1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
#############################################################################
##
#W mpqs.gi GAP4 Package `FactInt' Stefan Kohl
##
## This file contains functions for factorization using the
## Single Large Prime Variation of the
## Multiple Polynomial Quadratic Sieve (MPQS).
##
## Argument of FactorsMPQS:
##
## <n> the integer to be factored
##
## The result is returned as a list of the prime factors of <n>.
##
## A possible improvement would be the implementation of the
## Double Large Prime Variation of the MPQS (PPMPQS).
##
#############################################################################
BindGlobal("MPQSSplit", function (n)
local Sieve,Pos,x1,x2,Pos1,Pos2,Weight,pi,qi,i,j,pos,zero,one,
Digits,Multiplier,MultiplierQuality,MultiplierPrimeValues,
PrimeValue,BestQuality,MaxMultiplier,RangeEnd,Mult,nTimesMult,
FactorBase,FactorBaseSize,MaxFactorBaseEl,x,CompleteBase,
SmallPrimeLimit,NrSmallPrimes,SievingPrimePowers,
NrSievedPowers,piPower,RangeTable,
a,b,c,aInverse,bmodqi,xabc,PolyCount,
aOptimum,NraFactors,aFactorsOptimum,MinaFactor,MaxaFactor,
aFactorsPoolsize,aFactorsPool,aFactorsPoolRoots,
aFactorsSelectedPositions,aFactorsSelection,HypercubeChunk,
InitialValue,InitialSieve,SievingIntervalLength,HalfLength,
SieveBegin,Middle,SieveEnd,LogWeight,LogWeightExpander,
r,fr,frFact,LargePrimeLimit,LargePrimeLimitWeight,SmallPrimeGap,
SmallEnough,Tolerance,TriedEntries1,TriedEntries2,
SmallPrimeContrib,MinSmallPrimeContrib,MinSmallPrimeContribTable,
Factored,FactoredLarge,LargeFactors,UsableFactors,
FactoredLargeUsable,RelationsLarge,RelPos,Factorizations,
Pair1,Pair2,Fact,q,CollectingInterval,NextCollectionAt,
RelsFB,RelsLarge,RelsTotal,Efficiency1,Efficiency2,
Progress,Remaining,Required,
LeftMatrix,RightMatrix,CanonFact,Line,Col,Lines,Cols,
X,Y,YQuadFactors,FactorsFound,p,DependencyNr,Ready,Result,
Pause,Resume,StartingTime,UsedTime;
Pause := function () # Put the intermediate results on the options stack
# (to be called from the break loop)
PushOptions(rec(
MPQSTmp := rec(n := n,
UsedTime := Runtime() - StartingTime,
PolyCount := PolyCount,
aFactorsSelectedPositions := aFactorsSelectedPositions,
aFactorsSelection := aFactorsSelection,
a := a,
aInverse := aInverse,
TriedEntries1 := TriedEntries1,
TriedEntries2 := TriedEntries2,
Factored := Factored,
FactoredLarge := FactoredLarge,
LargeFactors := LargeFactors,
RelationsLarge := RelationsLarge,
NextCollectionAt := NextCollectionAt)));
end;
Resume := function () # Resume a previously interrupted computation,
# if present
local MPQSTmp;
MPQSTmp := ValueOption("MPQSTmp");
if MPQSTmp <> fail and MPQSTmp.n = n then
Info(IntegerFactorizationInfo,2,"");
Info(IntegerFactorizationInfo,2,
"Resuming previously interrupted computation");
StartingTime := Runtime() - MPQSTmp.UsedTime;
PolyCount := MPQSTmp.PolyCount;
aFactorsSelectedPositions := MPQSTmp.aFactorsSelectedPositions;
aFactorsSelection := MPQSTmp.aFactorsSelection;
a := MPQSTmp.a;
aInverse := MPQSTmp.aInverse;
