1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953
|
% generated by GAPDoc2LaTeX from XML source (Frank Luebeck)
\documentclass[a4paper,11pt]{report}
\usepackage[top=37mm,bottom=37mm,left=27mm,right=27mm]{geometry}
\sloppy
\pagestyle{myheadings}
\usepackage{amssymb}
\usepackage[latin1]{inputenc}
\usepackage{makeidx}
\makeindex
\usepackage{color}
\definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083}
\definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179}
\definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894}
\definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894}
\definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000}
\definecolor{Black}{rgb}{0.0,0.0,0.0}
\definecolor{linkColor}{rgb}{0.0,0.0,0.554}
\definecolor{citeColor}{rgb}{0.0,0.0,0.554}
\definecolor{fileColor}{rgb}{0.0,0.0,0.554}
\definecolor{urlColor}{rgb}{0.0,0.0,0.554}
\definecolor{promptColor}{rgb}{0.0,0.0,0.589}
\definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0}
\definecolor{gapinputColor}{rgb}{0.589,0.0,0.0}
\definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0}
%% for a long time these were red and blue by default,
%% now black, but keep variables to overwrite
\definecolor{FuncColor}{rgb}{0.0,0.0,0.0}
%% strange name because of pdflatex bug:
\definecolor{Chapter }{rgb}{0.0,0.0,0.0}
\definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064}
\usepackage{fancyvrb}
\usepackage{mathptmx,helvet}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage[
pdftex=true,
bookmarks=true,
a4paper=true,
pdftitle={Written with GAPDoc},
pdfcreator={LaTeX with hyperref package / GAPDoc},
colorlinks=true,
backref=page,
breaklinks=true,
linkcolor=linkColor,
citecolor=citeColor,
filecolor=fileColor,
urlcolor=urlColor,
pdfpagemode={UseNone},
]{hyperref}
\newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont}
% write page numbers to a .pnr log file for online help
\newwrite\pagenrlog
\immediate\openout\pagenrlog =\jobname.pnr
\immediate\write\pagenrlog{PAGENRS := [}
\newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}}
%% were never documented, give conflicts with some additional packages
\newcommand{\GAP}{\textsf{GAP}}
%% nicer description environments, allows long labels
\usepackage{enumitem}
\setdescription{style=nextline}
%% depth of toc
\setcounter{tocdepth}{1}
%% command for ColorPrompt style examples
\newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}}
\newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}}
\newcommand{\gapinput}[1]{\color{gapinputColor}{#1}}
\begin{document}
\logpage{[ 0, 0, 0 ]}
\begin{titlepage}
\mbox{}\vfill
\begin{center}{\maintitlesize \textbf{A HAP tutorial\mbox{}}}\\
\vfill
\hypersetup{pdftitle=A HAP tutorial}
\markright{\scriptsize \mbox{}\hfill A HAP tutorial \hfill\mbox{}}
{\Huge \textbf{(See also an \href{../www/SideLinks/About/aboutContents.html} {older tutorial} or \href{comp.pdf} {mini\texttt{\symbol{45}}course notes} or related \href{https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980} {book}) \href{../www/index.html} {The \textsc{HAP} home page is here}\mbox{}}}\\
\vfill
\mbox{}\\[2cm]
{\Large \textbf{Graham Ellis\mbox{}}}\\
\hypersetup{pdfauthor=Graham Ellis}
\end{center}\vfill
\mbox{}\\
\end{titlepage}
\newpage\setcounter{page}{2}
\newpage
\def\contentsname{Contents\logpage{[ 0, 0, 1 ]}}
\tableofcontents
\newpage
\chapter{\textcolor{Chapter }{Simplicial complexes \& CW complexes}}\logpage{[ 1, 0, 0 ]}
\hyperdef{L}{X7E5EA9587D4BCFB4}{}
{
\section{\textcolor{Chapter }{The Klein bottle as a simplicial complex}}\logpage{[ 1, 1, 0 ]}
\hyperdef{L}{X85691C6980034524}{}
{
The following example constructs the Klein bottle as a simplicial complex $K$ on $9$ vertices, and then constructs the cellular chain complex $C_\ast=C_\ast(K)$ from which the integral homology groups $H_1(K,\mathbb Z)=\mathbb Z_2\oplus \mathbb Z$, $H_2(K,\mathbb Z)=0$ are computed. The chain complex $D_\ast=C_\ast \otimes_{\mathbb Z} \mathbb Z_2$ is also constructed and used to compute the mod\texttt{\symbol{45}}$2$ homology vector spaces $H_1(K,\mathbb Z_2)=\mathbb Z_2\oplus \mathbb Z_2$, $H_2(K,\mathbb Z)=\mathbb Z_2$. Finally, a presentation $\pi_1(K) = \langle x,y : yxy^{-1}x\rangle$ is computed for the fundamental group of $K$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@2simplices:=|
!gapprompt@>| !gapinput@[[1,2,5], [2,5,8], [2,3,8], [3,8,9], [1,3,9], [1,4,9],|
!gapprompt@>| !gapinput@ [4,5,8], [4,6,8], [6,8,9], [6,7,9], [4,7,9], [4,5,7],|
!gapprompt@>| !gapinput@ [1,4,6], [1,2,6], [2,6,7], [2,3,7], [3,5,7], [1,3,5]];;|
!gapprompt@gap>| !gapinput@K:=SimplicialComplex(2simplices);|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@C:=ChainComplex(K);|
Chain complex of length 2 in characteristic 0 .
!gapprompt@gap>| !gapinput@Homology(C,1);|
[ 2, 0 ]
!gapprompt@gap>| !gapinput@Homology(C,2);|
[ ]
!gapprompt@gap>| !gapinput@D:=TensorWithIntegersModP(C,2);|
Chain complex of length 2 in characteristic 2 .
!gapprompt@gap>| !gapinput@Homology(D,1);|
2
!gapprompt@gap>| !gapinput@Homology(D,2);|
1
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(K);|
<fp group of size infinity on the generators [ f1, f2 ]>
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(G);|
[ f2*f1*f2^-1*f1 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Other simplicial surfaces}}\logpage{[ 1, 2, 0 ]}
\hyperdef{L}{X7B8F88487B1B766C}{}
{
The following example constructs the real projective plane $P$, the Klein bottle $K$ and the torus $T$ as simplicial complexes, using the surface genus $g$ as input in the oriented case and $-g$ as input in the unoriented cases. It then confirms that the connected sums $M=K\#P$ and $N=T\#P$ have the same integral homology.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=ClosedSurface(-1);|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@K:=ClosedSurface(-2);|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@T:=ClosedSurface(1);|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@M:=ConnectedSum(K,P);|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@N:=ConnectedSum(T,P);|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@Homology(M,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(N,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(M,1);|
[ 2, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(N,1);|
[ 2, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(M,2);|
[ ]
!gapprompt@gap>| !gapinput@Homology(N,2);|
[ ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{The Quillen complex}}\logpage{[ 1, 3, 0 ]}
\hyperdef{L}{X80A72C347D99A58E}{}
{
Given a group $G $ one can consider the partially ordered set ${\cal A}_p(G)$ of all non\texttt{\symbol{45}}trivial elementary abelian $p$\texttt{\symbol{45}}subgroups of $G$, the partial order being set inclusion. The order complex $\Delta{\cal A}_p(G)$ is a simplicial complex which is called the \emph{Quillen complex }.
The following example constructs the Quillen complex $\Delta{\cal A}_2(S_7)$ for the symmetric group of degree $7$ and $p=2$. This simplicial complex involves $11291$ simplices, of which $4410$ are $2$\texttt{\symbol{45}}simplices..
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=QuillenComplex(SymmetricGroup(7),2);A
Simplicial complex of dimension 2.
@gapprompt|gap>A @gapinput|Size(K);A
11291
@gapprompt|gap>A @gapinput|K!.nrSimplices(2);A
4410
\end{Verbatim}
}
\section{\textcolor{Chapter }{The Quillen complex as a reduced CW\texttt{\symbol{45}}complex}}\logpage{[ 1, 4, 0 ]}
\hyperdef{L}{X7C4A2B8B79950232}{}
{
Any simplicial complex $K$ can be regarded as a regular CW complex. Different datatypes are used in \textsc{HAP} for these two notions. The following continuation of the above Quillen complex
example constructs a regular CW complex $Y$ isomorphic to (i.e. with the same face lattice as) $K=\Delta{\cal A}_2(S_7)$. An advantage to working in the category of CW complexes is that it may be
possible to find a CW complex $X$ homotopy equivalent to $Y$ but with fewer cells than $Y$. The cellular chain complex $C_\ast(X)$ of such a CW complex $X$ is computed by the following commands. From the number of free generators of $C_\ast(X)$, which correspond to the cells of $X$, we see that there is a single $0$\texttt{\symbol{45}}cell and $160$ $2$\texttt{\symbol{45}}cells. Thus the Quillen complex
\$\$\texttt{\symbol{92}}Delta\texttt{\symbol{123}}\texttt{\symbol{92}}cal
A\texttt{\symbol{125}}{\textunderscore}2(S{\textunderscore}7)
\texttt{\symbol{92}}simeq
\texttt{\symbol{92}}bigvee{\textunderscore}\texttt{\symbol{123}}1\texttt{\symbol{92}}le
i\texttt{\symbol{92}}le 160\texttt{\symbol{125}} S\texttt{\symbol{94}}2\$\$
has the homotopy type of a wedge of $160$ $2$\texttt{\symbol{45}}spheres. This homotopy equivalence is given in \cite[(15.1)]{ksontini} where it was obtained by purely theoretical methods.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|Y:=RegularCWComplex(K);A
Regular CW-complex of dimension 2
@gapprompt|gap>A @gapinput|C:=ChainComplex(Y);A
Chain complex of length 2 in characteristic 0 .
@gapprompt|gap>A @gapinput|C!.dimension(0);A
1
@gapprompt|gap>A @gapinput|C!.dimension(1);A
0
@gapprompt|gap>A @gapinput|C!.dimension(2);A
160
\end{Verbatim}
}
\section{\textcolor{Chapter }{Simple homotopy equivalences}}\logpage{[ 1, 5, 0 ]}
\hyperdef{L}{X782AAB84799E3C44}{}
{
For any regular CW complex $Y$ one can look for a sequence of simple homotopy collapses $Y\searrow Y_1 \searrow Y_2 \searrow \ldots \searrow Y_N=X$ with $X$ a smaller, and typically non\texttt{\symbol{45}}regular, CW complex. Such a
sequence of collapses can be recorded using what is now known as a \emph{discrete vector field} on $Y$. The sequence can, for example, be used to produce a chain homotopy
equivalence $f\colon C_\ast Y \rightarrow C_\ast X$ and its chain homotopy inverse $g\colon C_\ast X \rightarrow C_\ast Y$. The function \texttt{ChainComplex(Y)} returns the cellular chain complex $C_\ast(X)$, wheras the function \texttt{ChainComplexOfRegularCWComplex(Y)} returns the chain complex $C_\ast(Y)$.
For the above Quillen complex $Y=\Delta{\cal A}_2(S_7)$ the following commands produce the chain homotopy equivalence $f\colon C_\ast Y \rightarrow C_\ast X$ and $g\colon C_\ast X \rightarrow C_\ast Y$. The number of generators of $C_\ast Y$ equals the number of cells of $Y$ in each degree, and this number is listed for each degree.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=QuillenComplex(SymmetricGroup(7),2);;A
@gapprompt|gap>A @gapinput|Y:=RegularCWComplex(K);;A
@gapprompt|gap>A @gapinput|CY:=ChainComplexOfRegularCWComplex(Y);A
Chain complex of length 2 in characteristic 0 .
@gapprompt|gap>A @gapinput|CX:=ChainComplex(Y);A
Chain complex of length 2 in characteristic 0 .
@gapprompt|gap>A @gapinput|equiv:=ChainComplexEquivalenceOfRegularCWComplex(Y);;A
@gapprompt|gap>A @gapinput|f:=equiv[1];A
Chain Map between complexes of length 2 .
@gapprompt|gap>A @gapinput|g:=equiv[2];A
Chain Map between complexes of length 2 .
@gapprompt|gap>A @gapinput|CY!.dimension(0);A
1316
@gapprompt|gap>A @gapinput|CY!.dimension(1);A
5565
@gapprompt|gap>A @gapinput|CY!.dimension(2);A
4410
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cellular simplifications preserving homeomorphism type}}\logpage{[ 1, 6, 0 ]}
\hyperdef{L}{X80474C7885AC1578}{}
{
For some purposes one might need to simplify the cell structure on a regular
CW\texttt{\symbol{45}}complex $Y$ so as to obtained a homeomorphic CW\texttt{\symbol{45}}complex $W$ with fewer cells.
The following commands load a $4$\texttt{\symbol{45}}dimensional simplicial complex $Y$ representing the K3 complex surface. Its simplicial structure is taken from \cite{spreerkhuenel} and involves $1704$ cells of various dimensions. The commands then convert the cell structure into
that of a homeomorphic regular CW\texttt{\symbol{45}}complex $W$ involving $774$ cells.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=RegularCWComplex(SimplicialK3Surface());|
Regular CW-complex of dimension 4
!gapprompt@gap>| !gapinput@Size(Y);|
1704
!gapprompt@gap>| !gapinput@W:=SimplifiedComplex(Y);|
Regular CW-complex of dimension 4
!gapprompt@gap>| !gapinput@Size(W);|
774
\end{Verbatim}
}
\section{\textcolor{Chapter }{Constructing a CW\texttt{\symbol{45}}structure on a knot complement}}\logpage{[ 1, 7, 0 ]}
\hyperdef{L}{X7A15484C7E680AC9}{}
{
The following commands construct the complement $M=S^3\setminus K$ of the trefoil knot $K$. This complement is returned as a $3$\texttt{\symbol{45}}manifold $M$ with regular CW\texttt{\symbol{45}}structure involving four $3$\texttt{\symbol{45}}cells.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|arc:=ArcPresentation(PureCubicalKnot(3,1));B
[ [ 2, 5 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 4 ] ]
@gapprompt|gap>B @gapinput|S:=SphericalKnotComplement(arc);B
Regular CW-complex of dimension 3
@gapprompt|gap>B @gapinput|S!.nrCells(3);B
4
\end{Verbatim}
The following additional commands then show that $M$ is homotopy equivalent to a reduced CW\texttt{\symbol{45}}complex $Y$ of dimension $2$ involving one $0$\texttt{\symbol{45}}cell, two $1$\texttt{\symbol{45}}cells and one $2$\texttt{\symbol{45}}cell. The fundamental group of $Y$ is computed and used to calculate the Alexander polynomial of the trefoil
knot.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=ContractedComplex(S);|
Regular CW-complex of dimension 2
!gapprompt@gap>| !gapinput@CriticalCells(Y);|
[ [ 2, 1 ], [ 1, 9 ], [ 1, 11 ], [ 0, 22 ] ]
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(Y);;|
!gapprompt@gap>| !gapinput@AlexanderPolynomial(G);|
x_1^2-x_1+1
\end{Verbatim}
}
\section{\textcolor{Chapter }{Constructing a regular CW\texttt{\symbol{45}}complex by attaching cells}}\logpage{[ 1, 8, 0 ]}
\hyperdef{L}{X829793717FB6DDCE}{}
{
The following example creates the projective plane $Y$ as a regular CW\texttt{\symbol{45}}complex, and tests that it has the correct
integral homology $H_0(Y,\mathbb Z)=\mathbb Z$, $H_1(Y,\mathbb Z)=\mathbb Z_2$, $H_2(Y,\mathbb Z)=0$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@attch:=RegularCWComplex_AttachCellDestructive;; #Function for attaching cells|
!gapprompt@gap>| !gapinput@Y:=RegularCWDiscreteSpace(3); #Discrete CW-complex consisting of points {1,2,3}|
Regular CW-complex of dimension 0
!gapprompt@gap>| !gapinput@e1:=attch(Y,1,[1,2]);; #Attach 1-cell|
!gapprompt@gap>| !gapinput@e2:=attch(Y,1,[1,2]);; #Attach 1-cell|
!gapprompt@gap>| !gapinput@e3:=attch(Y,1,[1,3]);; #Attach 1-cell|
!gapprompt@gap>| !gapinput@e4:=attch(Y,1,[1,3]);; #Attach 1-cell|
!gapprompt@gap>| !gapinput@e5:=attch(Y,1,[2,3]);; #Attach 1-cell|
!gapprompt@gap>| !gapinput@e6:=attch(Y,1,[2,3]);; #Attach 1-cell|
!gapprompt@gap>| !gapinput@f1:=attch(Y,2,[e1,e3,e5]);; #Attach 2-cell|
!gapprompt@gap>| !gapinput@f2:=attch(Y,2,[e2,e4,e5]);; #Attach 2-cell|
!gapprompt@gap>| !gapinput@f3:=attch(Y,2,[e2,e3,e6]);; #Attach 2-cell|
!gapprompt@gap>| !gapinput@f4:=attch(Y,2,[e1,e4,e6]);; #Attach 2-cell|
!gapprompt@gap>| !gapinput@Homology(Y,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,1);|
[ 2 ]
!gapprompt@gap>| !gapinput@Homology(Y,2);|
[ ]`
\end{Verbatim}
The following example creates a 2\texttt{\symbol{45}}complex $K$ corresponding to the group presentation
$G=\langle x,y,z\ :\ xyx^{-1}y^{-1}=1, yzy^{-1}z^{-1}=1,
zxz^{-1}x^{-1}=1\rangle$.
The complex is shown to have the correct fundamental group and homology (since
it is the 2\texttt{\symbol{45}}skeleton of the 3\texttt{\symbol{45}}torus $S^1\times S^1\times S^1$).
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@S1:=RegularCWSphere(1);;|
!gapprompt@gap>| !gapinput@W:=WedgeSum(S1,S1,S1);;|
!gapprompt@gap>| !gapinput@F:=FundamentalGroupWithPathReps(W);; x:=F.1;;y:=F.2;;z:=F.3;;|
!gapprompt@gap>| !gapinput@K:=RegularCWComplexWithAttachedRelatorCells(W,F,Comm(x,y),Comm(y,z),Comm(x,z));|
Regular CW-complex of dimension 2
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(K);|
<fp group on the generators [ f1, f2, f3 ]>
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(G);|
[ f2^-1*f1*f2*f1^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1 ]
!gapprompt@gap>| !gapinput@Homology(K,1);|
[ 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(K,2);|
[ 0, 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Constructing a regular CW\texttt{\symbol{45}}complex from its face lattice}}\logpage{[ 1, 9, 0 ]}
\hyperdef{L}{X7B7354E68025FC92}{}
{
The following example creats a $2$\texttt{\symbol{45}}dimensional annulus $A$ as a regular CW\texttt{\symbol{45}}complex, and testing that it has the
correct integral homology $H_0(A,\mathbb Z)=\mathbb Z$, $H_1(A,\mathbb Z)=\mathbb Z$, $H_2(A,\mathbb Z)=0$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@FL:=[];; #The face lattice|
!gapprompt@gap>| !gapinput@FL[1]:=[[1,0],[1,0],[1,0],[1,0]];;|
!gapprompt@gap>| !gapinput@FL[2]:=[[2,1,2],[2,3,4],[2,1,4],[2,2,3],[2,1,4],[2,2,3]];;|
!gapprompt@gap>| !gapinput@FL[3]:=[[4,1,2,3,4],[4,1,2,5,6]];;|
!gapprompt@gap>| !gapinput@FL[4]:=[];;|
!gapprompt@gap>| !gapinput@A:=RegularCWComplex(FL);|
Regular CW-complex of dimension 2
!gapprompt@gap>| !gapinput@Homology(A,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(A,1);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(A,2);|
[ ]
\end{Verbatim}
Next we construct the direct product $Y=A\times A\times A\times A\times A$ of five copies of the annulus. This is a $10$\texttt{\symbol{45}}dimensional CW complex involving $248832$ cells. It will be homotopy equivalent $Y\simeq X$ to a CW complex $X$ involving fewer cells. The CW complex $X$ may be non\texttt{\symbol{45}}regular. We compute the cochain complex $D_\ast = {\rm Hom}_{\mathbb Z}(C_\ast(X),\mathbb Z)$ from which the cohomology groups \\
$H^0(Y,\mathbb Z)=\mathbb Z$, \\
$H^1(Y,\mathbb Z)=\mathbb Z^5$, \\
$H^2(Y,\mathbb Z)=\mathbb Z^{10}$, \\
$H^3(Y,\mathbb Z)=\mathbb Z^{10}$, \\
$H^4(Y,\mathbb Z)=\mathbb Z^5$, \\
$H^5(Y,\mathbb Z)=\mathbb Z$, \\
$H^6(Y,\mathbb Z)=0$\\
are obtained.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=DirectProduct(A,A,A,A,A);|
Regular CW-complex of dimension 10
!gapprompt@gap>| !gapinput@Size(Y);|
248832
!gapprompt@gap>| !gapinput@C:=ChainComplex(Y);|
Chain complex of length 10 in characteristic 0 .
!gapprompt@gap>| !gapinput@D:=HomToIntegers(C);|
Cochain complex of length 10 in characteristic 0 .
!gapprompt@gap>| !gapinput@Cohomology(D,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Cohomology(D,1);|
[ 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Cohomology(D,2);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Cohomology(D,3);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Cohomology(D,4);|
[ 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Cohomology(D,5);|
[ 0 ]
!gapprompt@gap>| !gapinput@Cohomology(D,6);|
[ ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cup products}}\logpage{[ 1, 10, 0 ]}
\hyperdef{L}{X823FA6A9828FF473}{}
{
\textsc{Strategy 1: Use geometric group theory in low dimensions.}
Continuing with the previous example, we consider the first and fifth
generators $g_1^1, g_5^1\in H^1(Y,\mathbb Z) =\mathbb Z^5$ and establish that their cup product $ g_1^1 \cup g_5^1 = - g_7^2 \in H^2(Y,\mathbb Z) =\mathbb Z^{10}$ is equal to minus the seventh generator of $H^2(Y,\mathbb Z)$. We also verify that $g_5^1\cup g_1^1 = - g_1^1 \cup g_5^1$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@cup11:=CupProduct(FundamentalGroup(Y));|
function( a, b ) ... end
!gapprompt@gap>| !gapinput@cup11([1,0,0,0,0],[0,0,0,0,1]);|
[ 0, 0, 0, 0, 0, 0, -1, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@cup11([0,0,0,0,1],[1,0,0,0,0]);|
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
\end{Verbatim}
This computation of low\texttt{\symbol{45}}dimensional cup products is
achieved using group\texttt{\symbol{45}}theoretic methods to approximate the
diagonal map $\Delta \colon Y \rightarrow Y\times Y$ in dimensions $\le 2$. In order to construct cup products in higher degrees \textsc{HAP} invokes three further strategies.
\textsc{Strategy 2: implement the Alexander\texttt{\symbol{45}}Whitney map for
simplicial complexes.}
For simplicial complexes the cup product is implemented using the standard
formula for the Alexander\texttt{\symbol{45}}Whitney chain map, together with
homotopy equivalences to improve efficiency.
As a first example, the following commands construct simplicial complexes $K=(\mathbb S^1 \times \mathbb S^1) \# (\mathbb S^1 \times \mathbb S^1)$ and $L=(\mathbb S^1 \times \mathbb S^1) \vee \mathbb S^1 \vee \mathbb S^1$ and establish that they have the same cohomology groups. It is then shown that
the cup products $\cup_K\colon H^2(K,\mathbb Z)\times H^2(K,\mathbb Z) \rightarrow H^4(K,\mathbb
Z)$ and $\cup_L\colon H^2(L,\mathbb Z)\times H^2(L,\mathbb Z) \rightarrow H^4(L,\mathbb
Z)$ are antisymmetric bilinear forms of different ranks; hence $K$ and $L$ have different homotopy types.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ClosedSurface(2);|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@L:=WedgeSum(WedgeSum(ClosedSurface(1),Sphere(1)),Sphere(1));|
Simplicial complex of dimension 2.
!gapprompt@gap>| !gapinput@Cohomology(K,0);Cohomology(L,0);|
[ 0 ]
[ 0 ]
!gapprompt@gap>| !gapinput@Cohomology(K,1);Cohomology(L,1);|
[ 0, 0, 0, 0 ]
[ 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Cohomology(K,2);Cohomology(L,2);|
[ 0 ]
[ 0 ]
!gapprompt@gap>| !gapinput@gens:=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];;|
!gapprompt@gap>| !gapinput@cupK:=CupProduct(K);;|
!gapprompt@gap>| !gapinput@cupL:=CupProduct(L);;|
!gapprompt@gap>| !gapinput@A:=NullMat(4,4);;B:=NullMat(4,4);;|
!gapprompt@gap>| !gapinput@for i in [1..4] do|
!gapprompt@>| !gapinput@for j in [1..4] do|
!gapprompt@>| !gapinput@A[i][j]:=cupK(1,1,gens[i],gens[j])[1];|
!gapprompt@>| !gapinput@B[i][j]:=cupL(1,1,gens[i],gens[j])[1];|
!gapprompt@>| !gapinput@od;od;|
!gapprompt@gap>| !gapinput@Display(A);|
[ [ 0, 0, 0, 1 ],
[ 0, 0, 1, 0 ],
[ 0, -1, 0, 0 ],
[ -1, 0, 0, 0 ] ]
!gapprompt@gap>| !gapinput@Display(B);|
[ [ 0, 1, 0, 0 ],
[ -1, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ] ]
!gapprompt@gap>| !gapinput@Rank(A);|
4
!gapprompt@gap>| !gapinput@Rank(B);|
2
\end{Verbatim}
As a second example of the computation of cups products, the following
commands construct the connected sums $V=M\# M$ and $W=M\# \overline M$ where $M$ is the $K3$ complex surface which is stored as a pure simplicial complex of dimension 4
and where $\overline M$ denotes the opposite orientation on $M$. The simplicial structure on the $K3$ surface is taken from \cite{spreerkhuenel}. The commands then show that $H^2(V,\mathbb Z)=H^2(W,\mathbb Z)=\mathbb Z^{44}$ and $H^4(V,\mathbb Z)=H^4(W,\mathbb Z)=\mathbb Z$. The final commands compute the matrix $AV=(x\cup y)$ as $x,y$ range over a generating set for $H^2(V,\mathbb Z)$ and the corresponding matrix $AW$ for $W$. These two matrices are seen to have a different number of positive
eigenvalues from which we can conclude that $V$ is not homotopy equivalent to $W$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=SimplicialK3Surface();;|
!gapprompt@gap>| !gapinput@V:=ConnectedSum(M,M,+1);|
Simplicial complex of dimension 4.
!gapprompt@gap>| !gapinput@W:=ConnectedSum(M,M,-1);|
Simplicial complex of dimension 4.
!gapprompt@gap>| !gapinput@Cohomology(V,2);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Cohomology(W,2);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Cohomology(V,4);|
[ 0 ]
!gapprompt@gap>| !gapinput@Cohomology(W,4);|
[ 0 ]
!gapprompt@gap>| !gapinput@cupV:=CupProduct(V);;|
!gapprompt@gap>| !gapinput@cupW:=CupProduct(W);;|
!gapprompt@gap>| !gapinput@AV:=NullMat(44,44);; |
!gapprompt@gap>| !gapinput@AW:=NullMat(44,44);;|
!gapprompt@gap>| !gapinput@gens:=IdentityMat(44);;|
!gapprompt@gap>| !gapinput@for i in [1..44] do|
!gapprompt@>| !gapinput@for j in [1..44] do|
!gapprompt@>| !gapinput@AV[i][j]:=cupV(2,2,gens[i],gens[j])[1]; |
!gapprompt@>| !gapinput@AW[i][j]:=cupW(2,2,gens[i],gens[j])[1];|
!gapprompt@>| !gapinput@od;od; |
!gapprompt@gap>| !gapinput@SignatureOfSymmetricMatrix(AV);|
rec( determinant := 1, negative_eigenvalues := 22, positive_eigenvalues := 22,
zero_eigenvalues := 0 )
!gapprompt@gap>| !gapinput@SignatureOfSymmetricMatrix(AW);|
rec( determinant := 1, negative_eigenvalues := 6, positive_eigenvalues := 38,
zero_eigenvalues := 0 )
\end{Verbatim}
A cubical cubical version of the Alexander\texttt{\symbol{45}}Whitney formula,
due to J.\texttt{\symbol{45}}P. Serre, could be used for computing the
cohomology ring of a regular CW\texttt{\symbol{45}}complex whose cells all
have a cubical combinatorial face lattice. This has not been implemented in
HAP. However, the following more general approach has been implemented.
\textsc{Strategy 3: Implement a cellular approximation to the diagonal map on an
arbitrary finite regular CW\texttt{\symbol{45}}complex.}
The following example calculates the cup product $H^2(W,\mathbb Z)\times H^2(W,\mathbb Z) \rightarrow H^4(W,\mathbb Z)$ for the $4$\texttt{\symbol{45}}dimensional orientable manifold $W=M\times M$ where $M$ is the closed surface of genus $2$. The manifold $W$ is stored as a regular CW\texttt{\symbol{45}}complex.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=RegularCWComplex(ClosedSurface(2));;|
!gapprompt@gap>| !gapinput@W:=DirectProduct(M,M);|
Regular CW-complex of dimension 4
!gapprompt@gap>| !gapinput@Size(W);|
5776
!gapprompt@gap>| !gapinput@W:=SimplifiedComplex(W);;|
!gapprompt@gap>| !gapinput@Size(W); |
1024
!gapprompt@gap>| !gapinput@Homology(W,2); |
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(W,4);|
[ 0 ]
!gapprompt@gap>| !gapinput@cup:=CupProduct(W);;|
!gapprompt@gap>| !gapinput@SecondCohomologtGens:=IdentityMat(18);; |
!gapprompt@gap>| !gapinput@A:=NullMat(18,18);;|
!gapprompt@gap>| !gapinput@for i in [1..18] do|
!gapprompt@>| !gapinput@for j in [1..18] do|
!gapprompt@>| !gapinput@A[i][j]:=cup(2,2,SecondCohomologtGens[i],SecondCohomologtGens[j])[1];|
!gapprompt@>| !gapinput@od;od;|
!gapprompt@gap>| !gapinput@Display(A);|
[ [ 0, -1, 0, 0, 0, 0, 3, -2, 0, 0, 0, 1, -1, 0, 0, 1, 0, 0 ],
[ -1, -10, 1, 2, -2, 1, 6, -1, 0, -3, 4, -1, -1, -1, 4, -2, -2, 0 ],
[ 0, 1, -2, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, 0, 1, -1, 0, 0 ],
[ 0, 2, 1, -2, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 2, 0, 0 ],
[ 0, -2, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0 ],
[ 0, 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0 ],
[ 3, 6, 0, 0, 1, 0, -4, 0, -1, 2, 4, -5, 2, -1, 1, 0, 3, 0 ],
[ -2, -1, 0, -1, -1, 1, 0, 4, -2, 0, 0, 3, -1, 1, -1, 0, -2, 0 ],
[ 0, 0, 1, 0, 0, -1, -1, -2, 4, -3, -10, 1, 0, 0, -3, 3, 0, 0 ],
[ 0, -3, 0, 1, 0, 1, 2, 0, -3, 2, 3, 0, 0, 0, 1, -3, 0, 0 ],
[ 0, 4, -1, 0, -1, 0, 4, 0, -10, 3, 18, 1, 0, 0, 0, 4, 0, 1 ],
[ 1, -1, 1, 0, 0, 0, -5, 3, 1, 0, 1, 0, 0, 0, -2, -1, -1, 0 ],
[ -1, -1, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0 ],
[ 0, 4, 1, -1, 0, 1, 1, -1, -3, 1, 0, -2, 1, 0, 0, 2, 2, 0 ],
[ 1, -2, -1, 2, -1, -1, 0, 0, 3, -3, 4, -1, 0, -1, 2, 0, 0, 0 ],
[ 0, -2, 0, 0, 0, 0, 3, -2, 0, 0, 0, -1, 0, -1, 2, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] ]
!gapprompt@gap>| !gapinput@SignatureOfSymmetricMatrix(A);|
rec( determinant := -1, negative_eigenvalues := 9, positive_eigenvalues := 9,
zero_eigenvalues := 0 )
\end{Verbatim}
The matrix $A$ representing the cup product $H^2(W,\mathbb Z)\times H^2(W,\mathbb Z) \rightarrow H^4(W,\mathbb Z)$ is shown to have $9$ positive eigenvalues, $9$ negative eigenvalues, and no zero eigenvalue.
\textsc{Strategy 4: Guess and verify a cellular approximation to the diagonal map.}
Many naturally occuring cell structures are neither simplicial nor cubical.
For a general regular CW\texttt{\symbol{45}}complex we can attempt to
construct a cellular inclusion $\overline Y \hookrightarrow Y\times Y$ with $\{(y,y)\ :\ y\in Y\}\subset \overline Y$ and with projection $p\colon \overline Y \twoheadrightarrow Y$ that induces isomorphisms on integral homology. The function \texttt{DiagonalApproximation(Y)} constructs a candidate inclusion, but the projection $p\colon \overline Y \twoheadrightarrow Y$ needs to be tested for homology equivalence. If the candidate inclusion passes
this test then the function \texttt{CupProductOfRegularCWComplex{\textunderscore}alt(Y)}, involving the candidate space, can be used for cup products. (I think the
test is passed for all regular CW\texttt{\symbol{45}}complexes that are
subcomplexes of some Euclidean space with all cells convex polytopes
\texttt{\symbol{45}}\texttt{\symbol{45}} but a proof needs to be written
down!)
The following example calculates $g_1^2 \cup g_2^2 \ne 0$ where $Y=T\times T$ is the direct product of two copies of a simplicial torus $T$, and where $g_k^n$ denotes the $k$\texttt{\symbol{45}}th generator in some basis of $H^n(Y,\mathbb Z)$. The direct product $Y$ is a CW\texttt{\symbol{45}}complex which is not a simplicial complex.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|K:=RegularCWComplex(ClosedSurface(1));;B
@gapprompt|gap>B @gapinput|Y:=DirectProduct(K,K);;B
@gapprompt|gap>B @gapinput|cup:=CupProductOfRegularCWComplex_alt(Y);;B
@gapprompt|gap>B @gapinput|cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,0]);B
[ 5 ]
@gapprompt|gap>B @gapinput|D:=DiagonalApproximation(Y);;B
@gapprompt|gap>B @gapinput|p:=D!.projection;B
Map of regular CW-complexes
@gapprompt|gap>B @gapinput|P:=ChainMap(p);B
Chain Map between complexes of length 4 .
@gapprompt|gap>B @gapinput|IsIsomorphismOfAbelianFpGroups(Homology(P,0));B
true
@gapprompt|gap>B @gapinput|IsIsomorphismOfAbelianFpGroups(Homology(P,2));B
true
@gapprompt|gap>B @gapinput|IsIsomorphismOfAbelianFpGroups(Homology(P,3));B
true
@gapprompt|gap>B @gapinput|IsIsomorphismOfAbelianFpGroups(Homology(P,4));B
true
\end{Verbatim}
}
Of course, either of Strategies 2 or 3 could also be used for this example. To
use the Alexander\texttt{\symbol{45}}Whitney formula of Strategy 2 we would
need to give the direct product $Y=T\times T$ a simplicial structure. This could be obtained using the function \texttt{DirectProduct(T,T)}. The details are as follows. (The result is consistent with the preceding
computation since the choice of a basis for cohomology groups is far from
unique.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ClosedSurface(1);; |
!gapprompt@gap>| !gapinput@KK:=DirectProduct(K,K);|
Simplicial complex of dimension 4.
!gapprompt@gap>| !gapinput@cup:=CupProduct(KK);; |
!gapprompt@gap>| !gapinput@cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,0]);|
[ 0 ]
\end{Verbatim}
\section{\textcolor{Chapter }{Intersection forms of $4$\texttt{\symbol{45}}manifolds}}\logpage{[ 1, 11, 0 ]}
\hyperdef{L}{X7F9B01CF7EE1D2FC}{}
{
The cup product gives rise to the intersection form of a connected, closed,
orientable $4$\texttt{\symbol{45}}manifold $Y$ is a symmetric bilinear form
$qY\colon H^2(Y,\mathbb Z)/Torsion \times H^2(Y,\mathbb Z)/Torsion
\longrightarrow \mathbb Z$
which we represent as a symmetric matrix.
The following example constructs the direct product $L=S^2\times S^2$ of two $2$\texttt{\symbol{45}}spheres, the connected sum $M=\mathbb CP^2 \# \overline{\mathbb CP^2}$ of the complex projective plane $\mathbb CP^2$ and its oppositely oriented version $\overline{\mathbb CP^2}$, and the connected sum $N=\mathbb CP^2 \# \mathbb CP^2$. The manifolds $L$, $M$ and $N$ are each shown to have a CW\texttt{\symbol{45}}structure involving one $0$\texttt{\symbol{45}}cell, two $1$\texttt{\symbol{45}}cells and one $2$\texttt{\symbol{45}}cell. They are thus simply connected and have identical
cohomology.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@S:=Sphere(2);;|
!gapprompt@gap>| !gapinput@S:=RegularCWComplex(S);;|
!gapprompt@gap>| !gapinput@L:=DirectProduct(S,S);|
Regular CW-complex of dimension 4
!gapprompt@gap>| !gapinput@M:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),-1);|
Simplicial complex of dimension 4.
!gapprompt@gap>| !gapinput@N:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),+1);|
Simplicial complex of dimension 4.
!gapprompt@gap>| !gapinput@CriticalCells(L);|
[ [ 4, 1 ], [ 2, 13 ], [ 2, 56 ], [ 0, 16 ] ]
!gapprompt@gap>| !gapinput@CriticalCells(RegularCWComplex(M));|
[ [ 4, 1 ], [ 2, 109 ], [ 2, 119 ], [ 0, 8 ] ]
!gapprompt@gap>| !gapinput@CriticalCells(RegularCWComplex(N));|
[ [ 4, 1 ], [ 2, 119 ], [ 2, 149 ], [ 0, 12 ] ]
\end{Verbatim}
John Milnor showed (as a corollary to a theorem of J. H. C. Whitehead) that
the homotopy type of a simply connected 4\texttt{\symbol{45}}manifold is
determined by its quadratic form. More precisely, a form is said to be of \emph{type I (properly primitive)} if some diagonal entry of its matrix is odd. If every diagonal entry is even,
then the form is of \emph{type II (improperly primitive)}. The \emph{index} of a form is defined as the number of positive diagonal entries minus the
number of negative ones, after the matrix has been diagonalized over the real
numbers.
\textsc{Theorem.} (Milnor \cite{milnor}) The oriented homotopy type of a simply connected, closed, orientable
4\texttt{\symbol{45}}manifold is determined by its second Betti number and the
index and type of its intersetion form; except possibly in the case of a
manifold with definite quadratic form of rank r {\textgreater} 9.
The following commands compute matrices representing the intersection forms $qL$, $qM$, $qN$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@qL:=IntersectionForm(L);;|
!gapprompt@gap>| !gapinput@qM:=IntersectionForm(M);;|
!gapprompt@gap>| !gapinput@qN:=IntersectionForm(N);;|
!gapprompt@gap>| !gapinput@Display(qL);|
[ [ -2, 1 ],
[ 1, 0 ] ]
!gapprompt@gap>| !gapinput@Display(qM);|
[ [ 1, 0 ],
[ 0, 1 ] ]
!gapprompt@gap>| !gapinput@Display(qN);|
[ [ 1, 0 ],
[ 0, -1 ] ]
\end{Verbatim}
Since $qL$ is of type II, whereas $qM$ and $qN$ are of type I we see that the oriented homotopy type of $L$ is distinct to that of $M$ and that of $N$. Since $qM$ has index $2$ and $qN$ has index $0$ we see that that $M$ and $N$ also have distinct oriented homotopy types. }
\section{\textcolor{Chapter }{Cohomology Rings}}\logpage{[ 1, 12, 0 ]}
\hyperdef{L}{X80B6849C835B7F19}{}
{
The cup product gives the cohomology $H^\ast(X,R)$ of a space $X$ with coefficients in a ring $R$ the structure of a graded commutitive ring. The function \texttt{CohomologyRing(Y,p)} returns the cohomology as an algebra for $Y$ a simplicial complex and $R=\mathbb Z_p$ the field of $p$ elements. For more general regular CW\texttt{\symbol{45}}complexes or $R=\mathbb Z$ the cohomology ring structure can be determined using the function \texttt{CupProduct(Y)}.
The folowing commands compute the mod $2$ cohomology ring $H^\ast(W,\mathbb Z_2)$ of the above wedge sum $W=M\vee N$ of a $2$\texttt{\symbol{45}}dimensional orientable simplicial surface of genus 2 and
the $K3$ complex simplicial surface (of real dimension 4).
