1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
###################################################
## SubQuasiIsomorph
## QuotientQuasiIsomorph
## QuasiIsomorph
###################################################
#############################################################################
#0
#F SubQuasiIsomorph
## Input: A finite cat-1-group C
## Output: A quasi-isomorphic sub cat-1-group of C
##
InstallGlobalFunction(SubQuasiIsomorph,function(C)
local
s,t,G,H,Kers,Kert,Kersnt,tKers,OrdPiOne,OrdPiTwo,OrdPi,
LS,Lx,x,sx,Ordsx,flag,
newGens,news,newt;
s:= C!.sourceMap;
t:= C!.targetMap;
G:=Source(s);
Kers:=Kernel(s);
Kert:=Kernel(t);
Kersnt:=Intersection(Kers,Kert);
tKers:=Image(t,Kers);
OrdPiOne:=Order(HomotopyGroup(C,1));
OrdPiTwo:=Order(HomotopyGroup(C,2));
OrdPi:=OrdPiOne*OrdPiTwo;
LS:=ConjugacyClassesSubgroups(LatticeSubgroups(G));
if not IsMutable(LS) then
LS:= ShallowCopy(LS);
fi;
Sort(LS,function(x,y) return Size(x[1])<Size(y[1]); end);
flag:=0;
for Lx in LS do
x:=Lx[1];
if Order(x)>= OrdPi then
if IsSubgroup(x,Kersnt) then
for x in Lx do
if IsSubgroup(x,Image(s,x)) then
if IsSubgroup(x,Image(t,x)) then
sx:=Image(s,x);
Ordsx:=Order(sx);
if Ordsx = Order(Image(t,Intersection(Kers,x)))*OrdPiOne then
if Ordsx = Order(Intersection(sx,tKers))*OrdPiOne then
H:=x;
flag:=1;
break;
fi;
fi;
fi;
fi;
od;
fi;
fi;
if flag =1 then
break;
fi;
od;
if H=G then
return C;
fi;
newGens:=GeneratorsOfGroup(H);
news:=GroupHomomorphismByImagesNC(H,H,newGens,List(newGens,x->Image(s,x)));
newt:=GroupHomomorphismByImagesNC(H,H,newGens,List(newGens,x->Image(t,x)));
return Objectify(HapCatOneGroup,rec(
sourceMap:=news,
targetMap:=newt));
end);
##
#################### end of SubQuasiIsomorph ################################
#############################################################################
#0
#F QuotientQuasiIsomorph
## Input: A finite cat-1-group C
## Output: A quasi-isomorphic quotient cat-1-group of C
##
InstallGlobalFunction(QuotientQuasiIsomorph,function (C)
local
s,t,G,H,Kers,Kert,Kersnt,Ims,OrdIms,Imt,OrdPiOne,OrdPiTwo,Ord,
LN,x,n,i,
OrderPiOneGx,OrderPiTwoGx,
epi,newG,newGens,news,newt;
s:=C!.sourceMap;
t:=C!.targetMap;
G:=Source(s);
Kers:=Kernel(s);
Ims:=Image(s);
OrdIms:=Order(Ims);
Imt:=Image(t);
Kert:=Kernel(t);
Kersnt:=Intersection(Kers,Kert);
OrdPiOne:= Order(HomotopyGroup(C,1));
OrdPiTwo:= Order(HomotopyGroup(C,2));
Ord:=Order(G)/(OrdPiOne*OrdPiTwo);
######################################################################
#1
OrderPiOneGx:=function(x)
local tsx;
tsx:=Image(t,PreImages(s,Intersection(Ims,x)));
return (OrdIms*Order(Intersection(tsx,x)))/
(Order(Intersection(Ims,x))*Order(tsx));
end;
##
######################################################################
#1
OrderPiTwoGx:=function(x)
local f;
f:=NaturalHomomorphismByNormalSubgroup(G,x);
return Order(Intersection(Image(f,PreImages(s,Intersection(Ims,x))),
Image(f,PreImages(t,Intersection(Imt,x)))));
end;
##
######################################################################
LN:=NormalSubgroups(G);
if not IsMutable(LN) then
LN:= ShallowCopy(LN);
fi;
Sort(LN,function(x,y) return Size(x)>Size(y); end);
n:=Length(LN);
for i in [1..n] do
x:=LN[i];
if Order(x) <= Ord then
if IsSubgroup(x,Image(s,x)) then
if IsSubgroup(x,Image(t,x)) then
if IsSubgroup(x,CommutatorSubgroup(PreImages(s,Intersection(Ims,x)),
PreImages(t,Intersection(Imt,x)))) then
if Order(Kersnt) = Order(Intersection(Kersnt,x))*OrdPiTwo then
if OrderPiTwoGx(x) = OrdPiTwo then
if OrderPiOneGx(x) = OrdPiOne then
H:=x;
break;
fi;
fi;
fi;
fi;
fi;
fi;
fi;
od;
if Order(H)=1 then
return C;
fi;
epi:=NaturalHomomorphismByNormalSubgroup(G,H);
newG :=Image(epi);
newGens:=GeneratorsOfGroup(newG);
news:=GroupHomomorphismByImagesNC(newG,newG,newGens,
List(newGens,x->Image(epi,Image(s,PreImagesRepresentative(epi,x)))));
newt:=GroupHomomorphismByImagesNC(newG,newG,newGens,
List(newGens,x->Image(epi,Image(t,PreImagesRepresentative(epi,x)))));
return Objectify(HapCatOneGroup,rec(
sourceMap:=news,
targetMap:=newt));
end);
##
#################### end of QuotientQuasiIsomorph ###########################
#############################################################################
#0
#F QuasiIsomorph
## Input: A finite cat-1-group or a finite crossed module X
## Output: A quasi-isomorphism of X
##
InstallGlobalFunction(QuasiIsomorph,function (X)
local QuasiIsomorphOfCat, QuasiIsomorphOfCross;
######################################################################
#1
#F QuasiIsomorphOfCat
## Input: A finite cat-1-group C
## Output: A quasi-isomorphism of C
##
QuasiIsomorphOfCat:=function(C)
local D;
D:=QuotientQuasiIsomorph(C);
D:=SubQuasiIsomorph(D);
while Size(D) < Size(C) do
C:=D;
D:=QuotientQuasiIsomorph(C);
if Size(D) < Size(C) then
D:=SubQuasiIsomorph(D);
fi;
od;
return D;
end;
##
############### end of QuasiIsomorphOfCat ############################
######################################################################
#1
#F QuasiIsomorphOfCross
## Input: A finite crossed module XC
## Output: A quasi-isomorphism of XC
##
QuasiIsomorphOfCross:=function(XC)
local C,D;
C:=CatOneGroupByCrossedModule(XC);
D:=QuasiIsomorphOfCat(C);
return CrossedModuleByCatOneGroup(D);
end;
##
############### end of QuasiIsomorphOfCross ##########################
if IsHapCatOneGroup(X) then
return QuasiIsomorphOfCat(X);
fi;
if IsHapCrossedModule(X) then
return QuasiIsomorphOfCross(X);
fi;
end);
##
#################### end of QuasiIsomorph ###################################
|