TriedEntries1 := MPQSTmp.TriedEntries1;
TriedEntries2 := MPQSTmp.TriedEntries2;
Factored := MPQSTmp.Factored;
FactoredLarge := MPQSTmp.FactoredLarge;
LargeFactors := MPQSTmp.LargeFactors;
RelationsLarge := MPQSTmp.RelationsLarge;
NextCollectionAt := MPQSTmp.NextCollectionAt;
fi;
end;
StartingTime := Runtime();
Digits := LogInt(n,10) + 1;
Info(IntegerFactorizationInfo,2,"MPQS for n = ",n);
Info(IntegerFactorizationInfo,2,"Digits : ",String(Digits,10));
zero := Zero(GF(2)); one := One(GF(2));
# Choose the multiplier
MultiplierPrimeValues :=
[[ 3, 75/52,52/25],[ 5, 40/29,99/52],[ 7, 33/25,68/39],[11, 46/37,17/11],
[13, 67/55,46/31],[17, 13/11,60/43],[19, 7/ 6,15/11],[23, 47/41,67/51],
[29, 73/65,82/65],[31, 19/17, 5/ 4],[37, 43/39,62/51],[41, 23/21, 6/ 5],
[43, 12/11,81/68],[47, 89/82,53/45],[53, 83/77,79/68],[59, 15/14,31/27]];
BestQuality := 0; Multiplier := 1; MaxMultiplier := 1023;
RangeEnd := MaxMultiplier - MaxMultiplier mod 8 + n mod 8;
for Mult in [n mod 8,n mod 8 + 8..RangeEnd] do
nTimesMult := n * Mult;
MultiplierQuality := 99/35;
for PrimeValue in MultiplierPrimeValues do
if Legendre(nTimesMult,PrimeValue[1]) = 1 then
if Mult mod PrimeValue[1] = 0
then MultiplierQuality := MultiplierQuality * PrimeValue[2];
else MultiplierQuality := MultiplierQuality * PrimeValue[3]; fi;
fi;
od;
MultiplierQuality := MultiplierQuality/RootInt(Mult);
if MultiplierQuality > BestQuality then
Multiplier := Mult;
BestQuality := MultiplierQuality;
fi;
od;
n := n * Multiplier;
# Generate the factor base
FactorBaseSize := QuoInt(Digits^3,100);
FactorBase := [-1]; pi := 1;
for i in [2..FactorBaseSize] do
repeat
pi := NextPrimeInt(pi);
until Legendre(n,pi) = 1;
FactorBase[i] := pi;
od;
# Variables used for sieving
MaxFactorBaseEl := FactorBase[FactorBaseSize];
SmallPrimeLimit := Int(MaxFactorBaseEl/LogInt(MaxFactorBaseEl,2)^2);
NrSmallPrimes := Length(Filtered(FactorBase,
pi -> pi < SmallPrimeLimit));
SievingPrimePowers := Filtered(Flat(List(FactorBase{[2..FactorBaseSize]},
pi->List([1..LogInt(MaxFactorBaseEl,pi)],j->pi^j))),
piPower -> piPower >= SmallPrimeLimit
and Legendre(n,piPower) = 1);
NrSievedPowers := Length(SievingPrimePowers);
x := List(SievingPrimePowers,qi -> RootMod(n,qi));
LogWeightExpander := 16;
LogWeight := List(SievingPrimePowers,
function(qi)
pi := SmallestRootInt(qi);
if qi = pi or qi/pi < SmallPrimeLimit
then return LogInt(qi^LogWeightExpander,2);
else return LogInt(pi^LogWeightExpander,2);
fi;
end);
SievingIntervalLength := 2^LogInt(QuoInt(Digits^4,32),2);
HalfLength := QuoInt(SievingIntervalLength,2);
RangeTable := List(SievingPrimePowers,
qi -> qi * QuoInt(SievingIntervalLength,qi));
# Parameters used when evaluating the result of the sieving process
LargePrimeLimit := RootInt(MaxFactorBaseEl^3);
LargePrimeLimitWeight := LogInt(LargePrimeLimit^LogWeightExpander,2);
SmallPrimeGap := LogInt(LogInt(n,2),2) - 3;
SmallEnough := LargePrimeLimitWeight
+ LogInt(SmallPrimeLimit^
(SmallPrimeGap * LogWeightExpander),2);
Tolerance := 4;