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=ClosedSurface(2);;|
!gapprompt@gap>| !gapinput@N:=SimplicialK3Surface();;|
!gapprompt@gap>| !gapinput@W:=WedgeSum(M,N);;|
!gapprompt@gap>| !gapinput@A:=CohomologyRing(W,2);|
<algebra of dimension 29 over GF(2)>
!gapprompt@gap>| !gapinput@x:=Basis(A)[25];|
v.25
!gapprompt@gap>| !gapinput@y:=Basis(A)[27];|
v.27
!gapprompt@gap>| !gapinput@x*y;|
v.29
\end{Verbatim}
The functions \texttt{CupProduct} and \texttt{IntersectionForm} can be used to determine integral cohomology rings. For example, the integral
cohomology ring of an arbitrary closed surface was calculated in \cite[Theorem 3.5]{goncalves}. For any given surface $M$ this result can be recalculated using the intersection form. For instance, for
an orientable surface of genus $g$ it is well\texttt{\symbol{45}}known that $H^1(M,\mathbb Z)=\mathbb Z^{2g}$, $H^2(M,\mathbb Z)=\mathbb Z$. The ring structure multiplication is thus given by the matrix of the
intersection form. For say $g=3$ the ring multiplication is given, with respect to some cohomology basis, in
the following.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=ClosedSurface(3);;|
!gapprompt@gap>| !gapinput@Display(IntersectionForm(M));|
[ [ 0, 0, 1, -1, -1, 0 ],
[ 0, 0, 0, 1, 1, 0 ],
[ -1, 0, 0, 1, 1, -1 ],
[ 1, -1, -1, 0, 0, 1 ],
[ 1, -1, -1, 0, 0, 0 ],
[ 0, 0, 1, -1, 0, 0 ] ]
\end{Verbatim}
By changing the basis $B$ for $H^1(M,\mathbb Z)$ we obtain the following simpler matrix representing multiplication in $H^\ast(M,\mathbb Z)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@B:=[ [ 0, 1, -1, -1, 1, 0 ],|
!gapprompt@>| !gapinput@ [ 1, 0, 1, 1, 0, 0 ],|
!gapprompt@>| !gapinput@ [ 0, 0, 1, 0, 0, 0 ],|
!gapprompt@>| !gapinput@ [ 0, 0, 0, 1, -1, 0 ],|
!gapprompt@>| !gapinput@ [ 0, 0, 1, 1, 0, 0 ],|
!gapprompt@>| !gapinput@ [ 0, 0, 1, 1, 0, 1 ] ];;|
!gapprompt@gap>| !gapinput@Display(IntersectionForm(M,B));|
[ [ 0, 1, 0, 0, 0, 0 ],
[ -1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 1 ],
[ 0, 0, -1, 0, 0, 0 ],
[ 0, 0, 0, -1, 0, 0 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Bockstein homomorphism}}\logpage{[ 1, 13, 0 ]}
\hyperdef{L}{X83035DEC7C9659C6}{}
{
The following example evaluates the Bockstein homomorphism $\beta_2\colon H^\ast(X,\mathbb Z_2) \rightarrow H^{\ast +1}(X,\mathbb Z_2)$ on an additive basis for $X=\Sigma^{100}(\mathbb RP^2 \times \mathbb RP^2)$ the $100$\texttt{\symbol{45}}fold suspension of the direct product of two projective
planes.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=SimplifiedComplex(RegularCWComplex(ClosedSurface(-1)));|
Regular CW-complex of dimension 2
!gapprompt@gap>| !gapinput@PP:=DirectProduct(P,P);;|
!gapprompt@gap>| !gapinput@SPP:=Suspension(PP,100); |
Regular CW-complex of dimension 104
!gapprompt@gap>| !gapinput@A:=CohomologyRing(SPP,2); |
<algebra of dimension 9 over GF(2)>
!gapprompt@gap>| !gapinput@List(Basis(A),x->Bockstein(A,x));|
[ 0*v.1, v.4, v.6, 0*v.1, v.7+v.8, 0*v.1, v.9, v.9, 0*v.1 ]
\end{Verbatim}
If only the Bockstein homomorphism is required, and not the cohomology ring
structure, then the Bockstein could also be computedirectly from a chain
complex. The following computes the Bockstein $\beta_2\colon H^2(Y,\mathbb Z_2) \rightarrow H^{3}(Y,\mathbb Z_2)$ for the direct product $Y=K \times K \times K \times K$ of four copies of the Klein bottle represented as a regular
CW\texttt{\symbol{45}}complex with $331776$ cells. The order of the kernel and image of $\beta_2$ are computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ClosedSurface(-2);; |
!gapprompt@gap>| !gapinput@K:=SimplifiedComplex(RegularCWComplex(K));;|
!gapprompt@gap>| !gapinput@KKKK:=DirectProduct(K,K,K,K); |
Regular CW-complex of dimension 8
!gapprompt@gap>| !gapinput@Size(KKKK);|
331776
!gapprompt@gap>| !gapinput@C:=ChainComplex(KKKK);;|
!gapprompt@gap>| !gapinput@bk:=Bockstein(C,2,2);;|
!gapprompt@gap>| !gapinput@Order(Kernel(bk));|
1024
!gapprompt@gap>| !gapinput@Order(Image(bk)); |
262144
\end{Verbatim}
}
\section{\textcolor{Chapter }{Diagonal maps on associahedra and other polytopes}}\logpage{[ 1, 14, 0 ]}
\hyperdef{L}{X87135D067B6CDEEC}{}
{
By a \emph{diagonal approximation} on a regular CW\texttt{\symbol{45}}complex $X$ we mean any cellular map $\Delta\colon X\rightarrow X\times X$ that is homotopic to the diagonal map $X\rightarrow X\times X, x\mapsto (x,x)$ and equal to the diagonal map when restricted to the $0$\texttt{\symbol{45}}skeleton. Theoretical formulae for diagonal maps on a
polytope $X$ can have interesting combinatorial aspects. To illustrate this let us
consider, for $n=3$, the $n$\texttt{\symbol{45}}dimensional polytope ${\cal K}^{n+2}$ known as the associahedron. The following commands display the $1$\texttt{\symbol{45}}skeleton of ${\cal K}^{5}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@n:=3;;Y:=RegularCWAssociahedron(n+2);;|
!gapprompt@gap>| !gapinput@Display(GraphOfRegularCWComplex(Y));|
\end{Verbatim}
The induced chain map $C_\ast({\cal K}^{n+2}) \rightarrow C_\ast({\cal K}^{n+2}\times {\cal K}^{n+2})$ sends the unique free generator $e^n_1$ of $C_n({\cal K}^{n+2})$ to a sum $\Delta(e^n_1)$ of a number of distinct free generators of $C_n({\cal K}^{n+2}\times {\cal K}^{n+2})$. Let $|\Delta(e^n_1)|$ denote the number of free generators. For $n=3$ the following commands show that $|\Delta(e^3_1)|=22$ with each free generator occurring with coefficient $\pm 1$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|n:=3;;Y:=RegularCWAssociahedron(n+2);; B
@gapprompt|gap>B @gapinput|D:=DiagonalChainMap(Y);;Filtered(D!.mapping([1],n),x->x<>0);B
[ 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1 ]
\end{Verbatim}
Repeating this example for $0\le n\le 6$ yields the sequence $|\Delta(e^n_1)|: 1, 2, 6, 22, 91, 408, 1938, \cdots\ $. The \href{https://oeis.org/A000139} {On\texttt{\symbol{45}}line Encyclopedia of Integer Sequences} explains that this is the beginning of the sequence given by the number of
canopy intervals in the Tamari lattices.
Repeating the same experiment for the permutahedron, using the command \texttt{RegularCWPermutahedron(n)}, yields the sequence $|\Delta(e^n_1)|: 1, 2, 8, 50, 432, 4802,\cdots$. The \href{https://oeis.org/A007334} {On\texttt{\symbol{45}}line Encyclopedia of Integer Sequences} explains that this is the beginning of the sequence given by the number of
spanning trees in the graph $K_{n}/e$, which results from contracting an edge $e$ in the complete graph $K_{n}$ on $n$ vertices.
Repeating the experiment for the cube, using the command \texttt{RegularCWCube(n)}, yields the sequence $|\Delta(e^n_1)|: 1, 2, 4, 8, 16, 32,\cdots$.
Repeating the experiment for the simplex, using the command \texttt{RegularCWSimplex(n)}, yields the sequence $|\Delta(e^n_1)|: 1, 2, 3, 4, 5, 6,\cdots$. }
\section{\textcolor{Chapter }{CW maps and induced homomorphisms}}\logpage{[ 1, 15, 0 ]}
\hyperdef{L}{X8771FF2885105154}{}
{
A \emph{strictly cellular} map $f\colon X\rightarrow Y$ of regular CW\texttt{\symbol{45}}complexes is a cellular map for which the
image of any cell is a cell (of possibly lower dimension). Inclusions of
CW\texttt{\symbol{45}}subcomplexes, and projections from a direct product to a
factor, are examples of such maps. Strictly cellular maps can be represented
in \textsc{HAP}, and their induced homomorphisms on (co)homology and on fundamental groups
can be computed.
The following example begins by visualizing the trefoil knot $\kappa \in \mathbb R^3$. It then constructs a regular CW structure on the complement $Y= D^3\setminus {\rm Nbhd}(\kappa) $ of a small tubular open neighbourhood of the knot lying inside a large closed
ball $D^3$. The boundary of this tubular neighbourhood is a $2$\texttt{\symbol{45}}dimensional CW\texttt{\symbol{45}}complex $B$ homeomorphic to a torus $\mathbb S^1\times \mathbb S^1$ with fundamental group $\pi_1(B)=<a,b\, :\, aba^{-1}b^{-1}=1>$. The inclusion map $f\colon B\hookrightarrow Y$ is constructed. Then a presentation $\pi_1(Y)= <x,y\, |\, xy^{-1}x^{-1}yx^{-1}y^{-1}>$ and the induced homomorphism
\$\$\texttt{\symbol{92}}pi{\textunderscore}1(B)\texttt{\symbol{92}}rightarrow
\texttt{\symbol{92}}pi{\textunderscore}1(Y), a\texttt{\symbol{92}}mapsto
y\texttt{\symbol{94}}\texttt{\symbol{123}}\texttt{\symbol{45}}1\texttt{\symbol{125}}xy\texttt{\symbol{94}}2xy\texttt{\symbol{94}}\texttt{\symbol{123}}\texttt{\symbol{45}}1\texttt{\symbol{125}},
b\texttt{\symbol{92}}mapsto y \$\$ are computed. This induced homomorphism is
an example of a \emph{peripheral system} and is known to contain sufficient information to characterize the knot up to
ambient isotopy.
Finally, it is verified that the induced homology homomorphism $H_2(B,\mathbb Z) \rightarrow H_2(Y,\mathbb Z)$ is an isomomorphism.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=PureCubicalKnot(3,1);;|
!gapprompt@gap>| !gapinput@ViewPureCubicalKnot(K);;|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=PureCubicalKnot(3,1);;|
!gapprompt@gap>| !gapinput@f:=KnotComplementWithBoundary(ArcPresentation(K));|
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(Target(f));|
<fp group of size infinity on the generators [ f1, f2 ]>
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(G);|
[ f1*f2^-1*f1^-1*f2*f1^-1*f2^-1 ]
!gapprompt@gap>| !gapinput@F:=FundamentalGroup(f);|
[ f1, f2 ] -> [ f2^-1*f1*f2^2*f1*f2^-1, f1 ]
!gapprompt@gap>| !gapinput@phi:=ChainMap(f);|
Chain Map between complexes of length 2 .
!gapprompt@gap>| !gapinput@H:=Homology(phi,2);|
[ g1 ] -> [ g1 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Constructing a simplicial complex from a regular CW\texttt{\symbol{45}}complex}}\logpage{[ 1, 16, 0 ]}
\hyperdef{L}{X853D6B247D0E18DB}{}
{
The following example constructs a $3$\texttt{\symbol{45}}dimensional pure regular CW\texttt{\symbol{45}}complex $K$ whose $3$\texttt{\symbol{45}}cells are permutahedra. It then constructs the simplicial
complex $B$ by taking barycentric subdivision. It then constructes a smaller, homotopy
equivalent, simplicial complex $N$ by taking the nerve of the cover of $K$ by the closures of its $3$\texttt{\symbol{45}}cells.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=RegularCWComplex(PureComplexComplement(PurePermutahedralKnot(3,1)));|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@Size(K);|
77923
!gapprompt@gap>| !gapinput@B:=BarycentricSubdivision(K);|
Simplicial complex of dimension 3.
!gapprompt@gap>| !gapinput@Size(B);|
1622517
!gapprompt@gap>| !gapinput@N:=Nerve(K);|
Simplicial complex of dimension 3.
!gapprompt@gap>| !gapinput@Size(N);|
48745
\end{Verbatim}
}
\section{\textcolor{Chapter }{Some limitations to representing spaces as regular CW complexes}}\logpage{[ 1, 17, 0 ]}
\hyperdef{L}{X7900FD197F175551}{}
{
By a \emph{classifying space} for a group $G$ we mean a path\texttt{\symbol{45}}connected space $BG$ with fundamental group $\pi_1(BG)\cong G$ isomorphic to $G$ and with higher homotopy groups $\pi_n(BG)=0$ trivial for all $n\ge 2$. The homology of the group $G$ can be defined to be the homology of $BG$: $H_n(G,\mathbb Z) = H_n(BG,\mathbb Z)$.
In principle $BG$ can always be constructed as a regular CW\texttt{\symbol{45}}complex. For
instance, the following extremely slow commands construct the $5$\texttt{\symbol{45}}skeleton $Y^5$ of a regular CW\texttt{\symbol{45}}classifying space $Y=BG$ for the dihedral group of order $16$ and use it to calculate $H_1(G,\mathbb Z)=\mathbb Z_2\oplus \mathbb Z_2$, $H_2(G,\mathbb Z)=\mathbb Z_2$, $H_3(G,\mathbb Z)=\mathbb Z_{2}\oplus \mathbb Z_2 \oplus \mathbb Z_8$, $H_4(G,\mathbb Z)=\mathbb Z_{2} \oplus \mathbb Z_2$. The final command shows that the constructed space $Y^5$ in this example is a $5$\texttt{\symbol{45}}dimensional regular CW\texttt{\symbol{45}}complex with a
total of $15289$ cells.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=ClassifyingSpaceFiniteGroup(DihedralGroup(16),5);|
Regular CW-complex of dimension 5
!gapprompt@gap>| !gapinput@Homology(Y,1);|
[ 2, 2 ]
!gapprompt@gap>| !gapinput@Homology(Y,2);|
[ 2 ]
!gapprompt@gap>| !gapinput@Homology(Y,3);|
[ 2, 2, 8 ]
!gapprompt@gap>| !gapinput@Homology(Y,4);|
[ 2, 2 ]
!gapprompt@gap>| !gapinput@Size(Y);|
15289
\end{Verbatim}
The $n$\texttt{\symbol{45}}skeleton of a regular CW\texttt{\symbol{45}}classifying
space of a finite group necessarily involves a large number of cells. For the
group $G=C_2$ of order two a classifying space can be take to be real projective space $BG=\mathbb RP^\infty$ with $n$\texttt{\symbol{45}}skeleton $BG^n=\mathbb RP^n$. To realize $BG^n=\mathbb RP^n$ as a simplicial complex it is known that one needs at least 6 vertices for $n=2$, at least 11 vertices for $n=3$ and at least 16 vertices for $n=4$. One can do a bit better by allowing $BG$ to be a regular CW\texttt{\symbol{45}}complex. For instance, the following
creates $\mathbb RP^4$ as a regular CW\texttt{\symbol{45}}complex with 5 vertices. This construction
of $\mathbb RP^4$ involves a total of 121 cells. A minimal triangulation of $\mathbb RP^4$ would require 991 simplices.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),4);A
Regular CW-complex of dimension 4
@gapprompt|gap>A @gapinput|Y!.nrCells(0); A
5
@gapprompt|gap>A @gapinput|Y!.nrCells(1);A
20
@gapprompt|gap>A @gapinput|Y!.nrCells(2);A
40
@gapprompt|gap>A @gapinput|Y!.nrCells(3); A
40
@gapprompt|gap>A @gapinput|Y!.nrCells(4);A
16
\end{Verbatim}
The space $\mathbb RP^n$ can be given the structure of a regular CW\texttt{\symbol{45}}complex with $n+1$ vertices. Kuehnel has described a triangulation of $\mathbb RP^n$ with $2^{n+1}-1$ vertices.
The above examples suggest that it is inefficient/impractical to attempt to
compute the $n$\texttt{\symbol{45}}th homology of a group $G$ by first constructing a regular CW\texttt{\symbol{45}}complex corresponding
for the $n+1$ of a classifying space $BG$, even for quite small groups $G$, since such spaces seem to require a large number of cells in each dimension.
On the other hand, by dropping the requirement that $BG$ must be regular we can obtain much smaller CW\texttt{\symbol{45}}complexes.
The following example constructs $\mathbb RP^9$ as a regular CW\texttt{\symbol{45}}complex and then shows that it can be given
a non\texttt{\symbol{45}}regular CW\texttt{\symbol{45}}structure with just one
cell in each dimension.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),9);|
Regular CW-complex of dimension 9
!gapprompt@gap>| !gapinput@Size(Y);|
29524
!gapprompt@gap>| !gapinput@CriticalCells(Y);|
[ [ 9, 1 ], [ 8, 124 ], [ 7, 1215 ], [ 6, 1246 ], [ 5, 487 ], [ 4, 254 ],
[ 3, 117 ], [ 2, 54 ], [ 1, 9 ], [ 0, 10 ] ]
\end{Verbatim}
It is of course well\texttt{\symbol{45}}known that $\mathbb RP^\infty$ admits a theoretically described CW\texttt{\symbol{45}}structure with just one
cell in each dimension. The question is: how best to represent this on a
computer? }
\section{\textcolor{Chapter }{Equivariant CW complexes}}\logpage{[ 1, 18, 0 ]}
\hyperdef{L}{X85A579217DCB6CC8}{}
{
As just explained, the representations of spaces as simplicial complexes and
regular CW complexes have their limitations. One limitation is that the number
of cells needed to describe a space can be unnecessarily large. A minimal
simplicial complex structure for the torus has $7$ vertices, $21$ edges and $14$ triangles. A minimal regular CW\texttt{\symbol{45}}complex structure for the
torus has $4$ vertices, $8$ edges and $4$ cells of dimension $2$. By using simplicial sets (which are like simplicial complexes except that
they allow the freedom to attach simplicial cells by gluing their boundary
non\texttt{\symbol{45}}homeomorphically) one obtains a minimal triangulation
of the torus involving $1$ vertex, $3$ edges and $2$ cells of dimension $2$. By using non\texttt{\symbol{45}}regular CW\texttt{\symbol{45}}complexes one
obtains a minimal cell structure involving $1$ vertex, $2$ edges and $1$ cell of dimension $2$. Minimal cell structures (in the four different categories) for the torus are
illustrated as follows.
A second limitation to our representations of simplicial and regular
CW\texttt{\symbol{45}}complexes is that they apply only to structures with
finitely many cells. They do no apply, for instance, to the simplicial complex
structure on the real line $\mathbb R$ in which each each integer $n$ is a vertex and each interval $[n,n+1]$ is an edge.
Simplicial sets provide one approach to the efficient combinatorial
representation of certain spaces. So too do cubical sets (the analogues of
simplicial sets in which each cell has the combinatorics of an $n$\texttt{\symbol{45}}cube rather than an $n$\texttt{\symbol{45}}simplex). Neither of these two approaches has been
implemented in \textsc{HAP}.
Simplicial sets endowed with the action of a (possibly infinite) group $G$ provide for an efficient representation of (possibly infinite) cell structures
on a wider class of spaces. Such a structure can be made precise and is known
as a \emph{simplicial group}. Some functionality for simplicial groups is implemented in \textsc{HAP} and described in Chapter \ref{chapSimplicialGroups}.
A regular CW\texttt{\symbol{45}}complex endowed with the action of a (possibly
infinite) group $G$ is an alternative approach to the efficient combinatorial representation of
(possibly infinite) cell structures on spaces. Much of \textsc{HAP} is focused on this approach. As a first example of the idea, the following
commands construct the infinite regular CW\texttt{\symbol{45}}complex $Y=\widetilde T$ arising as the universal cover of the torus $T=\mathbb S^1\times \mathbb S^1$ where $T$ is given the above minimal non\texttt{\symbol{45}}regular CW structure
involving $1$ vertex, $2$ edges, and $1$ cell of dimension $2$. The homology $H_n(T,\mathbb Z)$ is computed and the fundamental group of the torus $T$ is recovered.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(2);;x:=F.1;;y:=F.2;;|
!gapprompt@gap>| !gapinput@G:=F/[ x*y*x^-1*y^-1 ];;|
!gapprompt@gap>| !gapinput@Y:=EquivariantTwoComplex(G);|
Equivariant CW-complex of dimension 2
!gapprompt@gap>| !gapinput@C:=ChainComplexOfQuotient(Y);|
Chain complex of length 2 in characteristic 0 .
!gapprompt@gap>| !gapinput@Homology(C,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(C,1);|
[ 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(C,2);|
[ 0 ]
!gapprompt@gap>| !gapinput@FundamentalGroupOfQuotient(Y);|
<fp group of size infinity on the generators [ f1, f2 ]>
\end{Verbatim}
As a second example, the following comands load group number $9$ in the library of $3$\texttt{\symbol{45}}dimensional crystallographic groups. They verify that $G$ acts freely on $\mathbb R^3$ (i.e. $G$ is a \emph{Bieberbach group}) and then construct a $G$\texttt{\symbol{45}}equivariant CW\texttt{\symbol{45}}complex $Y=\mathbb R^3$ corresponding to the tessellation of $\mathbb R^3$ by a fundamental domain for $G$. Finally, the cohomology $H_n(M,\mathbb Z)$ of the $3$\texttt{\symbol{45}}dimensional closed manifold $M=\mathbb R^3/G$ is computed. The manifold $M$ is seen to be non\texttt{\symbol{45}}orientable (since it's
top\texttt{\symbol{45}}dimensional homology is trivial) and has a
non\texttt{\symbol{45}}regular CW structure with $1$ vertex, $3$ edges, $3$ cells of dimension $2$, and $1$ cell of dimension $3$. (This example uses Polymake software.)
\begin{Verbatim}[commandchars=@|D,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>D @gapinput|G:=SpaceGroup(3,9);;D
@gapprompt|gap>D @gapinput|IsAlmostBieberbachGroup(Image(IsomorphismPcpGroup(G)));D
true
@gapprompt|gap>D @gapinput|Y:=EquivariantEuclideanSpace(G,[0,0,0]);D
Equivariant CW-complex of dimension 3
@gapprompt|gap>D @gapinput|Y!.dimension(0);D
1
@gapprompt|gap>D @gapinput|Y!.dimension(1);D
3
@gapprompt|gap>D @gapinput|Y!.dimension(2);D
3
@gapprompt|gap>D @gapinput|Y!.dimension(3);D
1
@gapprompt|gap>D @gapinput|C:=ChainComplexOfQuotient(Y);D
Chain complex of length 3 in characteristic 0 .
@gapprompt|gap>D @gapinput|Homology(C,0);D
[ 0 ]
@gapprompt|gap>D @gapinput|Homology(C,1);D
[ 0, 0 ]
@gapprompt|gap>D @gapinput|Homology(C,2);D
[ 2, 0 ]
@gapprompt|gap>D @gapinput|Homology(C,3);D
[ ]
\end{Verbatim}
The fundamental domain for the action of $G$ in the above example is constructed to be the
Dirichlet\texttt{\symbol{45}}Voronoi region in $\mathbb R^3$ whose points are closer to the origin $v=(0,0,0)$ than to any other point $v^g$ in the orbit of the origin under the action of $G$. This fundamental domain can be visualized as follows.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FundamentalDomainStandardSpaceGroup([0,0,0],G);|
<polymake object>
!gapprompt@gap>| !gapinput@Polymake(F,"VISUAL");|
\end{Verbatim}
Other fundamental domains for the same group action can be obtained by
choosing some other starting vector $v$. For example:
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FundamentalDomainStandardSpaceGroup([1/2,1/3,1/5],G);;|
!gapprompt@gap>| !gapinput@Polymake(F,"VISUAL");|
!gapprompt@gap>| !gapinput@F:=FundamentalDomainStandardSpaceGroup([1/7,1/2,1/2],G);|
!gapprompt@gap>| !gapinput@Polymake(F,"VISUAL");|
\end{Verbatim}
}
\section{\textcolor{Chapter }{Orbifolds and classifying spaces}}\label{secOrbifolds}
\logpage{[ 1, 19, 0 ]}
\hyperdef{L}{X86881717878ADCD6}{}
{
If a discrete group $G$ acts on Euclidean space or hyperbolic space with finite stabilizer groups then
we say that the quotient space obtained by killing the action of $G$ an an \emph{orbifold}. If the stabilizer groups are all trivial then the quotient is of course a
manifold.
An orbifold is represented as a $G$\texttt{\symbol{45}}equivariant regular CW\texttt{\symbol{45}}complex together
with the stabilizer group for a representative of each orbit of cells and its
subgroup consisting of those group elements that preserve the cell
orientation. \textsc{HAP} stores orbifolds using the data type of \emph{non\texttt{\symbol{45}}free resolution} and uses them mainly as a first step in constructing free $\mathbb ZG$\texttt{\symbol{45}}resolutions of $\mathbb Z$.
The following commands use an $8$\texttt{\symbol{45}}dimensional equivariant deformation retract of a $GL_3(\mathbb Z[{\bf i}])$\texttt{\symbol{45}}orbifold structure on hyperbolic space to compute $H_5(GL_3({\mathbb Z}[{\bf i}],\mathbb Z) = \mathbb Z_2^5\oplus \mathbb Z_4^2$. (The deformation retract is stored in a library and was supplied by Mathieu
Dutour Sikiric.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Orbifold:=ContractibleGcomplex("PGL(3,Z[i])");|
Non-free resolution in characteristic 0 for matrix group .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R:=FreeGResolution(Orbifold,6);|
Resolution of length 5 in characteristic 0 for matrix group .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R),5);|
[ 2, 2, 2, 2, 2, 4, 4 ]
\end{Verbatim}
The next example computes an orbifold structure on $\mathbb R^4$, and then the first $12$ degrees of a free resolution/classifying space, for the second $4$\texttt{\symbol{45}}dimensional crystallographic group $G$ in the library of crystallographic groups. The resolution is shown to be
periodic of period $2$ in degrees $\ge 5$. The cohomology is seen to have $11$ ring generators in degree $2$ and no further ring generators. The cohomology groups are:
\$\$H\texttt{\symbol{94}}n(G,\texttt{\symbol{92}}mathbb Z)
=\texttt{\symbol{92}}left(
\texttt{\symbol{92}}begin\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{123}}ll\texttt{\symbol{125}}
0, \& \texttt{\symbol{123}}\texttt{\symbol{92}}rm
odd\texttt{\symbol{126}}\texttt{\symbol{125}} n\texttt{\symbol{92}}ge
1\texttt{\symbol{92}}\texttt{\symbol{92}} \texttt{\symbol{92}}mathbb
Z{\textunderscore}2\texttt{\symbol{94}}5 \texttt{\symbol{92}}oplus
\texttt{\symbol{92}}mathbb Z\texttt{\symbol{94}}6, \&
n=2\texttt{\symbol{92}}\texttt{\symbol{92}} \texttt{\symbol{92}}mathbb
Z{\textunderscore}2\texttt{\symbol{94}}\texttt{\symbol{123}}15\texttt{\symbol{125}}\texttt{\symbol{92}}oplus
\texttt{\symbol{92}}mathbb Z, \& n=4\texttt{\symbol{92}}\texttt{\symbol{92}}
\texttt{\symbol{92}}mathbb
Z{\textunderscore}2\texttt{\symbol{94}}\texttt{\symbol{123}}16\texttt{\symbol{125}},
\& \texttt{\symbol{123}}\texttt{\symbol{92}}rm
even\texttt{\symbol{126}}\texttt{\symbol{125}} n \texttt{\symbol{92}}ge 6
.\texttt{\symbol{92}}\texttt{\symbol{92}}
\texttt{\symbol{92}}end\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{92}}right.\$\$
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|G:=SpaceGroup(4,2);;A
@gapprompt|gap>A @gapinput|R:=ResolutionCubicalCrystGroup(G,12);A
Resolution of length 12 in characteristic 0 for <matrix group with
5 generators> .
@gapprompt|gap>A @gapinput|R!.dimension(5);A
16
@gapprompt|gap>A @gapinput|R!.dimension(7);A
16
@gapprompt|gap>A @gapinput|List([1..16],k->R!.boundary(5,k)=R!.boundary(7,k));A
[ true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true ]
@gapprompt|gap>A @gapinput|C:=HomToIntegers(R);A
Cochain complex of length 12 in characteristic 0 .
@gapprompt|gap>A @gapinput|Cohomology(C,0);A
[ 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,1);A
[ ]
@gapprompt|gap>A @gapinput|Cohomology(C,2);A
[ 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,3);A
[ ]
@gapprompt|gap>A @gapinput|Cohomology(C,4);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,5);A
[ ]
@gapprompt|gap>A @gapinput|Cohomology(C,6);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
@gapprompt|gap>A @gapinput|Cohomology(C,7);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,1);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,2);A
[ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,3);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,4);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,5);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,6);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,7);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,8);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,9);A
[ ]
@gapprompt|gap>A @gapinput|IntegralRingGenerators(R,10);A
[ ]
\end{Verbatim}
A group $G$ with a finite index torsion free nilpotent subgroup admits a resolution which
is periodic in sufficiently high degrees if and only if all of its finite
index subgroups admit periodic resolutions. The following commands identify
the $99$ $3$\texttt{\symbol{45}}dimensional space groups (respectively, the $1191$ $4$\texttt{\symbol{45}}dimensional space groups) that admit a resolution which is
periodic in degrees $> 3$ (respectively, in degrees $> 4$).
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L3:=Filtered([1..219],k->IsPeriodicSpaceGroup(SpaceGroup(3,k)));|
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 24, 26, 27, 28,
29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 43, 45, 46, 52, 54, 55, 56, 58,
61, 62, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 87, 89, 92, 98, 101, 102,
107, 111, 119, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 157, 159, 161, 162, 163, 164, 165, 166, 168, 171, 172,
174, 175, 176, 178, 180, 186, 189, 192, 196, 198, 209 ]
!gapprompt@gap>| !gapinput@L4:=Filtered([1..4783],k->IsPeriodicSpaceGroup(SpaceGroup(4,k)));|
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25,
26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70,
71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91,
93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110,
111, 113, 115, 116, 118, 119, 120, 121, 122, 124, 126, 127, 128, 130, 131,
134, 141, 144, 145, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 162,
163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 176, 178, 179, 180, 187,
188, 197, 198, 202, 204, 205, 206, 211, 212, 219, 220, 222, 226, 233, 237,
238, 239, 240, 241, 242, 243, 244, 245, 247, 248, 249, 250, 251, 253, 254,
255, 256, 257, 259, 260, 261, 263, 264, 265, 266, 267, 269, 270, 271, 273,
275, 277, 278, 279, 281, 283, 285, 290, 292, 296, 297, 298, 299, 300, 301,
303, 304, 305, 314, 316, 317, 319, 327, 328, 329, 333, 335, 342, 355, 357,
358, 359, 361, 362, 363, 365, 366, 367, 368, 369, 370, 372, 374, 376, 378,
381, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397,
398, 399, 400, 401, 402, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413,
414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 429,
430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 442, 443, 444, 445,
446, 447, 448, 450, 451, 458, 459, 462, 464, 465, 466, 467, 469, 470, 473,
477, 478, 479, 482, 483, 484, 485, 486, 493, 495, 497, 501, 502, 503, 504,
505, 507, 508, 512, 514, 515, 516, 517, 522, 524, 525, 526, 527, 533, 537,
539, 540, 541, 542, 543, 544, 546, 548, 553, 555, 558, 562, 564, 565, 566,
567, 568, 571, 572, 573, 574, 576, 577, 580, 581, 582, 589, 590, 591, 593,
596, 598, 599, 612, 613, 622, 623, 624, 626, 632, 641, 647, 649, 651, 652,
654, 656, 657, 658, 659, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671,
672, 674, 676, 677, 678, 679, 680, 682, 683, 684, 686, 688, 689, 690, 691,
692, 694, 696, 697, 698, 699, 700, 702, 708, 710, 712, 714, 716, 720, 722,
728, 734, 738, 739, 741, 742, 744, 745, 752, 754, 756, 757, 758, 762, 763,
769, 770, 778, 779, 784, 788, 790, 800, 801, 843, 845, 854, 855, 856, 857,
865, 874, 900, 904, 909, 911, 913, 915, 916, 917, 919, 920, 921, 922, 923,
924, 925, 926, 927, 929, 931, 932, 933, 934, 936, 938, 940, 941, 943, 945,
946, 953, 955, 956, 958, 963, 966, 972, 973, 978, 979, 981, 982, 983, 985,
987, 988, 989, 991, 992, 993, 995, 996, 998, 999, 1000, 1003, 1011, 1022,
1024, 1025, 1026, 1162, 1167, 1236, 1237, 1238, 1239, 1240, 1241, 1242,
1243, 1244, 1246, 1248, 1250, 1255, 1264, 1267, 1270, 1273, 1279, 1280,
1281, 1283, 1284, 1289, 1291, 1293, 1294, 1324, 1325, 1326, 1327, 1328,
1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340,
1341, 1343, 1345, 1347, 1348, 1349, 1350, 1351, 1352, 1354, 1356, 1357,
1358, 1359, 1361, 1363, 1365, 1367, 1372, 1373, 1374, 1375, 1376, 1377,
1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389,
1390, 1393, 1395, 1397, 1399, 1400, 1401, 1404, 1405, 1408, 1410, 1419,
1420, 1421, 1422, 1424, 1425, 1426, 1428, 1429, 1438, 1440, 1441, 1442,
1443, 1444, 1445, 1449, 1450, 1451, 1456, 1457, 1460, 1461, 1462, 1464,
1465, 1470, 1472, 1473, 1477, 1480, 1481, 1487, 1488, 1489, 1493, 1494,
1495, 1501, 1503, 1506, 1509, 1512, 1515, 1518, 1521, 1524, 1527, 1530,
1532, 1533, 1534, 1537, 1538, 1541, 1542, 1544, 1547, 1550, 1552, 1553,
1554, 1558, 1565, 1566, 1568, 1573, 1644, 1648, 1673, 1674, 1700, 1702,
1705, 1713, 1714, 1735, 1738, 1740, 1741, 1742, 1743, 1744, 1745, 1746,
1747, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1759,
1761, 1762, 1763, 1765, 1767, 1768, 1769, 1770, 1771, 1772, 1773, 1774,
1775, 1778, 1779, 1782, 1783, 1785, 1787, 1788, 1789, 1791, 1793, 1795,
1797, 1798, 1799, 1800, 1801, 1803, 1806, 1807, 1809, 1810, 1811, 1813,
1815, 1821, 1822, 1823, 1828, 1829, 1833, 1837, 1839, 1842, 1845, 1848,
1850, 1851, 1852, 1854, 1856, 1857, 1858, 1859, 1860, 1861, 1863, 1866,
1870, 1873, 1874, 1877, 1880, 1883, 1885, 1886, 1887, 1889, 1892, 1895,
1915, 1918, 1920, 1923, 1925, 1927, 1928, 1930, 1952, 1953, 1954, 1955,
2045, 2047, 2049, 2051, 2053, 2054, 2055, 2056, 2057, 2059, 2067, 2068,
2072, 2075, 2076, 2079, 2084, 2087, 2088, 2092, 2133, 2135, 2136, 2137,
2139, 2140, 2170, 2171, 2196, 2224, 2234, 2236, 2238, 2254, 2355, 2356,
2386, 2387, 2442, 2445, 2448, 2451, 2478, 2484, 2487, 2490, 2493, 2496,
2499, 2502, 2508, 2511, 2514, 2517, 2520, 2523, 2550, 2553, 2559, 2621,
2624, 2648, 2650, 3046, 3047, 3048, 3049, 3050, 3051, 3052, 3053, 3054,
3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063, 3064, 3065, 3066,
3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 3077, 3078,
3079, 3080, 3081, 3082, 3083, 3084, 3085, 3086, 3087, 3089, 3090, 3091,
3094, 3095, 3096, 3099, 3100, 3101, 3104, 3105, 3106, 3109, 3110, 3111,
3112, 3113, 3114, 3115, 3117, 3119, 3120, 3121, 3122, 3123, 3124, 3125,
3127, 3128, 3129, 3130, 3131, 3132, 3133, 3135, 3137, 3139, 3141, 3142,
3143, 3144, 3145, 3149, 3151, 3152, 3153, 3154, 3155, 3157, 3159, 3160,
3161, 3162, 3163, 3169, 3170, 3171, 3172, 3173, 3174, 3175, 3177, 3179,
3180, 3181, 3182, 3183, 3184, 3185, 3187, 3188, 3189, 3190, 3191, 3192,
3193, 3195, 3197, 3199, 3200, 3201, 3204, 3206, 3207, 3208, 3209, 3210,
3212, 3214, 3215, 3216, 3217, 3218, 3226, 3234, 3235, 3236, 3244, 3252,
3253, 3254, 3260, 3268, 3269, 3270, 3278, 3280, 3281, 3282, 3283, 3284,
3285, 3286, 3287, 3288, 3289, 3290, 3291, 3292, 3295, 3296, 3298, 3299,
3302, 3303, 3306, 3308, 3309, 3310, 3311, 3312, 3313, 3314, 3315, 3316,
3317, 3318, 3319, 3320, 3322, 3324, 3326, 3327, 3329, 3330, 3338, 3345,
3346, 3347, 3348, 3350, 3351, 3352, 3354, 3355, 3356, 3359, 3360, 3361,
3362, 3374, 3375, 3383, 3385, 3398, 3399, 3417, 3418, 3419, 3420, 3422,
3424, 3426, 3428, 3446, 3447, 3455, 3457, 3469, 3471, 3521, 3523, 3524,
3525, 3530, 3531, 3534, 3539, 3542, 3545, 3548, 3550, 3551, 3554, 3557,
3579, 3580, 3830, 3831, 3832, 3833, 3835, 3837, 3839, 3849, 3851, 3877,
3938, 3939, 3949, 3951, 3952, 3958, 3960, 3962, 3963, 3964, 3966, 3968,
3972, 3973, 3975, 4006, 4029, 4030, 4033, 4034, 4037, 4038, 4046, 4048,
4050, 4062, 4064, 4067, 4078, 4081, 4089, 4090, 4114, 4138, 4139, 4140,
4141, 4146, 4147, 4148, 4149, 4154, 4155, 4169, 4171, 4175, 4180, 4183,
4188, 4190, 4204, 4205, 4223, 4224, 4225, 4254, 4286, 4289, 4391, 4397,
4496, 4499, 4500, 4501, 4502, 4504, 4508, 4510, 4521, 4525, 4544, 4559,
4560, 4561, 4562, 4579, 4580, 4581, 4583, 4587, 4597, 4598, 4599, 4600,
4651, 4759, 4760, 4761, 4762, 4766 ]
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Cubical complexes \& permutahedral complexes}}\logpage{[ 2, 0, 0 ]}
\hyperdef{L}{X7F8376F37AF80AAC}{}
{
\section{\textcolor{Chapter }{Cubical complexes}}\logpage{[ 2, 1, 0 ]}
\hyperdef{L}{X7D67D5F3820637AD}{}
{
A \emph{finite simplicial complex} can be defined to be a CW\texttt{\symbol{45}}subcomplex of the canonical
regular CW\texttt{\symbol{45}}structure on a simplex $\Delta^n$ of some dimension $n$. Analogously, a \emph{finite cubical complex} is a CW\texttt{\symbol{45}}subcomplex of the regular
CW\texttt{\symbol{45}}structure on a cube $[0,1]^n$ of some dimension $n$. Equivalently, but more conveniently, we can replace the unit interval $[0,1]$ by an interval $[0,k]$ with CW\texttt{\symbol{45}}structure involving $2k+1$ cells, namely one $0$\texttt{\symbol{45}}cell for each integer $0\le j\le k$ and one $1$\texttt{\symbol{45}}cell for each open interval $(j,j+1)$ for $0\le j\le k-1$. A \emph{finite cuical complex} $M$ is a CW\texttt{\symbol{45}}subcompex $M\subset [0,k_1]\times [0,k_2]\times \cdots [0,k_n]$ of a direct product of intervals, the direct product having the usual direct
product CW\texttt{\symbol{45}}structure. The equivalence of these two
definitions follows from the Gray code embedding of a mesh into a hypercube.
We say that the cubical complex has \emph{ambient dimension} $n$. A cubical complex $M$ of ambient dimension $n$ is said to be \emph{pure} if each cell lies in the boundary of an $n$\texttt{\symbol{45}}cell. In other words, $M$ is pure if it is a union of unit $n$\texttt{\symbol{45}}cubes in $\mathbb R^n$, each unit cube having vertices with integer coordinates.
\textsc{HAP} has a datatype for finite cubical complexes, and a slightly different datatype
for pure cubical complexes.
The following example constructs the granny knot (the sum of a trefoil knot
with its reflection) as a $3$\texttt{\symbol{45}}dimensional pure cubical complex, and then displays it.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=PureCubicalKnot(3,1);|
prime knot 1 with 3 crossings
!gapprompt@gap>| !gapinput@L:=ReflectedCubicalKnot(K);|
Reflected( prime knot 1 with 3 crossings )
!gapprompt@gap>| !gapinput@M:=KnotSum(K,L);|
prime knot 1 with 3 crossings + Reflected( prime knot 1 with 3 crossings )
!gapprompt@gap>| !gapinput@Display(M);|
\end{Verbatim}
Next we construct the complement $Y=D^3\setminus \mathring{M}$ of the interior of the pure cubical complex $M$. Here $D^3$ is a rectangular region with $M \subset \mathring{D^3}$. This pure cubical complex $Y$ is a union of $5891$ unit $3$\texttt{\symbol{45}}cubes. We contract $Y$ to get a homotopy equivalent pure cubical complex $YY$ consisting of the union of just $775$ unit $3$\texttt{\symbol{45}}cubes. Then we convert $YY$ to a regular CW\texttt{\symbol{45}}complex $W$ involving $11939$ cells. We contract $W$ to obtain a homotopy equivalent regular CW\texttt{\symbol{45}}complex $WW$ involving $5993$ cells. Finally we compute the fundamental group of the complement of the
granny knot, and use the presentation of this group to establish that the
Alexander polynomial $P(x)$ of the granny is
$P(x) = x^4-2x^3+3x^2-2x+1 \ .$
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=PureComplexComplement(M);|
Pure cubical complex of dimension 3.
!gapprompt@gap>| !gapinput@Size(Y);|
5891
!gapprompt@gap>| !gapinput@YY:=ZigZagContractedComplex(Y);|
Pure cubical complex of dimension 3.
!gapprompt@gap>| !gapinput@Size(YY);|
775
!gapprompt@gap>| !gapinput@W:=RegularCWComplex(YY);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@Size(W);|
11939
!gapprompt@gap>| !gapinput@WW:=ContractedComplex(W);|
Regular CW-complex of dimension 2
!gapprompt@gap>| !gapinput@Size(WW);|
5993
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(WW);|
<fp group of size infinity on the generators [ f1, f2, f3 ]>
!gapprompt@gap>| !gapinput@AlexanderPolynomial(G);|
x_1^4-2*x_1^3+3*x_1^2-2*x_1+1
\end{Verbatim}
}
\section{\textcolor{Chapter }{Permutahedral complexes}}\logpage{[ 2, 2, 0 ]}
\hyperdef{L}{X85D8195379F2A8CA}{}
{
A finite pure cubical complex is a union of finitely many cubes in a
tessellation of $\mathbb R^n$ by unit cubes. One can also tessellate $\mathbb R^n$ by permutahedra, and we define a finite $n$\texttt{\symbol{45}}dimensional pure \emph{permutahedral complex} to be a union of finitely many permutahdra from such a tessellation. There are
two features of pure permutahedral complexes that are particularly useful in
some situations:
\begin{itemize}
\item Pure permutahedral complexes are topological manifolds with boundary.
