File: codegen.gd

package info (click to toggle)
gap-guava 3.19%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,864 kB
  • sloc: ansic: 20,499; xml: 10,533; makefile: 254; sh: 55
file content (422 lines) | stat: -rw-r--r-- 16,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
#############################################################################
##
#A  codegen.gd              GUAVA library                       Reinald Baart
#A                                                        &Jasper Cramwinckel
#A                                                           &Erik Roijackers
##
##  This file contains info/functions for generating codes
##

#############################################################################
##
#F  IsCode( <v> ) . . . . . . . . . . . . . . . . . . . . . .  code category
##
DeclareCategory("IsCode", IsListOrCollection);

#############################################################################
##
#F  ElementsCode( <L> [, <name> ], <F> )  . . . . . . code from list of words
##
DeclareOperation("ElementsCode", [IsList,IsString,IsField]);

#############################################################################
##
#F  RandomCode( <n>, <M> [, <F>] )  . . . . . . . .  random unrestricted code
##
DeclareOperation("RandomCode", [IsInt, IsInt, IsField]);

#############################################################################
##
#F  HadamardCode( <H | n> [, <t>] ) . Hadamard code of <t>'th kind, order <n>
##
DeclareOperation("HadamardCode", [IsMatrix, IsInt]);

#############################################################################
##
#F  ConferenceCode( <n | M> ) . . . . . . . . . . code from conference matrix
##
DeclareOperation("ConferenceCode", [IsMatrix]);

#############################################################################
##
#F  MOLSCode( [ <n>, ] <q> )  . . . . . . . . . . . . . . . .  code from MOLS
##
##  MOLSCode([n, ] q) returns a (n, q^2, n-1) code over GF(q)
##  by creating n-2 mutually orthogonal latin squares of size q.
##  If n is omitted, a wordlength of 4 will be set.
##  If there are no n-2 MOLS known, the code will return an error
##
DeclareOperation("MOLSCode", [IsInt, IsInt]);

#############################################################################
##
#F  QuadraticCosetCode( <Q> ) . . . . . . . . . .  coset of RM(1,m) in R(2,m)
##
##  QuadraticCosetCode(Q) returns a coset of the ReedMullerCode of
##  order 1 (R(1,m)) in R(2,m) where m is the size of square matrix Q.
##  Q is the upper triangular matrix that defines the quadratic part of
##  the boolean functions that are in the coset.
##
#QuadraticCosetCode := function(arg)

#############################################################################
##
#F  GeneratorMatCode( <G> [, <name> ], <F> )  . .  code from generator matrix
##
DeclareOperation("GeneratorMatCode", [IsMatrix, IsString, IsField]);

#############################################################################
##
#F  GeneratorMatCodeNC( <G> [, <name> ], <F> )  . .  code from generator matrix
##
## same as GeneratorMatCode but does not compute upper + lower bounds
##  for the minimum distance or covering radius
DeclareOperation("GeneratorMatCodeNC", [IsMatrix, IsField]);

#############################################################################
##
#F  CheckMatCodeMutable( <H> [, <name> ], <F> )  . . . . . .  code from check matrix
##
DeclareOperation("CheckMatCodeMutable", [IsMatrix, IsString, IsField]);

#############################################################################
##
#F  CheckMatCode( <H> [, <name> ], <F> )  . . . . . .  code from check matrix
##
DeclareOperation("CheckMatCode", [IsMatrix, IsString, IsField]);

#############################################################################
##
#F  RandomLinearCode( <n>, <k> [, <F>] )  . . . . . . . .  random linear code
##
DeclareOperation("RandomLinearCode", [IsInt, IsInt, IsField]);

#############################################################################
##
#F  HammingCode( <r> [, <F>] )  . . . . . . . . . . . . . . . .  Hamming code
##
DeclareOperation("HammingCode", [IsInt, IsField]);

#############################################################################
##
#F  SimplexCode( <r>, <F> ) .  The SimplexCode is the Dual of the HammingCode
##
DeclareOperation("SimplexCode", [IsInt, IsField]);

