File: codemisc.gi

package info (click to toggle)
gap-guava 3.19%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 5,864 kB
  • sloc: ansic: 20,499; xml: 10,533; makefile: 254; sh: 55
file content (738 lines) | stat: -rw-r--r-- 24,553 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
#############################################################################
##
#A  codemisc.gi             GUAVA library                       Reinald Baart
#A                                                         Jasper Cramwinckel
#A                                                            Erik Roijackers
#A                                                                Eric Minkes
##
##  This file contains miscellaneous functions for codes
##

########################################################################
##
#F  CodeWeightEnumerator( <code> )
##
##  Returns a polynomial over the rationals
##  with degree not greater than the length of the code.
##  The coefficient of x^i equals
##  the number of codewords of weight i.
##

InstallMethod(CodeWeightEnumerator, "unrestricted code", true, [IsCode], 0,
function( code )

    return LaurentPolynomialByCoefficients(
                ElementsFamily(FamilyObj(Rationals)),
                WeightDistribution( code ),  0  );

end);


########################################################################
##
#F  CodeDistanceEnumerator( <code>, <word> )
##
##  Returns a polynomial over the rationals
##  with degree not greater than the length of the code.
##  The coefficient of x^i equals
##  the number of codewords with distance i to <word>.

InstallMethod(CodeDistanceEnumerator, "unrestricted code, codeword", true,
    [IsCode, IsCodeword], 0,
function( code, word )

    word := Codeword( word, code );

    return LaurentPolynomialByCoefficients(
        ElementsFamily(FamilyObj( Rationals )),
        DistancesDistribution( code, word ),  0  );

end);


########################################################################
##
#F  CodeMacWilliamsTransform( <code> )
##
##  Returns a polynomial with the weight
##  distribution of the dual code as
##  coefficients.
##

InstallMethod(CodeMacWilliamsTransform, "unrestricted code",
    true, [IsCode], 0,
function( code )
    local weightdist, transform, size, n, x, i, j, tmp;

    n := WordLength( code );

    # if dimension < n/2, or if non-linear code,
    # use weightdistribution of code,
    # else use weightdistribution of dual code
    if not IsLinearCode( code ) or Dimension( code ) < n / 2 then
        weightdist := WeightDistribution( code );
        size := Size( code );
        transform := List( [ 1 .. n+1 ], x -> 0 );
        for j in [ 0 .. n ] do
            tmp := 0;
            for i in [ 0 .. n ] do
                tmp := tmp + weightdist[ i+1 ] * Krawtchouk( j, i, n, 2 );
            od;
            transform[ j+1 ] := tmp / size;
        od;
    else
        transform := WeightDistribution( DualCode( code ) );
    fi;

    return LaurentPolynomialByCoefficients(
                ElementsFamily(FamilyObj( Rationals )),
                transform,  0  );
end);


########################################################################
##
#F  WeightVector( <vector> )
##
##  Returns the number of non-zeroes in a vector.

InstallMethod(WeightVector, "method for vector", true, [IsVector], 0,
function( vector )
    local pos, number, fieldzero;

    number := 0;
    fieldzero := Zero( Field( vector ) );

    for pos in [ 1 .. Length( vector ) ] do

        if vector[ pos ] <> fieldzero then
            number := number + 1;
        fi;

    od;

    return number;

end);


########################################################################
##
#F  RandomVector( <len> [, <weight> [, <field> ] ] )
##