\item The method used for finding a smaller pure cubical complex $M'$ homotopy equivalent to a given pure cubical complex $M$ retains the homeomorphism type, and not just the homotopy type, of the space $M$.
\end{itemize}
\textsc{Example 1}
To illustrate these features the following example begins by reading in a
protein backbone from the online \href{https://www.rcsb.org/} {Protein Database}, and storing it as a pure cubical complex $K$. The ends of the protein have been joined, and the homology $H_i(K,\mathbb Z)=\mathbb Z$, $i=0,1$ is seen to be that of a circle. We can thus regard the protein as a knot $K\subset \mathbb R^3$. The protein is visualized as a pure permutahedral complex.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("data1V2X.pdb");;|
!gapprompt@gap>| !gapinput@K:=ReadPDBfileAsPurePermutahedralComplex("file");|
Pure permutahedral complex of dimension 3.
!gapprompt@gap>| !gapinput@Homology(K,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(K,1);|
[ 0 ]
Display(K);
\end{Verbatim}
An alternative method for seeing that the pure permutahedral complex $K$ has the homotopy type of a circle is to note that it is covered by open
permutahedra (small open neighbourhoods of the closed $3$\texttt{\symbol{45}}dimensional permutahedral titles) and to form the nerve $N=Nerve({\mathcal U})$ of this open covering $\mathcal U$. The nerve $N$ has the same homotopy type as $K$. The following commands establish that $N$ is a $1$\texttt{\symbol{45}}dimensional simplicial complex and display $N$ as a circular graph.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@N:=Nerve(K);|
Simplicial complex of dimension 1.
!gapprompt@gap>| !gapinput@Display(GraphOfSimplicialComplex(N));|
\end{Verbatim}
The boundary of the pure permutahedral complex $K$ is a $2$\texttt{\symbol{45}}dimensional CW\texttt{\symbol{45}}complex $B$ homeomorphic to a torus. We next use the advantageous features of pure
permutahedral complexes to compute the homomorphism
$\phi\colon \pi_1(B) \rightarrow \pi_1(\mathbb R^3\setminus \mathring{K}), a
\mapsto yx^{-3}y^2x^{-2}yxy^{-1}, b\mapsto yx^{-1}y^{-1}x^2y^{-1}$
where\\
$\pi_1(B)=< a,b\, :\, aba^{-1}b^{-1}=1>$,\\
$\pi_1(\mathbb R^3\setminus \mathring{K}) \cong < x,y\, :\,
y^2x^{-2}yxy^{-1}=1, yx^{-2}y^{-1}x(xy^{-1})^2=1>$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=PureComplexComplement(K);|
Pure permutahedral complex of dimension 3.
!gapprompt@gap>| !gapinput@Size(Y);|
418922
!gapprompt@gap>| !gapinput@YY:=ZigZagContractedComplex(Y);|
Pure permutahedral complex of dimension 3.
!gapprompt@gap>| !gapinput@Size(YY);|
3438
!gapprompt@gap>| !gapinput@W:=RegularCWComplex(YY);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@f:=BoundaryMap(W);|
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@CriticalCells(Source(f));|
[ [ 2, 1 ], [ 2, 261 ], [ 1, 1043 ], [ 1, 1626 ], [ 0, 2892 ], [ 0, 24715 ] ]
!gapprompt@gap>| !gapinput@F:=FundamentalGroup(f,2892);|
[ f1, f2 ] -> [ f2*f1^-3*f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-1*f2^-1*f1^2*f2^-1 ]
!gapprompt@gap>| !gapinput@G:=Target(F);|
<fp group on the generators [ f1, f2 ]>
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(G);|
[ f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-2*f2^-1*f1*(f1*f2^-1)^2 ]
\end{Verbatim}
\textsc{Example 2}
The next example of commands begins by readng two synthetic knots from a CSV
file (containing the coordinates of the two sequences of vertices) and
producing a pure permutahedral complex model of the two knots. The linking
number of two knots is given by the low\texttt{\symbol{45}}dimension cup
product of the complement of the knots. This linking number is computed to be $6$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|file1:=HapFile("data175_1.csv");;B
@gapprompt|gap>B @gapinput|file2:=HapFile("data175_2.csv");;B
@gapprompt|gap>B @gapinput|K:=ReadCSVfileAsPureCubicalKnot( [file1, file2]);;B
@gapprompt|gap>B @gapinput|K:=PurePermutahedralComplex(K!.binaryArray);;B
@gapprompt|gap>B @gapinput|K:=ThickenedPureComplex(K);;B
@gapprompt|gap>B @gapinput|K:=ContractedComplex(K);;B
@gapprompt|gap>B @gapinput|#K is a permutahedral complex model of the two input knotsB
@gapprompt|gap>B @gapinput|Display(K);B
@gapprompt|gap>B @gapinput|Y:=PureComplexComplement(K);;B
@gapprompt|gap>B @gapinput|W:=ZigZagContractedComplex(Y,2);;B
@gapprompt|gap>B @gapinput|W:=RegularCWComplex(W);;B
@gapprompt|gap>B @gapinput|W:=ContractedComplex(W);;B
@gapprompt|gap>B @gapinput|G:=FundamentalGroup(W);;B
@gapprompt|gap>B @gapinput|cup:=CupProduct(G);;B
@gapprompt|gap>B @gapinput|cup([1,0],[0,1]);B
[ -6, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Constructing pure cubical and permutahedral complexes}}\logpage{[ 2, 3, 0 ]}
\hyperdef{L}{X78D3037283B506E0}{}
{
An $n$\texttt{\symbol{45}}dimensional pure cubical or permutahedral complex can be
created from an $n$\texttt{\symbol{45}}dimensional array of 0s and 1s. The following example
creates and displays two $3$\texttt{\symbol{45}}dimensional complexes.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=[[[0,0,0],[0,0,0],[0,0,0]],|
!gapprompt@>| !gapinput@ [[1,1,1],[1,0,1],[1,1,1]],|
!gapprompt@>| !gapinput@ [[0,0,0],[0,0,0],[0,0,0]]];;|
!gapprompt@gap>| !gapinput@M:=PureCubicalComplex(A);|
Pure cubical complex of dimension 3.
!gapprompt@gap>| !gapinput@P:=PurePermutahedralComplex(A);|
Pure permutahedral complex of dimension 3.
!gapprompt@gap>| !gapinput@Display(M);|
!gapprompt@gap>| !gapinput@Display(P);|
\end{Verbatim}
}
\section{\textcolor{Chapter }{Computations in dynamical systems}}\logpage{[ 2, 4, 0 ]}
\hyperdef{L}{X8462CF66850CC3A8}{}
{
Pure cubical complexes can be useful for rigourous interval arithmetic
calculations in numerical analysis. They can also be useful for trying to
estimate approximations of certain numerical quantities. To illustrate the
latter we consider the \emph{Henon map}
$f\colon \mathbb R^2 \rightarrow \mathbb R^2, \left( \begin{array}{cc} x\\ y
\end{array}\right) \mapsto \left( \begin{array}{cc} y+1-ax^2\\ bx \\
\end{array}\right) .$\\
Starting with $(x_0,y_0)=(0,0)$ and iterating $(x_{n+1},y_{n+1}) = f(x_n,y_n)$ with the parameter values $a=1.4$, $b=0.3$ one obtains a sequence of points which is known to be dense in the so called \emph{strange attractor} ${\cal A}$ of the Henon map. The first $10$ million points in this sequence are plotted in the following example, with
arithmetic performed to 100 decimal places of accuracy. The sequence is stored
as a $2$\texttt{\symbol{45}}dimensional pure cubical complex where each $2$\texttt{\symbol{45}}cell is square of side equal to $\epsilon =1/500$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=HenonOrbit([0,0],14/10,3/10,10^7,500,100);|
Pure cubical complex of dimension 2.
!gapprompt@gap>| !gapinput@Size(M);|
10287
!gapprompt@gap>| !gapinput@Display(M);|
\end{Verbatim}
Repeating the computation but with squares of side $\epsilon =1/1000$
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=HenonOrbit([0,0],14/10,3/10,10^7,1000,100);|
!gapprompt@gap>| !gapinput@Size(M);|
24949
\end{Verbatim}
we obtain the heuristic estimate
$\delta \simeq \frac{ \log{ 24949}- \log{ 10287}} {\log{2}} = 1.277 $
for the box\texttt{\symbol{45}}counting dimension of the attractor $\cal A$. }
}
\chapter{\textcolor{Chapter }{Covering spaces}}\logpage{[ 3, 0, 0 ]}
\hyperdef{L}{X87472058788D76C0}{}
{
Let $Y$ denote a finite regular CW\texttt{\symbol{45}}complex. Let $\widetilde Y$ denote its universal covering space. The covering space inherits a regular
CW\texttt{\symbol{45}}structure which can be computed and stored using the
datatype of a $\pi_1Y$\texttt{\symbol{45}}equivariant CW\texttt{\symbol{45}}complex. The cellular
chain complex $C_\ast\widetilde Y$ of $\widetilde Y$ can be computed and stored as an equivariant chain complex. Given an
admissible discrete vector field on $ Y,$ we can endow $Y$ with a smaller non\texttt{\symbol{45}}regular CW\texttt{\symbol{45}}structre
whose cells correspond to the critical cells in the vector field. This smaller
CW\texttt{\symbol{45}}structure leads to a more efficient chain complex $C_\ast \widetilde Y$ involving one free generator for each critical cell in the vector field.
\section{\textcolor{Chapter }{Cellular chains on the universal cover}}\logpage{[ 3, 1, 0 ]}
\hyperdef{L}{X85FB4CA987BC92CC}{}
{
The following commands construct a $6$\texttt{\symbol{45}}dimensional regular CW\texttt{\symbol{45}}complex $Y\simeq S^1 \times S^1\times S^1$ homotopy equivalent to a product of three circles.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=[[1,1,1],[1,0,1],[1,1,1]];;|
!gapprompt@gap>| !gapinput@S:=PureCubicalComplex(A);;|
!gapprompt@gap>| !gapinput@T:=DirectProduct(S,S,S);;|
!gapprompt@gap>| !gapinput@Y:=RegularCWComplex(T);;|
Regular CW-complex of dimension 6
!gapprompt@gap>| !gapinput@Size(Y);|
110592
\end{Verbatim}
The CW\texttt{\symbol{45}}somplex $Y$ has $110592$ cells. The next commands construct a free $\pi_1Y$\texttt{\symbol{45}}equivariant chain complex $C_\ast\widetilde Y$ homotopy equivalent to the chain complex of the universal cover of $Y$. The chain complex $C_\ast\widetilde Y$ has just $8$ free generators.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|Y:=ContractedComplex(Y);;A
@gapprompt|gap>A @gapinput|CU:=ChainComplexOfUniversalCover(Y);;A
@gapprompt|gap>A @gapinput|List([0..Dimension(Y)],n->CU!.dimension(n));A
[ 1, 3, 3, 1 ]
\end{Verbatim}
The next commands construct a subgroup $H < \pi_1Y$ of index $50$ and the chain complex $C_\ast\widetilde Y\otimes_{\mathbb ZH}\mathbb Z$ which is homotopy equivalent to the cellular chain complex $C_\ast\widetilde Y_H$ of the $50$\texttt{\symbol{45}}fold cover $\widetilde Y_H$ of $Y$ corresponding to $H$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|L:=LowIndexSubgroupsFpGroup(CU!.group,50);;A
@gapprompt|gap>A @gapinput|H:=L[Length(L)-1];;A
@gapprompt|gap>A @gapinput|Index(CU!.group,H);A
50
@gapprompt|gap>A @gapinput|D:=TensorWithIntegersOverSubgroup(CU,H);A
Chain complex of length 3 in characteristic 0 .
@gapprompt|gap>A @gapinput|List([0..3],D!.dimension);A
[ 50, 150, 150, 50 ]
\end{Verbatim}
General theory implies that the $50$\texttt{\symbol{45}}fold covering space $\widetilde Y_H$ should again be homotopy equivalent to a product of three circles. In keeping
with this, the following commands verify that $\widetilde Y_H$ has the same integral homology as $S^1\times S^1\times S^1$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Homology(D,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(D,1);|
[ 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(D,2);|
[ 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(D,3);|
[ 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Spun knots and the Satoh tube map}}\logpage{[ 3, 2, 0 ]}
\hyperdef{L}{X7E5CC04E7E3CCDAD}{}
{
We'll contruct two spaces $Y,W$ with isomorphic fundamental groups and isomorphic intergal homology, and use
the integral homology of finite covering spaces to establsh that the two
spaces have distinct homotopy types.
By \emph{spinning} a link $K \subset \mathbb R^3$ about a plane $ P\subset \mathbb R^3$ with $P\cap K=\emptyset$, we obtain a collection $Sp(K)\subset \mathbb R^4$ of knotted tori. The following commands produce the two tori obtained by
spinning the Hopf link $K$ and show that the space $Y=\mathbb R^4\setminus Sp(K) = Sp(\mathbb R^3\setminus K)$ is connected with fundamental group $\pi_1Y = \mathbb Z\times \mathbb Z$ and homology groups $H_0(Y)=\mathbb Z$, $H_1(Y)=\mathbb Z^2$, $H_2(Y)=\mathbb Z^4$, $H_3(Y,\mathbb Z)=\mathbb Z^2$. The space $Y$ is only constructed up to homotopy, and for this reason is $3$\texttt{\symbol{45}}dimensional.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Hopf:=PureCubicalLink("Hopf");|
Pure cubical link.
!gapprompt@gap>| !gapinput@Y:=SpunAboutInitialHyperplane(PureComplexComplement(Hopf));|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@Homology(Y,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,1);|
[ 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,2);|
[ 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,3);|
[ 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,4);|
[ ]
!gapprompt@gap>| !gapinput@GY:=FundamentalGroup(Y);;|
!gapprompt@gap>| !gapinput@GeneratorsOfGroup(GY);|
[ f2, f3 ]
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(GY);|
[ f3^-1*f2^-1*f3*f2 ]
\end{Verbatim}
An alternative embedding of two tori $L\subset \mathbb R^4 $ can be obtained by applying the 'tube map' of Shin Satoh to a welded Hopf link \cite{MR1758871}. The following commands construct the complement $W=\mathbb R^4\setminus L$ of this alternative embedding and show that $W $ has the same fundamental group and integral homology as $Y$ above.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=HopfSatohSurface();|
Pure cubical complex of dimension 4.
!gapprompt@gap>| !gapinput@W:=ContractedComplex(RegularCWComplex(PureComplexComplement(L)));|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@Homology(W,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(W,1);|
[ 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(W,2);|
[ 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(W,3);|
[ 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(W,4);|
[ ]
!gapprompt@gap>| !gapinput@GW:=FundamentalGroup(W);;|
!gapprompt@gap>| !gapinput@GeneratorsOfGroup(GW);|
[ f1, f2 ]
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(GW);|
[ f1^-1*f2^-1*f1*f2 ]
\end{Verbatim}
Despite having the same fundamental group and integral homology groups, the
above two spaces $Y$ and $W$ were shown by Kauffman and Martins \cite{MR2441256} to be not homotopy equivalent. Their technique involves the fundamental
crossed module derived from the first three dimensions of the universal cover
of a space, and counts the representations of this fundamental crossed module
into a given finite crossed module. This homotopy inequivalence is recovered
by the following commands which involves the $5$\texttt{\symbol{45}}fold covers of the spaces.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|CY:=ChainComplexOfUniversalCover(Y);A
Equivariant chain complex of dimension 3
@gapprompt|gap>A @gapinput|LY:=LowIndexSubgroups(CY!.group,5);;A
@gapprompt|gap>A @gapinput|invY:=List(LY,g->Homology(TensorWithIntegersOverSubgroup(CY,g),2));;A
@gapprompt|gap>A @gapinput|CW:=ChainComplexOfUniversalCover(W);A
Equivariant chain complex of dimension 3
@gapprompt|gap>A @gapinput|LW:=LowIndexSubgroups(CW!.group,5);;A
@gapprompt|gap>A @gapinput|invW:=List(LW,g->Homology(TensorWithIntegersOverSubgroup(CW,g),2));;A
@gapprompt|gap>A @gapinput|SSortedList(invY)=SSortedList(invW);A
false
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cohomology with local coefficients}}\logpage{[ 3, 3, 0 ]}
\hyperdef{L}{X7C304A1C7EF0BA60}{}
{
The $\pi_1Y$\texttt{\symbol{45}}equivariant cellular chain complex $C_\ast\widetilde Y$ of the universal cover $\widetilde Y$ of a regular CW\texttt{\symbol{45}}complex $Y$ can be used to compute the homology $H_n(Y,A)$ and cohomology $H^n(Y,A)$ of $Y$ with local coefficients in a $\mathbb Z\pi_1Y$\texttt{\symbol{45}}module $A$. To illustrate this we consister the space $Y$ arising as the complement of the trefoil knot, with fundamental group $\pi_1Y = \langle x,y : xyx=yxy \rangle$. We take $A= \mathbb Z$ to be the integers with non\texttt{\symbol{45}}trivial $\pi_1Y$\texttt{\symbol{45}}action given by $x.1=-1, y.1=-1$. We then compute
$\begin{array}{lcl} H_0(Y,A) &= &\mathbb Z_2\, ,\\ H_1(Y,A) &= &\mathbb Z_3\,
,\\ H_2(Y,A) &= &\mathbb Z\, .\end{array}$
\begin{Verbatim}[commandchars=@|E,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>E @gapinput|K:=PureCubicalKnot(3,1);;E
@gapprompt|gap>E @gapinput|Y:=PureComplexComplement(K);;E
@gapprompt|gap>E @gapinput|Y:=ContractedComplex(Y);;E
@gapprompt|gap>E @gapinput|Y:=RegularCWComplex(Y);;E
@gapprompt|gap>E @gapinput|Y:=SimplifiedComplex(Y);;E
@gapprompt|gap>E @gapinput|C:=ChainComplexOfUniversalCover(Y);;E
@gapprompt|gap>E @gapinput|G:=C!.group;;E
@gapprompt|gap>E @gapinput|GeneratorsOfGroup(G);E
[ f1, f2 ]
@gapprompt|gap>E @gapinput|RelatorsOfFpGroup(G);E
[ f2^-1*f1^-1*f2^-1*f1*f2*f1, f1^-1*f2^-1*f1^-1*f2*f1*f2 ]
@gapprompt|gap>E @gapinput|hom:=GroupHomomorphismByImages(G,Group([[-1]]),[G.1,G.2],[[[-1]],[[-1]]]);;E
@gapprompt|gap>E @gapinput|A:=function(x); return Determinant(Image(hom,x)); end;;E
@gapprompt|gap>E @gapinput|D:=TensorWithTwistedIntegers(C,A); #Here the function A represents E
@gapprompt|gap>E @gapinput|#the integers with twisted action of G.E
Chain complex of length 3 in characteristic 0 .
@gapprompt|gap>E @gapinput|Homology(D,0);E
[ 2 ]
@gapprompt|gap>E @gapinput|Homology(D,1);E
[ 3 ]
@gapprompt|gap>E @gapinput|Homology(D,2);E
[ 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Distinguishing between two non\texttt{\symbol{45}}homeomorphic homotopy
equivalent spaces}}\logpage{[ 3, 4, 0 ]}
\hyperdef{L}{X7A4F34B780FA2CD5}{}
{
The granny knot is the sum of the trefoil knot and its mirror image. The reef
knot is the sum of two identical copies of the trefoil knot. The following
commands show that the degree $1$ homology homomorphisms
$H_1(p^{-1}(B),\mathbb Z) \rightarrow H_1(\widetilde X_H,\mathbb Z)$
distinguish between the homeomorphism types of the complements $X\subset \mathbb R^3$ of the granny knot and the reef knot, where $B\subset X$ is the knot boundary, and where $p\colon \widetilde X_H \rightarrow X$ is the covering map corresponding to the finite index subgroup $H < \pi_1X$. More precisely, $p^{-1}(B)$ is in general a union of path components
$p^{-1}(B) = B_1 \cup B_2 \cup \cdots \cup B_t$ .
The function \texttt{FirstHomologyCoveringCokernels(f,c)} inputs an integer $c$ and the inclusion $f\colon B\hookrightarrow X$ of a knot boundary $B$ into the knot complement $X$. The function returns the ordered list of the lists of abelian invariants of
cokernels
${\rm coker}(\ H_1(p^{-1}(B_i),\mathbb Z) \rightarrow H_1(\widetilde
X_H,\mathbb Z)\ )$
arising from subgroups $H < \pi_1X$ of index $c$. To distinguish between the granny and reef knots we use index $c=6$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=PureCubicalKnot(3,1);;|
!gapprompt@gap>| !gapinput@L:=ReflectedCubicalKnot(K);;|
!gapprompt@gap>| !gapinput@granny:=KnotSum(K,L);;|
!gapprompt@gap>| !gapinput@reef:=KnotSum(K,K);;|
!gapprompt@gap>| !gapinput@fg:=KnotComplementWithBoundary(ArcPresentation(granny));;|
!gapprompt@gap>| !gapinput@fr:=KnotComplementWithBoundary(ArcPresentation(reef));;|
!gapprompt@gap>| !gapinput@a:=FirstHomologyCoveringCokernels(fg,6);;|
!gapprompt@gap>| !gapinput@b:=FirstHomologyCoveringCokernels(fr,6);;|
!gapprompt@gap>| !gapinput@a=b;|
false
\end{Verbatim}
}
\section{\textcolor{Chapter }{ Second homotopy groups of spaces with finite fundamental group}}\logpage{[ 3, 5, 0 ]}
\hyperdef{L}{X869FD75B84AAC7AD}{}
{
If $p:\widetilde Y \rightarrow Y$ is the universal covering map, then the fundamental group of $\widetilde Y$ is trivial and the Hurewicz homomorphism $\pi_2\widetilde Y\rightarrow H_2(\widetilde Y,\mathbb Z)$ from the second homotopy group of $\widetilde Y$ to the second integral homology of $\widetilde Y$ is an isomorphism. Furthermore, the map $p$ induces an isomorphism $\pi_2\widetilde Y \rightarrow \pi_2Y$. Thus $H_2(\widetilde Y,\mathbb Z)$ is isomorphic to the second homotopy group $\pi_2Y$.
If the fundamental group of $Y$ happens to be finite, then in principle we can calculate $H_2(\widetilde Y,\mathbb Z) \cong \pi_2Y$. We illustrate this computation for $Y$ equal to the real projective plane. The above computation shows that $Y$ has second homotopy group $\pi_2Y \cong \mathbb Z$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=[ [1,2,3], [1,3,4], [1,2,6], [1,5,6], [1,4,5], A
@gapprompt|>A @gapinput| [2,3,5], [2,4,5], [2,4,6], [3,4,6], [3,5,6]];;A
@gapprompt|gap>A @gapinput|K:=MaximalSimplicesToSimplicialComplex(K);A
Simplicial complex of dimension 2.
@gapprompt|gap>A @gapinput|Y:=RegularCWComplex(K); A
Regular CW-complex of dimension 2
@gapprompt|gap>A @gapinput|# Y is a regular CW-complex corresponding to the projective plane.A
@gapprompt|gap>A @gapinput|U:=UniversalCover(Y);A
Equivariant CW-complex of dimension 2
@gapprompt|gap>A @gapinput|G:=U!.group;; A
@gapprompt|gap>A @gapinput|# G is the fundamental group of Y, which by the next command A
@gapprompt|gap>A @gapinput|# is finite of order 2.A
@gapprompt|gap>A @gapinput|Order(G);A
2
@gapprompt|gap>A @gapinput|U:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G))); A
Regular CW-complex of dimension 2
@gapprompt|gap>A @gapinput|#U is the universal cover of YA
@gapprompt|gap>A @gapinput|Homology(U,0);A
[ 0 ]
@gapprompt|gap>A @gapinput|Homology(U,1);A
[ ]
@gapprompt|gap>A @gapinput|Homology(U,2);A
[ 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Third homotopy groups of simply connected spaces}}\logpage{[ 3, 6, 0 ]}
\hyperdef{L}{X87F8F6C3812A7E73}{}
{
\subsection{\textcolor{Chapter }{First example: Whitehead's certain exact sequence}}\logpage{[ 3, 6, 1 ]}
\hyperdef{L}{X7B506CF27DE54DBE}{}
{
For any path connected space $Y$ with universal cover $\widetilde Y$ there is an exact sequence
$\rightarrow \pi_4\widetilde Y \rightarrow H_4(\widetilde Y,\mathbb Z)
\rightarrow H_4( K(\pi_2\widetilde Y,2), \mathbb Z ) \rightarrow
\pi_3\widetilde Y \rightarrow H_3(\widetilde Y,\mathbb Z) \rightarrow 0 $
due to J.H.C.Whitehead. Here $K(\pi_2(\widetilde Y),2)$ is an Eilenberg\texttt{\symbol{45}}MacLane space with second homotopy group
equal to $\pi_2\widetilde Y$.
Continuing with the above example where $Y$ is the real projective plane, we see that $H_4(\widetilde Y,\mathbb Z) = H_3(\widetilde Y,\mathbb Z) = 0$ since $\widetilde Y$ is a $2$\texttt{\symbol{45}}dimensional CW\texttt{\symbol{45}}space. The exact
sequence implies $\pi_3\widetilde Y \cong H_4(K(\pi_2\widetilde Y,2), \mathbb Z )$. Furthermore, $\pi_3\widetilde Y = \pi_3 Y$. The following commands establish that $\pi_3Y \cong \mathbb Z\, $.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=AbelianPcpGroup([0]);|
Pcp-group with orders [ 0 ]
!gapprompt@gap>| !gapinput@K:=EilenbergMacLaneSimplicialGroup(A,2,5);;|
!gapprompt@gap>| !gapinput@C:=ChainComplexOfSimplicialGroup(K);|
Chain complex of length 5 in characteristic 0 .
!gapprompt@gap>| !gapinput@Homology(C,4);|
[ 0 ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Second example: the Hopf invariant}}\logpage{[ 3, 6, 2 ]}
\hyperdef{L}{X828F0FAB86AA60E9}{}
{
The following commands construct a $4$\texttt{\symbol{45}}dimensional simplicial complex $Y$ with $9$ vertices and $36$ $4$\texttt{\symbol{45}}dimensional simplices, and establish that
$\pi_1Y=0 , \pi_2Y=\mathbb Z , H_3(Y,\mathbb Z)=0, H_4(Y,\mathbb Z)=\mathbb Z $.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@smp:=[ [ 1, 2, 4, 5, 6 ], [ 1, 2, 4, 5, 9 ], [ 1, 2, 5, 6, 8 ], |
!gapprompt@>| !gapinput@ [ 1, 2, 6, 4, 7 ], [ 2, 3, 4, 5, 8 ], [ 2, 3, 5, 6, 4 ], |
!gapprompt@>| !gapinput@ [ 2, 3, 5, 6, 7 ], [ 2, 3, 6, 4, 9 ], [ 3, 1, 4, 5, 7 ],|
!gapprompt@>| !gapinput@ [ 3, 1, 5, 6, 9 ], [ 3, 1, 6, 4, 5 ], [ 3, 1, 6, 4, 8 ], |
!gapprompt@>| !gapinput@ [ 4, 5, 7, 8, 3 ], [ 4, 5, 7, 8, 9 ], [ 4, 5, 8, 9, 2 ], |
!gapprompt@>| !gapinput@ [ 4, 5, 9, 7, 1 ], [ 5, 6, 7, 8, 2 ], [ 5, 6, 8, 9, 1 ],|
!gapprompt@>| !gapinput@ [ 5, 6, 8, 9, 7 ], [ 5, 6, 9, 7, 3 ], [ 6, 4, 7, 8, 1 ], |
!gapprompt@>| !gapinput@ [ 6, 4, 8, 9, 3 ], [ 6, 4, 9, 7, 2 ], [ 6, 4, 9, 7, 8 ], |
!gapprompt@>| !gapinput@ [ 7, 8, 1, 2, 3 ], [ 7, 8, 1, 2, 6 ], [ 7, 8, 2, 3, 5 ],|
!gapprompt@>| !gapinput@ [ 7, 8, 3, 1, 4 ], [ 8, 9, 1, 2, 5 ], [ 8, 9, 2, 3, 1 ], |
!gapprompt@>| !gapinput@ [ 8, 9, 2, 3, 4 ], [ 8, 9, 3, 1, 6 ], [ 9, 7, 1, 2, 4 ], |
!gapprompt@>| !gapinput@ [ 9, 7, 2, 3, 6 ], [ 9, 7, 3, 1, 2 ], [ 9, 7, 3, 1, 5 ] ];;|
!gapprompt@gap>| !gapinput@K:=MaximalSimplicesToSimplicialComplex(smp);|
Simplicial complex of dimension 4.
!gapprompt@gap>| !gapinput@Y:=RegularCWComplex(Y);|
Regular CW-complex of dimension 4
!gapprompt@gap>| !gapinput@Order(FundamentalGroup(Y));|
1
!gapprompt@gap>| !gapinput@Homology(Y,2);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,3);|
[ ]
!gapprompt@gap>| !gapinput@Homology(Y,4);|
[ 0 ]
\end{Verbatim}
Previous commands have established $ H_4(K(\mathbb Z,2), \mathbb Z)=\mathbb Z$. So Whitehead's sequence reduces to an exact sequence
$\mathbb Z \rightarrow \mathbb Z \rightarrow \pi_3Y \rightarrow 0$
in which the first map is $ H_4(Y,\mathbb Z)=\mathbb Z \rightarrow H_4(K(\pi_2Y,2), \mathbb Z )=\mathbb Z $. Hence $\pi_3Y$ is cyclic.
HAP is currently unable to compute the order of $\pi_3Y$ directly from Whitehead's sequence. Instead, we can use the \emph{Hopf invariant}. For any map $\phi\colon S^3 \rightarrow S^2$ we consider the space $C(\phi) = S^2 \cup_\phi e^4$ obtained by attaching a $4$\texttt{\symbol{45}}cell $e^4$ to $S^2$ via the attaching map $\phi$. The cohomology groups $H^2(C(\phi),\mathbb Z)=\mathbb Z$, $H^4(C(\phi),\mathbb Z)=\mathbb Z$ are generated by elements $\alpha, \beta$ say, and the cup product has the form
$- \cup -\colon H^2(C(\phi),\mathbb Z)\times H^2(C(\phi),\mathbb Z) \rightarrow
H^4(C(\phi),\mathbb Z), (\alpha,\alpha) \mapsto h_\phi \beta$
for some integer $h_\phi$. The integer $h_\phi$ is the \textsc{Hopf invariant}. The function $h\colon \pi_3(S^3)\rightarrow \mathbb Z$ is a homomorphism and there is an isomorphism
$\pi_3(S^2\cup e^4) \cong \mathbb Z/\langle h_\phi\rangle$.
The following commands begin by simplifying the cell structure on the above
CW\texttt{\symbol{45}}complex $Y\cong K$ to obtain a homeomorphic CW\texttt{\symbol{45}}complex $W$ with fewer cells. They then create a space $S$ by removing one $4$\texttt{\symbol{45}}cell from $W$. The space $S$ is seen to be homotopy equivalent to a CW\texttt{\symbol{45}}complex $e^2\cup e^0$ with a single $0$\texttt{\symbol{45}}cell and single $2$\texttt{\symbol{45}}cell. Hence $S\simeq S^2$ is homotopy equivalent to the $2$\texttt{\symbol{45}}sphere. Consequently $Y \simeq C(\phi ) = S^2\cup_\phi e^4 $ for some map $\phi\colon S^3 \rightarrow S^2$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@W:=SimplifiedComplex(Y);|
Regular CW-complex of dimension 4
!gapprompt@gap>| !gapinput@S:=RegularCWComplexWithRemovedCell(W,4,6);|
Regular CW-complex of dimension 4
!gapprompt@gap>| !gapinput@CriticalCells(S);|
[ [ 2, 6 ], [ 0, 5 ] ]
\end{Verbatim}
The next commands show that the map $\phi$ in the construction $Y \simeq C(\phi) $ has Hopf invariant \texttt{\symbol{45}}1. Hence $h\colon \pi_3(S^3)\rightarrow \mathbb Z$ is an isomorphism. Therefore $\pi_3Y=0$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@IntersectionForm(K);|
[ [ -1 ] ]
\end{Verbatim}
[The simplicial complex $K$ in this second example is due to W. Kuehnel and T. F. Banchoff and is
homeomorphic to the complex projective plane. ] }
}
\section{\textcolor{Chapter }{Computing the second homotopy group of a space with infinite fundamental group}}\logpage{[ 3, 7, 0 ]}
\hyperdef{L}{X7EAF7E677FB9D53F}{}
{
The following commands compute the second integral homology
$H_2(\pi_1W,\mathbb Z) = \mathbb Z$
of the fundamental group $\pi_1W$ of the complement $W$ of the Hopf\texttt{\symbol{45}}Satoh surface.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=HopfSatohSurface();|
Pure cubical complex of dimension 4.
!gapprompt@gap>| !gapinput@W:=ContractedComplex(RegularCWComplex(PureComplexComplement(L)));|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@GW:=FundamentalGroup(W);;|
!gapprompt@gap>| !gapinput@IsAspherical(GW);|
Presentation is aspherical.
true
!gapprompt@gap>| !gapinput@R:=ResolutionAsphericalPresentation(GW);;|
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R),2);|
[ 0 ]
\end{Verbatim}
From Hopf's exact sequence
$ \pi_2W \stackrel{h}{\longrightarrow} H_2(W,\mathbb Z) \twoheadrightarrow
H_2(\pi_1W,\mathbb Z) \rightarrow 0$
and the computation $H_2(W,\mathbb Z)=\mathbb Z^4$ we see that the image of the Hurewicz homomorphism is ${\sf im}(h)= \mathbb Z^3$ . The image of $h$ is referred to as the subgroup of \emph{spherical homology classes} and often denoted by $\Sigma^2W$.
The following command computes the presentation of $\pi_1W$ corresponding to the $2$\texttt{\symbol{45}}skeleton $W^2$ and establishes that $W^2 = S^2\vee S^2 \vee S^2 \vee (S^1\times S^1)$ is a wedge of three spheres and a torus.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FundamentalGroupOfRegularCWComplex(W,"no simplification");|
< fp group on the generators [ f1, f2 ]>
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(F);|
[ < identity ...>, f1^-1*f2^-1*f1*f2, < identity ...>, <identity ...> ]
\end{Verbatim}
The next command shows that the $3$\texttt{\symbol{45}}dimensional space $W$ has two $3$\texttt{\symbol{45}}cells each of which is attached to the
base\texttt{\symbol{45}}point of $W$ with trivial boundary (up to homotopy in $W^2$). Hence $W = S^3\vee S^3\vee S^2 \vee S^2 \vee S^2 \vee (S^1\times S^1)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@CriticalCells(W);|
[ [ 3, 1 ], [ 3, 3148 ], [ 2, 6746 ], [ 2, 20510 ], [ 2, 33060 ],
[ 2, 50919 ], [ 1, 29368 ], [ 1, 50822 ], [ 0, 21131 ] ]
!gapprompt@gap>| !gapinput@CriticalBoundaryCells(W,3,1);|
[ ]
!gapprompt@gap>| !gapinput@CriticalBoundaryCells(W,3,3148);|
[ -50919, 50919 ]
\end{Verbatim}
Therefore $\pi_1W$ is the free abelian group on two generators, and $\pi_2W$ is the free $\mathbb Z\pi_1W$\texttt{\symbol{45}}module on three free generators. }
}
\chapter{\textcolor{Chapter }{Three Manifolds}}\logpage{[ 4, 0, 0 ]}
\hyperdef{L}{X7BFA4D1587D8DF49}{}
{
\section{\textcolor{Chapter }{Dehn Surgery}}\logpage{[ 4, 1, 0 ]}
\hyperdef{L}{X82D1348C79238C2D}{}
{
The following example constructs, as a regular CW\texttt{\symbol{45}}complex,
a closed orientable 3\texttt{\symbol{45}}manifold $W$ obtained from the 3\texttt{\symbol{45}}sphere by drilling out a tubular
neighbourhood of a trefoil knot and then gluing a solid torus to the boundary
of the cavity via a homeomorphism corresponding to a Dehn surgery coefficient $p/q=17/16$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ap:=ArcPresentation(PureCubicalKnot(3,1));;|
!gapprompt@gap>| !gapinput@p:=17;;q:=16;;|
!gapprompt@gap>| !gapinput@W:=ThreeManifoldViaDehnSurgery(ap,p,q);|
Regular CW-complex of dimension 3
\end{Verbatim}
The next commands show that this $3$\texttt{\symbol{45}}manifold $W$ has integral homology
$ H_0(W,\mathbb Z)=\mathbb Z$, $ H_1(W,\mathbb Z)=\mathbb Z_{16}$, $ H_2(W,\mathbb Z)=0$, $ H_3(W,\mathbb Z)=\mathbb Z$
and that the fundamental group $\pi_1(W)$ is non\texttt{\symbol{45}}abelian.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Homology(W,0);Homology(W,1);Homology(W,2);Homology(W,3);|
[ 0 ]
[ 16 ]
[ ]
[ 0 ]
!gapprompt@gap>| !gapinput@F:=FundamentalGroup(W);;|
!gapprompt@gap>| !gapinput@L:=LowIndexSubgroupsFpGroup(F,10);;|
!gapprompt@gap>| !gapinput@List(L,AbelianInvariants);|
[ [ 16 ], [ 3, 8 ], [ 3, 4 ], [ 2, 3 ], [ 16, 43 ], [ 8, 43, 43 ] ]
\end{Verbatim}
The following famous result of Lickorish and (independently) Wallace shows
that Dehn surgery on knots leads to an interesting range of spaces.
\textsc{Theorem:} \emph{ Every closed, orientable, connected $3$\texttt{\symbol{45}}manifold can be obtained by surgery on a link in $S^3$. (Moreover, one can always perform the surgery with surgery coefficients $\pm 1$ and with each individual component of the link unknotted.) } }
\section{\textcolor{Chapter }{Connected Sums}}\logpage{[ 4, 2, 0 ]}
\hyperdef{L}{X848EDEE882B36F6C}{}
{
The following example constructs the connected sum $W=A\#B$ of two $3$\texttt{\symbol{45}}manifolds, where $A$ is obtained from a $5/1$ Dehn surgery on the complement of the first prime knot on 11 crossings and $B$ is obtained by a $5/1$ Dehn surgery on the complement of the second prime knot on 11 crossings. The
homology groups
$H_1(W,\mathbb Z) = \mathbb Z_2\oplus \mathbb Z_{594}$, $H_2(W,\mathbb Z) = 0$, $H_3(W,\mathbb Z) = \mathbb Z$
are computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ap1:=ArcPresentation(PureCubicalKnot(11,1));;|
!gapprompt@gap>| !gapinput@A:=ThreeManifoldViaDehnSurgery(ap1,5,1);;|
!gapprompt@gap>| !gapinput@ap2:=ArcPresentation(PureCubicalKnot(11,2));;|
!gapprompt@gap>| !gapinput@B:=ThreeManifoldViaDehnSurgery(ap2,5,1);;|
!gapprompt@gap>| !gapinput@W:=ConnectedSum(A,B); #W:=ConnectedSum(A,B,-1) would yield A#-B where -B has the opposite orientation|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@Homology(W,1);|
[ 2, 594 ]
!gapprompt@gap>| !gapinput@Homology(W,2);|
[ ]
!gapprompt@gap>| !gapinput@Homology(W,3);|
[ 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Dijkgraaf\texttt{\symbol{45}}Witten Invariant}}\logpage{[ 4, 3, 0 ]}
\hyperdef{L}{X78AE684C7DBD7C70}{}
{
Given a closed connected orientable $3$\texttt{\symbol{45}}manifold $W$, a finite group $G$ and a 3\texttt{\symbol{45}}cocycle $\alpha\in H^3(BG,U(1))$ Dijkgraaf and Witten define the complex number
\$\$
Z\texttt{\symbol{94}}\texttt{\symbol{123}}G,\texttt{\symbol{92}}alpha\texttt{\symbol{125}}(W)
=
\texttt{\symbol{92}}frac\texttt{\symbol{123}}1\texttt{\symbol{125}}\texttt{\symbol{123}}|G|\texttt{\symbol{125}}\texttt{\symbol{92}}sum{\textunderscore}\texttt{\symbol{123}}\texttt{\symbol{92}}gamma\texttt{\symbol{92}}in
\texttt{\symbol{123}}\texttt{\symbol{92}}rm
Hom\texttt{\symbol{125}}(\texttt{\symbol{92}}pi{\textunderscore}1W,
G)\texttt{\symbol{125}} \texttt{\symbol{92}}langle
\texttt{\symbol{92}}gamma\texttt{\symbol{94}}\texttt{\symbol{92}}ast[\texttt{\symbol{92}}alpha],
[M]\texttt{\symbol{92}}rangle \texttt{\symbol{92}}
\texttt{\symbol{92}}in\texttt{\symbol{92}} \texttt{\symbol{92}}mathbb
C\texttt{\symbol{92}} \$\$ where $\gamma$ ranges over all group homomorphisms $\gamma\colon \pi_1W \rightarrow G$. This complex number is an invariant of the homotopy type of $W$ and is useful for distinguishing between certain homotopically distinct $3$\texttt{\symbol{45}}manifolds.