# Set up the 'pool' of factors for the polynomial coefficient 'a'
# (used for generating the different polynomials for sieving)
aOptimum := QuoInt(RootInt(2 * n),HalfLength);
NraFactors := LogInt(aOptimum,2 * MaxFactorBaseEl);
HypercubeChunk := 2^(NraFactors - 1);
aFactorsOptimum := RootInt(aOptimum,NraFactors);
MinaFactor := aFactorsOptimum;
MaxaFactor := aFactorsOptimum;
aFactorsPoolsize := Digits;
aFactorsPool := [];
while Length(aFactorsPool) < aFactorsPoolsize do
repeat MinaFactor := PrevPrimeInt(MinaFactor);
until Legendre(n,MinaFactor) = 1;
repeat MaxaFactor := NextPrimeInt(MaxaFactor);
until Legendre(n,MaxaFactor) = 1;
Add(aFactorsPool,MinaFactor);
Add(aFactorsPool,MaxaFactor);
od;
Sort(aFactorsPool); aFactorsPoolsize := Length(aFactorsPool);
aFactorsPoolRoots := List(aFactorsPool,q->RootMod(n,q));
aFactorsSelectedPositions := List([1..NraFactors],i->i);
CompleteBase := Concatenation(FactorBase,aFactorsPool);
Required := Length(CompleteBase) + 20;
Info(IntegerFactorizationInfo,2,"Multiplier : ",String(Multiplier,10));
Info(IntegerFactorizationInfo,2,"Size of factor base : ",String(FactorBaseSize,10));
Info(IntegerFactorizationInfo,3,"Factor base : \n",FactorBase,"\n");
Info(IntegerFactorizationInfo,2,"Prime powers to be sieved : ",String(NrSievedPowers,10));
Info(IntegerFactorizationInfo,2,"Length of sieving interval : ",String(SievingIntervalLength,10));
Info(IntegerFactorizationInfo,2,"Small prime limit : ",String(SmallPrimeLimit,10));
Info(IntegerFactorizationInfo,2,"Large prime limit : ",String(LargePrimeLimit,10));
Info(IntegerFactorizationInfo,2,"Number of used a-factors : ",String(NraFactors,10));
Info(IntegerFactorizationInfo,2,"Size of a-factors pool : ",String(aFactorsPoolsize,10));
Info(IntegerFactorizationInfo,3,"a-factors pool :\n",aFactorsPool,"\n");
# Initialize the sieve
InitialValue := LogInt(Int(n/aOptimum),2) * LogWeightExpander;
InitialSieve := ListWithIdenticalEntries
(SievingIntervalLength + MaxFactorBaseEl,InitialValue);
MinSmallPrimeContribTable :=
List([1..InitialValue],i->Int(RootInt(Int(2^(i - LargePrimeLimitWeight)),
LogWeightExpander)/Tolerance));
Factored := [];
LargeFactors := []; FactoredLarge := [];
FactoredLargeUsable := []; RelationsLarge := [];
PolyCount := 0; TriedEntries1 := 0; TriedEntries2 := 0;
if FactorBaseSize < 200 then CollectingInterval := 10;
elif FactorBaseSize < 500 then CollectingInterval := 20;
elif FactorBaseSize < 2000 then CollectingInterval := 50;
else CollectingInterval := 100; fi;
if InfoLevel(IntegerFactorizationInfo) = 4 then CollectingInterval := 5;
elif InfoLevel(IntegerFactorizationInfo) = 5 then CollectingInterval := 1;
fi;
NextCollectionAt := CollectingInterval;
UsedTime := Int((Runtime() - StartingTime)/1000);
Info(IntegerFactorizationInfo,2,"Initialization time : ",String(UsedTime,10)," sec.");
Resume(); # Check whether there are intermediate results on
# the options stack for the number to be factored
# Sieve with different polynomials until there are enough factored fr's
Info(IntegerFactorizationInfo,2,"");
