1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
#############################################################################
##
#W pslq.gi GAP float Steve A. Linton
##
#Y Copyright (C) 2014 Steve Linton & Laurent Bartholdi
##
## This file implements the PSLQ and multi-pair PSLQ algorithms as described
## in "Parallel Integer Relation Detection: Techniques and Applications
## David H. Bailey and David J. Broadhurst" Math.Comput. 70 (2001) 1719-1736
##
## Both implementations follow the paper quite closely. The main input
## is a vector of floats in some appropriate extended precision representation
## There is currently no detection of whether the representation is extended
## enough, although the algorithm will probably not terminate if it is not
## when this class is set to level 2 or higher it prints a few numbers
## indicating progress at each iteration
# TODO: implement the multi-level version
# TODO: parallelise the multi-pair version.
# TODO: detect when there is insufficient precisiona and fail cleanly.
BindGlobal("defaultgamma@", 2.0/Sqrt(3.0));
## <#GAPDoc Label="PSLQ">
## The PSLQ algorithm has been implemented by Steve A. Linton, as an external
## contribution to <Package>Float</Package>. This algorithm receives as
## input a vector of floats <M>x</M> and a required precision <M>\epsilon</M>,
## and seeks an integer vector <M>v</M> such that
## <M>|x\cdot v|<\epsilon</M>. The implementation follows quite closely the
## original article <Cite Key="MR1836930"/>.
##
## <ManSection>
## <Func Name="PSLQ" Arg="x, epsilon[, gamma]"/>
## <Func Name="PSLQ_MP" Arg="x, epsilon[, gamma [,beta]]"/>
## <Returns>An integer vector <M>v</M> with <M>|x\cdot v|<\epsilon</M>.</Returns>
## <Description>
## The PSLQ algorithm by Bailey and Broadhurst (see <Cite Key="MR1836930"/>)
## searches for an integer relation between the entries in <M>x</M>.
##
## <P/><M>\beta</M> and <M>\gamma</M> are algorithm tuning parameters, and
## default to <M>4/10</M> and <M>2/\sqrt(3)</M> respectively.
##
## <P/>The second form implements the "Multi-pair" variant of the algorithm, which is
## better suited to parallelization.
## <Example><![CDATA[
## gap> PSLQ([1.0,(1+Sqrt(5.0))/2],1.e-2);
## [ 55, -34 ] # Fibonacci numbers
## gap> RootsFloat([1,-4,2]*1.0);
## [ 0.292893, 1.70711 ] # roots of 2x^2-4x+1
## gap> PSLQ(List([0..2],i->last[1]^i),1.e-7);
## [ 1, -4, 2 ] # a degree-2 polynomial fitting well
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BindGlobal("PSLQ", function(arg)
local sample, eps, gamma, one, zero, redentry, swapEntries, n, i,
y, A, B, s, s2, t, H, j, count, best, m, q, a, t0, t1, t2,
t3, t4, l, M, rp, ym, x;
# Process arguments and set up a few constants
if Length(arg) < 2 or Length(arg) > 4 or not ForAll(arg[1], IsFloat) then
Error("Usage: pslq(x, epsilon [, gamma] ) default gamme is 2/sqrt(3)");
fi;
x := arg[1];
sample := x[1];
eps := arg[2];
if Length(arg) = 3 then
gamma := arg[3];
else
gamma := MakeFloat(sample, defaultgamma@);
fi;
#
# We can't just use 1.0 or 0.0 because they might not have the right representation
#
one := One(sample);
zero := Zero(sample);
#
# Basic step in HNF calculations, used in a couple of places
#
redentry := function(i,j)
local t, ti;
t := Round(H[i][j]/H[j][j]);
ti := Int(t);
y[j] := y[j] + t*y[i];
AddRowVector(H[i],H[j],-t,1,j);
AddRowVector(A[i],A[j],-ti,1,n);
AddRowVector(B[j],B[i],ti,1,n);
end;
#
# swap entries m and m+1 in list a
#
swapEntries := function(a, m)
local t;
t := a[m];
a[m] := a[m+1];
a[m+1] := t;
end;
n := Length(x);
#
# If the list includes something close enough to zero, the problem is easy
#
i := PositionProperty(x, y->AbsoluteValue(y) < eps);
if i <> fail then
y := ListWithIdenticalEntries(n,0);
y[i] := 1;
return y;
fi;