A homology version of the Dijkgraaf\texttt{\symbol{45}}Witten invariant can be
defined as the set of homology homomorphisms \$\$D{\textunderscore}G(W)
=\texttt{\symbol{92}}\texttt{\symbol{123}}
\texttt{\symbol{92}}gamma{\textunderscore}\texttt{\symbol{92}}ast\texttt{\symbol{92}}colon
H{\textunderscore}3(W,\texttt{\symbol{92}}mathbb Z)
\texttt{\symbol{92}}longrightarrow
H{\textunderscore}3(BG,\texttt{\symbol{92}}mathbb Z)
\texttt{\symbol{92}}\texttt{\symbol{125}}{\textunderscore}\texttt{\symbol{123}}\texttt{\symbol{92}}gamma\texttt{\symbol{92}}in
\texttt{\symbol{123}}\texttt{\symbol{92}}rm
Hom\texttt{\symbol{125}}(\texttt{\symbol{92}}pi{\textunderscore}1W,
G)\texttt{\symbol{125}}.\$\$ Since $H_3(W,\mathbb Z)\cong \mathbb Z$ we represent $D_G(W)$ by the set $D_G(W)=\{ \gamma_\ast(1) \}_{\gamma\in {\rm Hom}(\pi_1W, G)}$ where $1$ denotes one of the two possible generators of $H_3(W,\mathbb Z)$.
For any coprime integers $p,q\ge 1$ the \emph{lens space} $L(p,q)$ is obtained from the 3\texttt{\symbol{45}}sphere by drilling out a tubular
neighbourhood of the trivial knot and then gluing a solid torus to the
boundary of the cavity via a homeomorphism corresponding to a Dehn surgery
coefficient $p/q$. Lens spaces have cyclic fundamental group $\pi_1(L(p,q))=C_p$ and homology $H_1(L(p,q),\mathbb Z)\cong \mathbb Z_p$, $H_2(L(p,q),\mathbb Z)\cong 0$, $H_3(L(p,q),\mathbb Z)\cong \mathbb Z$. It was proved by J.H.C. Whitehead that two lens spaces $L(p,q)$ and $L(p',q')$ are homotopy equivalent if and only if $p=p'$ and $qq'\equiv \pm n^2 \bmod p$ for some integer $n$.
The following session constructs the two lens spaces $L(5,1)$ and $L(5,2)$. The homology version of the Dijkgraaf\texttt{\symbol{45}}Witten invariant is
used with $G=C_5$ to demonstrate that the two lens spaces are not homotopy equivalent.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ap:=[[2,1],[2,1]];; #Arc presentation for the trivial knot|
!gapprompt@gap>| !gapinput@L51:=ThreeManifoldViaDehnSurgery(ap,5,1);;|
!gapprompt@gap>| !gapinput@D:=DijkgraafWittenInvariant(L51,CyclicGroup(5));|
[ g1^4, g1^4, g1, g1, id ]
!gapprompt@gap>| !gapinput@L52:=ThreeManifoldViaDehnSurgery(ap,5,2);;|
!gapprompt@gap>| !gapinput@D:=DijkgraafWittenInvariant(L52,CyclicGroup(5));|
[ g1^3, g1^3, g1^2, g1^2, id ]
\end{Verbatim}
A theorem of Fermat and Euler states that if a prime $p$ is congruent to 3 modulo 4, then for any $q$ exactly one of $\pm q$ is a quadratic residue mod p. For all other primes $p$ either both or neither of $\pm q$ is a quadratic residue mod $p$. Thus for fixed $p \equiv 3 \bmod 4$ the lens spaces $L(p,q)$ form a single homotopy class. There are precisely two homotopy classes of lens
spaces for other $p$.
The following commands confirm that $L(13,1) \not\simeq L(13,2)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;|
!gapprompt@gap>| !gapinput@DijkgraafWittenInvariant(L13_1,CyclicGroup(13));|
[ g1^12, g1^12, g1^10, g1^10, g1^9, g1^9, g1^4, g1^4, g1^3, g1^3, g1, g1, id ]
!gapprompt@gap>| !gapinput@L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;|
!gapprompt@gap>| !gapinput@DijkgraafWittenInvariant(L13_2,CyclicGroup(13));|
[ g1^11, g1^11, g1^8, g1^8, g1^7, g1^7, g1^6, g1^6, g1^5, g1^5, g1^2, g1^2,
id ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cohomology rings}}\logpage{[ 4, 4, 0 ]}
\hyperdef{L}{X80B6849C835B7F19}{}
{
The following commands construct the multiplication table (with respect to
some basis) for the cohomology rings $H^\ast(L(13,1),\mathbb Z_{13})$ and $H^\ast(L(13,2),\mathbb Z_{13})$. These rings are isomorphic and so fail to distinguish between the homotopy
types of the lens spaces $L(13,1)$ and $L(13,2)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;|
!gapprompt@gap>| !gapinput@L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;|
!gapprompt@gap>| !gapinput@L13_1:=BarycentricSubdivision(L13_1);;|
!gapprompt@gap>| !gapinput@L13_2:=BarycentricSubdivision(L13_2);;|
!gapprompt@gap>| !gapinput@A13_1:=CohomologyRing(L13_1,13);;|
!gapprompt@gap>| !gapinput@A13_2:=CohomologyRing(L13_2,13);;|
!gapprompt@gap>| !gapinput@M13_1:=List([1..4],i->[]);;|
!gapprompt@gap>| !gapinput@B13_1:=CanonicalBasis(A13_1);;|
!gapprompt@gap>| !gapinput@M13_2:=List([1..4],i->[]);;|
!gapprompt@gap>| !gapinput@B13_2:=CanonicalBasis(A13_2);;|
!gapprompt@gap>| !gapinput@for i in [1..4] do|
!gapprompt@>| !gapinput@for j in [1..4] do|
!gapprompt@>| !gapinput@M13_1[i][j]:=B13_1[i]*B13_1[j];|
!gapprompt@>| !gapinput@od;od;|
!gapprompt@gap>| !gapinput@for i in [1..4] do|
!gapprompt@>| !gapinput@for j in [1..4] do|
!gapprompt@>| !gapinput@M13_2[i][j]:=B13_2[i]*B13_2[j];|
!gapprompt@>| !gapinput@od;od;|
!gapprompt@gap>| !gapinput@Display(M13_1);|
[ [ v.1, v.2, v.3, v.4 ],
[ v.2, 0*v.1, (Z(13)^6)*v.4, 0*v.1 ],
[ v.3, (Z(13)^6)*v.4, 0*v.1, 0*v.1 ],
[ v.4, 0*v.1, 0*v.1, 0*v.1 ] ]
!gapprompt@gap>| !gapinput@Display(M13_2);|
[ [ v.1, v.2, v.3, v.4 ],
[ v.2, 0*v.1, (Z(13))*v.4, 0*v.1 ],
[ v.3, (Z(13))*v.4, 0*v.1, 0*v.1 ],
[ v.4, 0*v.1, 0*v.1, 0*v.1 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Linking Form}}\logpage{[ 4, 5, 0 ]}
\hyperdef{L}{X7F56BB4C801AB894}{}
{
Given a closed connected \textsc{oriented} $3$\texttt{\symbol{45}}manifold $W$ let $\tau H_1(W,\mathbb Z)$ denote the torsion subgroup of the first integral homology. The \emph{linking form} is a bilinear mapping
$Lk_W\colon \tau H_1(W,\mathbb Z) \times \tau H_1(W,\mathbb Z) \longrightarrow
\mathbb Q/\mathbb Z$.
To construct this form note that we have a Poincare duality isomorphism
$\rho\colon H^2(W,\mathbb Z) \stackrel{\cong}{\longrightarrow} H_1(W,\mathbb
Z), z \mapsto z\cap [W]$
involving the cap product with the fundamental class $[W]\in H^3(W,\mathbb Z)$. That is, $[M]$ is the generator of $H^3(W,\mathbb Z)\cong \mathbb Z$ determining the orientation. The short exact sequence $\mathbb Z \rightarrowtail \mathbb Q \twoheadrightarrow \mathbb Q/\mathbb Z$ gives rise to a cohomology exact sequence
$ \rightarrow H^1(W,\mathbb Q) \rightarrow H^1(W,\mathbb Q/\mathbb Z)
\stackrel{\beta}{\longrightarrow} H^2(W,\mathbb Z) \rightarrow H^2(W,\mathbb
Q) \rightarrow $
from which we obtain the isomorphism $\beta \colon \tau H^1(W,\mathbb Q/\mathbb Z) \stackrel{\cong}{\longrightarrow}
\tau H^2(W,\mathbb Z)$. The linking form $Lk_W$ can be defined as the composite
$Lk_W\colon \tau H_1(W,\mathbb Z) \times \tau H_1(W,\mathbb Z)
\stackrel{1\times \rho^{-1}}{\longrightarrow} \tau H_1(W,\mathbb Z) \times
\tau H^2(W,\mathbb Z) \stackrel{1\times \beta^{-1}}{\longrightarrow} \tau
H_1(W,\mathbb Z) \times \tau H^1(W,\mathbb Q/\mathbb Z)
\stackrel{ev}{\longrightarrow } \mathbb Q/\mathbb Z $
where $ev(x,\alpha)$ evaluates a $1$\texttt{\symbol{45}}cocycle $\alpha$ on a $1$\texttt{\symbol{45}}cycle $x$.
The linking form can be used to define the set
$I^O(W) = \{Lk_W(g,g) \ \colon \ g\in \tau H_1(W,\mathbb Z)\}$
which is an oriented\texttt{\symbol{45}}homotopy invariant of $W$. Letting $W^+$ and $W^-$ denote the two possible orientations on the manifold, the set
$I(W) =\{I^O(W^+), I^O(W^-)\}$
is a homotopy invariant of $W$ which in this manual we refer to as the \emph{linking form homotopy invariant}.
The following commands compute the linking form homotopy invariant for the
lens spaces $L(13,q)$ with $1\le q\le 12$. This invariant distinguishes between the two homotopy types that arise.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@LensSpaces:=[];;|
!gapprompt@gap>| !gapinput@for q in [1..12] do|
!gapprompt@>| !gapinput@Add(LensSpaces,ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,q));|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@Display(List(LensSpaces,LinkingFormHomotopyInvariant));;|
[ [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], [ 0, 2/13,
2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Determining the homeomorphism type of a lens space}}\logpage{[ 4, 6, 0 ]}
\hyperdef{L}{X850C76697A6A1654}{}
{
In 1935 K. Reidemeister \cite{reidemeister} classified lens spaces up to orientation preserving
PL\texttt{\symbol{45}}homeomorphism. This was generalized by E. Moise \cite{moise} in 1952 to a classification up to homeomorphism
\texttt{\symbol{45}}\texttt{\symbol{45}} his method requred the proof of the
Hauptvermutung for $3$\texttt{\symbol{45}}dimensional manifolds. In 1960, following a suggestion of
R. Fox, a proof was given by E.J. Brody \cite{brody} that avoided the need for the Hauptvermutung. Reidemeister's method, using
what is know termed \emph{Reidermeister torsion}, and Brody's method, using tubular neighbourhoods of $1$\texttt{\symbol{45}}cycles, both require identifying a suitable "preferred"
generator of $H_1(L(p,q),\mathbb Z)$. In 2003 J. Przytycki and A. Yasukhara \cite{przytycki} provided an alternative method for classifying lens spaces, which uses the
linking form and again requires the identification of a "preferred" generator
of $H_1(L(p,q),\mathbb Z)$.
Przytycki and Yasukhara proved the following.
\textsc{Theorem.} \emph{Let $\rho\colon S^ 3 \rightarrow L(p, q)$ be the $p$\texttt{\symbol{45}}fold cyclic cover and $K$ a knot in $L(p, q)$ that represents a generator of $H_1 (L(p, q), \mathbb Z)$. If $\rho ^{-1} (K)$ is the trivial knot, then $Lk_{ L(p,q)} ([K], [K]) = q/p$ or $= \overline q/p \in \mathbb Q/\mathbb Z$ where $q\overline q \equiv 1 \bmod p$. }
The ingredients of this theorem can be applied in HAP, but at present only to
small examples of lens spaces. The obstruction to handling large examples is
that the current default method for computing the linking form involves
barycentric subdivision to produce a simplicial complex from a regular
CW\texttt{\symbol{45}}complex, and then a homotopy equivalence from this
typically large simplicial complex to a smaller non\texttt{\symbol{45}}regular
CW\texttt{\symbol{45}}complex. However, for homeomorphism invariants that are
not homotopy invariants there is a need to avoid homotopy equivalences. In the
current version of HAP this means that in order to obtain delicate
homeomorphism invariants we have to perform homology computations on typically
large simplicial complexes. In a future version of HAP we hope to avoid the
obstruction by implementing cup products, cap products and linking forms
entirely within the category of regular CW\texttt{\symbol{45}}complexes.
The following commands construct a small lens space $L=L(p,q)$ with unknown values of $p,q$. Subsequent commands will determine the homeomorphism type of $L$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@p:=Random([2,3,5,7,11,13,17]);;|
!gapprompt@gap>| !gapinput@q:=Random([1..p-1]);;|
!gapprompt@gap>| !gapinput@L:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],p,q);|
Regular CW-complex of dimension 3
\end{Verbatim}
We can readily determine the value of $p=11$ by calculating the order of $\pi_1(L)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FundamentalGroupWithPathReps(L);;|
!gapprompt@gap>| !gapinput@StructureDescription(F);|
"C11"
\end{Verbatim}
The next commands take the default edge path $\gamma\colon S^1\rightarrow L$ representing a generator of the cyclic group $\pi_1(L)$ and lift it to an edge path $\tilde\gamma\colon S^1\rightarrow \tilde L$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|U:=UniversalCover(L);;B
@gapprompt|gap>B @gapinput|G:=U!.group;;B
@gapprompt|gap>B @gapinput|p:=EquivariantCWComplexToRegularCWMap(U,Group(One(G)));;B
@gapprompt|gap>B @gapinput|U:=Source(p);;B
@gapprompt|gap>B @gapinput|gamma:=[];;B
@gapprompt|gap>B @gapinput|gamma[2]:=F!.loops[1];;B
@gapprompt|gap>B @gapinput|gamma[2]:=List(gamma[2],AbsInt);;B
@gapprompt|gap>B @gapinput|gamma[1]:=List(gamma[2],k->L!.boundaries[2][k]);;B
@gapprompt|gap>B @gapinput|gamma[1]:=SSortedList(Flat(gamma[1]));;B
@gapprompt|gap>B @gapinput|B
@gapprompt|gap>B @gapinput|gammatilde:=[[],[],[],[]];;B
@gapprompt|gap>B @gapinput|for k in [1..U!.nrCells(0)] doB
@gapprompt|>B @gapinput|if p!.mapping(0,k) in gamma[1] then Add(gammatilde[1],k); fi;B
@gapprompt|>B @gapinput|od;B
@gapprompt|gap>B @gapinput|for k in [1..U!.nrCells(1)] doB
@gapprompt|>B @gapinput|if p!.mapping(1,k) in gamma[2] then Add(gammatilde[2],k); fi;B
@gapprompt|>B @gapinput|od;B
@gapprompt|gap>B @gapinput|gammatilde:=CWSubcomplexToRegularCWMap([U,gammatilde]);B
Map of regular CW-complexes
\end{Verbatim}
The next commands check that the path $\tilde\gamma$ is unknotted in $\tilde L\cong S^3$ by checking that $\pi_1(\tilde L\setminus {\rm image}(\tilde\gamma))$ is infinite cyclic.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@C:=RegularCWComplexComplement(gammatilde);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(C);|
<fp group of size infinity on the generators [ f2 ]>
\end{Verbatim}
Since $\tilde\gamma$ is unkotted the cycle $\gamma$ represents the preferred generator $[\gamma]\in H_1(L,\mathbb Z)$. The next commands compute $Lk_L([\gamma],[\gamma])= 7/11 $.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@LinkingFormHomeomorphismInvariant(L);|
[ 7/11 ]
\end{Verbatim}
The classification of Moise/Brody states that $L(p,q)\cong L(p,q')$ if and only if $qq'\equiv \pm 1 \bmod p$. Hence the lens space $L$ has the homeomorphism type
$L\cong L(11,7) \cong L(11,8) \cong L(11,4) \cong L(11,3)$. }
\section{\textcolor{Chapter }{Surgeries on distinct knots can yield homeomorphic manifolds}}\logpage{[ 4, 7, 0 ]}
\hyperdef{L}{X7EC6B008878CC77E}{}
{
The lens space $L(5,1)$ is a quotient of the $3$\texttt{\symbol{45}}sphere $S^3$ by a certain action of the cyclic group $C_5$. It can be realized by a $p/q=5/1$ Dehn filling of the complement of the trivial knot. It can also be realized by
Dehn fillings of other knots. To see this, the following commands compute the
manifold $W$ obtained from a $p/q=1/5$ Dehn filling of the complement of the trefoil and show that $W$ at least has the same integral homology and same fundamental group as $L(5,1)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ap:=ArcPresentation(PureCubicalKnot(3,1));;|
!gapprompt@gap>| !gapinput@W:=ThreeManifoldViaDehnSurgery(ap,1,5);;|
!gapprompt@gap>| !gapinput@Homology(W,1);|
[ 5 ]
!gapprompt@gap>| !gapinput@Homology(W,2);|
[ ]
!gapprompt@gap>| !gapinput@Homology(W,3);|
[ 0 ]
!gapprompt@gap>| !gapinput@F:=FundamentalGroup(W);;|
!gapprompt@gap>| !gapinput@StructureDescription(F);|
"C5"
\end{Verbatim}
The next commands construct the universal cover $\widetilde W$ and show that it has the same homology as $S^3$ and trivivial fundamental group $\pi_1(\widetilde W)=0$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|U:=UniversalCover(W);;A
@gapprompt|gap>A @gapinput|G:=U!.group;;A
@gapprompt|gap>A @gapinput|Wtilde:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G)));A
Regular CW-complex of dimension 3
@gapprompt|gap>A @gapinput|Homology(Wtilde,1);A
[ ]
@gapprompt|gap>A @gapinput|Homology(Wtilde,2);A
[ ]
@gapprompt|gap>A @gapinput|Homology(Wtilde,3);A
[ 0 ]
@gapprompt|gap>A @gapinput|F:=FundamentalGroup(Wtilde);A
<fp group on the generators [ ]>
\end{Verbatim}
By construction the space $\widetilde W$ is a manifold. Had we not known how the regular CW\texttt{\symbol{45}}complex $\widetilde W$ had been constructed then we could prove that it is a closed $3$\texttt{\symbol{45}}manifold by creating its barycentric subdivision $K=sd\widetilde W$, which is homeomorphic to $\widetilde W$, and verifying that the link of each vertex in the simplicial complex $sd\widetilde W$ is a $2$\texttt{\symbol{45}}sphere. The following command carries out this proof.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@IsClosedManifold(Wtilde);|
true
\end{Verbatim}
The Poincare conjecture (now proven) implies that $\widetilde W$ is homeomorphic to $S^3$. Hence $W=S^3/C_5$ is a quotient of the $3$\texttt{\symbol{45}}sphere by an action of $C_5$ and is hence a lens space $L(5,q)$ for some $q$.
The next commands determine that $W$ is homeomorphic to $L(5,4)\cong L(5,1)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Lk:=LinkingFormHomeomorphismInvariant(W);|
[ 0, 4/5 ]
\end{Verbatim}
Moser \cite{lmoser} gives a precise decription of the lens spaces arising from surgery on the
trefoil knot and more generally from surgery on torus knots. Greene \cite{greene} determines the lens spaces that arise by integer Dehn surgery along a knot in
the three\texttt{\symbol{45}}sphere }
\section{\textcolor{Chapter }{Finite fundamental groups of $3$\texttt{\symbol{45}}manifolds}}\logpage{[ 4, 8, 0 ]}
\hyperdef{L}{X7B425A3280A2AF07}{}
{
Lens spaces are examples of $3$\texttt{\symbol{45}}manifolds with finite fundamental groups. The complete
list of finite groups $G$ arising as fundamental groups of closed connected $3$\texttt{\symbol{45}}manifolds is recalled in \ref{Secfinitefundman} where one method for computing their cohomology rings is presented. Their
cohomology could also be computed from explicit $3$\texttt{\symbol{45}}manifolds $W$ with $\pi_1W=G$. For instance, the following commands realize a closed connected $3$\texttt{\symbol{45}}manifold $W$ with $\pi_1W = C_{11}\times SL_2(\mathbb Z_5)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ap:=ArcPresentation(PureCubicalKnot(3,1));;|
!gapprompt@gap>| !gapinput@W:=ThreeManifoldViaDehnSurgery(ap,1,11);;|
!gapprompt@gap>| !gapinput@F:=FundamentalGroup(W);;|
!gapprompt@gap>| !gapinput@Order(F);|
1320
!gapprompt@gap>| !gapinput@AbelianInvariants(F);|
[ 11 ]
!gapprompt@gap>| !gapinput@StructureDescription(F);|
"C11 x SL(2,5)"
\end{Verbatim}
Hence the group $G=C_{11}\times SL_2(\mathbb Z_5)$ of order $1320$ acts freely on the $3$\texttt{\symbol{45}}sphere $\widetilde W$. It thus has periodic cohomology with
\[ H_n(G,\mathbb Z) = \left\{ \begin{array}{ll} \mathbb Z_{11} & n\equiv 1 \bmod
4 \\ 0 & n\equiv 2 \bmod 4 \\ \mathbb Z_{1320} & n \equiv 3\bmod 4\\ \mathbb 0
& n\equiv 0 \bmod 4 \\ \end{array}\right. \]
for $n > 0$. }
\section{\textcolor{Chapter }{Poincare's cube manifolds}}\logpage{[ 4, 9, 0 ]}
\hyperdef{L}{X78912D227D753167}{}
{
In his seminal paper on "Analysis situs", published in 1895, Poincare
constructed a series of closed 3\texttt{\symbol{45}}manifolds which played an
important role in the development of his theory. A good account of these
manifolds is given in the online \href{http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds} {Manifold Atlas Project (MAP)}. Most of his examples are constructed by identifications on the faces of a
(solid) cube. The function \texttt{PoincareCubeCWComplex()} can be used to construct any 3\texttt{\symbol{45}}dimensional
CW\texttt{\symbol{45}}complex arising from a cube by identifying the six faces
pairwise; the vertices and faces of the cube are numbered as follows
and barycentric subdivision is used to ensure that the quotient is represented
as a regular CW\texttt{\symbol{45}}complex.
Examples 3 and 4 from Poincare's paper, described in the following figures
taken from \href{http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds} {MAP},
are constructed in the following example. Both are checked to be orientable
manifolds, and are shown to have different homology. (Note that the second
example in Poincare's paper is not a manifold
\texttt{\symbol{45}}\texttt{\symbol{45}} the links of some of its vertices are
not homeomorphic to a 2\texttt{\symbol{45}}sphere.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=1;;C:=2;;D:=3;;B:=4;;|
!gapprompt@gap>| !gapinput@Ap:=5;;Cp:=6;;Dp:=7;;Bp:=8;;|
!gapprompt@gap>| !gapinput@L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;|
!gapprompt@gap>| !gapinput@M:=[[A,B,Bp,Ap],[Cp,C,D,Dp]];;|
!gapprompt@gap>| !gapinput@N:=[[A,C,Cp,Ap],[D,Dp,Bp,B]];;|
!gapprompt@gap>| !gapinput@Ex3:=PoincareCubeCWComplex(L,M,N);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@IsClosedManifold(Ex3);|
true
!gapprompt@gap>| !gapinput@L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;|
!gapprompt@gap>| !gapinput@M:=[[A,B,Bp,Ap],[C,D,Dp,Cp]];;|
!gapprompt@gap>| !gapinput@N:=[[A,C,Cp,Ap],[B,D,Dp,Bp]];;|
!gapprompt@gap>| !gapinput@Ex4:=PoincareCubeCWComplex(L,M,N);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@IsClosedManifold(Ex4);|
true
!gapprompt@gap>| !gapinput@List([0..3],k->Homology(Ex3,k));|
[ [ 0 ], [ 2, 2 ], [ ], [ 0 ] ]
!gapprompt@gap>| !gapinput@List([0..3],k->Homology(Ex4,k));|
[ [ 0 ], [ 2, 0 ], [ 0 ], [ 0 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{There are at least 25 distinct cube manifolds}}\logpage{[ 4, 10, 0 ]}
\hyperdef{L}{X8761051F84C6CEC2}{}
{
The function \texttt{PoincareCubeCWComplex(A,G)} can also be applied to two inputs where $A$ is a pairing of the six faces such as $A=[[1,2],[3,4],[5,6]]$ and $G$ is a list of three elements of the dihedral group of order $8$ such as $G=[(2,4),(2,4),(2,4)*(1,3)]$. The dihedral elements specify how each pair of faces are glued together.
With these inputs it is easy to iterate over all possible values of $A$ and $G$ in order to construct all possible closed 3\texttt{\symbol{45}}manifolds
arising from the pairwise identification of faces of a cube. We call such a
manifold a \emph{\textsc{cube manifold}}. Distinct values of $A$ and $G$ can of course yield homeomorphic spaces. To ensure that each possible cube
manifold is constructed, at least once, up to homeomorphism it suffices to
consider
$A=[ [1,2], [3,4], [5,6] ]$, $A=[ [1,2], [3,5], [4,6] ]$, $A=[ [1,4], [2,6], [3,5] ]$
and all $G$ in $D_8\times D_8\times D_8$.
The following commands iterate through these $3\times8^3 = 1536$ pairs $(A,G)$ and show that in precisely 163 cases (just over 10\% of cases) the quotient
CW\texttt{\symbol{45}}complex is a closed 3\texttt{\symbol{45}}manifold.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A1:= [ [1,2], [3,4], [5,6] ];;|
!gapprompt@gap>| !gapinput@A2:=[ [1,2], [3,5], [4,6] ];;|
!gapprompt@gap>| !gapinput@A3:=[ [1,4], [2,6], [3,5] ];;|
!gapprompt@gap>| !gapinput@D8:=DihedralGroup(IsPermGroup,8);;|
!gapprompt@gap>| !gapinput@Manifolds:=[];;|
!gapprompt@gap>| !gapinput@for A in [A1,A2,A3] do|
!gapprompt@>| !gapinput@for x in D8 do|
!gapprompt@>| !gapinput@for y in D8 do|
!gapprompt@>| !gapinput@for z in D8 do|
!gapprompt@>| !gapinput@G:=[x,y,z];|
!gapprompt@>| !gapinput@F:=PoincareCubeCWComplex(A,G);|
!gapprompt@>| !gapinput@b:=IsClosedManifold(F);|
!gapprompt@>| !gapinput@if b=true then Add(Manifolds,F); fi;|
!gapprompt@>| !gapinput@od;od;od;od;|
!gapprompt@gap>| !gapinput@Size(Manifolds);|
163
\end{Verbatim}
The following additional commands use integral homology and low index
subgroups of fundamental groups to establish that the 163 cube manifolds
represent at least 25 distinct homotopy equivalence classes of manifolds. One
homotopy class is represented by up to 40 of the manifolds, and at least four
of the homotopy classes are each represented by a single manifold..
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@invariant1:=function(m);|
!gapprompt@>| !gapinput@return List([1..3],k->Homology(m,k));|
!gapprompt@>| !gapinput@end;;|
!gapprompt@gap>| !gapinput@C:=Classify(Manifolds,invariant1);;|
!gapprompt@gap>| !gapinput@invariant2:=function(m)|
!gapprompt@>| !gapinput@local L;|
!gapprompt@>| !gapinput@L:=FundamentalGroup(m);|
!gapprompt@>| !gapinput@if GeneratorsOfGroup(L)= [] then return [];fi;|
!gapprompt@>| !gapinput@L:=LowIndexSubgroupsFpGroup(L,5);|
!gapprompt@>| !gapinput@L:=List(L,AbelianInvariants);|
!gapprompt@>| !gapinput@L:=SortedList(L);|
!gapprompt@>| !gapinput@return L;|
!gapprompt@>| !gapinput@end;;|
!gapprompt@gap>| !gapinput@D:=RefineClassification(C,invariant2);;|
!gapprompt@gap>| !gapinput@List(D,Size);|
[ 40, 2, 10, 15, 8, 6, 2, 6, 2, 5, 7, 1, 4, 11, 7, 7, 10, 4, 4, 2, 1, 3, 1,
1, 4 ]
\end{Verbatim}
The next commands construct a list of 18 orientable cube manifolds and a list
of 7 non\texttt{\symbol{45}}orientable cube manifolds.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Manifolds:=List(D,x->x[1]);;|
!gapprompt@gap>| !gapinput@OrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[0]);;|
!gapprompt@gap>| !gapinput@NonOrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[]);;|
!gapprompt@gap>| !gapinput@Length(OrientableManifolds);|
18
!gapprompt@gap>| !gapinput@Length(NonOrientableManifolds);|
7
\end{Verbatim}
The next commands show that the 7 non\texttt{\symbol{45}}orientable cube
manifolds all have infinite fundamental groups.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@List(NonOrientableManifolds,m->IsFinite(FundamentalGroup(m)));|
[ false, false, false, false, false, false, false ]
\end{Verbatim}
The final commands show that (at least) 9 of the orientable manifolds have
finite fundamental groups and list the isomorphism types of these finite
groups. Note that it is now known that any closed
3\texttt{\symbol{45}}manifold with finite fundamental group is spherical (i.e.
is a quotient of the 3\texttt{\symbol{45}}sphere). Spherical manifolds with
cyclic fundamental group are, by definition, lens spaces.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m->|
IsFinite(FundamentalGroup(m)));
[ true, true, true, true, true, true, true, true, true ]
!gapprompt@gap>| !gapinput@List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m->|
StructureDescription(FundamentalGroup(m)));
[ "Q8", "C2", "C4", "C3 : C4", "C12", "C8", "C14", "C6", "1" ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{Face pairings for 25 distinct cube manifolds}}\logpage{[ 4, 10, 1 ]}
\hyperdef{L}{X7D50795883E534A3}{}
{
The following are the face pairings of 25 non\texttt{\symbol{45}}homeomorphic
cube manifolds, with vertices of the cube numbered as describe above.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|for i in [1..25] do A
@gapprompt|>A @gapinput|p:=Manifolds[i]!.cubeFacePairings;A
@gapprompt|>A @gapinput|Print("Manifold ",i," has face pairings:\n");A
@gapprompt|>A @gapinput|Print(p[1],"\n",p[2],"\n",p[3],"\n");A
@gapprompt|>A @gapinput|Print("Fundamental group is: ");A
@gapprompt|>A @gapinput|if i in [ 1, 9, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25 ] thenA
@gapprompt|>A @gapinput|Print(StructureDescription(FundamentalGroup(Manifolds[i])),"\n");A
@gapprompt|>A @gapinput|else Print("infinite non-cyclic\n"); fi;A
@gapprompt|>A @gapinput|if Homology(Manifolds[i],3)=[0] then Print("Orientable, ");A
@gapprompt|>A @gapinput|else Print("Non orientable, "); fi;A
@gapprompt|>A @gapinput|Print(ManifoldType(Manifolds[i]),"\n");A
@gapprompt|>A @gapinput|for x in Manifolds[i]!.edgeDegrees doA
@gapprompt|>A @gapinput|Print(x[2]," edges of \"degree\" ",x[1],", ");A
@gapprompt|>A @gapinput|od;A
@gapprompt|>A @gapinput|Print("\n\n");A
@gapprompt|>A @gapinput|od;A
Manifold 1 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 7, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 3, 2, 6, 7 ] ]
Fundamental group is: Z x C2
Non orientable, other
4 edges of "degree" 2, 4 edges of "degree" 4,
Manifold 2 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 4, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, other
2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,
Manifold 3 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 4 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 7, 3, 2 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 5 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 6, 5, 8, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 6, 7, 3 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 6 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 7 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, other
2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,
Manifold 8 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, other
4 edges of "degree" 2, 2 edges of "degree" 8,
Manifold 9 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 5, 6, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 2, 3, 7 ] ]
Fundamental group is: Q8
Orientable, spherical
8 edges of "degree" 3,
Manifold 10 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, other
4 edges of "degree" 2, 4 edges of "degree" 4,
Manifold 11 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 3, 7, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 12 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: Z x Z x Z
Orientable, euclidean
6 edges of "degree" 4,
Manifold 13 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 14 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: C2
Orientable, spherical
12 edges of "degree" 2,
Manifold 15 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: Z
Non orientable, other
4 edges of "degree" 1, 2 edges of "degree" 2, 2 edges of "degree" 8,
Manifold 16 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: Z
Orientable, other
4 edges of "degree" 1, 2 edges of "degree" 2, 2 edges of "degree" 8,
Manifold 17 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is: C4
Orientable, spherical
2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,
Manifold 18 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 6, 2, 3, 7 ] ]
Fundamental group is: C3 : C4
Orientable, spherical
2 edges of "degree" 2, 4 edges of "degree" 5,
Manifold 19 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is: C12
Orientable, spherical
2 edges of "degree" 2, 2 edges of "degree" 3, 2 edges of "degree" 7,
Manifold 20 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is: C8
Orientable, spherical
8 edges of "degree" 3,
Manifold 21 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 22 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
Fundamental group is: C14
Orientable, spherical
2 edges of "degree" 2, 4 edges of "degree" 5,
Manifold 23 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
Fundamental group is: C6
Orientable, spherical
6 edges of "degree" 2, 2 edges of "degree" 6,
Manifold 24 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 5, 6 ] ]
[ [ 3, 7, 8, 4 ], [ 2, 3, 7, 6 ] ]
[ [ 1, 2, 3, 4 ], [ 4, 1, 5, 8 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 25 has face pairings:
[ [ 1, 5, 6, 2 ], [ 6, 7, 8, 5 ] ]
[ [ 3, 7, 8, 4 ], [ 3, 7, 6, 2 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
Fundamental group is: 1
Orientable, spherical
4 edges of "degree" 1, 4 edges of "degree" 5,
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Platonic cube manifolds}}\logpage{[ 4, 10, 2 ]}
\hyperdef{L}{X837811BB8181666E}{}
{
A \emph{platonic solid} is a convex, regular polyhedron in $3$\texttt{\symbol{45}}dimensional euclidean $\mathbb E^3$ or spherical $\mathbb S^3$ or hyperbolic space $\mathbb H^3$. Being \emph{regular} means that all edges are congruent, all faces are congruent, all angles
between adjacent edges in a face are congruent, all dihedral angles between
adjacent faces are congruent. A platonic cube in euclidean space has six
congruent square faces with diherdral angle $\pi/2$. A platonic cube in spherical space has dihedral angles $2\pi/3$. A platonic cube in hyperbolic space has dihedral angles $2\pi/5$. This can alternatively be expressed by saying that in a tessellation of $\mathbb E^3$ by platonic cubes each edge is adjacent to 4 square faces. In a tessellation
of $\mathbb S^3$ by platonic cubes each edge is adjacent to 3 square faces. In a tessellation
of $\mathbb H^3$ by platonic cubes each edge is adjacent to 5 five square faces.
Any cube manifold $M$ induces a cubical CW\texttt{\symbol{45}}decomposition of its universal cover $\widetilde M$. We say that $M$ is a \emph{platonic cube manifold} if every edge in $\widetilde M$ is adjacent to 4 faces in the euclidean case $\widetilde M=\mathbb E^3$, is adjacent to 3 faces in the spherical case $\widetilde M=\mathbb S^3$, is adjacent to 5 faces in the hyperbolic case $\widetilde M=\mathbb H^3$.
In the above list of 25 cube manifolds we see that the euclidean manifolds 3,
4, 5, 6, 11 are platonic and that the spherical manifolds 9, 20 are platonic. }
}
\section{\textcolor{Chapter }{There are at most 41 distinct cube manifolds}}\logpage{[ 4, 11, 0 ]}
\hyperdef{L}{X8084A36082B26D86}{}
{
Using the \href{https://simpcomp-team.github.io/simpcomp/README.html} {Simpcomp} package for GAP we can show that many of the 163 cube manifolds constructed
above are homeomorphic. We do this by showing that barycentric subdivisions of
many of the manifolds are combinatorially the same.
The following commands establish homeomorphisms (simplicial complex
isomorphisms) between manifolds in each equivalence class D[i] above for $1 \le i\le 25$, and then discard all but one manifold in each homeomorphism class. We are
left with 59 cube manifolds, some of which may be homeomorphic, representing
at least 25 distinct homeomorphism classes. The 59 manifolds are stored in the
list DD of length 25 each of whose terms is a list of cube manifolds.
\begin{Verbatim}[commandchars=@|F,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>F @gapinput|LoadPackage("Simpcomp");;F
@gapprompt|gap>F @gapinput|inv3:=function(m)F
@gapprompt|>F @gapinput|local K;F
@gapprompt|>F @gapinput|K:=BarycentricSubdivision(m);F
@gapprompt|>F @gapinput|K:=MaximalSimplicesOfSimplicialComplex(K);F
@gapprompt|>F @gapinput|K:=SC(K);F
@gapprompt|>F @gapinput|if not SCIsStronglyConnected(K) then Print("WARNING!\n"); fi;F
@gapprompt|>F @gapinput|return SCExportIsoSig( K );F
@gapprompt|>F @gapinput|end;F
function( m ) ... end
@gapprompt|gap>F @gapinput|DD:=[];;F
@gapprompt|gap>F @gapinput|for x in D doF
@gapprompt|>F @gapinput|y:=Classify(x,inv3);F
@gapprompt|>F @gapinput|Add(DD,List(y,z->z[1]));F
@gapprompt|>F @gapinput|od;F
@gapprompt|gap>F @gapinput|List(DD,Size);F
[ 9, 1, 3, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 7, 4, 4, 3, 1, 1, 1, 1, 3, 1, 1, 3 ]
\end{Verbatim}
The function \texttt{PoincareCubeCWCompex()} applies cell simplifications in its construction of the quotient of a
CW\texttt{\symbol{45}}complex. A variant \texttt{PoincareCubeCWCompexNS()} performs no cell simplifications and thus returns a bigger cell complex which
we can attempt to use to establish further homeomorphisms. This is done in the
following session and succeeds in showing that there are at most 51 distinct
homeomorphism types of cube manifolds.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|DD:=List(DD,x->List(x,y->PoincareCubeCWComplexNS(B
@gapprompt|>B @gapinput|y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;B
@gapprompt|gap>B @gapinput|D:=[];;B
@gapprompt|gap>B @gapinput|for x in DD doB
@gapprompt|>B @gapinput|y:=Classify(x,inv3);B
@gapprompt|>B @gapinput|Add(D,List(y,z->z[1]));B
>od;;
@gapprompt|gap>B @gapinput|List(D,Size);B
[ 8, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]
\end{Verbatim}
Making further modifications to the cell structures of the manifolds that
leave their homeomorphism types unchanged can help to identify further
simplicial isomorphisms between barycentric subdivisions. For instance, the
following commands succeed in establishing that there are at most 45 distinct
homeomorphism types of cube manifolds.
\begin{Verbatim}[commandchars=@|E,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>E @gapinput|DD:=[];;E
@gapprompt|gap>E @gapinput|for x in D doE
@gapprompt|>E @gapinput|if Length(x)>1 thenE
@gapprompt|>E @gapinput|Add(DD, List(x,y->BarycentricallySimplifiedComplex(y)));E
@gapprompt|>E @gapinput|else Add(DD,x);E
@gapprompt|>E @gapinput|fi;E
@gapprompt|>E @gapinput|od;E
@gapprompt|gap>E @gapinput|D:=[];;E
@gapprompt|gap>E @gapinput|for x in DD doE
@gapprompt|>E @gapinput|y:=Classify(x,inv3);E
@gapprompt|>E @gapinput|Add(D,List(y,z->z[1]));E
@gapprompt|>E @gapinput|od;E
@gapprompt|gap>E @gapinput|List(D,Size);E
[ 7, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]
@gapprompt|gap>E @gapinput|DD:=List(D,x->List(x,y->PoincareCubeCWComplexNS(E
@gapprompt|>E @gapinput|y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;E
@gapprompt|gap>E @gapinput|D1:=[];;E
@gapprompt|gap>E @gapinput|for x in DD doE
@gapprompt|>E @gapinput|if Length(x)>1 thenE
@gapprompt|>E @gapinput|Add(D1, List(x,y->BarycentricallySimplifiedComplex(RegularCWComplex(BarycentricSubdivision(y)))));E
@gapprompt|>E @gapinput|else Add(D1,x);E
@gapprompt|>E @gapinput|fi;E
@gapprompt|>E @gapinput|od;E
@gapprompt|gap>E @gapinput|DD:=[];;E
@gapprompt|gap>E @gapinput|for x in D1 doE
@gapprompt|>E @gapinput|y:=Classify(x,inv3);E
@gapprompt|>E @gapinput|Add(DD,List(y,z->z[1]));E
@gapprompt|>E @gapinput|od;;E
@gapprompt|gap>E @gapinput|Print(List(DD,Size),"\n");E
[ 6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]
\end{Verbatim}
The two manifolds in DD[14] have fundamental group $C_2$ and are thus lens spaces. There is only one homeomorphism class of such lens
spaces and so these two manifolds are homeomorphic. The three manifolds in
DD[17] are lens spaces with fundamental group $C_4$. Again, there is only one homeomorphism class of such lens spaces and so
these three manifolds are homeomorphic. The two manifolds in DD[25] have
trivial fundamental group and are hence both homeomorphic to the
3\texttt{\symbol{45}}sphere. These observations mean that there are at most 41
closed manifolds arising from a cube by identifying the cube's faces pairwise.