Info(IntegerFactorizationInfo,2,"Sieving");
repeat
# Choose polynomial and compute roots (mod qi)
# for all prime powers qi to be sieved
if PolyCount mod HypercubeChunk = 0 then
if PolyCount > 0 then
i := NraFactors;
while aFactorsSelectedPositions[i]
= aFactorsPoolsize - (NraFactors - i) do i := i - 1; od;
aFactorsSelectedPositions[i] := aFactorsSelectedPositions[i] + 1;
for j in [i + 1..NraFactors] do
aFactorsSelectedPositions[j] :=
aFactorsSelectedPositions[i] + (j - i);
od;
fi;
aFactorsSelection := List(aFactorsSelectedPositions,
pos -> aFactorsPool[pos]);
a := Product(aFactorsSelection);
aInverse := List(SievingPrimePowers,qi -> 1/(a mod qi) mod qi);
fi;
b := ChineseRem(aFactorsSelection,
List([1..NraFactors],
i -> (CoefficientsQadic( PolyCount mod HypercubeChunk
+ 2 * HypercubeChunk,2)[i] * 2 - 1)
* aFactorsPoolRoots[aFactorsSelectedPositions[i]]));
c := (b^2 - n)/a;
PolyCount := PolyCount + 1;
xabc := [];
for i in [1..NrSievedPowers] do
qi := SievingPrimePowers[i];
bmodqi := b mod qi;
xabc[i] := [(-bmodqi + x[i]) * aInverse[i] mod qi,
(-bmodqi - x[i]) * aInverse[i] mod qi];
od;
Sieve := ShallowCopy(InitialSieve);
Middle := Int(-b/a);
SieveBegin := Middle - HalfLength;
SieveEnd := Middle + HalfLength;
# Do the sieving
for i in [1..NrSievedPowers] do
qi := SievingPrimePowers[i]; Weight := LogWeight[i];
x1 := xabc[i][1]; x2 := xabc[i][2];
Pos := SieveBegin - SieveBegin mod qi;
Pos1 := Pos + x1; if Pos1 < SieveBegin then Pos1 := Pos1 + qi; fi;
Pos2 := Pos + x2; if Pos2 < SieveBegin then Pos2 := Pos2 + qi; fi;
Pos1 := Pos1 - SieveBegin + 1; Pos2 := Pos2 - SieveBegin + 1;
ADD_TO_LIST_ENTRIES_PLIST_RANGE
(Sieve,[Pos1,Pos1 + qi..Pos1 + RangeTable[i]],-Weight);
if Pos2 <> Pos1
then ADD_TO_LIST_ENTRIES_PLIST_RANGE
(Sieve,[Pos2,Pos2 + qi..Pos2 + RangeTable[i]],-Weight); fi;
od;
# Look for factorizations over the factor base
for Pos in [1..SievingIntervalLength] do
if Sieve[Pos] <= SmallEnough then
TriedEntries1 := TriedEntries1 + 1;
r := SieveBegin + Pos - 1;
fr := (a * r^2 + 2 * b * r + c) mod n;
if fr <> 0
then
if fr > n - fr then fr := fr - n; fi;
if fr < 0 then frFact := [-1]; fr := -fr;
else frFact := [];
fi;
MinSmallPrimeContrib :=
MinSmallPrimeContribTable[Maximum(1,Sieve[Pos])];
SmallPrimeContrib := 1;
for i in [2..NrSmallPrimes] do
while fr mod FactorBase[i] = 0 do
Add(frFact,FactorBase[i]);
fr := fr/FactorBase[i];
SmallPrimeContrib := SmallPrimeContrib * FactorBase[i];
od;
od;
if SmallPrimeContrib >= MinSmallPrimeContrib then
TriedEntries2 := TriedEntries2 + 1;
for i in [NrSmallPrimes + 1..FactorBaseSize] do
while fr mod FactorBase[i] = 0 do
Add(frFact,FactorBase[i]);
fr := fr/FactorBase[i];
od;
od;
if fr <= LargePrimeLimit then
if fr in aFactorsPool then Add(frFact,fr); fr := 1; fi;
frFact := Concatenation(frFact,aFactorsSelection);
if fr = 1 then Sort(frFact);
Add(Factored,[a * r + b,frFact]);
else Add(frFact,fr); Sort(frFact);
Add(FactoredLarge,[a * r + b,frFact]);
Add(LargeFactors,fr);
fi;
fi;
fi;
fi;
fi;
od;