#############################################################################
##
#F  ReedMullerCode( <r>, <k> )  . . . . . . . . . . . . . .  Reed-Muller code
##
##  ReedMullerCode(r, k) creates a binary Reed-Muller code of dimension k,
##  order r; 0 <= r <= k
##
DeclareOperation("ReedMullerCode", [IsInt, IsInt]);

#############################################################################
##
#F  LexiCode( <M | n>, <d>, <F> )  . . . . .  Greedy code with standard basis
##
DeclareOperation("LexiCode", [IsMatrix,IsInt,IsField]);

#############################################################################
##
#F  GreedyCode( <M>, <d> [, <F>] )  . . . . Greedy code from list of elements
##
DeclareOperation("GreedyCode", [IsMatrix,IsInt,IsField]);

#############################################################################
##
#F  AlternantCode( <r>, <Y> [, <alpha>], <F> )  . . . . . . .  Alternant code
##
DeclareOperation("AlternantCode", [IsInt, IsList, IsList, IsField]);

#############################################################################
##
#F  GoppaCode( <G>, <L | n> ) . . . . . . . . . . . . . . . . . .  Goppa code
##
DeclareGlobalFunction("GoppaCode");

#############################################################################
##
#F  CordaroWagnerCode( <n> )  . . . . . . . . . . . . . . Cordaro-Wagner code
##
DeclareOperation("CordaroWagnerCode", [IsInt]);

#############################################################################
##
#F  GeneralizedSrivastavaCode( <a>, <w>, <z> [, <t>] [, <F>] )  . . . . . .
##
DeclareOperation("GeneralizedSrivastavaCode",[IsList, IsList, IsList, IsInt, IsField]);

#############################################################################
##
#F  SrivastavaCode( <a>, <w> [, <mu>] [, <F>] ) . . . . . . . Srivastava code
##
DeclareOperation("SrivastavaCode",[IsList, IsList, IsInt, IsField]);

#############################################################################
##
#F  ExtendedBinaryGolayCode( )  . . . . . . . . .  extended binary Golay code
##
DeclareOperation("ExtendedBinaryGolayCode", []);

#############################################################################
##
#F  ExtendedTernaryGolayCode( ) . . . . . . . . . extended ternary Golay code
##
DeclareOperation("ExtendedTernaryGolayCode", []);

#############################################################################
##
#F  BestKnownLinearCode( <n>, <k> [, <F>] ) .  returns best known linear code
#F  BestKnownLinearCode( <rec> )
##
DeclareOperation("BestKnownLinearCode", [IsRecord]);

#############################################################################
##
#F  GeneratorPolCode( <G>, <n> [, <name> ], <F> ) .  code from generator poly
##
DeclareOperation("GeneratorPolCode",
    [IsUnivariatePolynomial, IsInt, IsString, IsField]);

#############################################################################
##
#F  CheckPolCode( <H>, <n> [, <name> ], <F> ) . .  code from check polynomial
##
DeclareOperation("CheckPolCode",
    [IsUnivariatePolynomial, IsInt, IsString, IsField]);

#############################################################################
##
#F  RepetitionCode( <n> [, <F>] ) . . . . . . . repetition code of length <n>
##
DeclareOperation("RepetitionCode", [IsInt, IsField]);

#############################################################################
##
#F  WholeSpaceCode( <n> [, <F>] ) . . . . . . . . . . returns <F>^<n> as code
##
DeclareOperation("WholeSpaceCode", [IsInt, IsField]);

#############################################################################
##
#F  CyclicCodes( <n> )  . .  returns a list of all cyclic codes of length <n>
##
DeclareOperation("CyclicCodes", [IsInt,IsField]);

#############################################################################
##
#F  NrCyclicCodes( <n>, <F>)  . . .  number of cyclic codes of length <n>
##
DeclareOperation("NrCyclicCodes", [IsInt, IsField]);

#############################################################################
##
#F  BCHCode( <n> [, <b>], <delta> [, <F>] ) . . . . . . . . . . . .  BCH code
##
DeclareOperation("BCHCode", [IsInt, IsInt, IsInt, IsInt]);