These observations can be incorporated into our list DD of equivalence classes
of manifolds as follows.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@DD[14]:=DD[14]{[1]};;|
!gapprompt@gap>| !gapinput@DD[17]:=DD[17]{[1]};;|
!gapprompt@gap>| !gapinput@DD[25]:=DD[25]{[1]};;|
!gapprompt@gap>| !gapinput@List(DD,Size);|
[ 6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{There are precisely 18 orientable cube manifolds, of which 9 are spherical and
5 are euclidean}}\logpage{[ 4, 12, 0 ]}
\hyperdef{L}{X7B63C22C80E53758}{}
{
The following commands show that there are at least 18 and at most 21
orientable cube manifolds.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@DDorient:=Filtered(DD,x->Homology(x[1],3)=[0]);;|
!gapprompt@gap>| !gapinput@List(DDorient,Size);|
[ 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
\end{Verbatim}
The next commands show that the fundamental groups of the two manifolds in
DDorient[7] are isomorphic to $\mathbb Z \times \mathbb Z : \mathbb Z$, and that the fundamental groups of the three manifolds in DDorient[9] are
isomorphic to $\mathbb Z$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@g1:=FundamentalGroup(DDorient[7][1]);;|
!gapprompt@gap>| !gapinput@g2:=FundamentalGroup(DDorient[7][2]);;|
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(g1);|
[ f1^-1*f2*f1*f2^-1, f3^-1*f1*f3*f1, f3^-1*f2^-1*f3*f2^-1 ]
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(g2);|
[ f1*f2*f1^-1*f2^-1, f1^-1*f3*f1^-1*f3^-1, f3*f2*f3^-1*f2 ]
!gapprompt@gap>| !gapinput@h1:=FundamentalGroup(DDorient[9][1]);;|
!gapprompt@gap>| !gapinput@h2:=FundamentalGroup(DDorient[9][2]);;|
!gapprompt@gap>| !gapinput@h3:=FundamentalGroup(DDorient[9][3]);;|
!gapprompt@gap>| !gapinput@StructureDescription(h1);|
"Z"
!gapprompt@gap>| !gapinput@StructureDescription(h2);|
"Z"
!gapprompt@gap>| !gapinput@StructureDescription(h3);|
"Z"
\end{Verbatim}
Since neither $\mathbb Z\times \mathbb Z : \mathbb Z$ nor $\mathbb Z$ is a free product of two non\texttt{\symbol{45}}trivial groups we conclude
that the manifolds in DDorient[7] and DDorient[9] are prime. Since oriented
prime 3\texttt{\symbol{45}}manifolds are determined up to homeomorphism by
their fundamental groups we can conclude that there are precisely 18
orientable closed manifolds arising from a cube by identifying the cube's
faces pairwise.
A compact 3\texttt{\symbol{45}}manifold $M$ is \emph{spherical} if it is of the form $M=S^3/\Gamma$ where $\Gamma$ is a finite group acting freely as rotations on $S^3$. The fundamental group of $M$ is then the finite group $\Gamma$. Perelmen showed that a compact 3\texttt{\symbol{45}}manifold is spherical if
and only if its fundamental group is finite.
A compact 3\texttt{\symbol{45}}manifold is \emph{euclidean} if it is of the form $M=\mathbb R^3/\Gamma$ where $\Gamma$ is a group of affine transformations acting freely on $\mathbb R^3$. The fundamental group is then $\Gamma$ and is called a \emph{Bieberbach group} of dimension 3. It can be shown that a group $\Gamma$ is isomorphic to a Bieberbach group of dimension $n$ if and only if there is a short exact sequence $\mathbb Z^n \rightarrowtail \Gamma \twoheadrightarrow P$ with $P$ a finite group.
The following command establishes that there are precisely 9 orientable
spherical manifolds and 5 closed orientable euclidean manifolds arising from
pairwise identifications of the faces of the cube.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@List(OrientableManifolds,ManifoldType);|
[ "euclidean", "other", "other", "spherical", "other", "euclidean",
"euclidean", "spherical", "other", "spherical", "spherical", "spherical",
"spherical", "euclidean", "spherical", "spherical", "euclidean", "spherical" ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cube manifolds with boundary}}\logpage{[ 4, 13, 0 ]}
\hyperdef{L}{X796BF3817BD7F57D}{}
{
If a space $Y$ obtained from identifying faces of the cube fails to be a manifold then it
fails because one or more vertices of $Y$ fail to have a spherical link. By using barycentric subdivision if necessary,
we can ensure that the stars of any two non\texttt{\symbol{45}}manifold
vertices of $Y$ have trivial intersection. Removing the stars of the
non\texttt{\symbol{45}}manifold vertices from $Y$ yields a 3\texttt{\symbol{45}}manifold with boundary $\hat Y$.
The following commands show that there are 367 combinatorially different
regular CW\texttt{\symbol{45}}complexes $Y$ that arise by identifying faces of a cube in pairs and which fail to be
manifolds. The commands also show that these spaces give rise to at least 180
non\texttt{\symbol{45}}homeomorphic manifolds $\hat Y$ with boundary.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A1:= [ [1,2], [3,4], [5,6] ];;|
!gapprompt@gap>| !gapinput@A2:=[ [1,2], [3,5], [4,6] ];;|
!gapprompt@gap>| !gapinput@A3:=[ [1,4], [2,6], [3,5] ];;|
!gapprompt@gap>| !gapinput@D8:=DihedralGroup(IsPermGroup,8);;|
!gapprompt@gap>| !gapinput@NonManifolds:=[];;|
!gapprompt@gap>| !gapinput@for A in [A1,A2,A3] do|
!gapprompt@>| !gapinput@for x in D8 do|
!gapprompt@>| !gapinput@for y in D8 do|
!gapprompt@>| !gapinput@for z in D8 do|
!gapprompt@>| !gapinput@G:=[x,y,z];|
!gapprompt@>| !gapinput@F:=PoincareCubeCWComplex(A,G);|
!gapprompt@>| !gapinput@b:=IsClosedManifold(F);|
!gapprompt@>| !gapinput@if b=false then Add(NonManifolds,F); fi;|
!gapprompt@>| !gapinput@od;od;od;od;|
!gapprompt@gap>| !gapinput@D:=Classify(NonManifolds,inv3); #See above for inv3|
!gapprompt@gap>| !gapinput@D:=List(D,x->x[1]);;|
!gapprompt@gap>| !gapinput@Size(D);|
367
!gapprompt@gap>| !gapinput@M:=List(D,ThreeManifoldWithBoundary);;|
!gapprompt@gap>| !gapinput@C:=Classify(M,invariant1);; #See above for invariant1 |
!gapprompt@gap>| !gapinput@List(C,Size);|
[ 33, 13, 3, 18, 21, 7, 6, 13, 51, 2, 1, 15, 11, 11, 1, 35, 2, 2, 6, 15,
17, 2, 3, 2, 14, 17, 3, 1, 25, 8, 4, 1, 4 ]
!gapprompt@gap>| !gapinput@inv5:=function(m) |
!gapprompt@>| !gapinput@local B;|
!gapprompt@>| !gapinput@B:=BoundaryOfPureRegularCWComplex(m);;|
!gapprompt@>| !gapinput@return invariant1(B);|
!gapprompt@>| !gapinput@end;;|
!gapprompt@gap>| !gapinput@CC:=RefineClassification(C,inv5);;|
!gapprompt@gap>| !gapinput@List(CC,Size);|
[ 25, 5, 3, 5, 4, 4, 2, 1, 11, 3, 4, 7, 3, 6, 4, 1, 5, 1, 1, 5, 1, 13, 4,
6, 40, 1, 2, 1, 11, 4, 5, 3, 1, 2, 7, 4, 1, 14, 11, 10, 2, 2, 6, 9, 3, 3,
2, 15, 2, 3, 2, 14, 17, 2, 1, 1, 4, 7, 14, 8, 3, 1, 1, 4 ]
!gapprompt@gap>| !gapinput@CC:=RefineClassification(CC,invariant2);;|
!gapprompt@gap>| !gapinput@List(CC,Size); |
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 1, 4, 2, 3, 2, 3,
4, 3, 2, 1, 1, 3, 2, 4, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 13, 3, 1, 4, 2, 1,
2, 2, 3, 3, 3, 4, 4, 2, 4, 4, 4, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 3, 3, 2, 2, 1, 1, 2, 1, 1, 2,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 5, 2, 3, 2, 14, 17, 1, 1, 1,
1, 4, 5, 2, 9, 1, 4, 7, 1, 3, 1, 1, 4 ]
!gapprompt@gap>| !gapinput@Length(CC);|
180
\end{Verbatim}
}
\section{\textcolor{Chapter }{Octahedral manifolds}}\logpage{[ 4, 14, 0 ]}
\hyperdef{L}{X7EC4359B7DF208B0}{}
{
The above construction of 3\texttt{\symbol{45}}manifolds as quotients of a
cube can be extended to other polytopes. A polytope of particular interest,
and one that appears several times in the classic book on
Three\texttt{\symbol{45}}Manifolds by William Thurston \cite{thurston}, is the octahedron. The function \texttt{PoincareOctahahedronCWComplex()} can be used to construct any 3\texttt{\symbol{45}}dimensional
CW\texttt{\symbol{45}}complex arising from an octahedron by identifying the
eight faces pairwise; the vertices and faces of the octahedron are numbered as
follows.
The following commands construct a spherical 3\texttt{\symbol{45}}manifold Y
with fundamental group equal to the binary tetrahedral group $G$. The commands then use the universal cover of this manifold to construct the
first four terms of a free periodic $\mathbb ZG$\texttt{\symbol{45}}resolution of $\mathbb Z$ of period $4$. The resolution has one free generator in dimensions $4n$ and $4n+3$ for $n\ge 0$. It has two free generators in dimensions $4n+1$ and $4n+2$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|L:=[ [ 1, 4, 5 ], [ 2, 6, 3 ] ];;A
@gapprompt|gap>A @gapinput|M:=[ [ 3, 4, 5 ], [ 6, 1, 2 ] ];;A
@gapprompt|gap>A @gapinput|N:=[ [ 2, 3, 5 ], [ 6, 4, 1 ] ];;A
@gapprompt|gap>A @gapinput|P:=[ [ 1, 2, 5 ], [ 6, 3, 4 ] ];;A
@gapprompt|gap>A @gapinput|Y:=PoincareOctahedronCWComplex(L,M,N,P);;A
@gapprompt|gap>A @gapinput|IsClosedManifold(Y);A
true
@gapprompt|gap>A @gapinput|G:=FundamentalGroup(Y);;A
@gapprompt|gap>A @gapinput|StructureDescription(G);A
"SL(2,3)"
@gapprompt|gap>A @gapinput|R:=ChainComplexOfUniversalCover(Y);A
Equivariant chain complex of dimension 3
@gapprompt|gap>A @gapinput|List([0..3],R!.dimension);A
[ 1, 2, 2, 1 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Dodecahedral manifolds}}\logpage{[ 4, 15, 0 ]}
\hyperdef{L}{X85FFF9B97B7AD818}{}
{
Another polytope of interest, and one that can be used to construct the
Poincare homology sphere, is the dodecahedron. The function \texttt{PoincareDodecahedronCWComplex()} can be used to construct any 3\texttt{\symbol{45}}dimensional
CW\texttt{\symbol{45}}complex arising from a dodecahedron by identifying the $12$ pentagonal faces pairwise; the vertices of the prism are numbered as follows.
The following commands construct the Poincare homology $3$\texttt{\symbol{45}}sphere (with fundamental group equal to the binary
icosahedral group of order 120).
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=PoincareDodecahedronCWComplex(|
!gapprompt@>| !gapinput@[[1,2,3,4,5],[6,7,8,9,10]],|
!gapprompt@>| !gapinput@[[1,11,16,12,2],[19,9,8,18,14]],|
!gapprompt@>| !gapinput@[[2,12,17,13,3],[20,10,9,19,15]],|
!gapprompt@>| !gapinput@[[3,13,18,14,4],[16,6,10,20,11]],|
!gapprompt@>| !gapinput@[[4,14,19,15,5],[17,7,6,16,12]],|
!gapprompt@>| !gapinput@[[5,15,20,11,1],[18,8,7,17,13]]);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@IsClosedManifold(Y);|
true
!gapprompt@gap>| !gapinput@List([0..3],n->Homology(Y,n));|
[ [ 0 ], [ ], [ ], [ 0 ] ]
!gapprompt@gap>| !gapinput@StructureDescription(FundamentalGroup(Y));|
"SL(2,5)"
\end{Verbatim}
The following commands construct Seifert\texttt{\symbol{45}}Weber space, a
rational homology sphere.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@W:=PoincareDodecahedronCWComplex(|
!gapprompt@>| !gapinput@[[1,2,3,4,5],[7,8,9,10,6]],|
!gapprompt@>| !gapinput@[[1,11,16,12,2],[9,8,18,14,19]],|
!gapprompt@>| !gapinput@[[2,12,17,13,3],[10,9,19,15,20]],|
!gapprompt@>| !gapinput@[[3,13,18,14,4],[6,10,20,11,16]],|
!gapprompt@>| !gapinput@[[4,14,19,15,5],[7,6,16,12,17]],|
!gapprompt@>| !gapinput@[[5,15,20,11,1],[8,7,17,13,18]]);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@IsClosedManifold(W);|
true
!gapprompt@gap>| !gapinput@List([0..3],n->Homology(W,n));|
[ [ 0 ], [ 5, 5, 5 ], [ ], [ 0 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Prism manifolds}}\logpage{[ 4, 16, 0 ]}
\hyperdef{L}{X78B75E2E79FBCC54}{}
{
Another polytope of interest is the prism constructed as the direct product $D_n\times [0,1]$ of an n\texttt{\symbol{45}}gonal disk $D_n$ with the unit interval. The function \texttt{PoincarePrismCWComplex()} can be used to construct any 3\texttt{\symbol{45}}dimensional
CW\texttt{\symbol{45}}complex arising from a prism with even $n\ge 4$ by identifying the $n+2$ faces pairwise; the vertices of the prism are numbered as follows.
The case $n=4$ is that of a cube. The following commands construct a manifold $Y$ arising from a hexagonal prism ($n=6$) with fundamental group $\pi_1Y=C_5\times Q_{32}$ equal to the direct product of the cyclic group of order $5$ and the quaternion group of order $32$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=[[1,2,3,4,5,6],[11,12,7,8,9,10]];; |
!gapprompt@gap>| !gapinput@M:=[[1,7,8,2],[4,5,11,10]];; |
!gapprompt@gap>| !gapinput@N:=[[2,8,9,3],[6,1,7,12]];; |
!gapprompt@gap>| !gapinput@P:=[[3,9,10,4],[6,12,11,5]];; |
!gapprompt@gap>| !gapinput@Y:=PoincarePrismCWComplex(L,M,N,P);;|
!gapprompt@gap>| !gapinput@IsClosedManifold(Y);|
true
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(Y);;|
!gapprompt@gap>| !gapinput@StructureDescription(G);|
"C5 x Q32"
\end{Verbatim}
An exhaustive search through all manifolds constructed from a hexagonal prism
by identify faces pairwise shows that the finite groups arising as fundamental
groups are precisely: $ Q_8$, $Q_{16}$, $C_4$, $ C_3 : C_4$, $ C_5 : C_4$, $ C_8$, $C_{16}$, $C_{12}$, $C_{20}$, $C_2$, $ C_6$, $ C_3 \times Q_8$, $ C_3 \times Q_{16}$, $C_5 \times Q_{32} $. Each of these finite groups $G=\pi_1Y$ is either cyclic (in which case the corresponding manifold is a lens space) or
else has the propert that $G/Z(G)$ is dihedral (in which case the corresponding manifold is called a \emph{prism manifold}). The majority of the manifolds arising from a hexagonal prism have infinite
fundamental group.
Infinite families of spherical $3$\texttt{\symbol{45}}maniolds can be constructed from the infinite family of
prisms. For instance, a prism manifold which we denote by $P_r$ can be obtained from a prism $D_{2r}\times [0,1]$ by identifying the left and right side under a twist of $\pi/r$, and identifying opposite square faces under a twist of $\pi/2$. Its fundamental group $\pi_1P_r$ is the binary dihedral group of order $4r$. The following commands construct $P_r$ for $r=3$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=[[1,2,3,4,5,6],[8,9,10,11,12,7]];;|
!gapprompt@gap>| !gapinput@M:=[[1,7,8,2],[11,10,4,5]];;|
!gapprompt@gap>| !gapinput@N:=[[2,8,9,3],[12,11,5,6]];;|
!gapprompt@gap>| !gapinput@P:=[[3,9,10,4],[7,12,6,1]];;|
!gapprompt@gap>| !gapinput@Y:=PoincarePrismCWComplex(L,M,N,P);;|
!gapprompt@gap>| !gapinput@IsClosedManifold(Y);|
true
!gapprompt@gap>| !gapinput@StructureDescription(FundamentalGroup(Y));|
"C3 : C4"
\end{Verbatim}
}
\section{\textcolor{Chapter }{Bipyramid manifolds}}\logpage{[ 4, 17, 0 ]}
\hyperdef{L}{X7F31DFDA846E8E75}{}
{
Yet another polytope of interest is the bipyramid constructed as the
suspension of an n\texttt{\symbol{45}}gonal disk $D_n$. The function \texttt{PoincareBipyramidCWComplex()} can be used to construct any 3\texttt{\symbol{45}}dimensional
CW\texttt{\symbol{45}}complex arising from a bipyramid with $n\ge 3$ by identifying the $2n$ faces pairwise; the vertices of the prism are numbered as follows.
For $n=4$ the bipyramid is the octahedron. }
}
\chapter{\textcolor{Chapter }{Topological data analysis}}\logpage{[ 5, 0, 0 ]}
\hyperdef{L}{X7B7E077887694A9F}{}
{
\section{\textcolor{Chapter }{Persistent homology }}\logpage{[ 5, 1, 0 ]}
\hyperdef{L}{X80A70B20873378E0}{}
{
Pairwise distances between $74$ points from some metric space have been recorded and stored in a $74\times 74$ matrix $D$. The following commands load the matrix, construct a filtration of length $100$ on the first two dimensions of the assotiated clique complex (also known as
the \emph{Vietoris\texttt{\symbol{45}}Rips Complex}), and display the resulting degree $0$ persistent homology as a barcode. A single bar with label $n$ denotes $n$ bars with common starting point and common end point.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("data253a.txt");;|
!gapprompt@gap>| !gapinput@Read(file);|
!gapprompt@gap>| !gapinput@G:=SymmetricMatrixToFilteredGraph(D,100);|
Filtered graph on 74 vertices.
!gapprompt@gap>| !gapinput@K:=FilteredRegularCWComplex(CliqueComplex(G,2));|
Filtered regular CW-complex of dimension 2
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbers(K,0);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
The first 54 terms in the filtration each have 74 path components
\texttt{\symbol{45}}\texttt{\symbol{45}} one for each point in the sample.
During the next 9 filtration terms the number of path components reduces,
meaning that sample points begin to coalesce due to the formation of edges in
the simplicial complexes. Then, two path components persist over an interval
of 18 filtration terms, before they eventually coalesce.
The next commands display the resulting degree $1$ persistent homology as a barcode.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbers(K,1);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
Interpreting short bars as noise, we see for instance that the $65$th term in the filtration could be regarded as noiseless and belonging to a
"stable interval" in the filtration with regards to first and second homology
functors. The following command displays (up to homotopy) the $1$ skeleton of the simplicial complex arizing as the $65$\texttt{\symbol{45}}th term in the filtration on the clique complex.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=FiltrationTerm(K,65);|
Regular CW-complex of dimension 1
!gapprompt@gap>| !gapinput@Display(HomotopyGraph(Y));|
\end{Verbatim}
These computations suggest that the dataset contains two persistent path
components (or clusters), and that each path component is in some sense
periodic. The final command displays one possible representation of the data
as points on two circles.
\subsection{\textcolor{Chapter }{Background to the data}}\logpage{[ 5, 1, 1 ]}
\hyperdef{L}{X7D512DA37F789B4C}{}
{
Each point in the dataset was an image consisting of $732\times 761$ pixels. This point was regarded as a vector in $\mathbb R^{557052}=\mathbb R^{732\times 761}$ and the matrix $D$ was constructed using the Euclidean metric. The images were the following:
}
}
\section{\textcolor{Chapter }{Mapper clustering}}\logpage{[ 5, 2, 0 ]}
\hyperdef{L}{X849556107A23FF7B}{}
{
The following example reads in a set $S$ of vectors of rational numbers. It uses the Euclidean distance $d(u,v)$ between vectors. It fixes some vector $u_0\in S $ and uses the associated function $f\colon D\rightarrow [0,b] \subset \mathbb R, v\mapsto d(u_0,v)$. In addition, it uses an open cover of the interval $[0,b]$ consisting of $100$ uniformly distributed overlapping open subintervals of radius $r=29$. It also uses a simple clustering algorithm implemented in the function \texttt{cluster}.
These ingredients are input into the Mapper clustering procedure to produce a
simplicial complex $M$ which is intended to be a representation of the data. The complex $M$ is $1$\texttt{\symbol{45}}dimensional and the final command uses GraphViz software
to visualize the graph. The nodes of this simplicial complex are "buckets"
containing data points. A data point may reside in several buckets. The number
of points in the bucket determines the size of the node. Two nodes are
connected by an edge when they contain common data points.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("data134.txt");;|
!gapprompt@gap>| !gapinput@Read(file);|
!gapprompt@gap>| !gapinput@dx:=EuclideanApproximatedMetric;;|
!gapprompt@gap>| !gapinput@dz:=EuclideanApproximatedMetric;;|
!gapprompt@gap>| !gapinput@L:=List(S,x->Maximum(List(S,y->dx(x,y))));;|
!gapprompt@gap>| !gapinput@n:=Position(L,Minimum(L));;|
!gapprompt@gap>| !gapinput@f:=function(x); return [dx(S[n],x)]; end;;|
!gapprompt@gap>| !gapinput@P:=30*[0..100];; P:=List(P, i->[i]);;|
!gapprompt@gap>| !gapinput@r:=29;;|
!gapprompt@gap>| !gapinput@epsilon:=75;;|
!gapprompt@gap>| !gapinput@ cluster:=function(S)|
!gapprompt@>| !gapinput@ local Y, P, C;|
!gapprompt@>| !gapinput@ if Length(S)=0 then return S; fi;|
!gapprompt@>| !gapinput@ Y:=VectorsToOneSkeleton(S,epsilon,dx);|
!gapprompt@>| !gapinput@ P:=PiZero(Y);|
!gapprompt@>| !gapinput@ C:=Classify([1..Length(S)],P[2]);|
!gapprompt@>| !gapinput@ return List(C,x->S{x});|
!gapprompt@>| !gapinput@ end;;|
!gapprompt@gap>| !gapinput@M:=Mapper(S,dx,f,dz,P,r,cluster);|
Simplicial complex of dimension 1.
!gapprompt@gap>| !gapinput@Display(GraphOfSimplicialComplex(M));|
\end{Verbatim}
\subsection{\textcolor{Chapter }{Background to the data}}\label{pointcloud}
\logpage{[ 5, 2, 1 ]}
\hyperdef{L}{X7D512DA37F789B4C}{}
{
The datacloud $S$ consists of the $400$ points in the plane shown in the following picture.
}
}
\section{\textcolor{Chapter }{Some tools for handling pure complexes}}\logpage{[ 5, 3, 0 ]}
\hyperdef{L}{X7BBDE0567DB8C5DA}{}
{
A CW\texttt{\symbol{45}}complex $X$ is said to be \emph{pure} if all of its top\texttt{\symbol{45}}dimensional cells have a common
dimension. There are instances where such a space $X$ provides a convenient ambient space whose subspaces can be used to model
experimental data. For instance, the plane $X=\mathbb R^2$ admits a pure regular CW\texttt{\symbol{45}}structure whose $2$\texttt{\symbol{45}}cells are open unit squares with integer coordinate
vertices. An alternative, and sometimes preferrable, pure regular
CW\texttt{\symbol{45}}structure on $\mathbb R^2$ is one where the $2$\texttt{\symbol{45}}cells are all reguar hexagons with sides of unit length.
Any digital image can be thresholded to produce a
black\texttt{\symbol{45}}white image and this black\texttt{\symbol{45}}white
image can naturally be regared as a finite pure cellular subcomplex of either
of the two proposed CW\texttt{\symbol{45}}structures on $\mathbb R^2$. Analogously, thresholding can be used to represent $3$\texttt{\symbol{45}}dimensional greyscale images as finite pure cellular
subspaces of cubical or permutahedral CW\texttt{\symbol{45}}structures on $\mathbb R^3$, and to represent RGB colour photographs as analogous subcomplexes of $\mathbb R^5$.
In this section we list a few functions for performing basic operations on $n$\texttt{\symbol{45}}dimensional pure cubical and pure permutahedral finite
subcomplexes $M$ of $X=R^n$. We refer to $M$ simply as a \emph{pure complex}. In subsequent sections we demonstrate how these few functions on pure
complexes allow for in\texttt{\symbol{45}}depth analysis of experimental data.
(\textsc{Aside.} The basic operations could equally well be implemented for other
CW\texttt{\symbol{45}}decompositions of $X=\mathbb R^n$ such as the regular CW\texttt{\symbol{45}}decompositions arising as the
tessellations by a fundamental domain of a Bieberbach group (=torsion free
crytallographic group). Moreover, the basic operations could also be
implemented for other manifolds such as an $n$\texttt{\symbol{45}}torus $X=S^1\times S^1 \times \cdots \times S^1$ or $n$\texttt{\symbol{45}}sphere $X=S^n$ or for $X$ the universal cover of some interesting hyperbolic $3$\texttt{\symbol{45}}manifold. An example use of the ambient manifold $X=S^1\times S^1\times S^1$ could be for the construction of a cellular subspace recording the time of
day, day of week and week of the year of crimes committed in a population.)
\textsc{Basic operations returning pure complexes.} ( Function descriptions available \href{../doc/chap1_mj.html#X7FD50DF6782F00A0} {here}.)
\begin{itemize}
\item \texttt{PureCubicalComplex(binary array)}
\item \texttt{PurePermutahedralComplex(binary array)}
\item \texttt{ReadImageAsPureCubicalComplex(file,threshold)}
\item \texttt{ReadImageSquenceAsPureCubicalComplex(file,threshold)}
\item \texttt{PureComplexBoundary(M)}
\item \texttt{PureComplexComplement(M)}
\item \texttt{PureComplexRandomCell(M)}
\item \texttt{PureComplexThickened(M)}
\item \texttt{ContractedComplex(M, optional subcomplex of M)}
\item \texttt{ExpandedComplex(M, optional supercomplex of M)}
\item \texttt{PureComplexUnion(M,N)}
\item \texttt{PureComplexIntersection(M,N)}
\item \texttt{PureComplexDifference(M,N)}
\item \texttt{FiltrationTerm(F,n)}
\end{itemize}
\textsc{Basic operations returning filtered pure complexes.}
\begin{itemize}
\item \texttt{PureComplexThickeningFiltration(M,length)}
\item \texttt{ReadImageAsFilteredPureCubicalComplex(file,length)}
\end{itemize}
}
\section{\textcolor{Chapter }{Digital image analysis and persistent homology}}\logpage{[ 5, 4, 0 ]}
\hyperdef{L}{X79616D12822FDB9A}{}
{
The following example reads in a digital image as a filtered pure cubical
complexex. The filtration is obtained by thresholding at a sequence of
uniformly spaced values on the greyscale range. The persistent homology of
this filtered complex is calculated in degrees $0$ and $1$ and displayed as two barcodes.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("image1.3.2.png");;|
!gapprompt@gap>| !gapinput@F:=ReadImageAsFilteredPureCubicalComplex(file,40);|
Filtered pure cubical complex of dimension 2.
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbers(F,0);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbers(F,1);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
The $20$ persistent bars in the degree $0$ barcode suggest that the image has $20$ objects. The degree $1$ barcode suggests that there are $14$ (or possibly $17$) holes in these $20$ objects.
\subsection{\textcolor{Chapter }{Naive example of image segmentation by automatic thresholding}}\logpage{[ 5, 4, 1 ]}
\hyperdef{L}{X8066F9B17B78418E}{}
{
Assuming that short bars and isolated points in the barcodes represent noise
while long bars represent essential features, a "noiseless" representation of
the image should correspond to a term in the filtration corresponding to a
column in the barcode incident with all the long bars but incident with no
short bars or isolated points. There is no noiseless term in the above
filtration of length 40. However (in conjunction with the next subsection) the
following commands confirm that the 64th term in the filtration of length 500
is such a term and display this term as a binary image.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=ReadImageAsFilteredPureCubicalComplex(file,500);;|
!gapprompt@gap>| !gapinput@Y:=FiltrationTerm(F,64); |
Pure cubical complex of dimension 2.
!gapprompt@gap>| !gapinput@BettiNumber(Y,0);|
20
!gapprompt@gap>| !gapinput@BettiNumber(Y,1);|
14
!gapprompt@gap>| !gapinput@Display(Y);|
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Refining the filtration}}\logpage{[ 5, 4, 2 ]}
\hyperdef{L}{X7E6436E0856761F2}{}
{
The first filtration for the image has 40 terms. One may wish to investigate a
filtration with more terms, say 500 terms, with a view to analysing, say,
those 1\texttt{\symbol{45}}cycles that are born by term 25 of the filtration
and that die between terms 50 and 60. The following commands produce the
relevant barcode showing that there is precisely one such
1\texttt{\symbol{45}}cycle.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=ReadImageAsFilteredPureCubicalComplex(file,500);;|
!gapprompt@gap>| !gapinput@L:=[20,60,61,62,63,64,65,66,67,68,69,70];; |
!gapprompt@gap>| !gapinput@T:=FiltrationTerms(F,L);;|
!gapprompt@gap>| !gapinput@P0:=PersistentBettiNumbers(T,0);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P0);|
!gapprompt@gap>| !gapinput@P1:=PersistentBettiNumbers(T,1);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P1);|
\end{Verbatim}
$\beta_0$:
$\beta_1$:
}
\subsection{\textcolor{Chapter }{Background to the data}}\logpage{[ 5, 4, 3 ]}
\hyperdef{L}{X7D512DA37F789B4C}{}
{
The following image was used in the example.
}
}
\section{\textcolor{Chapter }{A second example of digital image segmentation}}\logpage{[ 5, 5, 0 ]}
\hyperdef{L}{X7A8224DA7B00E0D9}{}
{
In order to automatically count the number of coins in this picture
we can load the image as a filtered pure cubical complex $F$ of filtration length 40 say, and observe the degree zero persistent Betti
numbers to establish that the 28\texttt{\symbol{45}}th term or so of $F$ seems to be 'noise free' in degree zero. We can then set $M$ equal to the 28\texttt{\symbol{45}}th term of $F$ and thicken $M$ a couple of times say to remove any tiny holes it may have. We can then
construct the complement $C$ of $M$. Then we can construct a 'neighbourhood thickening' filtration $T$ of $C$ with say $50$ consecutive thickenings. The degree one persistent barcode for $T$ has $24$ long bars, suggesting that the original picture consists of $24$ coins.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=ReadImageAsFilteredPureCubicalComplex("my_coins.png",40);;|
!gapprompt@gap>| !gapinput@M:=FiltrationTerm(F,24);; #Chosen after viewing degree 0 barcode for F|
!gapprompt@gap>| !gapinput@M:=PureComplexThickened(M);;|
!gapprompt@gap>| !gapinput@M:=PureComplexThickened(M);;|
!gapprompt@gap>| !gapinput@C:=PureComplexComplement(M);;|
!gapprompt@gap>| !gapinput@T:=ThickeningFiltration(C,50);;|
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbers(T,1);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
The pure cubical complex \texttt{W:=PureComplexComplement(FiltrationTerm(T,25))} has the correct number of path components, namely $25$, but its path components are very much subsets of the regions in the image
corresponding to coins. The complex $W$ can be thickened repeatedly, subject to no two path components being allowed
to merge, in order to obtain a more realistic image segmentation with path
components corresponding more closely to coins. This is done in the follow
commands which use a makeshift function \texttt{Basins(L)} available \href{tutex/basins.g} {here}. The commands essentially implement a standard watershed segmentation
algorithm but do so by using the language of filtered pure cubical complexes.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@W:=PureComplexComplement(FiltrationTerm(T,25));;|
!gapprompt@gap>| !gapinput@L:=[];;|
!gapprompt@gap>| !gapinput@for i in [1..PathComponentOfPureComplex(W,0)] do|
!gapprompt@gap>| !gapinput@P:=PathComponentOfPureComplex(W,i);;|
!gapprompt@gap>| !gapinput@Q:=ThickeningFiltration(P,50,M);;|
!gapprompt@gap>| !gapinput@Add(L,Q);;|
!gapprompt@gap>| !gapinput@od;;|
!gapprompt@gap>| !gapinput@B:=Basins(L);|
!gapprompt@gap>| !gapinput@Display(B);|
\end{Verbatim}
}
\section{\textcolor{Chapter }{A third example of digital image segmentation}}\logpage{[ 5, 6, 0 ]}
\hyperdef{L}{X8290E7D287F69B98}{}
{
The following image is number 3096 in the \href{https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/} {BSDS500 database of images} \cite{MartinFTM01}.
A common first step in segmenting such an image is to appropriately threshold
the corresponding gradient image.
The following commands use the thresholded gradient image to produce an
outline of the aeroplane. The outline is a pure cubical complex with one path
component and with first Betti number equal to 1.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=Filename(DirectoriesPackageLibrary("HAP"),"../tutorial/images/3096b.jpg");;|
!gapprompt@gap>| !gapinput@F:=ReadImageAsFilteredPureCubicalComplex(file,30);;|
!gapprompt@gap>| !gapinput@F:=ComplementOfFilteredPureCubicalComplex(F);;|
!gapprompt@gap>| !gapinput@M:=FiltrationTerm(F,27);; #Thickening chosen based on degree 0 barcode|
!gapprompt@gap>| !gapinput@Display(M);;|
!gapprompt@gap>| !gapinput@P:=List([1..BettiNumber(M,0)],n->PathComponentOfPureComplex(M,n));;|
!gapprompt@gap>| !gapinput@P:=Filtered(P,m->Size(m)>10);;|
!gapprompt@gap>| !gapinput@M:=P[1];;|
!gapprompt@gap>| !gapinput@for m in P do|
!gapprompt@>| !gapinput@M:=PureComplexUnion(M,m);;|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@T:=ThickeningFiltration(M,50);;|
!gapprompt@gap>| !gapinput@BettiNumber(FiltrationTerm(T,11),0);|
1
!gapprompt@gap>| !gapinput@BettiNumber(FiltrationTerm(T,11),1);|
1
!gapprompt@gap>| !gapinput@BettiNumber(FiltrationTerm(T,12),1);|
0
!gapprompt@gap>| !gapinput@#Confirmation that 11-th filtration term has one hole and the 12-th term is contractible.|
!gapprompt@gap>| !gapinput@C:=FiltrationTerm(T,11);;|
!gapprompt@gap>| !gapinput@for n in Reversed([1..10]) do|
!gapprompt@>| !gapinput@C:=ContractedComplex(C,FiltrationTerm(T,n));|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@C:=PureComplexBoundary(PureComplexThickened(C));;|
!gapprompt@gap>| !gapinput@H:=HomotopyEquivalentMinimalPureCubicalSubcomplex(FiltrationTerm(T,12),C);;|
!gapprompt@gap>| !gapinput@B:=ContractedComplex(PureComplexBoundary(H));;|
!gapprompt@gap>| !gapinput@Display(B);|
\end{Verbatim}
}
\section{\textcolor{Chapter }{Naive example of digital image contour extraction}}\logpage{[ 5, 7, 0 ]}
\hyperdef{L}{X7957F329835373E9}{}
{
The following greyscale image is available from the \href{http://www.ipol.im/pub/art/2014/74/FrechetAndConnectedCompDemo.tgz} {online appendix} to the paper \cite{coeurjolly}.
The following commands produce a picture of contours from this image based on
greyscale values. They also produce a picture of just the closed contours (the
non\texttt{\symbol{45}}closed contours having been homotopy collapsed to
points).
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=Filename(DirectoriesPackageLibrary("HAP"),"../tutorial/images/circularGradient.png");;|
!gapprompt@gap>| !gapinput@L:=[];; |
!gapprompt@gap>| !gapinput@for n in [1..15] do|
!gapprompt@>| !gapinput@M:=ReadImageAsPureCubicalComplex(file,n*30000);|
!gapprompt@>| !gapinput@M:=PureComplexBoundary(M);;|
!gapprompt@>| !gapinput@Add(L,M);|
!gapprompt@>| !gapinput@od;;|
!gapprompt@gap>| !gapinput@C:=L[1];;|
!gapprompt@gap>| !gapinput@for n in [2..Length(L)] do C:=PureComplexUnion(C,L[n]); od;|
!gapprompt@gap>| !gapinput@Display(C);|
!gapprompt@gap>| !gapinput@Display(ContractedComplex(C));|
\end{Verbatim}
Contours from the above greyscale image:
Closed contours from the above greyscale image:
Very similar results are obtained when applied to the file \texttt{circularGradientNoise.png}, containing noise, available from the \href{http://www.ipol.im/pub/art/2014/74/FrechetAndConnectedCompDemo.tgz} {online appendix} to the paper \cite{coeurjolly}.
The number of distinct "light sources" in the image can be read from the
countours. Alternatively, this number can be read directly from the barcode
produced by the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=ReadImageAsFilteredPureCubicalComplex(file,20);;|
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbersAlt(F,1);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
The seventeen bars in the barcode correspond to seventeen light sources. The
length of a bar is a measure of the "persistence" of the corresponding light
source. A long bar may initially represent a cluster of several lights whose
members may eventually be distinguished from each other as new bars (or
persistent homology classes) are created.
Here the command \texttt{PersistentBettiNumbersAlt} has been used. This command is explained in the following section.
The follwowing commands use a watershed method to partition the digital image
into regions, one region per light source. A makeshift function \texttt{Basins(L)}, available \href{tutex/basins.g} {here}, is called. (The efficiency of the example could be easily improved. For
simplicity it uses generic commands which, in principle, can be applied to
cubical or permutarhedral complexes of higher dimensions.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=Filename(DirectoriesPackageLibrary("HAP"),"../tutorial/images/circularGradient.png");;|
!gapprompt@gap>| !gapinput@F:=ReadImageAsFilteredPureCubicalComplex(file,20);;|
!gapprompt@gap>| !gapinput@FF:=ComplementOfFilteredPureCubicalComplex(F);|
!gapprompt@gap>| !gapinput@W:=(FiltrationTerm(FF,3));|
!gapprompt@gap>| !gapinput@for n in [4..23] do|
!gapprompt@>| !gapinput@L:=[];;|
!gapprompt@>| !gapinput@for i in [1..PathComponentOfPureComplex(W,0)] do|
!gapprompt@>| !gapinput@ P:=PathComponentOfPureComplex(W,i);;|
!gapprompt@>| !gapinput@ Q:=ThickeningFiltration(P,150,FiltrationTerm(FF,n));;|
!gapprompt@>| !gapinput@ Add(L,Q);;|
!gapprompt@>| !gapinput@od;;|
!gapprompt@>| !gapinput@W:=Basins(L);|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@C:=PureComplexComplement(W);;|
!gapprompt@gap>| !gapinput@T:=PureComplexThickened(C);; C:=ContractedComplex(T,C);; |
!gapprompt@gap>| !gapinput@Display(C);|
\end{Verbatim}
}
\section{\textcolor{Chapter }{Alternative approaches to computing persistent homology}}\label{secAltPersist}
\logpage{[ 5, 8, 0 ]}
\hyperdef{L}{X7D2CC9CB85DF1BAF}{}
{
From any sequence $X_0 \subset X_1 \subset X_2 \subset \cdots \subset X_T$ of cellular spaces (such as pure cubical complexes, or cubical complexes, or
simplicial complexes, or regular CW complexes) we can construct a filtered
chain complex $C_\ast X_0 \subset C_\ast X_1 \subset C_\ast X_2 \subset \cdots C_\ast X_T$. The induced homology homomorphisms $H_n(C_\ast X_0,\mathbb F) \rightarrow H_n(C_\ast X_1,\mathbb F) \rightarrow
H_n(C_\ast X_2,\mathbb F) \rightarrow \cdots \rightarrow H_n(C_\ast
X_T,\mathbb F)$ with coefficients in a field $\mathbb F$ can be computed by applying an appropriate sequence of elementary row
operations to the boundary matrices in the chain complex $C_\ast X_T\otimes \mathbb F$; the boundary matrices are sparse and are best represented as such; the row
operations need to be applied in a fashion that respects the filtration. This
method is used in the above examples of persistent homology. The method is not
practical when the number of cells in $X_T$ is large.
An alternative approach is to construct an admissible discrete vector field on
each term $X_k$ in the filtration. For each vector field there is a
non\texttt{\symbol{45}}regular CW\texttt{\symbol{45}}complex $Y_k$ whose cells correspond to the critical cells in $X_k$ and for which there is a homotopy equivalence $X_k\simeq Y_k$. For each $k$ the composite homomorphism $H_n(C_\ast Y_k, \mathbb F) \stackrel{\cong}{\rightarrow} H_n(C_\ast X_k,
\mathbb F) \rightarrow H_n(C_\ast X_{k+1}, \mathbb F)
\stackrel{\cong}{\rightarrow} H_n(C_\ast Y_{k+1}, \mathbb F)$ can be computed and the persistent homology can be derived from these homology
homomorphisms. This method is implemented in the function \texttt{PersistentBettiNUmbersAlt(X,n,p)} where $p$ is the characteristic of the field, $n$ is the homology degree, and $X$ can be a filtered pure cubical complex, or a filtered simplicial complex, or a
filtered regular CW complex, or indeed a filtered chain complex (represented
in sparse form). This function incorporates the functions \texttt{ContractedFilteredPureCubicalComplex(X)} and \texttt{ContractedFilteredRegularComplex(X)} which respectively input a filtered pure cubical complex and filtered regular
CW\texttt{\symbol{45}}complex and return a filtered complex of the same data
type in which each term of the output filtration is a deformation retract of
the corresponding term in the input filtration.
In this approach the vector fields on the various spaces $X_k$ are completely independent and so the method lends itself to a degree of easy
parallelism. This is not incorporated into the current implementation.
As an illustration we consider a synthetic data set $S$ consisting of $3527$ points sampled, with errors, from an `unknown' manifold $M$ in $\mathbb R^3$. From such a data set one can associate a $3$\texttt{\symbol{45}}dimensional cubical complex $X_0$ consisting of one unit cube centred on each (suitably scaled) data point. A
visualization of $X_0$ is shown below.
Given a pure cubical complex $X_s$ we construct $X_{s+1} =X_s \cup \{\overline e^3_\lambda\}_{\lambda\in \Lambda}$ by adding to $X_s$ each closed unit cube $\overline e^3_\lambda$ in $\mathbb R^3$ that intersects non\texttt{\symbol{45}}trivially with $X_s$. We construct the filtered cubical complex $X_\ast =\{X_i\}_{0\le i\le 19}$ and compute the persistence matrices $\beta_d^{\ast\ast}$ for $d=0,1,2$ and for $\mathbb Z_2$ coefficients. The filtered complex $X_\ast$ is quite large. In particular, the final space $X_{19}$ in the filtration involves $1\,092727$ vertices, $3\,246354$ edges, $3\,214836$ faces of dimension $2$ and $1\,061208$ faces of dimension $3$. The usual matrix reduction approach to computing persistent Betti numbers
would involve an appropriate row reduction of sparse matrices one of which has
over 3 million rows and 3 million columns.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("data247.txt");;|
!gapprompt@gap>| !gapinput@Read(file);;|
!gapprompt@gap>| !gapinput@F:=ThickeningFiltration(T,20);;|
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbersAlt(F,[0,1,2]);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
The barcodes suggest that the data points might have been sampled from a
manifold with the homotopy type of a torus.