InstallMethod(RandomVector, "length, weight, field", true,
    [IsInt, IsInt, IsField], 0,
function(len, wt, field)
    local  vec, coord, coordlist, elslist, i;

    if len <= 0 then
        Error( "RandomVector: length must be a positive integer" );
    fi;
    if wt < -1 or wt > len then
        Error( "RandomVector: <weight> must be an integer in the range",
               " -1 .. ", len );
    fi;


    vec := NullVector( len, field );
    if wt > 0 then
        coordlist := [ 1 .. len ];
        elslist := Difference( AsSSortedList( field ), [ Zero(field) ] );
        # make wt elements of the vector non-zero,
        # choosing uniformly between the other field-elements
        for i in [ 1 .. wt ] do
            coord := Random( coordlist );
            SubtractSet( coordlist, [ coord ] );
            vec[ coord ] := Random( elslist );
        od;
    # do nothing if w = 0
    elif wt = -1 then
        # for each coordinate, choose uniformly from
        # all field elements, including zero
        elslist := AsSSortedList( field );
        for i in [ 1 .. len ] do
            vec[ i ] := Random( elslist );
        od;
    fi;

    return vec;
end);

InstallOtherMethod(RandomVector, "length, weight, fieldsize", true,
    [IsInt, IsInt, IsInt], 0,
function(len, wt, q)
    return RandomVector(len, wt, GF(q));
end);

InstallOtherMethod(RandomVector, "length, weight", true, [IsInt, IsInt], 0,
function(len, wt)
    return RandomVector(len, wt, GF(2));
end);

InstallOtherMethod(RandomVector, "length, field", true, [IsInt, IsField], 0,
function(len, field)
    return RandomVector(len, -1, field);
end);

InstallOtherMethod(RandomVector, "length", true, [IsInt], 0,
function(len)
    return RandomVector(len, -1, GF(2));
end);


########################################################################
##
#F  IsSelfComplementaryCode( <code> )
##
##  Return true if <code> is a complementary code, false otherwise.
##  A code is called complementary if for every v \in <code>
##  also 1 - v \in <code> (where 1 is the all-one word).
##

InstallMethod(IsSelfComplementaryCode, "method for unrestricted code",
    true, [IsCode], 0,
function ( code )
    local size, els, selfcompl, alloneword, newword;
    if LeftActingDomain( code ) <> GF(2) then
        Error("IsSelfComplementaryCode: <code> is not a binary code" );
    elif IsLinearCode( code ) then
        return IsSelfComplementaryCode( code );
    else
        els := AsSSortedList( code );
        selfcompl := true;
        alloneword := AllOneCodeword( WordLength( code ), GF(2) );
        while Length( els ) > 0 and selfcompl = true do
            newword := alloneword - els[ 1 ];
            if newword <> els[ 1 ] then
                if newword in els then
                    els := Difference( els, [ newword ] );
                else
                    selfcompl := false;
                fi;
                els := Difference( els, [ els[ 1 ] ] );
            fi;
        od;
        return selfcompl;
    fi;
end);

InstallMethod(IsSelfComplementaryCode, "method for linear code",
    true, [IsLinearCode], 0,
function ( code )
    if LeftActingDomain( code ) <> GF(2) then
        Error("IsSelfComplementaryCode: <code> is not a binary code" );
    else
        return( AllOneCodeword( WordLength( code ), GF(2) ) in code );
    fi;
end);


########################################################################
##
#F  IsAffineCode( <code> )
##
##  Return true if <code> is affine, i.e. a linear code or
##  a coset of a linear code, false otherwise.
##

InstallMethod(IsAffineCode, "method for unrestricted code",
    true, [IsCode], 0,
function ( code )

    if IsLinearCode( code ) then
        return IsAffineCode( code );
    elif NullWord( code ) in code then
        # code cannot be a coset code of a linear code
        return false;
    elif not ( Size( code ) in List( [ 0 .. WordLength( code ) ],
            x -> Characteristic( LeftActingDomain( code ) ) ^ x ) ) then
        # the code must have a "dimension"
        return false;
    else
        # subtract the first codeword from all codewords.
        # if the resulting code is linear, then the
        # original code is affine.
        return IsLinearCode(
                       CosetCode( code, NullWord( code  )
                               - CodewordNr( code, 1 ) ) );
    fi;

end);

InstallTrueMethod(IsAffineCode, IsLinearCode);


