true' if and only if the block design
<D> is *connected*, that is, if its incidence graph is a connected
graph.
\beginexample
gap> IsConnectedBlockDesign( BlockDesign(2,[[1],[2]]) );
false
gap> IsConnectedBlockDesign( BlockDesign(2,[[1,2]]) );
true
\endexample
\>BlockDesignPoints( <D> )
This function returns the set of points of the block design <D>, that is
`[1..<D>.v]'. The returned result is immutable.
\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3,
blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> BlockDesignPoints(D);
[ 1 .. 3 ]
\endexample
\>NrBlockDesignPoints( <D> )
This function returns the number of points of the block design <D>.
\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3,
blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> NrBlockDesignPoints(D);
3
\endexample
\>BlockDesignBlocks( <D> )
This function returns the (sorted) list of blocks of the block design <D>.
The returned result is immutable.
\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3,
blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> BlockDesignBlocks(D);
[ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ]
\endexample
\>NrBlockDesignBlocks( <D> )
This function returns the number of blocks of the block design <D>.
\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3,
blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> NrBlockDesignBlocks(D);
4
\endexample
\>BlockSizes( <D> )
This function returns the set of sizes (actually list-lengths) of the
blocks of the block design <D>.
\beginexample
gap> BlockSizes( BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]) );
[ 1, 3 ]
\endexample
\>BlockNumbers( <D> )
Let <D> be a block design. Then this function returns a list of
the same length as `BlockSizes(<D>)', such that the $i$-th element
of this returned list is the number of blocks of <D> of size
`BlockSizes(<D>)[$i$]'.
\beginexample
gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]);
rec( isBlockDesign := true, v := 3,
blocks := [ [ 1 ], [ 1, 2, 2 ], [ 1, 2, 3 ], [ 2 ], [ 3 ] ] )
gap> BlockSizes(D);
[ 1, 3 ]
gap> BlockNumbers(D);
[ 3, 2 ]
\endexample
\>ReplicationNumber( <D> )
If the block design <D> is equireplicate, then this function returns
its replication number; otherwise `fail' is returned.
A block design $D$ is *equireplicate* with *replication number* $r$ if,
for every point $x$ of $D$, $r$ is equal to the sum over the blocks of
the multiplicity of $x$ in a block. For a binary block design this is
the same as saying that each point $x$ is contained in exactly $r$ blocks.
\beginexample
gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3,3],[4,4]]));
2
gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3],[4,4]]));
fail
\endexample
\>PairwiseBalancedLambda( <D> )
A binary block design $D$ is *pairwise balanced* if $D$ has at least two
points and every pair of distinct points is contained in exactly $\lambda$
blocks, for some positive constant $\lambda$.
Given a binary block design <D>, this function returns `fail' if <D> is
not pairwise balanced, and otherwise the positive constant $\lambda$ such
that every pair of distinct points of <D> is in exactly $\lambda$ blocks.
\beginexample
gap> D:=BlockDesigns(rec(v:=10, blockSizes:=[3,4],
> tSubsetStructure:=rec(t:=2,lambdas:=[1])))[1];
rec( isBlockDesign := true, v := 10,
blocks := [ [ 1, 2, 3, 4 ], [ 1, 5, 6, 7 ], [ 1, 8, 9, 10 ], [ 2, 5, 10 ],
[ 2, 6, 8 ], [ 2, 7, 9 ], [ 3, 5, 9 ], [ 3, 6, 10 ], [ 3, 7, 8 ],
[ 4, 5, 8 ], [ 4, 6, 9 ], [ 4, 7, 10 ] ],
tSubsetStructure := rec( t := 2, lambdas := [ 1 ] ), isBinary := true,
isSimple := true, blockSizes := [ 3, 4 ], blockNumbers := [ 9, 3 ],
autGroup := Group([ (5,6,7)(8,9,10), (2,3)(5,7)(8,10),
(2,3,4)(5,7,6)(8,9,10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8) ])
)
gap> PairwiseBalancedLambda(D);
1
\endexample
\>TSubsetLambdasVector( <D>, <t> )
Let <D> be a block design, <t> a non-negative integer, and
`$v$=<D>.v'. Then this function returns an integer vector $L$
whose positions correspond to the <t>-subsets of $\{1,\ldots,v\}$.
The $i$-th element of $L$ is the sum over all blocks $B$ of <D>
of the number of times the $i$-th <t>-subset (in lexicographic order)
is contained in $B$. (For example, if $t=2$ and $B=[1,1,2,3,3,4]$, then
$B$ contains $[1,2]$ twice, $[1,3]$ four times, $[1,4]$ twice,
$[2,3]$ twice, $[2,4]$ once, and $[3,4]$ twice.) In particular,
if <D> is binary then $L[i]$ is simply the number of blocks of <D>
containing the $i$-th <t>-subset (in lexicographic order).
\beginexample
gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]);;
gap> TSubsetLambdasVector(D,0);
[ 5 ]
gap> TSubsetLambdasVector(D,1);
[ 3, 4, 2 ]
gap> TSubsetLambdasVector(D,2);
[ 3, 1, 1 ]
gap> TSubsetLambdasVector(D,3);
[ 1 ]
\endexample
\>AllTDesignLambdas( <D> )
If the block design <D> is not a $t$-design for some $t\ge 0$ then this
function returns an empty list. Otherwise <D> is a binary block design
with constant block size $k$, say, and this function returns a list
$L$ of length $T+1$, where $T$ is the maximum $t\le k$ such that <D>
is a $t$-design, and, for $i=1,\ldots,T+1$, $L[i]$ is equal to the
(constant) number of blocks of <D> containing an $(i-1)$-subset of
the point-set of <D>. The returned result is immutable.
\beginexample
gap> AllTDesignLambdas(PGPointFlatBlockDesign(3,2,1));
[ 35, 7, 1 ]
\endexample
\>AffineResolvableMu( <D> )
A block design is *affine resolvable* if the design is resolvable
and any two blocks not in the same parallel class of a resolution
meet in a constant number $\mu$ of points.
If the block design <D> is affine resolvable, then this function
returns its value of $\mu$; otherwise `fail' is returned.
The value 0 is returned if, and only if, <D> consists of a single
parallel class.
\beginexample
gap> P:=PGPointFlatBlockDesign(2,3,1);; # projective plane of order 3
gap> AffineResolvableMu(P);
fail
gap> A:=ResidualBlockDesign(P,P.blocks[1]);; # affine plane of order 3
gap> AffineResolvableMu(A);
1
\endexample
|