\subsection{\textcolor{Chapter }{Non\texttt{\symbol{45}}trivial cup product}}\logpage{[ 5, 8, 1 ]}
\hyperdef{L}{X86FD0A867EC9E64F}{}
{
Of course, a wedge $S^2\vee S^1\vee S^1$ has the same homology as the torus $S^1\times S^1$. By establishing that a 'noise free' model for our data points, say the
10\texttt{\symbol{45}}th term $X_{10}$ in the filtration, has a non\texttt{\symbol{45}}trivial cup product $\cup\colon H^1(X_{10},\mathbb Z) \times H^1(X_{10},\mathbb Z) \rightarrow
H^2(X_{10},\mathbb Z)$ we can eliminate $S^2\vee S^1\vee S^1$ as a candidate from which the data was sampled.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@X10:=RegularCWComplex(FiltrationTerm(F,10));;|
!gapprompt@gap>| !gapinput@cup:=LowDimensionalCupProduct(X10);;|
!gapprompt@gap>| !gapinput@cup([1,0],[0,1]);|
[ 1 ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Explicit homology generators}}\logpage{[ 5, 8, 2 ]}
\hyperdef{L}{X783EF0F17B629C46}{}
{
It could be desirable to obtain explicit representatives of the persistent
homology generators that "persist" through a significant sequence of
filtration terms. There are two such generators in degree $1$ and one such generator in degree $2$. The explicit representatives in degree $n$ could consist of an inclusion of pure cubical complexes $Y_n \subset X_{10}$ for which the incuced homology homomorphism $H_n(Y_n,\mathbb Z) \rightarrow H_n(X_{10},\mathbb Z)$ is an isomorphism, and for which $Y_n$ is minimal in the sense that its homotopy type changes if any one or more of
its top dimensional cells are removed. Ideally the space $Y_n$ should be "close to the original dataset" $X_0$. The following commands first construct an explicit degree $2$ homology generator representative $Y_2\subset X_{10}$ where $Y_2$ is homotopy equivalent to $X_{10}$. They then construct an explicit degree $1$ homology generators representative $Y_1\subset X_{10}$ where $Y_1$ is homotopy equivalent to a wedge of two circles. The final command displays
the homology generators representative $Y_1$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y2:=FiltrationTerm(F,10);; |
!gapprompt@gap>| !gapinput@for t in Reversed([1..9]) do|
!gapprompt@>| !gapinput@Y2:=ContractedComplex(Y2,FiltrationTerm(F,t));|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@Y2:=ContractedComplex(Y2);;|
!gapprompt@gap>| !gapinput@Size(FiltrationTerm(F,10));|
918881
!gapprompt@gap>| !gapinput@Size(Y2); |
61618
!gapprompt@gap>| !gapinput@Y1:=PureComplexDifference(Y2,PureComplexRandomCell(Y2));;|
!gapprompt@gap>| !gapinput@Y1:=ContractedComplex(Y1);;|
!gapprompt@gap>| !gapinput@Size(Y1);|
474
!gapprompt@gap>| !gapinput@Display(Y1);|
\end{Verbatim}
}
}
\section{\textcolor{Chapter }{Knotted proteins}}\logpage{[ 5, 9, 0 ]}
\hyperdef{L}{X80D0D8EB7BCD05E9}{}
{
The \href{https://www.rcsb.org/} {Protein Data Bank} contains a wealth of data which can be investigated with respect to
knottedness. Information on a particular protein can be downloaded as a .pdb
file. Each protein consists of one or more chains of amino acids and the file
gives 3\texttt{\symbol{45}}dimensional Euclidean coordinates of the atoms in
amino acids. Each amino acid has a unique "alpha carbon" atom (labelled as
"CA" in the pdb file). A simple 3\texttt{\symbol{45}}dimensional curve, the \emph{protein backbone}, can be constructed through the sequence of alpha carbon atoms. Typically the
ends of the protein backbone lie near the "surface" of the protein and can be
joined by a path outside of the protein to obtain a simple closed curve in
Euclidean 3\texttt{\symbol{45}}space.
The following command reads in the pdb file for the T.thermophilus 1V2X
protein, which consists of a single chain of amino acids, and uses Asymptote
software to produce an interactive visualization of its backbone. A path
joining the end vertices of the backbone is displayed in blue.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("data1V2X.pdb");;|
!gapprompt@gap>| !gapinput@DisplayPDBfile(file);|
\end{Verbatim}
The next command reads in the pdb file for the T.thermophilus 1V2X protein and
represents it as a $3$\texttt{\symbol{45}}dimensional pure cubical complex $K$. A resolution of $r=5$ is chosen and this results in a representation as a subcomplex $K$ of an ambient rectangular box of volume equal to $184\times 186\times 294$ unit cubes. The complex $K$ should have the homotopy type of a circle and the protein backbone is a
1\texttt{\symbol{45}}dimenional curve that should lie in $K$. The final command displays $K$.
\begin{Verbatim}[commandchars=@|E,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>E @gapinput|r:=5;;E
@gapprompt|gap>E @gapinput|K:=ReadPDBfileAsPureCubicalComplex(file,r);; E
@gapprompt|gap>E @gapinput|K:=ContractedComplex(K);;E
@gapprompt|gap>E @gapinput|K!.properties;E
[ [ "dimension", 3 ], [ "arraySize", [ 184, 186, 294 ] ] ]
@gapprompt|gap>E @gapinput|Display(K);E
\end{Verbatim}
Next we create a filtered pure cubical complex by repeatedly thickening $K$. We perform $15$ thickenings, each thickening being a term in the filtration. The $\beta_1$ barcode for the filtration is displayed. This barcode is a descriptor for the
geometry of the protein. For current purposes it suffices to note that the
first few terms of the filtration have first homology equal to that of a
circle. This indicates that the Euclidean coordinates in the pdb file robustly
determine some knot.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=ThickeningFiltration(K,15);;|
!gapprompt@gap>| !gapinput@F:=FilteredPureCubicalComplexToCubicalComplex(F);;|
!gapprompt@gap>| !gapinput@F:=FilteredCubicalComplexToFilteredRegularCWComplex(F);;|
!gapprompt@gap>| !gapinput@P:=PersistentBettiNumbersAlt(F,1);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P);|
\end{Verbatim}
The next commands compute a presentation for the fundamental group $\pi_1(\mathbb R^3\setminus K)$ and the Alexander polynomial for the knot. This is the same Alexander
polynomial as for the trefoil knot. Also, Tietze transformations can be used
to see that the fundamental group is the same as for the trefoil knot.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@C:=PureComplexComplement(K);;|
!gapprompt@gap>| !gapinput@C:=ContractedComplex(C);;|
!gapprompt@gap>| !gapinput@G:=FundamentalGroup(C);;|
!gapprompt@gap>| !gapinput@GeneratorsOfGroup(G);|
[ f1, f2 ]
!gapprompt@gap>| !gapinput@RelatorsOfFpGroup(G);|
[ f2*f1^-1*f2^-1*f1^-1*f2*f1 ]
!gapprompt@gap>| !gapinput@AlexanderPolynomial(G);|
x_1^2-x_1+1
\end{Verbatim}
}
\section{\textcolor{Chapter }{Random simplicial complexes}}\logpage{[ 5, 10, 0 ]}
\hyperdef{L}{X87AF06677F05C624}{}
{
For a positive integer $n$ and probability $p$ we denote by $Y(n,p)$ the \emph{Linial\texttt{\symbol{45}}Meshulam random simplicial
2\texttt{\symbol{45}}complex}. Its $1$\texttt{\symbol{45}}skeleton is the complete graph on $n$ vertices; each possible $2$\texttt{\symbol{45}}simplex is included independently with probability $p$.
The following commands first compute the number $h_i$ of non\texttt{\symbol{45}}trivial cyclic summands in $H_i(Y(100,p), \mathbb Z)$ for a range of probabilities $p$ and $i=1,2$ and then produce a plot of $h_i$ versus $p$. The plot for $h_1$ is red and the plot for $h_2$ is blue. A plot for the Euler characteristic $1-h_1+h_2$ is shown in green.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=[];;M:=[];;|
!gapprompt@gap>| !gapinput@for p in [1..100] do|
!gapprompt@>| !gapinput@K:=RegularCWComplex(RandomSimplicialTwoComplex(100,p/1000));;|
!gapprompt@>| !gapinput@h1:=Length(Homology(K,1));;|
!gapprompt@>| !gapinput@h2:=Length(Homology(K,2));;|
!gapprompt@>| !gapinput@Add(L, [1.0*(p/1000),h1,"red"]);|
!gapprompt@>| !gapinput@Add(L, [1.0*(p/1000),h2,"blue"]);|
!gapprompt@>| !gapinput@Add(M, [1.0*(p/1000),1-h1+h2,"green"]);|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@ScatterPlot(L);|
!gapprompt@gap>| !gapinput@ScatterPlot(M);|
\end{Verbatim}
From this plot it seems that there is a \emph{phase change threshold} at around $p=0.025$. An inspection of the first homology groups $H_1(Y(100,p), \mathbb Z)$ shows that in most cases there is no torsion. However, around the threshold
some of the complexes do have torsion in their first homology.
Similar commands for $Y(75,p)$ suggest a phase transition at around $p=0.035$ in this case. The following commands compute $H_1(Y(75,p), \mathbb Z)$ for $900$ random $2$\texttt{\symbol{45}}complexes with $p$ in a small interval around $ 0.035$ and, in each case where there is torsion, the torsion coefficients are stored
in a list. The final command prints these lists
\texttt{\symbol{45}}\texttt{\symbol{45}} all but one of which are of length $1$. For example, there is one $2$\texttt{\symbol{45}}dimensional simplicial complex on $75$ vertices whose first homology contains the summand $\mathbb Z_{107879661870516800665161182578823128}$. The largest prime factor is $80555235907994145009690263$ occuring in the summand $\mathbb Z_{259837760616287294231081766978855}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@torsion:=function(n,p)|
!gapprompt@>| !gapinput@local H, Y;|
!gapprompt@>| !gapinput@Y:=RegularCWComplex(RandomSimplicialTwoComplex(n,p));|
!gapprompt@>| !gapinput@H:=Homology(Y,1);|
!gapprompt@>| !gapinput@H:=Filtered(H,x->not x=0);|
!gapprompt@>| !gapinput@return H;|
!gapprompt@>| !gapinput@end;|
function( n, p ) ... end
!gapprompt@gap>| !gapinput@L:=[];;for n in [73000..73900] do|
!gapprompt@>| !gapinput@t:=torsion(75,n/2000000); |
!gapprompt@>| !gapinput@if not t=[] then Add(L,t); fi;|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@Display(L);|
[ [ 2 ],
[ 26 ],
[ 259837760616287294231081766978855 ],
[ 2 ],
[ 3 ],
[ 2 ],
[ 2761642698060127444812143568 ],
[ 2626355281010974663776273381976 ],
[ 2 ],
[ 3 ],
[ 33112382751264894819430785350 ],
[ 16 ],
[ 4 ],
[ 3 ],
[ 2 ],
[ 3 ],
[ 2 ],
[ 85234949999183888967763100590977 ],
[ 2 ],
[ 24644196130785821107897718662022 ],
[ 2, 2 ],
[ 2 ],
[ 416641662889025645492982468 ],
[ 41582773001875039168786970816 ],
[ 2 ],
[ 75889883165411088431747730 ],
[ 33523474091636554792305315165 ],
[ 107879661870516800665161182578823128 ],
[ 5588265814409119568341729980 ],
[ 2 ],
[ 5001457249224115878015053458 ],
[ 10 ],
[ 12 ],
[ 2 ],
[ 2 ],
[ 3 ],
[ 7757870243425246987971789322 ],
[ 8164648856993269673396613497412 ],
[ 2 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Computing homology of a clique complex (Vietoris\texttt{\symbol{45}}Rips
complex) }}\logpage{[ 5, 11, 0 ]}
\hyperdef{L}{X875EE92F7DBA1E27}{}
{
Topological data analysis provides one motivation for wanting to compute the
homology of a clique complex. Consider for instance the cloud of data points
shown in Example \ref{pointcloud}. This data is a set $S$ of 400 points in the plane. Let $\Gamma$ be the graph with vertex set $S$ and with two vertices joined by an edge if they lie within a Euclidean
distance of 40 of each other. The clique complex $K=K(\Gamma)$ could be studied to see what it reveals about the data. The following commands
construct $K$ and show that it is a 23\texttt{\symbol{45}}dimensional simplicial complex
consisting of a total of 36191976 simplices.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("data134.txt");; |
!gapprompt@gap>| !gapinput@Read(file);|
!gapprompt@gap>| !gapinput@A:=VectorsToSymmetricMatrix(S,EuclideanApproximatedMetric);;|
!gapprompt@gap>| !gapinput@threshold:=40;; |
!gapprompt@gap>| !gapinput@grph:=SymmetricMatrixToGraph(A,threshold);;|
!gapprompt@gap>| !gapinput@dimension_cap:=100;; |
!gapprompt@gap>| !gapinput@K:=CliqueComplex(grph,dimension_cap);|
Simplicial complex of dimension 23.
!gapprompt@gap>| !gapinput@Size(K);|
36191976
\end{Verbatim}
The computation of the homology of this clique complex $K$ is a challenge because of its size. If we are only interested in $K$ up to homotopy then we could try to modify the graph $\Gamma$ in such a way that the homotopy type of the clique complex is unchanged but
the size of the clique complex is reduced. This is done in the following
commands, producing a smaller $19$\texttt{\symbol{45}}dimensional simplicial complex $K$ with 4180652 simplices.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ContractGraph(grph);;|
!gapprompt@gap>| !gapinput@dimension_cap:=100;; |
!gapprompt@gap>| !gapinput@K:=CliqueComplex(grph,dimension_cap);|
Simplicial complex of dimension 19.
!gapprompt@gap>| !gapinput@Size(K);|
4180652
\end{Verbatim}
To compute the homology of $K$ in degrees $0$ to $5$ say, we could represent $K$ as a regular CW\texttt{\symbol{45}}complex $Y$ and then compute the homology of $Y$ as follows. The homology $H_n(K)=\mathbb Z$ for $n=0,1$ and $H_n(K)= 0$ for $n=2,3,4,5$ is consistent with the data having been sampled from a space with the homotopy
type of a circle.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Y:=RegularCWComplex(K);|
Regular CW-complex of dimension 19
!gapprompt@gap>| !gapinput@Homology(Y,0);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,1);|
[ 0 ]
!gapprompt@gap>| !gapinput@Homology(Y,2);|
[ ]
!gapprompt@gap>| !gapinput@Homology(Y,3);|
[ ]
!gapprompt@gap>| !gapinput@Homology(Y,4);|
[ ]
!gapprompt@gap>| !gapinput@Homology(Y,5)|
[ ]
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Group theoretic computations}}\logpage{[ 6, 0, 0 ]}
\hyperdef{L}{X7C07F4BD8466991A}{}
{
\section{\textcolor{Chapter }{Third homotopy group of a supsension of an
Eilenberg\texttt{\symbol{45}}MacLane space }}\logpage{[ 6, 1, 0 ]}
\hyperdef{L}{X86D7FBBD7E5287C9}{}
{
The following example uses the nonabelian tensor square of groups to compute
the third homotopy group
$\pi_3(S(K(G,1))) = \mathbb Z^{30}$
of the suspension of the Eigenberg\texttt{\symbol{45}}MacLane space $K(G,1)$ for $G$ the free nilpotent group of class $2$ on four generators.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(4);;G:=NilpotentQuotient(F,2);;|
!gapprompt@gap>| !gapinput@ThirdHomotopyGroupOfSuspensionB(G);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Representations of knot quandles}}\logpage{[ 6, 2, 0 ]}
\hyperdef{L}{X803FDFFE78A08446}{}
{
The following example constructs the finitely presented quandles associated to
the granny knot and square knot, and then computes the number of quandle
homomorphisms from these two finitely prresented quandles to the $17$\texttt{\symbol{45}}th quandle in \textsc{HAP}'s library of connected quandles of order $24$. The number of homomorphisms differs between the two cases. The computation
therefore establishes that the complement in $\mathbb R^3$ of the granny knot is not homeomorphic to the complement of the square knot.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=ConnectedQuandle(24,17,"import");;|
!gapprompt@gap>| !gapinput@K:=PureCubicalKnot(3,1);;|
!gapprompt@gap>| !gapinput@L:=ReflectedCubicalKnot(K);;|
!gapprompt@gap>| !gapinput@square:=KnotSum(K,L);;|
!gapprompt@gap>| !gapinput@granny:=KnotSum(K,K);;|
!gapprompt@gap>| !gapinput@gcsquare:=GaussCodeOfPureCubicalKnot(square);;|
!gapprompt@gap>| !gapinput@gcgranny:=GaussCodeOfPureCubicalKnot(granny);;|
!gapprompt@gap>| !gapinput@Qsquare:=PresentationKnotQuandle(gcsquare);;|
!gapprompt@gap>| !gapinput@Qgranny:=PresentationKnotQuandle(gcgranny);;|
!gapprompt@gap>| !gapinput@NumberOfHomomorphisms(Qsquare,Q);|
408
!gapprompt@gap>| !gapinput@NumberOfHomomorphisms(Qgranny,Q);|
24
\end{Verbatim}
The following commands compute a knot quandle directly from a pdf file
containing the following hand\texttt{\symbol{45}}drawn image of the knot.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ gc:=ReadLinkImageAsGaussCode("myknot.pdf");|
[ [ [ -2, 4, -1, 3, -3, 2, -4, 1 ] ], [ -1, -1, 1, -1 ] ]
!gapprompt@gap>| !gapinput@Q:=PresentationKnotQuandle(gc);|
Quandle presentation of 4 generators and 4 relators.
\end{Verbatim}
}
\section{\textcolor{Chapter }{Identifying knots}}\logpage{[ 6, 3, 0 ]}
\hyperdef{L}{X7E4EFB987DA22017}{}
{
Low index subgrops of the knot group can be used to identify knots with few
crossings. For instance, the following commands read in the following image of
a knot and identify it as a sum of two trefoils. The commands determine the
prime components only up to reflection, and so they don't distinguish between
the granny and square knots.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gc:=ReadLinkImageAsGaussCode("myknot2.png");|
[ [ [ -4, 7, -5, 4, -7, 5, -3, 6, -2, 3, 8, -8, -6, 2, 1, -1 ] ],
[ 1, -1, -1, -1, -1, -1, -1, 1 ] ]
!gapprompt@gap>| !gapinput@IdentifyKnot(gc);;|
PrimeKnot(3,1) + PrimeKnot(3,1) modulo reflections of components.
\end{Verbatim}
}
\section{\textcolor{Chapter }{Aspherical $2$\texttt{\symbol{45}}complexes}}\logpage{[ 6, 4, 0 ]}
\hyperdef{L}{X8664E986873195E6}{}
{
The following example uses Polymake's linear programming routines to establish
that the $2$\texttt{\symbol{45}}complex associated to the group presentation $<x,y,z : xyx=yxy,\, yzy=zyz,\, xzx=zxz>$ is aspherical (that is, has contractible universal cover). The presentation is
Tietze equivalent to the presentation used in the computer code, and the
associated $2$\texttt{\symbol{45}}complexes are thus homotopy equivalent.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(6);;|
!gapprompt@gap>| !gapinput@x:=F.1;;y:=F.2;;z:=F.3;;a:=F.4;;b:=F.5;;c:=F.6;;|
!gapprompt@gap>| !gapinput@rels:=[a^-1*x*y, b^-1*y*z, c^-1*z*x, a*x*(y*a)^-1,|
!gapprompt@>| !gapinput@ b*y*(z*b)^-1, c*z*(x*c)^-1];;|
!gapprompt@gap>| !gapinput@Print(IsAspherical(F,rels),"\n");|
Presentation is aspherical.
true
\end{Verbatim}
}
\section{\textcolor{Chapter }{Group presentations and homotopical syzygies}}\logpage{[ 6, 5, 0 ]}
\hyperdef{L}{X84C0CB8B7C21E179}{}
{
Free resolutons for a group $G$ are constructed in \textsc{HAP} as the cellular chain complex $R_\ast=C_\ast(\tilde X)$ of the universal cover of some CW\texttt{\symbol{45}}complex $X=K(G,1)$. The $2$\texttt{\symbol{45}}skeleton of $X$ gives rise to a free presentation for the group $G$. This presentation depends on a choice of maximal tree in the $1$\texttt{\symbol{45}}skeleton of $X$ in cases where $X$ has more than one $0$\texttt{\symbol{45}}cell. The attaching maps of $3$\texttt{\symbol{45}}cells in $X$ can be regarded as \emph{homotopical syzygies} or van Kampen diagrams over the group presentation whose boundaries spell the
trivial word.
The following example constructs four terms of a resolution for the free
abelian group $G$ on $n=3$ generators, and then extracts the group presentation from the resolution as
well as the unique homotopical syzygy. The syzygy is visualized in terms of
its graph of edges, directed edges being coloured according to the
corresponding group generator. (In this example the
CW\texttt{\symbol{45}}complex $\tilde X$ is regular, but in cases where it is not the visualization may be a quotient
of the $1$\texttt{\symbol{45}}skeleton of the syzygy.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@n:=3;;c:=1;;|
!gapprompt@gap>| !gapinput@G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(n),c));;|
!gapprompt@gap>| !gapinput@R:=ResolutionNilpotentGroup(G,4);;|
!gapprompt@gap>| !gapinput@P:=PresentationOfResolution(R);;|
!gapprompt@gap>| !gapinput@P.freeGroup;|
<free group on the generators [ x, y, z ]>
!gapprompt@gap>| !gapinput@P.relators;|
[ y^-1*x^-1*y*x, z^-1*x^-1*z*x, z^-1*y^-1*z*y ]
!gapprompt@gap>| !gapinput@IdentityAmongRelatorsDisplay(R,1);|
\end{Verbatim}
This homotopical syzygy represents a relationship between the three relators $[x,y]$, $[x,z]$ and $[y,z]$ where $[x,y]=xyx^{-1}y^{-1}$. The syzygy can be thought of as a geometric relationship between commutators
corresponding to the well\texttt{\symbol{45}}known
Hall\texttt{\symbol{45}}Witt identity:
$ [\ [x,y],\ {^yz}\ ]\ \ [\ [y,z],\ {^zx}\ ]\ \ [\ [z,x],\ {^xy}\ ]\ \ =\ \ 1\ \
.$
The homotopical syzygy is special since in this example the edge directions
and labels can be understood as specifying three homeomorphisms between pairs
of faces. Viewing the syzygy as the boundary of the $3$\texttt{\symbol{45}}ball, by using the homeomorphisms to identify the faces in
each face pair we obtain a quotient CW\texttt{\symbol{45}}complex $M$ involving one vertex, three edges, three $2$\texttt{\symbol{45}}cells and one $3$\texttt{\symbol{45}}cell. The cell structure on the quotient exists because,
under the restrictions of homomorphisms to the edges, any cycle of edges
retricts to the identity map on any given edge. The following result tells us
that $M$ is in fact a closed oriented compact $3$\texttt{\symbol{45}}manifold.
\textsc{Theorem.} [Seifert u. Threlfall, Topologie, p.208] \emph{Let $S^2$ denote the boundary of the $3$\texttt{\symbol{45}}ball $B^3$ and suppose that the sphere $S^2$ is given a regular CW\texttt{\symbol{45}}structure in which the faces are
partitioned into a collection of face pairs. Suppose that for each face pair
there is an orientation reversing homeomorphism between the two faces that
sends edges to edges and vertices to vertices. Suppose that by using these
homeomorphisms to identity face pairs we obtain a (not necessarily regular)
CW\texttt{\symbol{45}}structure on the quotient $M$. Then $M$ is a closed compact orientable manifold if and only if its Euler
characteristic is $\chi(M)=0$.}
The next commands construct a presentation and associated unique homotopical
syzygy for the free nilpotent group of class $c=2$ on $n=2$ generators.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@n:=2;;c:=2;;|
!gapprompt@gap>| !gapinput@G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(n),c));;|
!gapprompt@gap>| !gapinput@R:=ResolutionNilpotentGroup(G,4);;|
!gapprompt@gap>| !gapinput@P:=PresentationOfResolution(R);;|
!gapprompt@gap>| !gapinput@P.freeGroup;|
<free group on the generators [ x, y, z ]>
!gapprompt@gap>| !gapinput@P.relators;|
[ z*x*y*x^-1*y^-1, z*x*z^-1*x^-1, z*y*z^-1*y^-1 ]
!gapprompt@gap>| !gapinput@IdentityAmongRelatorsDisplay(R,1);|
\end{Verbatim}
The syzygy represents the following relationship between commutators (in a
free group).
$ [\ [x^{-1},y][x,y]\ ,\ [y,x][y^{-1},x]y^{-1}\ ]\ [\ [y,x][y^{-1},x]\ , \
x^{-1} \ ] \ \ =\ \ 1$
Again, using the theorem of Seifert and Threlfall we see that the free
nilpotent group of class two on two generators arises as the fundamental group
of a closed compact orientable $3$\texttt{\symbol{45}}manifold $M$. }
\section{\textcolor{Chapter }{Bogomolov multiplier}}\logpage{[ 6, 6, 0 ]}
\hyperdef{L}{X7F719758856A443D}{}
{
The Bogomolov multiplier of a group is an isoclinism invariant. Using this
property, the following example shows that there are precisely three groups of
order $243$ with non\texttt{\symbol{45}}trivial Bogomolov multiplier. The groups in
question are numbered 28, 29 and 30 in \textsc{GAP}'s library of small groups of order $243$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=AllSmallGroups(3^5);;|
!gapprompt@gap>| !gapinput@C:=IsoclinismClasses(L);;|
!gapprompt@gap>| !gapinput@for c in C do|
!gapprompt@>| !gapinput@if Length(BogomolovMultiplier(c[1]))>0 then|
!gapprompt@>| !gapinput@Print(List(c,g->IdGroup(g)),"\n\n\n"); fi;|
!gapprompt@>| !gapinput@od;|
[ [ 243, 28 ], [ 243, 29 ], [ 243, 30 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Second group cohomology and group extensions}}\label{secExtensions}
\logpage{[ 6, 7, 0 ]}
\hyperdef{L}{X8333413B838D787D}{}
{
Any group extension $N\rightarrowtail E \twoheadrightarrow G$ gives rise to:
\begin{itemize}
\item an outer action $\alpha\colon G\rightarrow Out(N)$ of $G$ on $N$.
\item an action $G\rightarrow Aut(Z(N))$ of $G$ on the centre of $N$, uniquely induced by the outer action $\alpha$ and the canonical action of $Out(N)$ on $Z(N)$.
\item a "$2$\texttt{\symbol{45}}cocycle" $f\colon G\times G\rightarrow N$.
\end{itemize}
Any outer homomorphism $\alpha\colon G\rightarrow Out(N)$ gives rise to a cohomology class $k$ in $H^3(G,Z(N))$. It was shown by Eilenberg and Mac$\,$Lane that the class $k$ is trivial if and only if the outer action $\alpha$ arises from some group extension $N\rightarrowtail E\twoheadrightarrow G$. If $k$ is trivial then there is a (non\texttt{\symbol{45}}canonical) bijection
between the second cohomology group $H^2(G,Z(N))$ and Yoneda equivalence classes of extensions of $G$ by $N$ that are compatible with $\alpha$.
\textsc{First Example.}
Consider the group $H=SmallGroup(64,134)$. Consider the normal subgroup $N=NormalSubgroups(G)[15]$ and quotient group $G=H/N$. We have $N=C_2\times D_4$, $A=Z(N)=C_2\times C_2$ and $G=C_2\times C_2$.
Suppose we wish to classify all extensions $C_2\times D_4 \rightarrowtail E \twoheadrightarrow C_2\times C_2$ that induce the given outer action of $G$ on $N$. The following commands show that, up to Yoneda equivalence, there are two
such extensions.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@H:=SmallGroup(64,134);;|
!gapprompt@gap>| !gapinput@N:=NormalSubgroups(H)[15];;|
!gapprompt@gap>| !gapinput@A:=Centre(GOuterGroup(H,N));;|
!gapprompt@gap>| !gapinput@G:=ActingGroup(A);;|
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,3);;|
!gapprompt@gap>| !gapinput@C:=HomToGModule(R,A);;|
!gapprompt@gap>| !gapinput@Cohomology(C,2);|
[ 2 ]
\end{Verbatim}
The following additional commands return a standard $2$\texttt{\symbol{45}}cocycle $f:G\times G\rightarrow A =C_2\times C_2$ corresponding to the non\texttt{\symbol{45}}trivial element in $H^2(G,A)$. The value $f(g,h)$ of the $2$\texttt{\symbol{45}}cocycle is calculated for all $16$ pairs $g,h \in G$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|CH:=CohomologyModule(C,2);;B
@gapprompt|gap>B @gapinput|Elts:=Elements(ActedGroup(CH));B
[ <identity> of ..., f1 ]
@gapprompt|gap>B @gapinput|x:=Elts[2];;B
@gapprompt|gap>B @gapinput|c:=CH!.representativeCocycle(x);B
Standard 2-cocycle
@gapprompt|gap>B @gapinput|f:=Mapping(c);;B
@gapprompt|gap>B @gapinput|for g in G do for h in G doB
@gapprompt|>B @gapinput|Print(f(g,h),"\n");B
@gapprompt|>B @gapinput|od;B
@gapprompt|>B @gapinput|od;B
<identity> of ...
<identity> of ...
<identity> of ...
<identity> of ...
<identity> of ...
f6
<identity> of ...
f6
<identity> of ...
<identity> of ...
<identity> of ...
<identity> of ...
<identity> of ...
f6
<identity> of ...
f6
\end{Verbatim}
The following commands will then construct and identify all extensions of $N$ by $G$ corresponding to the given outer action of $G$ on $N$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|H := SmallGroup(64,134);;B
@gapprompt|gap>B @gapinput|N := NormalSubgroups(H)[15];;B
@gapprompt|gap>B @gapinput|ON := GOuterGroup(H,N);;B
@gapprompt|gap>B @gapinput|A := Centre(ON);;B
@gapprompt|gap>B @gapinput|G:=ActingGroup(A);;B
@gapprompt|gap>B @gapinput|R:=ResolutionFiniteGroup(G,3);;B
@gapprompt|gap>B @gapinput|C:=HomToGModule(R,A);;B
@gapprompt|gap>B @gapinput|CH:=CohomologyModule(C,2);;B
@gapprompt|gap>B @gapinput|Elts:=Elements(ActedGroup(CH));;B
@gapprompt|gap>B @gapinput|lst := List(Elts{[1..Length(Elts)]},x->CH!.representativeCocycle(x));;B
@gapprompt|gap>B @gapinput|ccgrps := List(lst, x->CcGroup(ON, x));;B
@gapprompt|gap>B @gapinput|#So ccgrps is a list of groups, each being an extension of G by N, correspondingB
@gapprompt|gap>B @gapinput|#to the two elements in H^2(G,A).B
@gapprompt|gap>B @gapinput|#The following command produces the GAP identification number for each group.B
@gapprompt|gap>B @gapinput|L:=List(ccgrps,IdGroup);B
[ [ 64, 134 ], [ 64, 135 ] ]
\end{Verbatim}
\textsc{Second Example}
The following example illustrates how to construct a cohomology class $k$ in $H^2(G, A)$ from a cocycle $f:G \times G \rightarrow A$, where $G=SL_2(\mathbb Z_4)$ and $A=\mathbb Z_8$ with trivial action.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|#We'll construct G=SL(2,Z_4) as a permutation group.B
@gapprompt|gap>B @gapinput|G:=SL(2,ZmodnZ(4));;B
@gapprompt|gap>B @gapinput|G:=Image(IsomorphismPermGroup(G));;B
@gapprompt|gap>B @gapinput|#We'll construct Z_8=Z/8Z as a G-outer groupB
@gapprompt|gap>B @gapinput|z_8:=Group((1,2,3,4,5,6,7,8));;B
@gapprompt|gap>B @gapinput|Z_8:=TrivialGModuleAsGOuterGroup(G,z_8);;B
@gapprompt|gap>B @gapinput|#We'll compute the group h=H^2(G,Z_8)B
@gapprompt|gap>B @gapinput|R:=ResolutionFiniteGroup(G,3);; #R is a free resolutionB
@gapprompt|gap>B @gapinput|C:=HomToGModule(R,Z_8);; # C is a chain complexB
@gapprompt|gap>B @gapinput|H:=CohomologyModule(C,2);; #H is the second cohomology H^2(G,Z_8)B
@gapprompt|gap>B @gapinput|h:=ActedGroup(H);; #h is the underlying group of HB
@gapprompt|gap>B @gapinput|#We'll compute cocycles c2, c5 for the second and fifth cohomology classsB
@gapprompt|gap>B @gapinput|c2:=H!.representativeCocycle(Elements(h)[2]);B
Standard 2-cocycle
@gapprompt|gap>B @gapinput|c5:=H!.representativeCocycle(Elements(h)[5]);B
Standard 2-cocycle
@gapprompt|gap>B @gapinput|#Now we'll construct the cohomology classes C2, C5 in the group h corresponding to the cocycles c2, c5.B
@gapprompt|gap>B @gapinput|C2:=CohomologyClass(H,c2);;B
@gapprompt|gap>B @gapinput|C5:=CohomologyClass(H,c5);;B
@gapprompt|gap>B @gapinput|#Finally, we'll show that C2, C5 are distinct cohomology classes, both of order 4.B
@gapprompt|gap>B @gapinput|C2=C5;B
false
@gapprompt|gap>B @gapinput|Order(C2);B
4
@gapprompt|gap>B @gapinput|Order(C5);B
4
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cocyclic groups: a convenient way of representing certain groups}}\label{secCocyclic}
\logpage{[ 6, 8, 0 ]}
\hyperdef{L}{X7F04FA5E81FFA848}{}
{
\textsc{GAP} offers a number of data types for representing groups, including those of
fp\texttt{\symbol{45}}groups (\emph{finitely presented groups}), pc\texttt{\symbol{45}}groups (\emph{power\texttt{\symbol{45}}conjugate presentated groups} for finite polycyclic groups), pcp\texttt{\symbol{45}}groups (\emph{polycyclically presented groups} for finite and infinite polycyclic groups), permutation groups (for finite
groups), and matrix groups over a field or ring. Each data type has its
advantages and limitations.
Based on the definitions and examples in Section \ref{secExtensions} the additional data type of a cc\texttt{\symbol{45}}group (\emph{cocyclic group}) is provided in \textsc{HAP}. This can be used for a group $E$ arising as a group extension $N\rightarrowtail E \twoheadrightarrow G$ and is a component object involving:
\begin{itemize}
\item \texttt{E!.Base} consisting of some representation of a group $G$.
\item \texttt{E!.Fibre} consisting of some representation of a group $N$.
\item \texttt{E!.OuterGroup} consisting of an outer action $\alpha\colon G\rightarrow Out(N)$ of $G$ on $N$.
\item \texttt{E!.Cocycle} consisting of a "$2$\texttt{\symbol{45}}cocycle" $f\colon G\times G\rightarrow N$.
\end{itemize}
The first example in Section \ref{secExtensions} illustrates the construction of cc\texttt{\symbol{45}}groups for which both
the base $G$ and fibre $N$ are finite pc\texttt{\symbol{45}}groups. That example extends to any scenario
in which the base $G$ is a group for which:
\begin{enumerate}
\item we can construct the first 3 degrees of a free $\mathbb ZG$\texttt{\symbol{45}}resolution $C_\ast X$.
\item we can construct the first 2 terms of a contracting homotopy $h_i\colon C_nX\rightarrow C_{n+1}X $ for $i=0,1$.
\item $N$ is a group in which we can multiply elements effectively and for which we can
determine the centre $Z(N)$ and outer automorphism group $Out(N)$.
\end{enumerate}
As an illustration where the base group is a non\texttt{\symbol{45}}solvable
finite group and the fibre is the infinite cyclic group, with base group
acting trivially on the fibre, the following commands list up to Yoneda
equivalence all central extensions $\mathbb Z \rightarrowtail E \twoheadrightarrow G$ for $G=A_5:C_{16}$. The base group is a non\texttt{\symbol{45}}solvable
semi\texttt{\symbol{45}}direct product of order $960$ and thus none of the $16$ extensions are polycyclic. The commands classify the extensions according to
their integral homology in degrees $ \le 2$, showing that there are precisely 5 such equivalence classes of extensions.