#############################################################################
##
#F  ReedSolomonCode( <n>, <d> ) . . . . . . . . . . . . . . Reed-Solomon code
##
##  ReedSolomonCode (n, d) returns a primitive narrow sense BCH code with
##  wordlength n, over alphabet q = n+1, designed distance d
DeclareOperation("ReedSolomonCode", [IsInt, IsInt]);

#############################################################################
##
#F  Extended ReedSolomonCode( <n>, <d> ) . . . . . Extended Reed-Solomon code
##
##  ExtendedReedSolomonCode (n, d) returns a Reed Solomon code extended by
##  an overall parity-check symbol. Note that wordlength n = q, d is the
##  designed distance.
DeclareOperation("ExtendedReedSolomonCode", [IsInt, IsInt]);

## RootsCode implementation expunged and rewritten for Guava 3.11
## J. E. Fields 1/15/2012
#############################################################################
##
#F  RootsCode( <n>, <list>, <field>) . code constructed from roots of polynomial
##
##  RootsCode(n, rootlist, F) or RootsCode (n, powerlist, fieldsize) or
##  RootsCode (n, rootlist) returns the
##  code with generator polynomial equal to the least common multiple of
##  the minimal polynomials of the n'th roots of unity in the list.
##  The code has wordlength n
##
DeclareOperation("RootsCode", [IsInt, IsList, IsField]);

#############################################################################
##
#F  QRCode( <n> [, <F>] ) . . . . . . . . . . . . . .  quadratic residue code
##
DeclareOperation("QRCode", [IsInt, IsInt]);

#############################################################################
##
#F  QQRCode( <n> [, <F>] ) . . . . . . . . binary quasi-quadratic residue code
##
## Code of Bazzi-Mittel (see Bazzi, L. and Mitter, S.K. "Some constructions of
##  codes from group actions" preprint March 2003 (submitted to IEEE IT)
##
DeclareOperation("QQRCode", [IsInt]);

#############################################################################
##
#F  QQRCodeNC( <n> [, <F>] ) . . . . . . . . binary quasi-quadratic residue code
##
## Code of Bazzi-Mittel (see Bazzi, L. and Mitter, S.K. "Some constructions of
##  codes from group actions" preprint March 2003 (submitted to IEEE IT)
## Uses GeneratorMatCodeNC
##
DeclareOperation("QQRCodeNC", [IsInt]);

#############################################################################
##
#F  NullCode( <n> [, <F>] ) . . . . . . . . . . .  code consisting only of <0>
##
DeclareOperation("NullCode", [IsInt, IsField]);

#############################################################################
##
#F  FireCode( <G>, <b> )  . . . . . . . . . . . . . . . . . . . . . Fire code
##
##  FireCode (G, b) constructs the Fire code that is capable of correcting any
##  single error burst of length b or less.
##  G is a primitive polynomial of degree m
##
DeclareOperation("FireCode", [IsUnivariatePolynomial, IsInt]);

#############################################################################
##
#F  BinaryGolayCode( )  . . . . . . . . . . . . . . . . . . binary Golay code
##
DeclareOperation("BinaryGolayCode", []);

#############################################################################
##
#F  TernaryGolayCode( ) . . . . . . . . . . . . . . . . .  ternary Golay code
##
DeclareOperation("TernaryGolayCode", []);

#############################################################################
##
#F  EvaluationCode( <P>, <L>, <R> )
##
##   P is a list of n points in F^r
##   L is a list of rational functions in r variables
##   EvaluationCode returns the image of the evaluation map f->[f(P1),...,f(Pn)],
##   as f ranges over the vector space of functions spanned by L.
##   The output is the code whose generator matrix has rows (f(P1)...f(Pn)) where
##   f is in L and P={P1,..,Pn}
##
DeclareOperation("EvaluationCode",[IsList, IsList, IsRing]);