#
# and now to work.
#
#
# Initial setup
#
A := MutableIdentityMat(n,Integers);
B := MutableIdentityMat(n,Integers);
s := [];
s2 := zero;
for i in [n,n-1..1] do
s2 := s2 + x[i]^2;
s[i] := Sqrt(s2);
od;
t := one/s[1];
y := t*x;
s := t*s;
H := List([1..n], i->[]);
for j in [1..n-1] do
for i in [1..j-1] do
H[i][j] := zero;
od;
H[j][j] := s[j+1]/s[j];
for i in [j+1..n] do
H[i][j] := -y[i]*y[j]/(s[j]*s[j+1]);
od;
od;
for i in [2..n] do
for j in [i-1,i-2..1] do
redentry(i,j);
od;
od;
count := 0;
#
# Main loop
#
repeat
count := count+1;
#
# find row to work on (maximum of gamma^i*H[i][i])
#
best := -one;
m := fail;
q := one;
for i in [1..n-1] do
q := q*gamma;
a := q*AbsoluteValue(H[i][i]);
if a > best then
m := i;
best := a;
fi;
od;
#
# exchange step
#
swapEntries(y,m);
swapEntries(A,m);
swapEntries(B,m);
swapEntries(H,m);
#
# Corner step
#
if m <= n-2 then
t0 := Sqrt(H[m][m]^2 + H[m][m+1]^2);
t1 := H[m][m]/t0;
t2 := H[m][m+1]/t0;
for i in [m..n] do
t3 := H[i][m];
t4 := H[i][m+1];
H[i][m] := t1*t3 + t2*t4;
H[i][m+1] := -t2*t3 + t1*t4;
od;
fi;
#
# Reduction step
#
for i in [m+1..n] do
l := Minimum(i-1,m+1);
for j in [l,l-1..1] do
redentry(i,j);
od;
od;
#
# Take stock at the end of the iteration
#
M := 1.0/Maximum(List([1..n-1], i->AbsoluteValue(H[i][i])));
rp := 1;
ym := AbsoluteValue(y[1]);
for i in [2..n] do
t := AbsoluteValue(y[i]);
if t < ym then
ym := t;
rp := i;
fi;
od;
Info(InfoFloat, 2, count,": ",Int(M)," ",Int(Log10(ym)));
until ym < eps;
return B[rp];
end);
BindGlobal("defaultbeta@", 4/10);
BindGlobal("PSLQ_MP", function(arg)
local swapEntries, x, eps, sample, n, one, zero, gamma, betan, i,
y, A, B, s, s2, t, H, j, count, v, q, l, used, pairs, p, m,
t0, t1, t2, t3, t4, T, k, M, rp, ym;
#
# swap entries m and m+1 in list a
#
swapEntries := function(a, m)
local t;
t := a[m];
a[m] := a[m+1];
a[m+1] := t;
end;
if Length(arg) < 2 or Length(arg) > 4 or not ForAll(arg[1],IsFloat) then
Error("Usage: pslqMP( x, epsilon[, gamma[, beta]])");
fi;
x := arg[1];
eps := arg[2];
sample := x[1];
n := Length(x);
one := One(sample);
zero := Zero(sample);
if Length(arg) > 2 then
gamma := arg[3];
else
gamma := MakeFloat(sample, defaultgamma@);
fi;
if Length(arg) > 3 then
betan := arg[4]*n;
else
betan := n*defaultbeta@;
fi;
#
# If the list includes something close enough to zero, the problem is easy
#
i := PositionProperty(x, y->AbsoluteValue(y) < eps);
if i <> fail then
y := ListWithIdenticalEntries(n,0);
y[i] := 1;
return y;
fi;
#
# Start the real work
#
A := MutableIdentityMat(n,Integers);
B := MutableIdentityMat(n,Integers);
s := [];
s2 := zero;
for i in [n,n-1..1] do
s2 := s2 + x[i]^2;
s[i] := Sqrt(s2);
od;
t := one/s[1];
y := t*x;
s := t*s;
H := List([1..n], i->[]);
for j in [1..n-1] do
for i in [1..j-1] do
H[i][j] := zero;
od;
H[j][j] := s[j+1]/s[j];
for i in [j+1..n] do
H[i][j] := -y[i]*y[j]/(s[j]*s[j+1]);
od;
od;
count := 0;
#
# Main loop
#
repeat
count := count+1;
v := [];
q := one;
for i in [1..n-1] do
q := q*gamma;
# negate to get the sorting order, since that's all we actually care about
Add(v, -q*AbsoluteValue(H[i][i]));
od;
l := [1..n-1];
SortParallel(v,l);
#
# Now we sort out our pairs
#
used := BlistList([1..n],[]);
pairs := [];
for i in [1..n-1] do
if not used[l[i]] and not used[l[i]+1] then
Add(pairs,l[i]);
used[l[i]] := true;
used[l[i]+1] := true;
fi;
if Length(pairs) > betan then
break;
fi;
od;
p := Length(pairs);
for m in pairs do
swapEntries(y,m);
swapEntries(A,m);
swapEntries(B,m);
swapEntries(H,m);
od;
for m in pairs do
if m <= n-2 then
t0 := Sqrt(H[m][m]^2 + H[m][m+1]^2);
t1 := H[m][m]/t0;
t2 := H[m][m+1]/t0;
for i in [m..n] do
t3 := H[i][m];
t4 := H[i][m+1];
H[i][m] := t1*t3 + t2*t4;
H[i][m+1] := -t2*t3 + t1*t4;
od;
fi;
od;
T:= List([1..n], i->[]);
for i in [2..n] do
for j in [1..n-i+1] do
l := i+j-1;
for k in [j+1..l-1] do
H[l][j] := H[l][j] - T[l][k]*H[k][j];
od;
T[l][j] := Round(H[l][j]/H[j][j]);
H[l][j] := H[l][j] - T[l][j]*H[j][j];
od;
od;
for j in [1..n-1] do
for i in [j+1..n] do
y[j] := y[j] + T[i][j]*y[i];
od;
od;
for j in [1..n-1] do
for i in [j+1..n] do
AddRowVector(A[i],A[j], -Int(T[i][j]));
AddRowVector(B[j],B[i], Int(T[i][j]));
od;
od;
M := one/Maximum(List([1..n-1], i->AbsoluteValue(H[i][i])));
rp := 1;
ym := AbsoluteValue(y[1]);
for i in [2..n] do
t := AbsoluteValue(y[i]);
if t < ym then
ym := t;
rp := i;
fi;
od;
Info(InfoFloat,2,count,": ",Int(M)," ",Int(Log10(ym)));
until ym < eps;
return B[rp];
end);
# These examples are used in the paper cited above to generate a family of test data.
BindGlobal("MakePslqTest@", function(r,s)
local alpha, xs;
alpha := Exp(Log(3.0)/r) - Exp(Log(2.0)/s);
xs := List([0..r*s], i-> alpha^i);
return xs;
end);
#############################################################################
#E
|