Thus, there are at least 5 distinct isomorphism types among the $16$ extensions. A presentation is constructed for the group corresponding to the
sixteenth extension. The final command lists the orders of the 16 cohomology
group elements corresponding to the 16 extensions. The 16th element has order
1, meaning that the sixteenth extension is the direct product $C_\infty\ \times\ A_5:C_{16}$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|G:=SmallGroup(960,637);;B
@gapprompt|gap>B @gapinput|StructureDescription(G);B
"A5 : C16"
@gapprompt|gap>B @gapinput|N:=AbelianPcpGroup([0]);;B
@gapprompt|gap>B @gapinput|N:=TrivialGModuleAsGOuterGroup(G,N);;B
@gapprompt|gap>B @gapinput|R:=ResolutionFiniteGroup(G,3);;B
@gapprompt|gap>B @gapinput|C:=HomToGModule(R,N);;B
@gapprompt|gap>B @gapinput|CH:=CohomologyModule(C,2);;B
@gapprompt|gap>B @gapinput|Elts:=Elements(ActedGroup(CH));;B
@gapprompt|gap>B @gapinput|lst := List(Elts{[1..Length(Elts)]},x->CH!.representativeCocycle(x));;B
@gapprompt|gap>B @gapinput|ccgrps := List(lst, x->CcGroup(N, x));;B
@gapprompt|gap>B @gapinput|inv:=function(gg)B
@gapprompt|>B @gapinput|local T;B
@gapprompt|>B @gapinput|T:=ResolutionInfiniteCcGroup(gg,3);B
@gapprompt|>B @gapinput|return List([1..2],i->Homology(TensorWithIntegers(T),i));B
@gapprompt|>B @gapinput|end;;B
@gapprompt|gap>B @gapinput|EquivClasses:=Classify(ccgrps,inv);B
[ <Cc-group of Size infinity>, <Cc-group of Size infinity>,
<Cc-group of Size infinity>, <Cc-group of Size infinity>,
<Cc-group of Size infinity>, <Cc-group of Size infinity>,
<Cc-group of Size infinity>, <Cc-group of Size infinity> ],
[ <Cc-group of Size infinity>, <Cc-group of Size infinity>,
<Cc-group of Size infinity>, <Cc-group of Size infinity> ],
[ <Cc-group of Size infinity>, <Cc-group of Size infinity> ],
[ <Cc-group of Size infinity> ], [ <Cc-group of Size infinity> ] ]
@gapprompt|gap>B @gapinput|List(EquivClasses,Size);B
[ 8, 4, 2, 1, 1 ]
@gapprompt|gap>B @gapinput|F16:=Image(IsomorphismFpGroup(ccgrps[16]));B
<fp group on the generators [ x, y, z, w, v ]>
@gapprompt|gap>B @gapinput|RelatorsOfFpGroup(F16);B
[ (x^2*y*z*w*z*y)^3*x^2*(y*x*w*y^2*z*x*y*z*y)^3*y*x*w*y^2*z*x*y^2*z*w*y^2*z*y,
x*y^-2*w^-1*z^-1*y^-1*x^-1*y, x*z^-1*y^-1*z^-1*w^-1*z^-1*y^-1*x^-1*z,
x*y^-2*z^-1*w^-1*z^-1*y^-1*x^-1*w, z^-2, w^-2, y^-3, w*y^-1*w^-1*y^-1,
w*z*w^-1*z^-1*w^-1*z, z*y^2*(z^-1*y^-1)^2, v^-1*x^-1*v*x, v*y*v^-1*y^-1,
v*z*v^-1*z^-1, v*w*v^-1*w^-1 ]
@gapprompt|gap>B @gapinput|List(Elts,Order);B
[ 16, 16, 16, 16, 16, 16, 16, 16, 8, 8, 8, 8, 4, 4, 2, 1 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Effective group presentations}}\logpage{[ 6, 9, 0 ]}
\hyperdef{L}{X863080FE8270468D}{}
{
For any free $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast=C_\ast X$ arising as the cellular chain complex of a contractible
CW\texttt{\symbol{45}}complex, the terms in degrees $\le 2$ correspond to a free presentation for the group $G$. The following example accesses this presentation for the group $PGL_3(\mathbb Z[\sqrt{-1}])$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ContractibleGcomplex("PGL(3,Z[i])");;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(K,2);;|
!gapprompt@gap>| !gapinput@P:=PresentationOfResolution(R);;|
!gapprompt@gap>| !gapinput@G:=P.freeGroup/P.relators;|
<fp group on the generators [ v, w, x, y, z ]>
!gapprompt@gap>| !gapinput@P.relators;|
[ v^2, w^-1*v*w*v^-1, w^-1*v^-1*w^-1, (x^-1*w)^3, (y^-1*w)^3, (z^-1*w)^4,
y^-1*v^-1*z*y^-1*x, y^-1*v*x*v^-1*x*v, v^-1*z*v^-1*x*y, v^-1*x*v*y*v*x*v*y,
x^3, x*z*y, y^-1*v^-1*y^2*v*y^-1, (v*y)^4, z^-1*y*v*z^-1, (v*y*z)^2,
v^-1*(z*v)^2*z ]
\end{Verbatim}
The homomorphism $h_0\colon R_0 \rightarrow R_1$ of a contracting homotopy provides a unique expression for each element of $G$ as a word in the free generators. To illustrate this, we consider the Sylow $2$\texttt{\symbol{45}}subgroup $H=Syl_2(M_{24})$ of the Mathieu group $M_{24}$. We obtain a resolution $R_\ast$ for $H$ by recursively applying perturbation techniques to a composition series for $H$. Such a resolution will yield a "kind of" power\texttt{\symbol{45}}conjugate
presentation for $H$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@H:=SylowSubgroup(MathieuGroup(24),2);|
<permutation group of size 1024 with 10 generators>
!gapprompt@gap>| !gapinput@Order(H);|
1024
!gapprompt@gap>| !gapinput@C:=CompositionSeries(H);;|
!gapprompt@gap>| !gapinput@R:=ResolutionSubnormalSeries(C,2);;|
!gapprompt@gap>| !gapinput@P:=PresentationOfResolution(R);;|
!gapprompt@gap>| !gapinput@P.freeGroup/P.relators;|
<fp group on the generators [ q, r, s, t, u, v, w, x, y, z ]>
!gapprompt@gap>| !gapinput@P.relators;|
[ q^-2*z*y*x*w*v, q*r^-1*q^-1*y*u*r, s*q*s^-1*q^-1, t*q*t^-1*q^-1,
q*u^-1*q^-1*y*v*u, y*q*v^-1*q^-1, q*w^-1*q^-1*z*x, w*q*x^-1*q^-1,
q*y^-1*q^-1*z*v, z*q*z^-1*q^-1, r^-2, t*r*s^-1*r^-1, s*r*t^-1*r^-1,
u*r*u^-1*r^-1, v*r*v^-1*r^-1, r*w^-1*r^-1*y*w*u, r*x^-1*r^-1*y*x*u,
y*r*y^-1*r^-1, z*r*z^-1*r^-1, s^-2, t*s*t^-1*s^-1, x*s*u^-1*s^-1,
s*v^-1*s^-1*z*y*w*u, s*w^-1*s^-1*y*v*u, u*s*x^-1*s^-1, s*y^-1*s^-1*y*x*u,
z*s*z^-1*s^-1, t^-2, t*u^-1*t^-1*y*x*u, t*v^-1*t^-1*z*w, t*w^-1*t^-1*z*v,
y*t*x^-1*t^-1, x*t*y^-1*t^-1, z*t*z^-1*t^-1, u^-2, v*u*v^-1*u^-1,
u*w^-1*u^-1*z*w, x*u*x^-1*u^-1, y*u*y^-1*u^-1, z*u*z^-1*u^-1, v^-2,
w*v*w^-1*v^-1, v*x^-1*v^-1*z*x, y*v*y^-1*v^-1, z*v*z^-1*v^-1, w^-2,
x*w*x^-1*w^-1, w*y^-1*w^-1*z*y, z*w*z^-1*w^-1, x^-2, y*x*y^-1*x^-1,
z*x*z^-1*x^-1, y^-2, z*y*z^-1*y^-1, z^-2 ]
\end{Verbatim}
The following additional commands use the contracting homotopy homomorphism $h_0\colon R_0\rightarrow R_1$ to express some random elements of $H$ as words in the free generators.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@g:=Random(H);|
(1,6)(2,3)(4,9)(5,16)(7,10)(8,21)(11,18)(12,17)(13,19)(14,20)(15,22)(23,24)
!gapprompt@gap>| !gapinput@P.wordInFreeGenerators(g);|
q^-1*t^-1*x^-1*y^-1
!gapprompt@gap>| !gapinput@|
!gapprompt@gap>| !gapinput@g:=Random(H);|
(1,6)(2,23,10,18)(3,22,19,24)(4,11,15,9)(7,8,21,13)(12,14)
!gapprompt@gap>| !gapinput@P.wordInFreeGenerators(g);|
q^-1*u^-1*w^-1*x^-1*z^-1
!gapprompt@gap>| !gapinput@|
!gapprompt@gap>| !gapinput@g:=Random(H);|
(1,14,5,17)(2,7,9,19)(3,11,4,22)(6,12,16,20)(8,18,24,15)(10,23,13,21)
!gapprompt@gap>| !gapinput@P.wordInFreeGenerators(g);|
q^-1*r^-1*t^-1*v^-1*x^-1*z^-1
!gapprompt@gap>| !gapinput@|
!gapprompt@gap>| !gapinput@g:=Random(H);|
(1,14,5,17)(2,21)(3,9)(4,24)(6,12,16,20)(7,11,15,13)(8,23)(10,18,22,19)
!gapprompt@gap>| !gapinput@P.wordInFreeGenerators(g);|
q^-1*r^-1*t^-1*v^-1*w^-1*z^-1
\end{Verbatim}
Because the resolution $R_\ast$ was obtained from a composition series, the unique word associated to an
element $g\in H$ always has the form $q^{\epsilon_1} r^{\epsilon_2} s^{\epsilon_3} t^{\epsilon_4} u^{\epsilon_5}
v^{\epsilon_6} w^{\epsilon_7} x^{\epsilon_8} y^{\epsilon_9} z^{\epsilon_{10}}$ determined by the exponent vector $(\epsilon_1,\cdots,\epsilon_{10}) \in (\mathbb Z_2)^{10}$. }
\section{\textcolor{Chapter }{Second group cohomology and cocyclic Hadamard matrices}}\label{secHadamard}
\logpage{[ 6, 10, 0 ]}
\hyperdef{L}{X7C60E2B578074532}{}
{
An \emph{Hadamard matrix} is a square $n\times n$ matrix $H$ whose entries are either $+1$ or $-1$ and whose rows are mutually orthogonal, that is $H H^t = nI_n$ where $H^t$ denotes the transpose and $I_n$ denotes the $n\times n$ identity matrix.
Given a group $G=\{g_1,g_2,\ldots,g_n\}$ of order $n$ and the abelian group $A=\{1,-1\}$ of square roots of unity, any $2$\texttt{\symbol{45}}cocycle $f\colon G\times G\rightarrow A$ corresponds to an $n\times n$ matrix $F=(f(g_i,g_j))_{1\le i,j\le n}$ whose entries are $\pm 1$. If $F$ is Hadamard it is called a \emph{cocyclic Hadamard matrix} corresponding to $G$.
The following commands compute all $192$ of the cocyclic Hadamard matrices for the abelian group $G=\mathbb Z_4\oplus \mathbb Z_4$ of order $n=16$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=AbelianGroup([4,4]);;|
!gapprompt@gap>| !gapinput@F:=CocyclicHadamardMatrices(G);;|
!gapprompt@gap>| !gapinput@Length(F);|
192
\end{Verbatim}
}
\section{\textcolor{Chapter }{Third group cohomology and homotopy $2$\texttt{\symbol{45}}types}}\label{secCat1}
\logpage{[ 6, 11, 0 ]}
\hyperdef{L}{X78040D8580D35D53}{}
{
\textsc{Homotopy 2\texttt{\symbol{45}}types}
The third cohomology $H^3(G,A)$ of a group $G$ with coefficients in a $G$\texttt{\symbol{45}}module $A$, together with the corresponding $3$\texttt{\symbol{45}}cocycles, can be used to classify homotopy $2$\texttt{\symbol{45}}types. A \emph{homotopy 2\texttt{\symbol{45}}type} is a CW\texttt{\symbol{45}}complex whose homotopy groups are trivial in
dimensions $n=0$ and $n>2$. There is an equivalence between the two categories
\begin{enumerate}
\item (Homotopy category of connected CW\texttt{\symbol{45}}complexes $X$ with trivial homotopy groups $\pi_n(X)$ for $n>2$)
\item (Localization of the category of simplicial groups with Moore complex of
length $1$, where localization is with respect to homomorphisms inducing isomorphisms on
homotopy groups)
\end{enumerate}
which reduces the homotopy theory of $2$\texttt{\symbol{45}}types to a 'computable' algebraic theory. Furthermore, a
simplicial group with Moore complex of length $1$ can be represented by a group $H$ endowed with two endomorphisms $s\colon H\rightarrow H$ and $t\colon H\rightarrow H$ satisfying the axioms
\begin{itemize}
\item $ss=s$, $ts=s$,
\item $tt=t$, $st=t$,
\item $[\ker s, \ker t] = 1$.
\end{itemize}
Ths triple $(H,s,t)$ was termed a \emph{cat$^1$\texttt{\symbol{45}}group} by J.\texttt{\symbol{45}}L. Loday since it can be regarded as a group $H$ endowed with one compatible category structure.
The \emph{homotopy groups} of a cat$^1$\texttt{\symbol{45}}group $H$ are defined as: $\pi_1(H) = {\rm image}(s)/t(\ker(s))$; $\pi_2(H)=\ker(s) \cap \ker(t)$; $\pi_n(H)=0$ for $n> 2$ or $n=0$. Note that $\pi_2(H)$ is a $\pi_1(H)$\texttt{\symbol{45}}module where the action is induced by conjugation in $H$.
A homotopy $2$\texttt{\symbol{45}}type $X$ can be represented by a cat$^1$\texttt{\symbol{45}}group $H$ or by the homotopy groups $\pi_1X=\pi_1H$, $\pi_2X=\pi_2H$ and a cohomology class $k\in H^3(\pi_1X,\pi_2X)$. This class $k$ is the \emph{Postnikov invariant}.
\textsc{Relation to Group Theory}
A number of standard group\texttt{\symbol{45}}theoretic constructions can be
viewed naturally as a cat$^1$\texttt{\symbol{45}}group.
\begin{enumerate}
\item A $\mathbb ZG$\texttt{\symbol{45}}module $A$ can be viewed as a cat$^1$\texttt{\symbol{45}}group $(H,s,t)$ where $H$ is the semi\texttt{\symbol{45}}direct product $A\rtimes G$ and $s(a,g)=(1,g)$, $t(a,g)=(1,g)$. Here $\pi_1(H)=G$ and $\pi_2(H)=A$.
\item A group $G$ with normal subgroup $N$ can be viewed as a cat$^1$\texttt{\symbol{45}}group $(H,s,t)$ where $H$ is the semi\texttt{\symbol{45}}direct product $N\rtimes G$ and $s(n,g)=(1,g)$, $t(n,g)=(1,ng)$. Here $\pi_1(H)=G/N$ and $\pi_2(H)=0$.
\item The homomorphism $\iota \colon G\rightarrow Aut(G)$ which sends elements of a group $G$ to the corresponding inner automorphism can be viewed as a cat$^1$\texttt{\symbol{45}}group $(H,s,t)$ where $H$ is the semi\texttt{\symbol{45}}direct product $G\rtimes Aut(G)$ and $s(g,a)=(1,a)$, $t(g,a)=(1,\iota (g)a)$. Here $\pi_1(H)=Out(G)$ is the outer automorphism group of $G$ and $\pi_2(H)=Z(G)$ is the centre of $G$.
\end{enumerate}
These three constructions are implemented in \textsc{HAP}.
\textsc{Example}
The following commands begin by constructing the cat$^1$\texttt{\symbol{45}}group $H$ of Construction 3 for the group $G=SmallGroup(64,134)$. They then construct the fundamental group of $H$ and the second homotopy group of as a $\pi_1$\texttt{\symbol{45}}module. These homotopy groups have orders $8$ and $2$ respectively.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SmallGroup(64,134);;|
!gapprompt@gap>| !gapinput@H:=AutomorphismGroupAsCatOneGroup(G);;|
!gapprompt@gap>| !gapinput@pi_1:=HomotopyGroup(H,1);;|
!gapprompt@gap>| !gapinput@pi_2:=HomotopyModule(H,2);;|
!gapprompt@gap>| !gapinput@Order(pi_1);|
8
!gapprompt@gap>| !gapinput@Order(ActedGroup(pi_2));|
2
\end{Verbatim}
The following additional commands show that there are $1024$ Yoneda equivalence classes of cat$^1$\texttt{\symbol{45}}groups with fundamental group $\pi_1$ and $\pi_1$\texttt{\symbol{45}} module equal to $\pi_2$ in our example.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(pi_1,4);;|
!gapprompt@gap>| !gapinput@C:=HomToGModule(R,pi_2);;|
!gapprompt@gap>| !gapinput@CH:=CohomologyModule(C,3);;|
!gapprompt@gap>| !gapinput@AbelianInvariants(ActedGroup(CH));|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
A $3$\texttt{\symbol{45}}cocycle $f \colon \pi_1 \times \pi_1 \times \pi_1 \rightarrow \pi_2$ corresponding to a random cohomology class $k\in H^3(\pi_1,\pi_2)$ can be produced using the following command. }
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|x:=Random(Elements(ActedGroup(CH)));;B
@gapprompt|gap>B @gapinput|f:=CH!.representativeCocycle(x);B
Standard 3-cocycle
\end{Verbatim}
The $3$\texttt{\symbol{45}}cocycle corresponding to the Postnikov invariant of $H$ itself can be easily constructed directly from its definition in terms of a
set\texttt{\symbol{45}}theoretic 'section' of the crossed module corresponding
to $H$. }
\chapter{\textcolor{Chapter }{Cohomology of groups (and Lie Algebras)}}\logpage{[ 7, 0, 0 ]}
\hyperdef{L}{X787E37187B7308C9}{}
{
\section{\textcolor{Chapter }{Finite groups }}\logpage{[ 7, 1, 0 ]}
\hyperdef{L}{X807B265978F90E01}{}
{
\subsection{\textcolor{Chapter }{Naive homology computation for a very small group}}\logpage{[ 7, 1, 1 ]}
\hyperdef{L}{X80A721AC7A8D30A3}{}
{
It is possible to compute the low degree (co)homology of a finite group or
monoid of small order directly from the bar resolution. The following commands
take this approach to computing the fifth integral homology
$H_5(Q_4,\mathbb Z) = \mathbb Z_2\oplus\mathbb Z_2$
of the quaternion group $G=Q_4$ of order $8$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|Q:=QuaternionGroup(8);;A
@gapprompt|gap>A @gapinput|B:=BarComplexOfMonoid(Q,6);; A
@gapprompt|gap>A @gapinput|C:=ContractedComplex(B);;A
@gapprompt|gap>A @gapinput|Homology(C,5);A
[ 2, 2 ]
@gapprompt|gap>A @gapinput|List([0..6],B!.dimension);A
[ 1, 7, 49, 343, 2401, 16807, 117649 ]
@gapprompt|gap>A @gapinput|List([0..6],C!.dimension);A
[ 1, 2, 2, 1, 2, 4, 102945 ]
\end{Verbatim}
However, this approach is of limited applicability since the bar resolution
involves $|G|^k$ free generators in degree $k$. A range of techniques, tailored to specific classes of groups, can be used
to compute the (co)homology of larger finite groups.
This naive approach does have the merit of being applicable to arbitrary small
monoids. The following calculates the homology in degrees $\le 7$ of a monoid of order 8, the monoid being specified by its multiplication
table.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|T:=[ [ 1, 1, 1, 4, 4, 4, 4, 1 ],A
@gapprompt|>A @gapinput| [ 1, 1, 1, 4, 4, 4, 4, 2 ],A
@gapprompt|>A @gapinput| [ 1, 1, 1, 4, 4, 4, 4, 3 ],A
@gapprompt|>A @gapinput| [ 4, 4, 4, 1, 1, 1, 1, 4 ],A
@gapprompt|>A @gapinput| [ 4, 4, 4, 1, 1, 1, 1, 5 ],A
@gapprompt|>A @gapinput| [ 4, 4, 4, 1, 1, 1, 1, 6 ],A
@gapprompt|>A @gapinput| [ 4, 4, 4, 1, 1, 1, 1, 7 ],A
@gapprompt|>A @gapinput| [ 1, 2, 3, 4, 5, 6, 7, 8 ] ];;A
@gapprompt|gap>A @gapinput|M:=MonoidByMultiplicationTable(T);A
<monoid of size 8, with 8 generators>
@gapprompt|gap>A @gapinput|B:=BarComplexOfMonoid(M,8);;A
@gapprompt|gap>A @gapinput|C:=ContractedComplex(B);;A
@gapprompt|gap>A @gapinput|List([0..7],i->Homology(C,i));A
[ [ 0 ], [ 2 ], [ ], [ 2 ], [ ], [ 2 ], [ ], [ 2 ] ]
@gapprompt|gap>A @gapinput|List([0..8],B!.dimension);A
[ 1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801 ]
@gapprompt|gap>A @gapinput|List([0..8],C!.dimension);A
[ 1, 1, 1, 1, 1, 1, 1, 1, 5044201 ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{A more efficient homology computation}}\logpage{[ 7, 1, 2 ]}
\hyperdef{L}{X838CEA3F850DFC82}{}
{
The following example computes the seventh integral homology
$H_7(M_{23},\mathbb Z) = \mathbb Z_{16}\oplus\mathbb Z_{15}$
and fourth integral cohomomogy
$H^4(M_{24},\mathbb Z) = \mathbb Z_{12}$
of the Mathieu groups $M_{23}$ and $M_{24}$. (Warning: the computation of $H_7(M_{23},\mathbb Z)$ takes a couple of hours to run.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@GroupHomology(MathieuGroup(23),7);|
[ 16, 3, 5 ]
!gapprompt@gap>| !gapinput@GroupCohomology(MathieuGroup(24),4);|
[ 4, 3 ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Computation of an induced homology homomorphism}}\logpage{[ 7, 1, 3 ]}
\hyperdef{L}{X842E93467AD09EC1}{}
{
The following example computes the cokernel
${\rm coker}( H_3(A_7,\mathbb Z) \rightarrow H_3(S_{10},\mathbb Z)) \cong
\mathbb Z_2\oplus \mathbb Z_2$
of the degree\texttt{\symbol{45}}3 integral homomogy homomorphism induced by
the canonical inclusion $A_7 \rightarrow S_{10}$ of the alternating group on $7$ letters into the symmetric group on $10$ letters. The analogous cokernel with $\mathbb Z_2$ homology coefficients is also computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SymmetricGroup(10);;|
!gapprompt@gap>| !gapinput@H:=AlternatingGroup(7);;|
!gapprompt@gap>| !gapinput@f:=GroupHomomorphismByFunction(H,G,x->x);;|
!gapprompt@gap>| !gapinput@F:=GroupHomology(f,3);|
MappingByFunction( Pcp-group with orders [ 4, 3 ], Pcp-group with orders
[ 2, 2, 4, 3 ], function( x ) ... end )
!gapprompt@gap>| !gapinput@AbelianInvariants(Range(F)/Image(F));|
[ 2, 2 ]
!gapprompt@gap>| !gapinput@Fmod2:=GroupHomology(f,3,2);;|
!gapprompt@gap>| !gapinput@AbelianInvariants(Range(Fmod2)/Image(Fmod2));|
[ 2, 2 ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Some other finite group homology computations}}\logpage{[ 7, 1, 4 ]}
\hyperdef{L}{X8754D2937E6FD7CE}{}
{
The following example computes the third integral homology of the Weyl group $W=Weyl(E_8)$, a group of order $696729600$.
$H_3(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb
Z_{12}$
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=SimpleLieAlgebra("E",8,Rationals);;|
!gapprompt@gap>| !gapinput@W:=WeylGroup(RootSystem(L));;|
!gapprompt@gap>| !gapinput@Order(W);|
696729600
!gapprompt@gap>| !gapinput@GroupHomology(W,3);|
[ 2, 2, 4, 3 ]
\end{Verbatim}
The preceding calculation could be achieved more quickly by noting that $W=Weyl(E_8)$ is a Coxeter group, and by using the associated Coxeter polytope. The
following example uses this approach to compute the fourth integral homology
of $W$. It begins by displaying the Coxeter diagram of $W$, and then computes
$H_4(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus Z_2 \oplus
\mathbb Z_2$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;|
!gapprompt@gap>| !gapinput@CoxeterDiagramDisplay(D);|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@polytope:=CoxeterComplex_alt(D,5);;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(polytope,5);|
Resolution of length 5 in characteristic 0 for <matrix group with
8 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@C:=TensorWithIntegers(R);|
Chain complex of length 5 in characteristic 0 .
!gapprompt@gap>| !gapinput@Homology(C,4);|
[ 2, 2, 2, 2 ]
\end{Verbatim}
The following example computes the sixth mod\texttt{\symbol{45}}$2$ homology of the Sylow $2$\texttt{\symbol{45}}subgroup $Syl_2(M_{24})$ of the Mathieu group $M_{24}$.
$H_6(Syl_2(M_{24}),\mathbb Z_2) = \mathbb Z_2^{143}$
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@GroupHomology(SylowSubgroup(MathieuGroup(24),2),6,2);|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
The following example computes the sixth mod\texttt{\symbol{45}}$2$ homology of the Unitary group $U_3(4)$ of order 312000.
$H_6(U_3(4),\mathbb Z_2) = \mathbb Z_2^{4}$
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=GU(3,4);;|
!gapprompt@gap>| !gapinput@Order(G);|
312000
!gapprompt@gap>| !gapinput@GroupHomology(G,6,2);|
[ 2, 2, 2, 2 ]
\end{Verbatim}
The following example constructs the Poincare series
$p(x)=\frac{1}{-x^3+3*x^2-3*x+1}$
for the cohomology $H^\ast(Syl_2(M_{12},\mathbb F_2)$. The coefficient of $x^n$ in the expansion of $p(x)$ is equal to the dimension of the vector space $H^n(Syl_2(M_{12},\mathbb F_2)$. The computation involves \textsc{Singular}'s Groebner basis algorithms and the
Lyndon\texttt{\symbol{45}}Hochschild\texttt{\symbol{45}}Serre spectral
sequence.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SylowSubgroup(MathieuGroup(12),2);;|
!gapprompt@gap>| !gapinput@P:=PoincareSeriesLHS(G);|
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
\end{Verbatim}
The additional following command uses the Poincare series
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@RankHomologyPGroup(G,P,1000);|
251000
\end{Verbatim}
to determine that $H_{1000}(Syl_2(M_{12},\mathbb Z)$ is a direct sum of 251000 non\texttt{\symbol{45}}trivial cyclic $2$\texttt{\symbol{45}}groups.
The following example constructs the series
$p(x)=\frac{x^4-x^3+x^2-x+1}{x^6-x^5+x^4-2*x^3+x^2-x+1}$
whose coefficient of $x^n$ is equal to the dimension of the vector space $H^n(M_{11},\mathbb F_2)$ for all $n$ in the range $0\le n\le 14$. The coefficient is not guaranteed correct for $n\ge 15$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@PoincareSeriesPrimePart(MathieuGroup(11),2,14);|
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
\end{Verbatim}
}
}
\section{\textcolor{Chapter }{Nilpotent groups}}\logpage{[ 7, 2, 0 ]}
\hyperdef{L}{X8463EF6A821FFB69}{}
{
The following example computes
$H_4(N,\mathbb Z) = \mathbb (Z_3)^4 \oplus \mathbb Z^{84}$
for the free nilpotent group $N$ of class $2$ on four generators.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(4);; N:=NilpotentQuotient(F,2);;|
!gapprompt@gap>| !gapinput@GroupHomology(N,4);|
[ 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Crystallographic and Almost Crystallographic groups}}\logpage{[ 7, 3, 0 ]}
\hyperdef{L}{X82E8FAC67BC16C01}{}
{
The following example computes
$H_5(G,\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2$
for the $3$\texttt{\symbol{45}}dimensional crystallographic space group $G$ with Hermann\texttt{\symbol{45}}Mauguin symbol "P62"
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@GroupHomology(SpaceGroupBBNWZ("P62"),5);|
[ 2, 2 ]
\end{Verbatim}
The following example computes
$H^5(G,\mathbb Z)= \mathbb Z$
for an almost crystallographic group.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );;|
!gapprompt@gap>| !gapinput@GroupCohomology(G,4);|
[ 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Arithmetic groups}}\logpage{[ 7, 4, 0 ]}
\hyperdef{L}{X7AFFB32587D047FE}{}
{
The following example computes
$H_6(SL_2({\cal O},\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_{12}$
for ${\cal O}$ the ring of integers of the number field $\mathbb Q(\sqrt{-2})$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@C:=ContractibleGcomplex("SL(2,O-2)");;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(C,7);;|
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R),6);|
[ 2, 12 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Artin groups}}\logpage{[ 7, 5, 0 ]}
\hyperdef{L}{X800CB6257DC8FB3A}{}
{
The following example computes
$H_n(G,\mathbb Z) =\left\{ \begin{array}{ll} \mathbb Z &n=0,1,7,8\\ \mathbb
Z_2, &n=2,3\\ \mathbb Z_2\oplus \mathbb Z_6, &n=4,6\\ \mathbb Z_3 \oplus
\mathbb Z_6,& n=5\\ 0, &n>8 \end{array}\right. $
for $G$ the Artin group of type $E_8$. (Similar commands can be used to compute a resolution and homology of
arbitrary Artin monoids and, in thoses cases such as the spherical cases where
the $K(\pi,1)$\texttt{\symbol{45}}conjecture is known to hold, the homology is equal to that
of the corresponding Artin group.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;|
!gapprompt@gap>| !gapinput@CoxeterDiagramDisplay(D);;|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionArtinGroup(D,9);;|
!gapprompt@gap>| !gapinput@C:=TensorWithIntegers(R);;|
!gapprompt@gap>| !gapinput@List([0..8],n->Homology(C,n));|
[ [ 0 ], [ 0 ], [ 2 ], [ 2 ], [ 2, 6 ], [ 3, 6 ], [ 2, 6 ], [ 0 ], [ 0 ] ]
\end{Verbatim}
The Artin group $G$ projects onto the Coxeter group $W$ of type $E_8$. The group $W$ has a natural representation as a group of $8\times 8$ integer matrices. This projection gives rise to a representation $\rho\colon G\rightarrow GL_8(\mathbb Z)$. The following command computes the cohomology group $H^6(G,\rho) = (\mathbb Z_2)^6$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|G:=R!.group;;A
@gapprompt|gap>A @gapinput|gensG:=GeneratorsOfGroup(G);;A
@gapprompt|gap>A @gapinput|W:=CoxeterDiagramMatCoxeterGroup(D);;A
@gapprompt|gap>A @gapinput|gensW:=GeneratorsOfGroup(W);;A
@gapprompt|gap>A @gapinput|rho:=GroupHomomorphismByImages(G,W,gensG,gensW);;A
@gapprompt|gap>A @gapinput|C:=HomToIntegralModule(R,rho);;A
@gapprompt|gap>A @gapinput|Cohomology(C,6);A
[ 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Graphs of groups}}\logpage{[ 7, 6, 0 ]}
\hyperdef{L}{X7BAFCA3680E478AE}{}
{
The following example computes
$H_5(G,\mathbb Z) = \mathbb Z_2\oplus Z_2\oplus Z_2 \oplus Z_2 \oplus Z_2$
for $G$ the graph of groups corresponding to the amalgamated product $G=S_5*_{S_3}S_4$ of the symmetric groups $S_5$ and $S_4$ over the canonical subgroup $S_3$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@S5:=SymmetricGroup(5);SetName(S5,"S5");|
!gapprompt@gap>| !gapinput@S4:=SymmetricGroup(4);SetName(S4,"S4");|
!gapprompt@gap>| !gapinput@A:=SymmetricGroup(3);SetName(A,"S3");|
!gapprompt@gap>| !gapinput@AS5:=GroupHomomorphismByFunction(A,S5,x->x);|
!gapprompt@gap>| !gapinput@AS4:=GroupHomomorphismByFunction(A,S4,x->x);|
!gapprompt@gap>| !gapinput@D:=[S5,S4,[AS5,AS4]];|
!gapprompt@gap>| !gapinput@GraphOfGroupsDisplay(D);|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionGraphOfGroups(D,6);;|
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R),5);|
[ 2, 2, 2, 2, 2 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Lie algebra homology and free nilpotent groups}}\logpage{[ 7, 7, 0 ]}
\hyperdef{L}{X7CE849E58706796C}{}
{
One method of producting a Lie algebra $L$ from a group $G$ is by forming the direct sum $L(G) = G/\gamma_2G \oplus \gamma_2G/\gamma_3G \oplus \gamma_3G/\gamma_4G
\oplus \cdots$ of the quotients of the lower central series $\gamma_1G=G$, $\gamma_{n+1}G=[\gamma_nG,G]$. Commutation in $G$ induces a Lie bracket $L(G)\times L(G) \rightarrow L(G)$.
The homology $H_n(L)$ of a Lie algebra (with trivial coefficients) can be calculated as the homology
of the Chevalley\texttt{\symbol{45}}Eilenberg chain complex $C_\ast(L)$. This chain complex is implemented in \textsc{HAP} in the cases where the underlying additive group of $L$ is either finitely generated torsion free or finitely generated of prime
exponent $p$. In these two cases the ground ring for the Lie algebra/
Chevalley\texttt{\symbol{45}}Eilenberg complex is taken to be $\mathbb Z$ and $\mathbb Z_p$ respectively.
For example, consider the quotient $G=F/\gamma_8F$ of the free group $F=F(x,y)$ on two generators by eighth term of its lower central series. So $G$ is the \emph{free nilpotent group of class 7 on two generators}. The following commands compute $H_4(L(G)) = \mathbb Z_2^{77} \oplus \mathbb Z_6^8 \oplus \mathbb Z_{12}^{51}
\oplus \mathbb Z_{132}^{11} \oplus \mathbb Z^{2024}$ and show that the fourth homology in this case contains 2\texttt{\symbol{45}},
3\texttt{\symbol{45}} and 11\texttt{\symbol{45}}torsion. (The commands take an
hour or so to complete.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),7));;|
!gapprompt@gap>| !gapinput@L:=LowerCentralSeriesLieAlgebra(G);;|
!gapprompt@gap>| !gapinput@h:=LieAlgebraHomology(L,4);;|
!gapprompt@gap>| !gapinput@Collected(h);|
[ [ 0, 2024 ], [ 2, 77 ], [ 6, 8 ], [ 12, 51 ], [ 132, 11 ] ]
\end{Verbatim}
For a free nilpotent group $G$ the additive homology $H_n(L(G))$ of the Lie algebra can be computed more quickly in \textsc{HAP} than the integral group homology $H_n(G,\mathbb Z)$. Clearly there are isomorphisms$H_1(G) \cong H_1(L(G)) \cong G_{ab}$ of abelian groups in homological degree $n=1$. Hopf's formula can be used to establish an isomorphism $H_2(G) \cong H_2(L(G))$ also in degree $n=2$. The following two theorems provide further isomorphisms that allow for the
homology of a free nilpotent group to be calculated more efficiently as the
homology of the associated Lie algebra.
\textsc{Theorem 1.} \cite{kuzmin} \emph{Let $G$ be a finitely generated free nilpotent group of class 2. Then the integral
group homology $H_n(G,\mathbb Z)$ is isomorphic to the integral Lie algebra homology $H_n(L(G),\mathbb Z)$ in each degree $n\ge0$.}
\textsc{Theorem 2.} \cite{igusa} \emph{Let $G$ be a finitely generated free nilpotent group (of any class). Then the integral
group homology $H_n(G,\mathbb Z)$ is isomorphic to the integral Lie algebra homology $H_n(L(G),\mathbb Z)$ in degrees $n=0, 1, 2, 3$.}
We should remark that experimentation on free nilpotent groups of class $\ge 4$ has not yielded a group for which the isomorphism $H_n(G,\mathbb Z) \cong H_n(L(G),\mathbb G)$ fails. For instance, the isomorphism holds in degree $n=4$ for the free nilpotent group of class 5 on two generators, and for the free
nilpotent group of class 2 on four generators:
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),5));;|
!gapprompt@gap>| !gapinput@L:=LowerCentralSeriesLieAlgebra(G);;|
!gapprompt@gap>| !gapinput@Collected( LieAlgebraHomology(L,4) );|
[ [ 0, 85 ], [ 7, 1 ] ]
!gapprompt@gap>| !gapinput@Collected( GroupHomology(G,4) );|
[ [ 0, 85 ], [ 7, 1 ] ]
!gapprompt@gap>| !gapinput@G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(4),2));; |
!gapprompt@gap>| !gapinput@L:=LowerCentralSeriesLieAlgebra(G);;|
!gapprompt@gap>| !gapinput@Collected( LieAlgebraHomology(L,4) );|
[ [ 0, 84 ], [ 3, 4 ] ]
!gapprompt@gap>| !gapinput@Collected( GroupHomology(G,4) );|
[ [ 0, 84 ], [ 3, 4 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cohomology with coefficients in a module}}\logpage{[ 7, 8, 0 ]}
\hyperdef{L}{X7C3DEDD57BB4D537}{}
{
There are various ways to represent a $\mathbb ZG$\texttt{\symbol{45}}module $A$ with action $G\times A \rightarrow A, (g,a)\mapsto \alpha(g,a)$.
One possibility is to use the data type of a \emph{$G$\texttt{\symbol{45}}Outer Group} which involves three components: an $ActedGroup$ $A$; an $Acting Group$ $G$; a $Mapping$ $(g,a)\mapsto \alpha(g,a)$. The following example uses this data type to compute the cohomology $H^4(G,A) =\mathbb Z_5 \oplus \mathbb Z_{10}$ of the symmetric group $G=S_6$ with coefficients in the integers $A=\mathbb Z$ where odd permutations act non\texttt{\symbol{45}}trivially on $A$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SymmetricGroup(6);;|
!gapprompt@gap>| !gapinput@A:=AbelianPcpGroup([0]);;|
!gapprompt@gap>| !gapinput@alpha:=function(g,a); return a^SignPerm(g); end;;|
!gapprompt@gap>| !gapinput@A:=GModuleAsGOuterGroup(G,A,alpha);|
ZG-module with abelian invariants [ 0 ] and G= SymmetricGroup( [ 1 .. 6 ] )
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,5);;|
!gapprompt@gap>| !gapinput@C:=HomToGModule(R,A);|
G-cocomplex of length 5 .
!gapprompt@gap>| !gapinput@Cohomology(C,4);|
[ 2, 2, 5 ]
\end{Verbatim}
If $A=\mathbb Z^n$ and $G$ acts as
$G\times A \rightarrow A, (g, v) \mapsto \rho(g)\, v $
where $\rho\colon G\rightarrow Gl_n(\mathbb Z)$ is a (not necessarily faithful) matrix representation of degree $n$ then we can avoid the use of $G$\texttt{\symbol{45}}outer groups and use just the homomorphism $\rho$ instead. The following example uses this data type to compute the cohomology
$H^6(G,A) =\mathbb Z_2 $
and the homology
$H_6(G,A) = 0 $
of the alternating group $G=A_5$ with coefficients in $A=\mathbb Z^5$ where elements of $G$ act on $\mathbb Z^5$ via an irreducible representation.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=AlternatingGroup(5);;|
!gapprompt@gap>| !gapinput@rho:=IrreducibleRepresentations(G)[5];|
[ (1,2,3,4,5), (3,4,5) ] ->
[
[ [ 0, 0, 1, 0, 0 ], [ -1, -1, 0, 0, 1 ], [ 0, 1, 1, 1, 0 ],
[ 1, 0, -1, 0, -1 ], [ -1, -1, 0, -1, 0 ] ],
[ [ -1, -1, 0, 0, 1 ], [ 1, 0, -1, 0, -1 ], [ 0, 0, 0, 0, 1 ],
[ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ] ] ]
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,7);;|
!gapprompt@gap>| !gapinput@C:=HomToIntegralModule(R,rho);;|
!gapprompt@gap>| !gapinput@Cohomology(C,6);|
[ 2 ]
!gapprompt@gap>| !gapinput@D:=TensorWithIntegralModule(R,rho);|
Chain complex of length 7 in characteristic 0 .
!gapprompt@gap>| !gapinput@Homology(D,6);|
[ ]
\end{Verbatim}
If $V=K^d$ is a vetor space of dimension $d$ over the field $K=GF(p)$ with $p$ a prime and $G$ acts on $V$ via a homomorphism $\rho\colon G\rightarrow GL_d(K)$ then the homology $H^n(G,V)$ can again be computed without the use of G\texttt{\symbol{45}}outer groups. As
an example, the following commands compute
$H^4(GL(3,2),V) =K^2$
where $K=GF(2)$ and $GL(3,2)$ acts with its natural action on $V=K^3$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=GL(3,2);;|
!gapprompt@gap>| !gapinput@rho:=GroupHomomorphismByFunction(G,G,x->x);;|
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,5);;|
!gapprompt@gap>| !gapinput@C:=HomToModPModule(R,rho);;|
!gapprompt@gap>| !gapinput@Cohomology(C,4);|
2
\end{Verbatim}
It can be computationally difficult to compute resolutions for large finite
groups. But the $p$\texttt{\symbol{45}}primary part of the homology can be computed using
resolutions of Sylow $p$\texttt{\symbol{45}}subgroups. This approach is used in the following example
that computes the $2$\texttt{\symbol{45}}primary part
$H_{2}(G,\mathbb Z)_{(2)} = \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2$
of the degree 2 integral homology of the Rubik's cube group $G$. This group has order $43252003274489856000$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gens:= [|
!gapprompt@>| !gapinput@ ( 1, 3, 8, 6)( 2, 5, 7, 4)( 9,33,25,17)(10,34,26,18)(11,35,27,19),|
!gapprompt@>| !gapinput@ ( 9,11,16,14)(10,13,15,12)( 1,17,41,40)( 4,20,44,37)( 6,22,46,35),|
!gapprompt@>| !gapinput@ (17,19,24,22)(18,21,23,20)( 6,25,43,16)( 7,28,42,13)( 8,30,41,11),|
!gapprompt@>| !gapinput@ (25,27,32,30)(26,29,31,28)( 3,38,43,19)( 5,36,45,21)( 8,33,48,24),|
!gapprompt@>| !gapinput@ (33,35,40,38)(34,37,39,36)( 3, 9,46,32)( 2,12,47,29)( 1,14,48,27),|
!gapprompt@>| !gapinput@ (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)|
!gapprompt@>| !gapinput@ ];; G:=Group(gens);;P:=SylowSubgroup(G,2);;|
!gapprompt@gap>| !gapinput@R:=ResolutionNormalSeries(BigStepUCS(P,6),3);;|
!gapprompt@gap>| !gapinput@PrimePartDerivedFunctorViaSubgroupChain(G,R,TensorWithIntegers,2);|
[ 2, 2, 2 ]
\end{Verbatim}
The same approach is used in the following example that computes the $2$\texttt{\symbol{45}}primary part
$H_{11}(A_7,A)_{(2)} = \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_4$
of the degree 11 homology of the alternating group $A_7$ of degree $7$ with coefficients in the module $A=\mathbb Z^7$ on which $A_7$ acts by permuting basis vectors.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=AlternatingGroup(7);;|
!gapprompt@gap>| !gapinput@rho:=PermToMatrixGroup(G);;|
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(SylowSubgroup(G,2),12);;|
!gapprompt@gap>| !gapinput@F:=function(X); return TensorWithIntegralModule(X,rho); end;;|
!gapprompt@gap>| !gapinput@PrimePartDerivedFunctorViaSubgroupChain(G,R,F,11);|
[ 2, 2, 4 ]
\end{Verbatim}
Similar commands compute
$H_{3}(A_{10},A)_{(2)} = \mathbb Z_4$
with coefficient module $A=\mathbb Z^{10}$ on which $A_{10}$ acts by permuting basis vectors.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=AlternatingGroup(10);;|
!gapprompt@gap>| !gapinput@rho:=PermToMatrixGroup(G);;|
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(SylowSubgroup(G,2),4);;|
!gapprompt@gap>| !gapinput@F:=function(X); return TensorWithIntegralModule(X,rho); end;;|
!gapprompt@gap>| !gapinput@PrimePartDerivedFunctorViaSubgroupChain(G,R,F,3);|
[ 4 ]
\end{Verbatim}
The following commands compute
$H_{100}(GL(3,2),V)= K^{34}$
where $V$ is the vector space of dimension $3$ over $K=GF(2)$ acting via some irreducible representation $\rho\colon GL(3,2) \rightarrow GL(V)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=GL(3,2);;|
!gapprompt@gap>| !gapinput@rho:=IrreducibleRepresentations(G,GF(2))[3];|
CompositionMapping( [ (5,7)(6,8), (2,3,5)(4,7,6) ] ->
[ <an immutable 3x3 matrix over GF2>, <an immutable 3x3 matrix over GF2> ],
<action isomorphism> )
!gapprompt@gap>| !gapinput@F:=function(X); return TensorWithModPModule(X,rho); end;;|
!gapprompt@gap>| !gapinput@S:=ResolutionPrimePowerGroup(SylowSubgroup(G,2),101);;|
!gapprompt@gap>| !gapinput@PrimePartDerivedFunctorViaSubgroupChain(G,S,F,100);|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cohomology as a functor of the first variable}}\logpage{[ 7, 9, 0 ]}
\hyperdef{L}{X7E573EA582CCEF2E}{}
{
Suppose given a group homomorphism $f\colon G_1\rightarrow G_2$ and a $G_2$\texttt{\symbol{45}}module $A$. Then $A$ is naturally a $G_1$\texttt{\symbol{45}}module with action via $f$, and there is an induced cohomology homomorphism $H^n(f,A)\colon H^n(G_2,A) \rightarrow H^n(G_1,A)$.
The following example computes this cohomology homomorphism in degree $n=6$ for the inclusion $f\colon A_5 \rightarrow S_5$ and $A=\mathbb Z^5$ with action that permutes the canonical basis. The final commands determine
that the kernel of the homomorphism $H^6(f,A)$ is the Klein group of order $4$ and that the cokernel is cyclic of order $6$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G1:=AlternatingGroup(5);;|
!gapprompt@gap>| !gapinput@G2:=SymmetricGroup(5);;|
!gapprompt@gap>| !gapinput@f:=GroupHomomorphismByFunction(G1,G2,x->x);;|
!gapprompt@gap>| !gapinput@pi:=PermToMatrixGroup(G2,5);;|
!gapprompt@gap>| !gapinput@R1:=ResolutionFiniteGroup(G1,7);;|
!gapprompt@gap>| !gapinput@R2:=ResolutionFiniteGroup(G2,7);;|
!gapprompt@gap>| !gapinput@F:=EquivariantChainMap(R1,R2,f);;|
!gapprompt@gap>| !gapinput@C:=HomToIntegralModule(F,pi);;|
!gapprompt@gap>| !gapinput@c:=Cohomology(C,6);|
[ g1, g2, g3 ] -> [ id, id, g3 ]
!gapprompt@gap>| !gapinput@AbelianInvariants(Kernel(c));|
[ 2, 2 ]
!gapprompt@gap>| !gapinput@AbelianInvariants(Range(c)/Image(c));|
[ 2, 3 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cohomology as a functor of the second variable and the long exact coefficient
sequence}}\logpage{[ 7, 10, 0 ]}
\hyperdef{L}{X796731727A7EBE59}{}
{
A short exact sequence of $\mathbb ZG$\texttt{\symbol{45}}modules $A \rightarrowtail B \twoheadrightarrow C$ induces a long exact sequence of cohomology groups
$ \rightarrow H^n(G,A) \rightarrow H^n(G,B) \rightarrow H^n(G,C) \rightarrow
H^{n+1}(G,A) \rightarrow $ .