########################################################################
##
#F  IsAlmostAffineCode( <code> )
##
##  Return true if <code> is almost affine, false otherwise.
##  A code is called almost affine if the size of any punctured
##  code is equal to q^r for some integer r, where q is the
##  size of the alphabet of the code.
##

InstallMethod(IsAlmostAffineCode, "method for unrestricted code",
    true, [IsCode], 0,
function( code )

    local F, n, i, j, subcode, sizelist, coordlist, almostaffine;

        if IsAffineCode( code ) then
            # every affine code is also almost affine
            almostaffine := true;
        else
            # not affine
            almostaffine := true;

            F := LeftActingDomain( code );

            # however, any code over GF(2) or GF(3) is affine
            # if it is almost affine.
            # so non-affine codes with q=2,3 are also not almost affine
            if Size( F ) = 2
               or Size( F ) = 3 then
                almostaffine := false;
            fi;

            n := WordLength( code );
            sizelist := List( [ 0 .. n ], x -> Characteristic( F ) ^ x );

            # first check whether the code itself is of size q^r
            if not ( Size( code ) in sizelist ) then
                almostaffine := false;
            else
                # now check for all possible puncturings
                i := 1;
                while almostaffine and i < n do
                    coordlist := List( Tuples( [ 1 .. n ], i ),
                                       x -> Difference( [ 1 .. n ], x ) );
                    j := 1;
                    while almostaffine
                      and j < Length( coordlist ) do
                        subcode := PuncturedCode( code, coordlist[ j ] );
                        # one fault is enough !
                        if not Size( subcode ) in sizelist then
                            almostaffine := false;
                        fi;
                        j := j + 1;
                    od;
                    i := i + 1;
                od;
            fi;
        fi;
    return almostaffine;
end);

InstallTrueMethod(IsAlmostAffineCode, IsAffineCode);


########################################################################
##
#F  IsGriesmerCode( <code> )
##
##  Return true if <code> is a Griesmer code, i.e. if
##  n = \sum_{i=0}^{k-1} d/(q^i), false otherwise.
##

InstallMethod(IsGriesmerCode, "method for unrestricted code",
    true, [IsCode], 0,
function( code )

    if IsLinearCode( code ) then
        return IsGriesmerCode( code );
    else
        Error( "IsGriesmerCode: <code> must be a linear code" );
    fi;

end);

InstallMethod(IsGriesmerCode, "method for linear code", true,
    [IsLinearCode], 0,
function( code )

    local n, k, d, q;

    n := WordLength( code );
    k := Dimension( code );
    d := MinimumDistance( code );
    q := Size( LeftActingDomain( code ) );
    return n = Sum( [ 0 .. k-1 ], x -> IntCeiling( d / q^x ) );
end);


########################################################################
##
#F  CodeDensity( <code> )
##
##  Return the density of <code>, i.e. M*V_q(n,r)/(q^n).
##

InstallMethod(CodeDensity, "method for unrestricted code", true,
    [IsCode], 0,
function ( code )

    local n, q, cr;

    cr := CoveringRadius( code );

    # Linear codes with redundancy >= 20 can return an interval
    # for the Covering Radius, so this test is necessary.
    if not IsInt( cr ) then
        Error( "CodeDensity: the covering radius of <code> is unknown" );
    fi;

    n := WordLength( code  );
    q := Size( LeftActingDomain( code ) );
    return Size( code )
           * SphereContent( n, CoveringRadius( code ), q )
           / q^n;

end);


########################################################################
##
#F  DecreaseMinimumDistanceUpperBound( <C>, <s>, <iteration> )
##
##  Tries to compute the minimum distance of C.
##  The algorithm is Leon's, see for more
##  information his article.