# Look for usable factorizations with a large factor
if Length(Factored) >= NextCollectionAt then
Info(IntegerFactorizationInfo,2,"");
Info(IntegerFactorizationInfo,3,
"Collecting relations with a large factor");
Sort(LargeFactors);
UsableFactors := Set(List(Filtered(Collected(LargeFactors),
Pair1->Pair1[2] > 1),Pair2->Pair2[1]));
FactoredLargeUsable :=
Filtered(FactoredLarge,
Fact->ForAll(Fact[2],q -> q <= MaxFactorBaseEl
or q in UsableFactors
or q in aFactorsPool));
Sort(FactoredLargeUsable,
function(f1,f2)
return Intersection(f1[2],UsableFactors)[1]
< Intersection(f2[2],UsableFactors)[1];
end);
RelationsLarge := []; pos := 1; RelPos := 1;
while pos < Length(FactoredLargeUsable) do
if Intersection(FactoredLargeUsable[pos ][2],UsableFactors)
= Intersection(FactoredLargeUsable[pos + 1][2],UsableFactors)
then
RelationsLarge[RelPos] :=
[FactoredLargeUsable[pos][1] * FactoredLargeUsable[pos + 1][1],
Concatenation(FactoredLargeUsable[pos ][2],
FactoredLargeUsable[pos + 1][2])];
RelPos := RelPos + 1;
fi;
pos := pos + 1;
od;
RelsFB := Length(Factored);
RelsLarge := Length(RelationsLarge);
RelsTotal := RelsFB + RelsLarge;
Remaining := Maximum(0,Required - RelsTotal);
Efficiency1 := Int(100 * TriedEntries2/TriedEntries1);
Efficiency2 := Int((100 * (Length(FactoredLarge) + Length(Factored)))/
TriedEntries2);
UsedTime := Int((Runtime() - StartingTime)/1000);
Progress := Minimum(100,Int(100 * RelsTotal/Required));
Info(IntegerFactorizationInfo,2,
"Complete factorizations over the factor base : ",
String(RelsFB,8));
Info(IntegerFactorizationInfo,2,
"Relations with a large prime factor : ",
String(RelsLarge,8));
Info(IntegerFactorizationInfo,2,
"Relations remaining to be found : ",
String(Remaining,8));
Info(IntegerFactorizationInfo,2,
"Total factorizations with a large prime factor : ",
String(Length(FactoredLarge),8));
Info(IntegerFactorizationInfo,2,
"Used polynomials : ",
String(PolyCount,8));
Info(IntegerFactorizationInfo,3,
"Efficiency 1 : ",
String(Efficiency1,8)," %");
Info(IntegerFactorizationInfo,3,
"Efficiency 2 : ",
String(Efficiency2,8)," %");
Info(IntegerFactorizationInfo,2,
"Elapsed runtime : ",
String(UsedTime,8)," sec.");
Info(IntegerFactorizationInfo,2,
"Progress (relations) : ",
String(Progress,8)," %");
Info(IntegerFactorizationInfo,2,"");
NextCollectionAt := NextCollectionAt + CollectingInterval;
fi;
until Length(Factored) + Length(RelationsLarge) >= Required;
# Create exponent matrix
Info(IntegerFactorizationInfo,2,"Creating the exponent matrix");
LeftMatrix := []; Cols := Length(CompleteBase);
Factorizations := Concatenation(Factored,RelationsLarge);
Lines := Length(Factorizations);
for Line in [1..Lines] do
LeftMatrix [Line] := ListWithIdenticalEntries(Cols,zero);
CanonFact := Collected(Factorizations[Line][2]);
for i in [1..Length(CanonFact)] do
if CanonFact[i][2] mod 2 = 1
then LeftMatrix[Line]
[Position(CompleteBase,CanonFact[i][1])] := one;
fi;
od;
od;
# Do Gaussian Elimination
Info(IntegerFactorizationInfo,2,
"Doing Gaussian Elimination, #rows = ",Lines,
", #columns = ",Cols);
