File: basic.tex

package info (click to toggle)
gap-design 1.7%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 444 kB
  • sloc: makefile: 22; sh: 18
file content (273 lines) | stat: -rw-r--r-- 7,887 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%A  basic.tex            DESIGN documentation              Leonard Soicher
%
%
%
\def\DESIGN{\sf DESIGN}
\def\GRAPE{\sf GRAPE}
\def\nauty{\it nauty}
\def\Aut{{\rm Aut}\,}
\def\x{\times}
\Chapter{Determining basic properties of block designs}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\Section{The functions for basic properties}

\>IsBlockDesign( <obj> )

This boolean function  returns `true' if and only if <obj>, which can be
an object of arbitrary type, is a block design.

\beginexample
gap> IsBlockDesign(5);
false
gap> IsBlockDesign( BlockDesign(2,[[1],[1,2],[1,2]]) );
true
\endexample



\>IsBinaryBlockDesign( <D> )

This boolean function  returns `true' if and only if the block design
<D> is *binary*, that is, if no block of <D> has a repeated element.

\beginexample
gap> IsBinaryBlockDesign( BlockDesign(2,[[1],[1,2],[1,2]]) );
true
gap> IsBinaryBlockDesign( BlockDesign(2,[[1],[1,2],[1,2,2]]) );
false
\endexample



\>IsSimpleBlockDesign( <D> )

This boolean function  returns `true' if and only if the block design
<D> is *simple*, that is, if no block of <D> is repeated.

\beginexample
gap> IsSimpleBlockDesign( BlockDesign(2,[[1],[1,2],[1,2]]) );  
false
gap> IsSimpleBlockDesign( BlockDesign(2,[[1],[1,2],[1,2,2]]) );
true
\endexample



\>IsConnectedBlockDesign( <D> )

This boolean function  returns `true' if and only if the block design
<D> is *connected*, that is, if its incidence graph is a connected
graph.

\beginexample
gap> IsConnectedBlockDesign( BlockDesign(2,[[1],[2]]) ); 
false
gap> IsConnectedBlockDesign( BlockDesign(2,[[1,2]]) );  
true
\endexample



\>BlockDesignPoints( <D> )

This function returns the set of points of the block design <D>, that is
`[1..<D>.v]'. The returned result is immutable.

\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3, 
  blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> BlockDesignPoints(D);                       
[ 1 .. 3 ]
\endexample



\>NrBlockDesignPoints( <D> )

This function returns the number of points of the block design <D>.

\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3, 
  blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> NrBlockDesignPoints(D);                     
3
\endexample



\>BlockDesignBlocks( <D> )

This function returns the (sorted) list of blocks of the block design <D>.
The returned result is immutable.

\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3, 
  blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> BlockDesignBlocks(D);                       
[ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ]
\endexample



\>NrBlockDesignBlocks( <D> )

This function returns the number of blocks of the block design <D>.

\beginexample
gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec( isBlockDesign := true, v := 3, 
  blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ], [ 2, 3 ] ] )
gap> NrBlockDesignBlocks(D);                     
4
\endexample



\>BlockSizes( <D> )

This function returns the set of sizes (actually list-lengths) of the 
blocks of the block design <D>.

\beginexample
gap> BlockSizes( BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]) );  
[ 1, 3 ]
\endexample



\>BlockNumbers( <D> )

Let <D> be a block design. Then this function returns a list of
the same length as `BlockSizes(<D>)', such that the $i$-th element 
of this returned list is the number of blocks of <D> of size
`BlockSizes(<D>)[$i$]'.

\beginexample
gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]); 
rec( isBlockDesign := true, v := 3, 
  blocks := [ [ 1 ], [ 1, 2, 2 ], [ 1, 2, 3 ], [ 2 ], [ 3 ] ] )
gap> BlockSizes(D);
[ 1, 3 ]
gap> BlockNumbers(D);
[ 3, 2 ]
\endexample



\>ReplicationNumber( <D> )
 
If the block design <D> is equireplicate, then this function returns
its replication number; otherwise `fail' is returned.

A block design $D$ is *equireplicate* with *replication number* $r$ if,
for every point $x$ of $D$, $r$ is equal to the sum over the blocks of
the multiplicity of $x$ in a block. For a binary block design this is
the same as saying that each point $x$ is contained in exactly $r$ blocks.