InstallMethod(DecreaseMinimumDistanceUpperBound,
    "method for unrestricted code, s, iteration",
    true, [IsCode, IsInt, IsInt], 0,
function(C, s, iteration)
    if IsLinearCode(C) then
        return DecreaseMinimumDistanceUpperBound(C, s, iteration);
    else
        Error("DecreaseMinimumDIstanceUB: <C> must be a linear code");
    fi;
end);

InstallMethod(DecreaseMinimumDistanceUpperBound,
    "method for linear code, s, iteration",
    true, [IsLinearCode, IsInt, IsInt], 0,
function ( C, s, iteration )
    # <C> is the code to compute the min. dist. for
    # <s> is the parameter to help find words with
    # small weight
    # <iteration> is number of iterations to perform

    local
          trials,    # the number of trials so far
          n, k,      # some parameters of the code C
          genmat,    # the generator matrix of C
          d,         # the minimum distance so far
          cont,      # have we computed enough trials ?
          N,         # the set { 1, ..., n }
          S,         # a random s-subset of N
          h, i, j,   # some counters
          sigma,     # permutation, mapping of N, mapping S on {1,...,s}
          tau,       # permutation, for eliminating first s columns of Emat
          Emat,      # genmat ^ sigma
          Dmat,      # (k-e,n-s) right lower submatrix of Emat
          e,         # rank of k * s submatrix of Emat
          nullrow,   # row of zeroes, for appending to Emat
          res,       # result from PutSemiStandardForm
          w,         # runs through all words spanned by Dmat
          t,         # weight of the current codeword
          v,         # word with current lowest weight
          Bmat,      # (e, n-s) right upper submatrix of Emat
          Bsupp,     # supports of differences of rows of Bmat
          Bweight,   # weights of rows of Bmat
          sup1, sup2,# temporary variables holding supports
          Znonempty, # true if e < s, false otherwise (indicates whether
                     # Zmat is a real matrix or not
          Zmat,      # ( s-e, e ) middle upper submatrix of Emat
          Zweight,   # weights of differences of rows of Zmat
          wsupp,     # weight of the current codeword w of D
          ij1,       # 0: i<>1 and j<>1 1: i=1 xor j=1 2: i=1 and j=1
          nullw,     # nullword of length s, begin of w
          PutSemiStandardForm,   # local function for partial Gaussian
                                 # elimination
          sups,      # the supports of the elements of B
          found;     # becomes true if a better minimum distance is
                     # found


    # check the arguments
    if s < 1 or s > Dimension( C ) then
        Error( "DecreaseMinimumDistanceUB: <s> must lie between 1 and the ",
               "dimension of <C>." );
    fi;
    if iteration < 1 then
        Error( "DecreaseMinimumDistanceLB: <iteration> must be at least zero." );
    fi;

    # the function PutSemiStandardForm is local
    ###########################################################################
    ##
    #F  PutSemiStandardForm( <mat>, <s> )
    ##
    ##  Put first s coordinates of mat in standard form.
    ##  Return e as the rank of the s x s left upper
    ##  matrix. The coordinates s+1, ..., n are not permuted.
    ##
    ##  This function is based on PutStandardForm.
    ##
    ##  (maybe it's better to make this function local
    ##   in DecreaseMinimumDistanceUpperBound)
    ##

    PutSemiStandardForm := function ( mat, s )

        local k, n, zero,
              stop, found,
              g, h, i, j,
              row, e, tau;

        k := Length(mat);     # number of rows: dimension
        n := Length(mat[1]);  # number of columns: wordlength

        zero := Zero(GF(2));
        stop := false;
        e := 0;
        tau := ( );