#############################################################################
##
#F  GeneralizedReedSolomonCode( <P>, <k>, <R> )
##
##   P is a list of n points in F
##   k is an integer
##   GRSCode returns the image of the evaluation map f->[f(P1),...,f(Pn)],
##   as f ranges over the vector space of polynomials in 1 variable
##   of degree < k in the ring R.
##   The output is the code whose generator matrix has rows (f(P1)...f(Pn)) where
##   f = x^j, j<k, and P={P1,..,Pn}
##
DeclareOperation("GeneralizedReedSolomonCode",[IsList, IsInt, IsRing]);

#############################################################################
##
#F  OnePointAGCode( <crv>, <pts>, <m>, <R> )
##
## R = F[x,y] is a polynomial ring over a finite field F
## crv is a polynomial in R representing a plane curve
## pts is a list of points on the curve
## Computes the AG codes associated to the RR space
## L(m*infinity) using Proposition VI.4.1 in Stichtenoth
##
##
DeclareOperation("OnePointAGCode",[IsPolynomial,IsList, IsInt, IsRing]);


#############################################################################
##
#F  FerreroDesignCode( <P>, <m> ) ... code from a Ferrero design
##
##
#DeclareOperation("FerreroDesignCode",[IsList, IsInt]);

#############################################################################
##
#F  QuasiCyclicCode( <G>, <s>, <F> ) . . . . . . . . . . . quasi cyclic code
##
##  QuasiCyclicCode ( <G>, <s>, <F> ) generates a rate 1/m quasi-cyclic
##  codes. Note that <G> is a list of univariate polynomial and m is the
##  cardinality of this list. The integer s is the size of the circulant
##  and the associated field is <F>.
##
DeclareOperation("QuasiCyclicCode", [IsList, IsInt, IsField]);

#####################################################################
##
#F CyclicMDSCode( <q>, <m>, <k> ) . . . . . . . . . cyclic MDS code
##
## Construct a [q^m + 1, k, q^m - k + 2] cyclic MDS code over GF(q^m)
##
DeclareOperation("CyclicMDSCode", [IsInt, IsInt, IsInt]);

#######################################################################
##
#F FourNegacirculantSelfDualCode( <ax>, <bx>, <k> ) . . self-dual code
##
## Construct a [2*k, k, d] self-dual code over F using Harada's
## construction. See:
##
##    1. M. Harada and T. Nishimura, "An extremal singly even self
##       dual code of length 88", Advances in Mathematics of
##       Communications, vol 1, no. 2, pp. 261--267, 2007
##
##    2. M. Harada, W. Holzmann, H. Kharaghani and M. Khorvash,
##       "Extremal ternary self-dual codes constructed from
##       negacirculant matrices", Graph and Combinatorics, vol 23,
##       pp. 401--417, 2007
##
##    3. M. Harada, "An extremal doubly even self-dual code of
##       length 112", preprint
##
## The generator matrix of the code has the following form:
##
##        -                   -
##        |       :  A  :  B  |
##    G = |   I   :-----:-----|
##        |       : B^T : A^T |
##        -                   -
##
## Note that the matrices A, B, A^T and B^T are k/2 * k/2
## negacirculant matrices.
##
DeclareOperation("FourNegacirculantSelfDualCode",
    [IsUnivariatePolynomial, IsUnivariatePolynomial, IsInt]);

DeclareOperation("FourNegacirculantSelfDualCodeNC",
    [IsUnivariatePolynomial, IsUnivariatePolynomial, IsInt]);

###########################################################################
##
#F QCLDPCCodeFromGroup( <m>, <j>, <k> ) . . Regular quasi-cyclic LDPC code
##
## Construct a regular (j,k) quasi-cyclic low-density parity-check (LDPC)
## code over GF(2) based on the multiplicative group of integer modulo m.
## If m is a prime, the size of the group is equal to Phi(m) = m - 1,
## otherwise it is equal to Phi(m). For details, refer to the paper by:
##
##   R. Tanner, D. Sridhara, A. Sridharan, T. Fuja and D. Costello,
##   "LDPC block and convolutional codes based on circulant matrices",
##   IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 2966--2984, 2004
##
## NOTE that j and k must divide Phi(m).
##
DeclareOperation("QCLDPCCodeFromGroup", [IsInt, IsInt, IsInt]);