\beginexample
gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3,3],[4,4]]));
2
gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3],[4,4]]));  
fail
\endexample



\>PairwiseBalancedLambda( <D> )
 
A binary block design $D$ is *pairwise balanced* if $D$ has at least two
points and every pair of distinct points is contained in exactly $\lambda$
blocks, for some positive constant $\lambda$.

Given a binary block design <D>, this function returns `fail' if <D> is
not pairwise balanced, and otherwise the positive constant $\lambda$ such
that every pair of distinct points of <D> is in exactly $\lambda$ blocks.

\beginexample
gap> D:=BlockDesigns(rec(v:=10, blockSizes:=[3,4],       
>          tSubsetStructure:=rec(t:=2,lambdas:=[1])))[1];
rec( isBlockDesign := true, v := 10, 
  blocks := [ [ 1, 2, 3, 4 ], [ 1, 5, 6, 7 ], [ 1, 8, 9, 10 ], [ 2, 5, 10 ], 
      [ 2, 6, 8 ], [ 2, 7, 9 ], [ 3, 5, 9 ], [ 3, 6, 10 ], [ 3, 7, 8 ], 
      [ 4, 5, 8 ], [ 4, 6, 9 ], [ 4, 7, 10 ] ], 
  tSubsetStructure := rec( t := 2, lambdas := [ 1 ] ), isBinary := true, 
  isSimple := true, blockSizes := [ 3, 4 ], blockNumbers := [ 9, 3 ], 
  autGroup := Group([ (5,6,7)(8,9,10), (2,3)(5,7)(8,10), 
      (2,3,4)(5,7,6)(8,9,10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8) ]) 
 )
gap> PairwiseBalancedLambda(D);                          
1
\endexample



\>TSubsetLambdasVector( <D>, <t> )

Let <D> be a block design, <t> a non-negative integer, and 
`$v$=<D>.v'. Then this function returns an integer vector $L$ 
whose positions correspond to the <t>-subsets of $\{1,\ldots,v\}$.
The $i$-th element of $L$ is the sum over all blocks $B$ of <D> 
of the number of times the $i$-th <t>-subset (in lexicographic order) 
is contained in $B$. (For example, if $t=2$ and $B=[1,1,2,3,3,4]$, then
$B$ contains $[1,2]$ twice, $[1,3]$ four times, $[1,4]$ twice,
$[2,3]$ twice, $[2,4]$ once, and $[3,4]$ twice.) In particular, 
if <D> is binary then $L[i]$ is simply the number of blocks of <D> 
containing the $i$-th <t>-subset (in lexicographic order).
 
\beginexample
gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]);;
gap> TSubsetLambdasVector(D,0);
[ 5 ]
gap> TSubsetLambdasVector(D,1);
[ 3, 4, 2 ]
gap> TSubsetLambdasVector(D,2);
[ 3, 1, 1 ]
gap> TSubsetLambdasVector(D,3);
[ 1 ]
\endexample



\>AllTDesignLambdas( <D> )

If the block design <D> is not a $t$-design for some $t\ge 0$ then this
function returns an empty list. Otherwise <D> is a binary block design
with constant block size $k$, say, and this function returns a list
$L$ of length $T+1$, where $T$ is the maximum $t\le k$ such that <D>
is a $t$-design, and, for $i=1,\ldots,T+1$, $L[i]$ is equal to the
(constant) number of blocks of <D> containing an $(i-1)$-subset of
the point-set of <D>. The returned result is immutable.

\beginexample
gap> AllTDesignLambdas(PGPointFlatBlockDesign(3,2,1));                  
[ 35, 7, 1 ]
\endexample



\>AffineResolvableMu( <D> )

A block design is *affine resolvable* if the design is resolvable 
and any two blocks not in the same parallel class of a resolution 
meet in a constant number $\mu$ of points. 

If the block design <D> is affine resolvable, then this function
returns its value of $\mu$; otherwise `fail' is returned.
 
The value 0 is returned if, and only if, <D> consists of a single
parallel class.

\beginexample
gap> P:=PGPointFlatBlockDesign(2,3,1);; # projective plane of order 3 
gap> AffineResolvableMu(P);
fail
gap> A:=ResidualBlockDesign(P,P.blocks[1]);; # affine plane of order 3
gap> AffineResolvableMu(A);                                           
1
\endexample