        for j in [ 1..s ] do
            if not stop then
                if mat[j][j] = zero then
                    # start looking for another pivot
                    i := j;
                    found := false;
                    while ( i <= s ) and not found do
                        h := j;
                        while ( h <= k ) and not found do
                            if mat[h][i] <> zero then
                                found := true;
                            else
                                h := h + 1;
                            fi;  # if mat[h][i] <> zero
                        od;  # while ( h <= k ) and not found
                        if not found then
                            i := i + 1;
                        fi;  # if not found
                    od;  # while ( i <= s ) and not found
                    if not found then
                        stop := true;
                    else
                        # pivot found at position (h,i)
                        # increase subrank
                        e := e + 1;
                        # permutate the matrix so that (h,i) <-> (j,j)
                        if h <> j then
                            row := mat[h];
                            mat[h] := mat[j];
                            mat[j] := row;
                        fi;  # if h <> j
                        if i <> j then
                            tau := tau * (i,j);
                            for g in [ 1 .. k ] do
                                mat[g] := Permuted( mat[g], (i,j) );
                            od;  # for g in [ 1..k ]
                        fi;  # if i <> j
                    fi;  # if not found
                else
                    e := e + 1;
                fi;  # if mat[j][j] = zero

                if not stop then
                    for i in [ 1..k ] do
                        if i <> j then
                            if mat[i][j] <> zero then
                                mat[i] := mat[i] + mat[j];
                            fi;  # if mat[i][j] <> zero
                        fi;  # if i <> j
                    od;  # for i in [ 1..k ]
                fi;  # if not stop
            fi;  # if not stop
        od;  # for j in [ 1..s ] do

        return [ e, tau ];

    end;

    n := WordLength( C );
    k := Dimension( C );
    genmat := GeneratorMat( C );

    # step 1. initialisation
    trials := 0;
    d := n;
    cont := true;
    found := false;

    while cont do

        # step 2.
        trials := trials + 1;
        InfoMinimumDistance( "Trial nr. ", trials, "   distance: ", d, "\n" );

        # step 3.  choose a random s-elements subset of N
        N := [ 1 .. WordLength( C ) ];
        S := [ ];
        for i in [ 1 .. s ] do
            S[ i ] := Random( N );  # pick a random element from N
            RemoveSet( N, S[ i ] ); # and remove it from N
        od;
        Sort( S );                  # not really necessary, but
                                    # it doesn't hurt either

        # step 4.  choose a permutation sigma of N,
        #          mapping S onto { 1, ..., s }
        Append( S, N );
        sigma := PermList( S ) ^ (-1);

        # step 5.  Emat := genmat^sigma (genmat is the generator matrix C)
        Emat := [ ];
        for i in [ 1 .. k ] do
            Emat[ i ] := Permuted( genmat[ i ], sigma );
        od;

        # step 6.  apply elementary row operations to E
        #          and perhaps a permutation tau so that
        #          we get the following form:
        #          [ I | Z | B ]
        #          [ 0 | 0 | D ]
        #          where I is the e * e identity matrix,
        #          e is the rank of the k * s left submatrix of E
        #          the permutation tau leaves { s+1, ..., n } fixed

        InfoMinimumDistance( "Gaussian elimination of E ... \n");

        res := PutSemiStandardForm( Emat, s );
        e := res[ 1 ];    # rank (in most cases equal to s)
        tau := res[ 2 ];  # permutation of { 1, ..., s }

        # append null-row to Emat (at front)
        nullrow := NullMat( 1, n, GF(2) );
        Append( nullrow, Emat );
        Emat := nullrow;

        InfoMinimumDistance( "Gaussian elimination of E ... done. \n" );

        # retrieve Dmat from Emat
        Dmat := [ ];
        for i in [ e + 1 .. k ] do
            Dmat[ i - e ] := List( [ s+1 .. n ], x -> Emat[ i+1 ][ x ] );
        od;

        # retrieve Bmat from Emat
        # we only need the support of the differences of the
        # rows of B
        Bmat := [ ];
        Bmat[ 1 ] := NullVector( n-s, GF(2) );
        for j in [ 2 .. e+1 ] do
            Bmat[ j ] := List( [ s+1 .. n ], x -> Emat[ j ][ x ] );
        od;