RightMatrix := NullspaceMat(LeftMatrix);
# Calculate X and Y such that X^2 = Y^2 mod n
# and check if 1 < Gcd(X - Y,n) < n
Info(IntegerFactorizationInfo,2,"Processing the zero rows");
p := 1; FactorsFound := []; DependencyNr := 1; Line := 1; Ready := false;
while Line <= Length(RightMatrix) and not Ready do
X := 1; Y := 1;
for Col in [1..Lines] do
if RightMatrix[Line][Col] = one
then X := X * Factorizations[Col][1] mod n; fi;
od;
YQuadFactors :=
Collected(Concatenation(List(Filtered([1..Lines],
i->RightMatrix[Line][i] = one),
j->Factorizations[j][2])));
for i in [1..Length(YQuadFactors)] do
Y := Y * YQuadFactors[i][1]^(YQuadFactors[i][2]/2) mod n;
od;
if (X^2 - Y^2) mod n <> 0
then Error("Internal Error : X^2 - Y^2 mod n <> 0"); fi;
p := Gcd(X - Y,n/Multiplier);
if not p in [1,n/Multiplier]
then
Info(IntegerFactorizationInfo,2,
"Dependency no. ",DependencyNr," yielded factor ",p);
Add(FactorsFound,p); FactorsFound := Set(FactorsFound);
if FactorsTD(n/Multiplier,FactorsFound)[2] = []
then Ready := true; fi;
else
Info(IntegerFactorizationInfo,2,
"Dependency no. ",DependencyNr," yielded no factor");
fi;
Line := Line + 1;
DependencyNr := DependencyNr + 1;
od;
if FactorsFound = []
then Error("\nSorry, the MPQS has failed ...\n\n"); return [n]; fi;
Result := Flat(FactorsTD(n/Multiplier,FactorsFound));
Info(IntegerFactorizationInfo,1,"The factors are\n",Result);
Info(IntegerFactorizationInfo,2,"Digit partition : ",
List(Result,p -> LogInt(p,10) + 1));
UsedTime := Runtime() - StartingTime;
Info(IntegerFactorizationInfo,2,
"MPQS runtime : ",TimeToString(UsedTime),"\n");
return Result;
end);
#############################################################################
##
#F FactorsMPQS( <n> )
##
InstallGlobalFunction( FactorsMPQS,
function ( n )
local FactorsList, StandardFactorsList, m, Ready, Pos, Passno;
if not (IsInt(n) and n > 1)
then Error("Usage : FactorsMPQS( <n> ), ",
"where <n> has to be an integer > 1"); fi;
if ValueOption("NoPreprocessing") = true
then FactorsList := Flat(FactorsTD(n));
else Info(IntegerFactorizationInfo,2,
"Doing some preprocessing using Pollard's Rho");
FactorsList := Flat(FactorsRho(n,1,16,8192));
fi;
Passno := 0;
repeat
Passno := Passno + 1;
Info(IntegerFactorizationInfo,3,"Pass no. ",Passno);
StandardFactorsList := [[],[]];
for m in FactorsList do
if IsProbablyPrimeInt(m) then Add(StandardFactorsList[1],m);
else Add(StandardFactorsList[2],m); fi;
od;
ApplyFactoringMethod(FactorsPowerCheck,[FactorsMPQS,"FactorsMPQS"],
StandardFactorsList,infinity);
FactorsList := Flat(StandardFactorsList);
for Pos in [1..Length(FactorsList)] do
if not IsProbablyPrimeInt(FactorsList[Pos])
then FactorsList[Pos] := MPQSSplit(FactorsList[Pos]); fi;
od;
FactorsList := Flat(FactorsList);
Ready := ForAll(FactorsList,IsProbablyPrimeInt);
until Ready;
Sort(FactorsList);
FactorizationCheck(n,FactorsList);
return FactorsList;
end);
#############################################################################
##
#E mpqs.gi . . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|