1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
#############################################################################
##
#A codenorm.gi GUAVA library Reinald Baart
#A Jasper Cramwinckel
#A Erik Roijackers
#A Eric Minkes
##
## This file contains functions for calculating code norms
##
########################################################################
##
#F CoordinateSubCode( <code>, <i>, <element> )
##
## Return the subcode of <code>, that has elements
## with an <element> in coordinate position <i>.
## If no elements have an <element> in position <i>, return false.
##
InstallMethod(CoordinateSubCode, "method for unrestricted code, position, FFE",
true, [IsCode, IsInt, IsFFE], 0,
function ( code, i, element )
local els;
if i < 1 or i > WordLength( code ) then
Error( "CoordinateSubCode: <i> must lie in the range [ 1 .. n ]" );
fi;
if not ( element in AsSSortedList( LeftActingDomain( code ) ) ) then
Error( "CoordinateSubCode: <element> must be an element of ",
LeftActingDomain( code ) );
fi;
els := AsSSortedList( code );
els := VectorCodeword( els );
els := Filtered( els, x -> x[ i ] = element );
if Length( els ) = 0 then
return false;
else
return ElementsCode( els, "subcoordinate code",
LeftActingDomain( code ) );
fi;
end);
########################################################################
##
#F CoordinateNorm( <code>, <i> )
##
## Returns the norm of code with respect to coordinate i.
##
InstallMethod(CoordinateNorm, "attribute method for unrestricted code",
true, [IsCode], 0,
function( code )
# This is a mutable attribute. Initial value is all -1, updated as
# other method of CoordinateNorm is called.
return List( [ 1 .. WordLength( code ) ], x -> -1 );
end);
InstallOtherMethod(CoordinateNorm, "method for unrestricted code, coordinate",
true, [IsCode, IsInt], 0,
function ( code, i )
local max, els, subcode, f, j, w, n, c;
if i < 1 or i > WordLength( code ) then
Error( "CoordinateNorm: <i> must lie in the range [ 1 .. n ]" );
fi;
if CoordinateNorm( code )[ i ] = -1 then
max := -1;
els := AsSSortedList( LeftActingDomain( code ) );
subcode := [ 1 .. Length( els ) ];
f := [ 1 .. Length( els ) ];
for j in [ 1 .. Length( els ) ] do
subcode[ j ] := CoordinateSubCode( code, j, els[ j ] );
od;
for w in Codeword( CosetLeadersMatFFE( CheckMat( code ),
LeftActingDomain( code ) ) ) do
for j in [ 1 .. Length( els ) ] do
if subcode[ j ] = false then
f[ j ] := WordLength( code );
else
f[ j ] := MinimumDistance( subcode[ j ], w );
fi;
od;
n := Sum( f );
if n > max then
max := n;
fi;
od;
c := CoordinateNorm( code );
c[ i ] := max;
fi;
return CoordinateNorm(code)[i];
end);
########################################################################
##
#F CodeNorm( <code> )
##
## Return the norm of code.
## The norm of code is the minimum of the coordinate norms
## of code with respect to i = 1, ..., n.
##
InstallMethod(CodeNorm, "method for unrestricted code", true,
[IsCode], 0,
function( code )
return Minimum( List( [ 1 .. WordLength( code ) ],
x -> CoordinateNorm( code, x ) ) );
end);
########################################################################
##
#F IsCoordinateAcceptable( <code>, <i> )
##
## Test whether coordinate i of <code> is acceptable.
## (a coordinate is acceptable if the norm of code with respect to
## that coordinate is less than or equal to one plus two times the
## covering radius of code).
InstallMethod(IsCoordinateAcceptable, "method for unrestricted code, position",
true, [IsCode, IsInt], 0,
function ( code, i )
local cr;
cr := CoveringRadius( code );
if IsInt( cr ) then
if CoordinateNorm( code, i ) <= 2 * cr + 1 then
return true;
else
return false;
fi;
else
Error( "IsCoordinateAcceptable: Sorry, the covering radius is ",
"not known and not easy to compute." );
fi;
end);
########################################################################
##
#F IsNormalCode( <code> )