        InfoMinimumDistance( "Computing supports of B  ... \n" );
        sups := List( [ 1 .. e+1 ], x -> Support( Codeword( Bmat[ x ] ) ) );

        # compute supports of differences of rows of Bmat
        # and the weights of these supports
        # do this once every trial, instead of for each codeword,
        # to save time
        Bsupp := List( [ 1 .. e ], x -> [ ] );
        Bweight := List( [ 1 .. e ], x -> [ ] );
        for i in [ 1 .. e ] do
            sup1 := sups[ i ];
#            Bsupp[ i ] := List( [ i + 1 - KroneckerDelta( i, 1 ) .. e+1 ],
#                                x -> Difference( Union( sup1, sups[ x ] ),
#                                        Intersection( sup1, sups[ x ] ) ) );

            for j in [ i + 1 - KroneckerDelta( i, 1 ) .. e+1 ] do
                sup2 := sups[ j ];
                Bsupp[ i ][ j ] := Difference( Union( sup1, sup2 ),
                                               Intersection( sup1, sup2 ) );
                Bweight[ i ][ j ] := Length( Bsupp[ i ][ j ] );
            od;
        od;
        InfoMinimumDistance( "Computing supports of B  ... done. \n" );

        # retrieve Zmat from Emat
        # in this case we only need the weights of the supports of
        # the differences of the rows of Zmat
        # because we don't have to add them to codewords

        if e < s then

            InfoMinimumDistance( "Computing weights of Z   ... \n" );
            Znonempty := true;
            Zmat := List( [ 1 .. e ], x -> [ ] );
            Zmat[ 1 ] := NullVector( s-e, GF(2) );
            for i in [ 2 .. e+1 ] do
                Zmat[ i ] := List( [ e+1 .. s ], x -> Emat[ i ][ x ] );
            od;
            Zweight := List( [ 1 ..e ], x -> [ ] );
            for i in [ 1 .. e ] do
                for j in [ i + 1 - KroneckerDelta( i, 1 ) .. e+1 ] do
                    Zweight[ i ][ j ] :=
                      WeightCodeword( Codeword( Zmat[ i ] + Zmat[ j ] ) );
                od;
            od;
            InfoMinimumDistance( "Computing weights of Z   ... done. \n" );

        else
            Znonempty := false;
        fi;

        # step 7.  for each w in (n-s, k-e) code spanned by D
        for w in AsSSortedList( GeneratorMatCode( Dmat, GF(2) ) ) do
            wsupp := Support( w );

            # step 8.
            for i in [ 1 .. e ] do

                # step 9.
                for j in [ i + 1 - KroneckerDelta( i, 1 ) .. e+1 ] do

                    ij1 := KroneckerDelta( i, 1 ) + KroneckerDelta( j, 1 );

                    # step 10.
                    if Znonempty then
                        t := Zweight[ i ][ j ];
                    else
                        t := 0;
                    fi;

                    # step 11.
                    if t <= ij1 then

                        # step 12.
                        t := t
                             + Bweight[ i ][ j ]
                             + Length( wsupp )
                             - 2 * Length( Intersection(
                                     Bsupp[ i ][ j ], wsupp ) );
                        t := t + ( 2 - ij1 );
                        if 0 < t and t < d then

                            found := true;

                            # step 13.
                            d := t;
                            C!.upperBoundMinimumDistance :=
                              Minimum( UpperBoundMinimumDistance( C ), t );
                            # step 14.
                            nullw := NullVector( s, GF(2) );
                            Append( nullw, VectorCodeword( w ) );
                            v := Emat[ i ] + Emat[ j ] + nullw;
                            v := Permuted( v, tau ^ (-1) );
                            v := Permuted( v, sigma ^ (-1) );
                        fi;
                    fi;
                od;
            od;
        od;
        if iteration <= trials then
            cont := false;
        fi;
    od;
    if found then
        return rec( mindist := d, word := v );
    fi;
end);