##
## Return true if code is a normal code, false otherwise.
## A code is called normal if its norm is smaller than or
## equal to two times its covering radius + one.
##
InstallMethod(IsNormalCode, "method for unrestricted code", true,
[IsCode], 0,
function( code )
local n, k, d, r, i, isnormal;
if LeftActingDomain( code ) <> GF(2) then
Error( "IsNormalCode: <code> must be a binary code" );
elif IsLinearCode( code ) then
return IsNormalCode( code );
else
n := WordLength( code );
k := Dimension( code );
d := MinimumDistance( code );
r := CoveringRadius( code );
if not IsInt( r ) then
r := -1;
fi;
if d = 2 * r
or ( d = 2 * r - 1 and EuclideanRemainder( n, r ) <> 0 )
or ( r = 1 and n <= 9 )
or ( r = 1 and Size( code ) <= 95 )
then
return true;
else
if r >= 0 then
i := 1;
isnormal := false;
while i <= n and not isnormal do
isnormal := IsCoordinateAcceptable( code, i );
i := i + 1;
od;
return isnormal;
else
Error( "IsNormalCode: sorry, the covering radius for ",
"this code has not yet been computed." );
fi;
fi;
fi;
end);
InstallMethod(IsNormalCode, "method for linear code", true,
[IsLinearCode], 0,
function( code )
local n, k, d, r, i, isnormal;
if LeftActingDomain( code ) <> GF(2) then
Error("IsNormalCode: <code> must be a binary code");
fi;
n := WordLength( code );
k := Dimension( code );
d := MinimumDistance( code );
r := CoveringRadius( code );
if not IsInt( r ) then
r := -1;
fi;
if d = 2 * r
or ( d = 2 * r - 1 and EuclideanRemainder( n, r ) <> 0 )
or ( r = 1 and n <= 9 )
or ( r = 1 and Size( code ) <= 95 )
# the following conditions are only valid for linear codes
or ( n <= 15 )
or ( k <= 5 )
or ( n-k <= 7 )
or ( d <= 4 )
or ( r >= 0 and r <= 3 )
or ( IsPerfectCode( code ) )
then
return true;
else
if r >= 0 then
# a code is normal if one of the coordinates is acceptable
i := 1;
isnormal := false;
while i <= n and not isnormal do
isnormal := IsCoordinateAcceptable( code, i );
i := i + 1;
od;
return isnormal;
else
Error( "IsNormalCode: sorry, the covering radius for ",
"this code has not yet been computed." );
fi;
fi;
end);
########################################################################
##
#F GeneralizedCodeNorm( <code>, <code1>, <code2>, ... , <codek> )
##
## Compute the k-norm of code with respect to the k subcode
## code1, code2, ... , codek.
##
InstallGlobalFunction(GeneralizedCodeNorm,
function ( arg )
local i, mindist, min, max, globalmax, x, union,word;
if Length( arg ) < 2 then
Error( "GeneralizedCodeNorm: no subcodes are specified" );
fi;
if not IsCode( arg[ 1 ] ) then
Error( "GeneralizedCodeNorm: <code> must be a code" );
fi;
union := arg[ 2 ];
for i in [ 1 .. Length( arg ) - 1 ] do
if WordLength( arg[ i + 1 ] ) <> WordLength( arg[ 1 ] ) then
Error( "GeneralizedCodeNorm: length of code ", i,
" is not equal to the length of <code>" );
fi;
if not ( arg[ i + 1 ] in arg[ 1 ] ) then
Error( "GeneralizedCodeNorm: code ", i,
" is not a subcode of code." );
fi;
if i > 1 then
union := AddedElementsCode( union,
AsSSortedList( arg[ i + 1 ] ) );
fi;
od;
if arg[ 1 ] <> union then
Error( "GeneralizedCodeNorm: <code> is not the union of the ",
"subcodes" );
fi;
globalmax := -1;
for word in AsSSortedList( arg[ 1 ] ) do
mindist := List( [ 2 .. Length( arg ) ],
x -> MinimumDistance( arg[ x ], word ) );
min := Minimum( mindist );
max := Maximum( mindist );
if min + max > globalmax then
globalmax := min + max;
fi;
od;
return globalmax;
end);
|