Consider the symmetric group $G=S_4$ and the sequence $ \mathbb Z_4 \rightarrowtail \mathbb Z_8 \twoheadrightarrow \mathbb Z_2$ of trivial $\mathbb ZG$\texttt{\symbol{45}}modules. The following commands compute the induced
cohomology homomorphism
$f\colon H^3(S_4,\mathbb Z_4) \rightarrow H^3(S_4,\mathbb Z_8)$
and determine that the image of this induced homomorphism has order $8$ and that its kernel has order $2$.
\begin{Verbatim}[commandchars=@|D,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>D @gapinput|G:=SymmetricGroup(4);;D
@gapprompt|gap>D @gapinput|x:=(1,2,3,4,5,6,7,8);;D
@gapprompt|gap>D @gapinput|a:=Group(x^2);;D
@gapprompt|gap>D @gapinput|b:=Group(x);;D
@gapprompt|gap>D @gapinput|ahomb:=GroupHomomorphismByFunction(a,b,y->y);;D
@gapprompt|gap>D @gapinput|A:=TrivialGModuleAsGOuterGroup(G,a);;D
@gapprompt|gap>D @gapinput|B:=TrivialGModuleAsGOuterGroup(G,b);;D
@gapprompt|gap>D @gapinput|phi:=GOuterGroupHomomorphism();;D
@gapprompt|gap>D @gapinput|phi!.Source:=A;;D
@gapprompt|gap>D @gapinput|phi!.Target:=B;;D
@gapprompt|gap>D @gapinput|phi!.Mapping:=ahomb;;D
@gapprompt|gap>D @gapinput|Hphi:=CohomologyHomomorphism(phi,3);;D
@gapprompt|gap>D @gapinput|Size(ImageOfGOuterGroupHomomorphism(Hphi));D
8
@gapprompt|gap>D @gapinput|Size(KernelOfGOuterGroupHomomorphism(Hphi));D
2
\end{Verbatim}
The following commands then compute the homomorphism
$H^3(S_4,\mathbb Z_8) \rightarrow H^3(S_4,\mathbb Z_2)$
induced by $\mathbb Z_4 \rightarrowtail \mathbb Z_8 \twoheadrightarrow \mathbb Z_2$, and determine that the kernel of this homomorphsim has order $8$.
\begin{Verbatim}[commandchars=@|D,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>D @gapinput|bhomc:=NaturalHomomorphismByNormalSubgroup(b,a);D
@gapprompt|gap>D @gapinput|B:=TrivialGModuleAsGOuterGroup(G,b);D
@gapprompt|gap>D @gapinput|C:=TrivialGModuleAsGOuterGroup(G,Image(bhomc));D
@gapprompt|gap>D @gapinput|psi:=GOuterGroupHomomorphism();D
@gapprompt|gap>D @gapinput|psi!.Source:=B;D
@gapprompt|gap>D @gapinput|psi!.Target:=C;D
@gapprompt|gap>D @gapinput|psi!.Mapping:=bhomc;D
@gapprompt|gap>D @gapinput|Hpsi:=CohomologyHomomorphism(psi,3);D
@gapprompt|gap>D @gapinput|Size(KernelOfGOuterGroupHomomorphism(Hpsi));D
8
\end{Verbatim}
The following commands then compute the connecting homomorphism
$H^2(S_4,\mathbb Z_2) \rightarrow H^3(S_4,\mathbb Z_4)$
and determine that the image of this homomorphism has order $2$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@delta:=ConnectingCohomologyHomomorphism(psi,2);;|
!gapprompt@gap>| !gapinput@Size(ImageOfGOuterGroupHomomorphism(delta));|
\end{Verbatim}
Note that the various orders are consistent with exactness of the sequence
$H^2(S_4,\mathbb Z_2) \rightarrow H^3(S_4,\mathbb Z_4) \rightarrow
H^3(S_4,\mathbb Z_8) \rightarrow H^3(S_4,\mathbb Z_2) $ . }
\section{\textcolor{Chapter }{Transfer Homomorphism}}\logpage{[ 7, 11, 0 ]}
\hyperdef{L}{X80F6FD3E7C7E4E8D}{}
{
Consider the action of the symmetric group $G=S_5$ on $A=\mathbb Z^5$ which permutes the canonical basis. The action restricts to the sylow $2$\texttt{\symbol{45}}subgroup $P=Syl_2(G)$. The following commands compute the cohomology transfer homomorphism $t^4\colon H^4(P,A) \rightarrow H^4(S_5,A)$ and determine its kernel and image. The integral homology transfer $t_4\colon H_4(S_5,\mathbb Z) \rightarrow H_5(P,\mathbb Z)$ is also computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SymmetricGroup(5);;|
!gapprompt@gap>| !gapinput@P:=SylowSubgroup(G,2);;|
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,5);;|
!gapprompt@gap>| !gapinput@A:=PermToMatrixGroup(G);;|
!gapprompt@gap>| !gapinput@tr:=TransferCochainMap(R,P,A);|
Cochain Map between complexes of length 5 .
!gapprompt@gap>| !gapinput@t4:=Cohomology(tr,4);|
[ g1, g2, g3, g4 ] -> [ id, g1, g2, g4 ]
!gapprompt@gap>| !gapinput@StructureDescription(Kernel(t4));|
"C2 x C2"
!gapprompt@gap>| !gapinput@StructureDescription(Image(t4));|
"C4 x C2"
!gapprompt@gap>| !gapinput@tr:=TransferChainMap(R,P);|
Chain Map between complexes of length 5 .
!gapprompt@gap>| !gapinput@Homology(tr,4);|
[ g1 ] -> [ g1 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Cohomology rings of finite fundamental groups of
3\texttt{\symbol{45}}manifolds }}\label{Secfinitefundman}
\logpage{[ 7, 12, 0 ]}
\hyperdef{L}{X79B1406C803FF178}{}
{
A \emph{spherical 3\texttt{\symbol{45}}manifold} is a 3\texttt{\symbol{45}}manifold arising as the quotient $S^3/\Gamma$ of the 3\texttt{\symbol{45}}sphere $S^3$ by a finite subgroup $\Gamma$ of $SO(4)$ acting freely as rotations. The geometrization conjecture, proved by Grigori
Perelman, implies that every closed connected 3\texttt{\symbol{45}}manifold
with a finite fundamental group is homeomorphic to a spherical
3\texttt{\symbol{45}}manifold.
A spherical 3\texttt{\symbol{45}}manifold $S^3/\Gamma$ has finite fundamental group isomorphic to $\Gamma$. This fundamental group is one of:
\begin{itemize}
\item $\Gamma=C_m=\langle x\ |\ x^m\rangle$ (\textsc{cyclic fundamental group})
\item $\Gamma=C_m\times \langle x,y \ |\ xyx^{-1}=y^{-1}, x^{2^k}=y^n \rangle$ for integers $k, m\ge 1, n\ge 2$ and $m$ coprime to $2n$ (\textsc{prism manifold case})
\item $\Gamma= C_m\times \langle x,y, z \ |\ (xy)^2=x^2=y^2, zxz^{-1}=y, zyz^{-1}=xy,
z^{3^k}=1\rangle $ for integers $k,m\ge 1$ and $m$ coprime to 6 (\textsc{tetrahedral case})
\item $\Gamma=C_m\times\langle x,y\ |\ (xy)^2=x^3=y^4\rangle $ for $m\ge 1$ coprime to 6 (\textsc{octahedral case})
\item $\Gamma=C_m\times \langle x,y\ |\ (xy)^2=x^3=y^5\rangle $ for $m\ge 1$ coprime to 30 (\textsc{icosahedral case}).
\end{itemize}
This list of cases is taken from the \href{https://en.wikipedia.org/wiki/Spherical_3-manifold} {Wikipedia pages}. The group $\Gamma$ has periodic cohomology since it acts on a sphere. The cyclic group has period
2 and in the other four cases it has period 4. (Recall that in general a
finite group $G$ has \emph{periodic cohomology of period $n$} if there is an element $u\in H^n(G,\mathbb Z)$ such that the cup product $-\ \cup u\colon H^k(G,\mathbb Z) \rightarrow H^{k+n}(G,\mathbb Z)$ is an isomorphism for all $k\ge 1$. It can be shown that $G$ has periodic cohomology of period $n$ if and only if $H^{n}(G,\mathbb Z)=\mathbb Z_{|G|}$.)
The cohomology of the cyclic group is well\texttt{\symbol{45}}known, and the
cohomology of a direct product can be obtained from that of the factors using
the Kunneth formula.
In the icosahedral case with $m=1$ the following commands yield
\$\$H\texttt{\symbol{94}}\texttt{\symbol{92}}ast(\texttt{\symbol{92}}Gamma,\texttt{\symbol{92}}mathbb
Z)=Z[t]/(120t=0)\$\$ with generator $t$ of degree 4. The final command demonstrates that a periodic resolution is used
in the computation.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|F:=FreeGroup(2);;x:=F.1;;y:=F.2;;A
@gapprompt|gap>A @gapinput|G:=F/[(x*y)^2*x^-3, x^3*y^-5];;A
@gapprompt|gap>A @gapinput|Order(G);A
120
@gapprompt|gap>A @gapinput|R:=ResolutionSmallGroup(G,5);;A
@gapprompt|gap>A @gapinput|n:=0;;Cohomology(HomToIntegers(R),n);A
[ 0 ]
@gapprompt|gap>A @gapinput|n:=1;;Cohomology(HomToIntegers(R),n);A
[ ]
@gapprompt|gap>A @gapinput|n:=2;;Cohomology(HomToIntegers(R),n);A
[ ]
@gapprompt|gap>A @gapinput|n:=3;;Cohomology(HomToIntegers(R),n);A
[ ]
@gapprompt|gap>A @gapinput|n:=4;;Cohomology(HomToIntegers(R),n);A
[ 120 ]
@gapprompt|gap>A @gapinput|List([0..5],k->R!.dimension(k));A
[ 1, 2, 2, 1, 1, 2 ]
\end{Verbatim}
In the octahedral case with $m=1$ we obtain
\$\$H\texttt{\symbol{94}}\texttt{\symbol{92}}ast(\texttt{\symbol{92}}Gamma,\texttt{\symbol{92}}mathbb
Z) = \texttt{\symbol{92}}mathbb Z[s,t]/(s\texttt{\symbol{94}}2=24t, 2s=0,
48t=0)\$\$ where $s$ has degree 2 and $t$ has degree 4, from the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(2);;x:=F.1;;y:=F.2;;|
!gapprompt@gap>| !gapinput@G:=F/[(x*y)^2*x^-3, x^3*y^-4];;|
!gapprompt@gap>| !gapinput@Order(G);|
48
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,5);;|
!gapprompt@gap>| !gapinput@n:=0;;Cohomology(HomToIntegers(R),n);|
[ 0 ]
!gapprompt@gap>| !gapinput@n:=1;;Cohomology(HomToIntegers(R),n);|
[ ]
!gapprompt@gap>| !gapinput@n:=2;;Cohomology(HomToIntegers(R),n);|
[ 2 ]
!gapprompt@gap>| !gapinput@n:=3;;Cohomology(HomToIntegers(R),n);|
[ ]
!gapprompt@gap>| !gapinput@n:=4;;Cohomology(HomToIntegers(R),n);|
[ 48 ]
!gapprompt@gap>| !gapinput@IntegralCupProduct(R,[1],[1],2,2);|
[ 24 ]
\end{Verbatim}
In the tetrahedral case with $m=1$ we obtain
\$\$H\texttt{\symbol{94}}\texttt{\symbol{92}}ast(\texttt{\symbol{92}}Gamma,\texttt{\symbol{92}}mathbb
Z) = \texttt{\symbol{92}}mathbb Z[s,t]/(s\texttt{\symbol{94}}2=16t, 3s=0,
24t=0)\$\$ where $s$ has degree 2 and $t$ has degree 4, from the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;|
!gapprompt@gap>| !gapinput@G:=F/[(x*y)^2*x^-2, x^2*y^-2, z*x*z^-1*y^-1, z*y*z^-1*y^-1*x^-1,z^3];;|
!gapprompt@gap>| !gapinput@Order(G);|
24
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,5);;|
!gapprompt@gap>| !gapinput@n:=1;;Cohomology(HomToIntegers(R),n);|
[ ]
!gapprompt@gap>| !gapinput@n:=2;;Cohomology(HomToIntegers(R),n);|
[ 3 ]
!gapprompt@gap>| !gapinput@n:=3;;Cohomology(HomToIntegers(R),n);|
[ ]
!gapprompt@gap>| !gapinput@n:=4;;Cohomology(HomToIntegers(R),n);|
[ 24 ]
!gapprompt@gap>| !gapinput@IntegralCupProduct(R,[1],[1],2,2);|
[ 16 ]
\end{Verbatim}
A theoretical calculation of the integral and mod\texttt{\symbol{45}}p
cohomology rings of all of these fundamental groups of spherical
3\texttt{\symbol{45}}manifolds is given in \cite{tomoda}. }
\section{\textcolor{Chapter }{Explicit cocycles }}\logpage{[ 7, 13, 0 ]}
\hyperdef{L}{X833A19F0791C3B06}{}
{
Given a $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast$ and a $\mathbb ZG$\texttt{\symbol{45}}module $A$, one defines an \emph{$n$\texttt{\symbol{45}}cocycle} to be a $\mathbb ZG$\texttt{\symbol{45}}homomorphism $f\colon R_n \rightarrow A$ for which the composite homomorphism $fd_{n+1}\colon R_{n+1}\rightarrow A$ is zero. If $R_\ast$ happens to be the standard bar resolution (i.e. the cellular chain complex of
the nerve of the group $G$ considered as a one object category) then the free $\mathbb ZG$\texttt{\symbol{45}}generators of $R_n$ are indexed by $n$\texttt{\symbol{45}}tuples $(g_1 | g_2 | \ldots | g_n)$ of elements $g_i$ in $G$. In this case we say that the $n$\texttt{\symbol{45}}cocycle is a \emph{standard n\texttt{\symbol{45}}cocycle} and we think of it as a set\texttt{\symbol{45}}theoretic function
$f \colon G \times G \times \cdots \times G \longrightarrow A$
satisfying a certain algebraic cocycle condition. Bearing in mind that a
standard $n$\texttt{\symbol{45}}cocycle really just assigns an element $f(g_1, \ldots ,g_n) \in A$ to an $n$\texttt{\symbol{45}}simplex in the nerve of $G$ , the cocycle condition is a very natural one which states that \emph{$f$ must vanish on the boundary of a certain $(n+1)$\texttt{\symbol{45}}simplex}. For $n=2$ the condition is that a $2$\texttt{\symbol{45}}cocycle $f(g_1,g_2)$ must satisfy
$g.f(h,k) + f(g,hk) = f(gh,k) + f(g,h)$
for all $g,h,k \in G$. This equation is explained by the following picture.
The definition of a cocycle clearly depends on the choice of $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast$. However, the cohomology group $H^n(G,A)$, which is a group of equivalence classes of $n$\texttt{\symbol{45}}cocycles, is independent of the choice of $R_\ast$.
There are some occasions when one needs explicit examples of standard
cocycles. For instance:
\begin{itemize}
\item Let $G$ be a finite group and $k$ a field of characteristic $0$. The group algebra $k(G)$, and the algebra $F(G)$ of functions $d_g\colon G\rightarrow k, h\rightarrow d_{g,h}$, are both Hopf algebras. The tensor product $F(G) \otimes k(G)$ also admits a Hopf algebra structure known as the quantum double $D(G)$. A twisted quantum double $D_f(G)$ was introduced by R. Dijkraaf, V. Pasquier \& P. Roche \cite{dpr}. The twisted double is a quasi\texttt{\symbol{45}}Hopf algebra depending on a $3$\texttt{\symbol{45}}cocycle $f\colon G\times G\times G\rightarrow k$. The multiplication is given by $(d_g \otimes x)(d_h \otimes y) = d_{gx,xh}\beta_g(x,y)(d_g \otimes xy)$ where $\beta_a $ is defined by $\beta_a(h,g) = f(a,h,g) f(h,h^{-1}ah,g)^{-1} f(h,g,(hg)^{-1}ahg)$ . Although the algebraic structure of $D_f(G)$ depends very much on the particular $3$\texttt{\symbol{45}}cocycle $f$, representation\texttt{\symbol{45}}theoretic properties of $D_f(G)$ depend only on the cohomology class of $f$.
\item An explicit $2$\texttt{\symbol{45}}cocycle $f\colon G\times G\rightarrow A$ is needed to construct the multiplication $(a,g)(a',g') = (a + g\cdot a' + f(g,g'), gg')$ in the extension a group $G$ by a $\mathbb ZG$\texttt{\symbol{45}}module $A$ determined by the cohomology class of $f$ in $H^2(G,A)$. See \ref{secExtensions}.
\item In work on coding theory and Hadamard matrices a number of papers have
investigated square matrices $(a_{ij})$ whose entries $a_{ij}=f(g_i,g_j)$ are the values of a $2$\texttt{\symbol{45}}cocycle $f\colon G\times G \rightarrow \mathbb Z_2$ where $G$ is a finite group acting trivially on $\mathbb Z_2$. See for instance \cite{horadam} and \ref{secHadamard}.
\end{itemize}
Given a $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast$ (with contracting homotopy) and a $\mathbb ZG$\texttt{\symbol{45}}module $A$ one can use HAP commands to compute explicit standard $n$\texttt{\symbol{45}}cocycles $f\colon G^n \rightarrow A$. With the twisted quantum double in mind, we illustrate the computation for $n=3$, $G=S_3$, and $A=U(1)$ the group of complex numbers of modulus $1$ with trivial $G$\texttt{\symbol{45}}action.
We first compute a $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast$. The Universal Coefficient Theorem gives an isomorphism $H_3(G,U(1)) = Hom_{\mathbb Z}(H_3(G,\mathbb Z), U(1))$, The multiplicative group $U(1)$ can thus be viewed as $\mathbb Z_m$ where $m$ is a multiple of the exponent of $H_3(G,\mathbb Z)$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|G:=SymmetricGroup(3);;A
@gapprompt|gap>A @gapinput|R:=ResolutionFiniteGroup(G,4);;A
@gapprompt|gap>A @gapinput|TR:=TensorWithIntegers(R);;A
@gapprompt|gap>A @gapinput|Homology(TR,3);A
[ 6 ]
@gapprompt|gap>A @gapinput|R!.dimension(3);A
4
@gapprompt|gap>A @gapinput|R!.dimension(4);A
5
\end{Verbatim}
We thus replace the very infinite group U(1) by the finite cyclic group $\mathbb Z_6$. Since the resolution $R_\ast $ has $4$ generators in degree $3$, a homomorphism $f\colon R^3\rightarrow U(1)$ can be represented by a list $f=[f_1, f_2, f_3, f_4]$ with $f_i$ the image in $\mathbb Z_6$ of the $i$th generator. The cocycle condition on $f$ can be expressed as a matrix equation
$Mf^t = 0 \bmod 6$.
where the matrix $M$ is obtained from the following command and $f^t$ denotes the transpose.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=CocycleCondition(R,3);;|
\end{Verbatim}
A particular cocycle $f=[f_1, f_2, f_3, f_4]$ can be obtained by choosing a solution to the equation
Mf\texttt{\symbol{94}}t=0.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@SolutionsMod2:=NullspaceModQ(TransposedMat(M),2);|
[ [ 0, 0, 0, 0 ], [ 0, 0, 1, 1 ], [ 1, 1, 0, 0 ], [ 1, 1, 1, 1 ] ]
!gapprompt@gap>| !gapinput@SolutionsMod3:=NullspaceModQ(TransposedMat(M),3);|
[ [ 0, 0, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 0, 2 ], [ 0, 0, 1, 0 ],
[ 0, 0, 1, 1 ], [ 0, 0, 1, 2 ], [ 0, 0, 2, 0 ], [ 0, 0, 2, 1 ],
[ 0, 0, 2, 2 ] ]
\end{Verbatim}
A non\texttt{\symbol{45}}standard $3$\texttt{\symbol{45}}cocycle $f$ can be converted to a standard one using the command \texttt{StandardCocycle(R,f,n,q)} . This command inputs $ R_\ast$, integers $n$ and $q$, and an $n$\texttt{\symbol{45}}cocycle $f$ for the resolution $R_\ast$. It returns a standard cocycle $G^n \rightarrow \mathbb Z_q$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@f:=3*SolutionsMod2[3] - SolutionsMod3[5]; #An example solution to Mf=0 mod 6.|
[ 3, 3, -1, -1 ]
!gapprompt@gap>| !gapinput@Standard_f:=StandardCocycle(R,f,3,6);;|
!gapprompt@gap>| !gapinput@g:=Random(G); h:=Random(G); k:=Random(G);|
(1,2)
(1,3,2)
(1,3)
!gapprompt@gap>| !gapinput@Standard_f(g,h,k);|
3
\end{Verbatim}
A function $f\colon G\times G\times G \rightarrow A$ is a standard $3$\texttt{\symbol{45}}cocycle if and only if
$g\cdot f(h,k,l) - f(gh,k,l) + f(g,hk,l) - f(g,h,kl) + f(g,h,k) = 0$
for all $g,h,k,l \in G$. In the above example the group $G=S_3$ acts trivially on $A=Z_6$. The following commands show that the standard $3$\texttt{\symbol{45}}cocycle produced in the example really does satisfy this $3$\texttt{\symbol{45}}cocycle condition.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@sf:=Standard_f;;|
!gapprompt@gap>| !gapinput@Test:=function(g,h,k,l);|
!gapprompt@>| !gapinput@return sf(h,k,l) - sf(g*h,k,l) + sf(g,h*k,l) - sf(g,h,k*l) + sf(g,h,k);|
!gapprompt@>| !gapinput@end;|
function( g, h, k, l ) ... end
!gapprompt@gap>| !gapinput@for g in G do for h in G do for k in G do for l in G do|
!gapprompt@>| !gapinput@Print(Test(g,h,k,l),",");|
!gapprompt@>| !gapinput@od;od;od;od;|
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,6,6,0,0,6,
0,0,0,0,0,6,6,6,0,6,0,12,12,6,12,6,0,12,6,0,6,6,0,0,0,0,0,0,0,12,12,6,6,6,0,
6,6,0,6,6,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,
0,6,0,0,6,6,6,0,0,0,0,0,0,0,-6,0,0,-6,0,-6,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,
0,0,0,6,6,6,0,0,0,6,6,6,0,0,0,0,-6,0,6,6,0,0,0,0,0,0,0,12,6,6,0,6,0,0,0,0,12,
6,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,0,0,6,0,0,0,0,0,6,6,
6,0,0,0,6,12,6,6,0,0,0,-6,0,0,6,0,0,0,0,0,0,0,12,12,6,6,6,0,0,0,0,6,6,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,0,6,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,
6,6,0,6,6,0,12,12,6,12,12,0,0,0,0,0,0,0,6,6,0,0,0,0,6,6,6,12,12,0,-6,-6,0,0,
0,0,6,6,0,0,6,0,0,6,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,
0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-6,0,6,0,6,0,6,0,0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,
0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,
0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,-6,0,0,0,-6,0,0,-6,0,-6,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,
0,0,0,0,6,6,0,-6,0,0,-6,0,0,12,6,0,-6,-6,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,12,0,6,0,0,6,0,0,0,6,0,0,0,0,0,0,
0,6,12,0,0,0,0,0,0,0,6,6,0,-6,-6,0,0,0,0,0,0,0,0,6,0,0,6,0,6,6,0,0,0,0,0,0,0,
6,0,0,0,6,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,
0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,6,0,6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,
6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,
\end{Verbatim}
}
\section{\textcolor{Chapter }{Quillen's complex and the $p$\texttt{\symbol{45}}part of homology }}\label{secWebb}
\logpage{[ 7, 14, 0 ]}
\hyperdef{L}{X7C5233E27D2D603E}{}
{
Let $G$ be a finite group with order divisible by prime $p$. Let ${\mathcal A}={\mathcal A}_p(G)$ denote Quillen's simplicial complex arising as the order complex of the poset
of non\texttt{\symbol{45}}trivial elementary abelian $p$\texttt{\symbol{45}}subgroups of $G$. The group $G$ acts on $\mathcal A$. Denote the orbit of a $k$\texttt{\symbol{45}}simplex $e^k$ by $[e^k]$, and the stabilizer of $e^k$ by $Stab(e^k) \le G$. For a finite abelian group $H$ let $H_p$ denote the Sylow $p$\texttt{\symbol{45}}subgroup or the "$p$\texttt{\symbol{45}}part". In Theorem 3.3 of \cite{Webb} P.J. Webb proved the following.
\textsc{Theorem.}\cite{Webb} For any $G$\texttt{\symbol{45}}module $M$ there is a (non natural) isomomorphism
$H_n(G,M)_p \oplus \bigoplus_{[e^k]\, :\, k~{\rm odd}~}H_n(Stab(e^k),M)_p \cong
\bigoplus_{[e^k]\, : \, k~{\rm even}~}H_n(Stab(e^k),M)_p$
for $n\ge 1$. The isomorphism can also be expressed as
$H_n(G,M)_p \cong \bigoplus_{[e^k]\, : \, k~{\rm even}~}H_n(Stab(e^k),M)_p\ -\
\bigoplus_{[e^k] \, :\, k~{\rm odd}~}H_n(Stab(e^k),M)_p$
where terms can often be cancelled.
Thus the additive structure of the $p$\texttt{\symbol{45}}part of the homology of $G$ is determined by that of the stabilizer groups. The result also holds with
homology replaced by cohomology.
\textsc{Illustration 1}
As an illustration of the theorem, the following commands calculate
$H_n(SL_3(\mathbb Z_2),\mathbb Z) \cong H_n(S_4,\mathbb Z)_2 \oplus
H_n(S_4,\mathbb Z)_2 \ominus H_n(D_8,\mathbb Z)_2 \oplus H_n(S_3,\mathbb Z)_3
\oplus H_n(C_7 : C_3,\mathbb Z)_7 $
where $n\ge 1$, $S_k$ denotes the symmetric group on $n$ letters, $D_8$ the dihedral group of order $8$ and $C_7 : C_3$ a nonabelian semi\texttt{\symbol{45}}direct product of cyclic groups.
Furthermore, for $n\ge 1$
$ H_n(C_7 : C_3,\mathbb Z)_7 =\left\{\begin{array}{ll}\mathbb Z_7,\ n \equiv 5
{\rm \ mod\ } 6\\ 0,\ {\rm otherwise} \end{array}\right.$
and
$ H_n(S_3,\mathbb Z)_3 =\left\{\begin{array}{ll}\mathbb Z_3,\ n \equiv 3 {\rm \
mod\ } 4\\ 0,\ n{\rm ~otherwise .} \end{array}\right.$
Formulas for $H_n(S_4,\mathbb Z)$ and $ H_n(D_8,\mathbb Z)$ can be found in the literature. Alternatively, they can be computed using \textsc{GAP} for a given value of $n$. For $n=27$ we find
$ H_{27}(S_4,\mathbb Z)_2 \oplus H_{27}(S_4,\mathbb Z)_2 \ominus
H_{27}(D_8,\mathbb Z)_2 \cong \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb
Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_4$
and
$H_{27}(SL_3(\mathbb Z_2),\mathbb Z) \cong \mathbb Z_2 \oplus \mathbb Z_2
\oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_4 \oplus \mathbb Z_3 $ .
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SL(3,2);;Factors(Order(G));|
[ 2, 2, 2, 3, 7 ]
!gapprompt@gap>| !gapinput@D2:=HomologicalGroupDecomposition(G,2);;|
!gapprompt@gap>| !gapinput@D3:=HomologicalGroupDecomposition(G,3);;|
!gapprompt@gap>| !gapinput@D7:=HomologicalGroupDecomposition(G,7);;|
!gapprompt@gap>| !gapinput@List(D2[1],StructureDescription);|
[ "S4", "S4" ]
!gapprompt@gap>| !gapinput@List(D2[2],StructureDescription);|
[ "D8" ]
!gapprompt@gap>| !gapinput@List(D3[1],StructureDescription);|
[ "S3" ]
!gapprompt@gap>| !gapinput@List(D3[2],StructureDescription);|
[ ]
!gapprompt@gap>| !gapinput@List(D7[1],StructureDescription);|
[ "C7 : C3" ]
!gapprompt@gap>| !gapinput@List(D7[2],StructureDescription);|
[ ]
!gapprompt@gap>| !gapinput@CohomologicalPeriod(D7[1][1]);|
6
!gapprompt@gap>| !gapinput@List([1..6],n->GroupHomology(D7[1][1],n));|
[ [ 3 ], [ ], [ 3 ], [ ], [ 3, 7 ], [ ] ]
!gapprompt@gap>| !gapinput@CohomologicalPeriod(D3[1][1]);|
4
!gapprompt@gap>| !gapinput@List([1..4],n->GroupHomology(D3[1][1],n));|
[ [ 2 ], [ ], [ 6 ], [ ] ]
!gapprompt@gap>| !gapinput@R_S4:=ResolutionFiniteGroup(Group([(1,2),(2,3),(3,4)]),28);;|
!gapprompt@gap>| !gapinput@R_D8:=ResolutionFiniteGroup(Group([(1,2),(1,3)(2,4)]),28);;|
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R_S4),27);|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 12 ]
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R_D8),27);|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ]
\end{Verbatim}
\textsc{Illustration 2}
As a further illustration of the theorem, the following commands calculate
$H_n(M_{12},M)_3 \cong \bigoplus_{1\le i\le 3}\,H_n(Stab_i,M)_3 -
\bigoplus_{4\le i\le 5}H_n(Stab_i,M)_3$
for the Mathieu simple group $M_{12}$ of order $95040$, where
$Stab_1\cong Stab_3=(((C_3 \times C_3) : Q_8) : C_3) : C_2$
$Stab_2=A_4 \times S_3$
$Stab_4=C_3 \times S_3$
$Stab_5=((C_3 \times C_3) : C_3) : (C_2 \times C_2)$ .
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=MathieuGroup(12);;|
!gapprompt@gap>| !gapinput@D:=HomologicalGroupDecomposition(G,3);;|
!gapprompt@gap>| !gapinput@List(D[1],StructureDescription);|
[ "(((C3 x C3) : Q8) : C3) : C2", "A4 x S3", "(((C3 x C3) : Q8) : C3) : C2" ]
!gapprompt@gap>| !gapinput@List(D[2],StructureDescription);|
[ "C3 x S3", "((C3 x C3) : C3) : (C2 x C2)" ]
\end{Verbatim}
\textsc{Illustration 3}
As a third illustration, the following commands show that $H_n(M_{23},M)_{p}$ is periodic for primes $p=5, 7, 11, 23$ of periods dividing $8, 6, 10, 22$ respectively.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=MathieuGroup(23);;|
!gapprompt@gap>| !gapinput@Factors(Order(G));|
[ 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 7, 11, 23 ]
!gapprompt@gap>| !gapinput@sd:=StructureDescription;;|
!gapprompt@gap>| !gapinput@D:=HomologicalGroupDecomposition(G,5);;|
!gapprompt@gap>| !gapinput@List(D[1],sd);List(D[2],sd);|
[ "C15 : C4" ]
[ ]
!gapprompt@gap>| !gapinput@IsPeriodic(D[1][1]);|
true
!gapprompt@gap>| !gapinput@CohomologicalPeriod(D[1][1]);|
8
!gapprompt@gap>| !gapinput@D:=HomologicalGroupDecomposition(G,7);;|
!gapprompt@gap>| !gapinput@List(D[1],sd);List(D[2],sd);|
[ "C2 x (C7 : C3)" ]
[ ]
!gapprompt@gap>| !gapinput@IsPeriodic(D[1][1]);|
true
!gapprompt@gap>| !gapinput@CohomologicalPeriod(D[1][1]);|
6
!gapprompt@gap>| !gapinput@D:=HomologicalGroupDecomposition(G,11);;|
!gapprompt@gap>| !gapinput@List(D[1],sd);List(D[2],sd);|
[ "C11 : C5" ]
[ ]
!gapprompt@gap>| !gapinput@IsPeriodic(D[1][1]);|
true
!gapprompt@gap>| !gapinput@CohomologicalPeriod(D[1][1]);|
10
!gapprompt@gap>| !gapinput@D:=HomologicalGroupDecomposition(G,23);;|
!gapprompt@gap>| !gapinput@List(D[1],sd);List(D[2],sd);|
[ "C23 : C11" ]
[ ]
!gapprompt@gap>| !gapinput@IsPeriodic(D[1][1]);|
true
!gapprompt@gap>| !gapinput@CohomologicalPeriod(D[1][1]);|
22
\end{Verbatim}
The order $|M_{23}|=10200960$ is divisible by primes $p=2, 3, 5, 7, 11, 23$. For $p=3$ the following commands establish that the Poincare series
$(x^{16} - 2x^{15}$ $ + 3x^{14} - 4x^{13}$ $ + 4x^{12} - 4x^{11}$ $ + 4x^{10} - 3x^9$ $ + 3x^8 - 3x^7 +$ $ 4x^6 - 4x^5 $ $+ 4x^4 -4x^3$ $ + 3x^2 -2x + 1) /$ $ (x^{18} - 2x^{17}$ $ + 3x^{16} - 4x^{15}$ $ + 4x^{14} - $ $4x^{13} + 4x^{12}$ $ - 4x^{11} + 4x^{10}$ $ - 4x^9 + 4x^8$ $ - 4x^7 + 4x^6 $ $ - 4x^5 + 4x^4$ $ - 4x^3 +$ $ 3x^2 - 2x + 1)$
describes the dimension of the vector space $H^n(M_{23},\mathbb Z_3)$ up to at least degree $n=40$. To prove that it describes the dimension in all degrees one would need to
verify "completion criteria".
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=MathieuGroup(23);;|
!gapprompt@gap>| !gapinput@D:=HomologicalGroupDecomposition(G,3);;|
!gapprompt@gap>| !gapinput@List(D[1],StructureDescription);|
[ "(C3 x C3) : QD16", "A5 : S3" ]
!gapprompt@gap>| !gapinput@List(D[2],StructureDescription);|
[ "S3 x S3" ]
!gapprompt@gap>| !gapinput@P1:=PoincareSeriesPrimePart(D[1][1],3,40);|
(x_1^16-2*x_1^15+3*x_1^14-4*x_1^13+4*x_1^12-4*x_1^11+4*x_1^10-3*x_1^9+3*x_1^8-3*x_1^7+4*x_1^6-4*x_1^5+\
4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)/(x_1^18-2*x_1^17+3*x_1^16-4*x_1^15+4*x_1^14-4*x_1^13+4*x_1^12-4*x_1^1\
1+4*x_1^10-4*x_1^9+4*x_1^8-4*x_1^7+4*x_1^6-4*x_1^5+4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)
!gapprompt@gap>| !gapinput@P2:=PoincareSeriesPrimePart(D[1][2],3,40);|
(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)
!gapprompt@gap>| !gapinput@P3:=PoincareSeriesPrimePart(D[2][1],3,40);|
(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)
\end{Verbatim}
}
\section{\textcolor{Chapter }{Homology of a Lie algebra}}\logpage{[ 7, 15, 0 ]}
\hyperdef{L}{X865CC8E0794C0E61}{}
{
Let $A$ be the Lie algebra constructed from the associative algebra $M^{4\times 4}(\mathbb Q)$ of all $4\times 4$ rational matrices. Let $V$ be its adjoint module (with underlying vector space of dimension $16$ and equal to that of $A$). The following commands compute $H_{4}(A,V) = \mathbb Q$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|M:=FullMatrixAlgebra(Rationals,4);; B
@gapprompt|gap>B @gapinput|A:=LieAlgebra(M);;B
@gapprompt|gap>B @gapinput|V:=AdjointModule(A);;B
@gapprompt|gap>B @gapinput|C:=ChevalleyEilenbergComplex(V,17);;B
@gapprompt|gap>B @gapinput|List([0..17],C!.dimension);B
[ 16, 256, 1920, 8960, 29120, 69888, 128128, 183040, 205920, 183040, 128128,
69888, 29120, 8960, 1920, 256, 16, 0 ]
@gapprompt|gap>B @gapinput|Homology(C,4);B
1
\end{Verbatim}
Note that the eighth term $C_{8}(V)$ in the Chevalley\texttt{\symbol{45}}Eilenberg complex $C_\ast(V)$ is a vector space of dimension $205920$ and so it will take longer to compute the homology in degree $8$.
As a second example, let $B$ be the classical Lie ring of type $B_3$ over the ring of integers. The following commands compute $H_3(B,\mathbb Z)= \mathbb Z \oplus \mathbb Z_2^{105}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=SimpleLieAlgebra("B",7,Integers); |
<Lie algebra of dimension 105 over Integers>
!gapprompt@gap>| !gapinput@C:=ChevalleyEilenbergComplex(A,4,"sparse");|
Sparse chain complex of length 4 in characteristic 0 .
!gapprompt@gap>| !gapinput@D:=ContractedComplex(C);|
Sparse chain complex of length 4 in characteristic 0 .
!gapprompt@gap>| !gapinput@Collected(Homology(D,3));|
[ [ 0, 1 ], [ 2, 105 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Covers of Lie algebras}}\logpage{[ 7, 16, 0 ]}
\hyperdef{L}{X86B4EE4783A244F7}{}
{
A short exact sequence of Lie algebras
$ M \rightarrowtail C \twoheadrightarrow L $
(over a field $k$) is said to be a \emph{stem extension} of $L$ if $M$ lies both in the centre $Z(C)$ and in the derived subalgeba $C^2$. If, in addition, the rank of the vector space $M$ is equal to the rank of the second Chevalley\texttt{\symbol{45}}Eilenberg
homology $H_2(L,k)$ then the Lie algebra $C$ is said to be a \emph{cover} of $L$.
Each finite dimensional Lie algebra $L$ admits a cover $C$, and this cover can be shown to be unique up to Lie isomorphism.
The cover can be used to determine whether there exists a Lie algebra $E$ whose central quotient $E/Z(E)$ is isomorphic to $L$. The image in $L$ of the centre of $C$ is called the \emph{Lie Epicentre} of $L$, and this image is trivial if and only if such an $E$ exists.
The cover can also be used to determine the stem extensions of $L$. It can be shown that each stem extension is a quotient of the cover by an
ideal in the Lie multiplier $H_2(L,k)$.
\subsection{\textcolor{Chapter }{Computing a cover}}\logpage{[ 7, 16, 1 ]}
\hyperdef{L}{X7DFF32A67FF39C82}{}
{
The following commands compute the cover $C$ of the solvable but non\texttt{\symbol{45}}nilpotent
13\texttt{\symbol{45}}dimensional Lie algebra $L$ (over $k=\mathbb Q$) that was introduced by M. Wuestner \cite{Wustner}. They also show that: the second homology of $C$ is trivial and compute the ranks of the homology groups in other dimensions;
the Lie algebra $L$ is not isomorphic to any central quotient $E/Z(E)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@SCTL:=EmptySCTable(13,0,"antisymmetric");;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 6, [ 1, 7 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 8, [ 1, 9 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 10, [ 1, 11 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 12, [ 1, 13 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 7, [ -1, 6 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 9, [ -1, 8 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 11, [ -1, 10 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 1, 13, [ -1, 12 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 6, 7, [ 1, 2 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 8, 9, [ 1, 3 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 6, 9, [ -1, 5 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 7, 8, [ 1, 5 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 2, 8, [ 1, 12 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 2, 9, [ 1, 13 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 3, 6, [ 1, 10 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 3, 7, [ 1, 11 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 2, 3, [ 1, 4 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 5, 6, [ -1, 12 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 5, 7, [ -1, 13 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 5, 8, [ -1, 10 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 5, 9, [ -1, 11 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 6, 11, [ -1/2, 4 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 7, 10, [ 1/2, 4 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 8, 13, [ 1/2, 4 ] );;|
!gapprompt@gap>| !gapinput@SetEntrySCTable( SCTL, 9, 12, [ -1/2, 4 ] );;|
!gapprompt@gap>| !gapinput@L:=LieAlgebraByStructureConstants(Rationals,SCTL);;|
!gapprompt@gap>| !gapinput@C:=Source(LieCoveringHomomorphism(L));|
<Lie algebra of dimension 15 over Rationals>
!gapprompt@gap>| !gapinput@Dimension(LieEpiCentre(L));|
1
!gapprompt@gap>| !gapinput@ch:=ChevalleyEilenbergComplex(C,17);;|
!gapprompt@gap>| !gapinput@List([0..16],n->Homology(ch,n)); |
[ 1, 1, 0, 9, 23, 27, 47, 88, 88, 47, 27, 23, 9, 0, 1, 1, 0 ]
\end{Verbatim}
}
}
}
\chapter{\textcolor{Chapter }{Cohomology rings and Steenrod operations for groups}}\logpage{[ 8, 0, 0 ]}
\hyperdef{L}{X7ED29A58858AAAF2}{}
{
\section{\textcolor{Chapter }{Mod\texttt{\symbol{45}}$p$ cohomology rings of finite groups}}\logpage{[ 8, 1, 0 ]}
\hyperdef{L}{X877CAF8B7E64DE04}{}
{
For a finite group $G$, prime $p$ and positive integer $deg$ the function \texttt{ModPCohomologyRing(G,p,deg)} computes a finite dimensional graded ring equal to the cohomology ring $H^{\le deg}(G,\mathbb Z_p) := H^\ast(G,\mathbb Z_p)/\{x=0\ :\ {\rm
degree}(x)>deg \}$ .
The following example computes the first $14$ degrees of the cohomology ring $H^\ast(M_{11},\mathbb Z_2)$ where $M_{11}$ is the Mathieu group of order $7920$. The ring is seen to be generated by three elements $a_3, a_4, a_6$ in degrees $3,4,5$.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|G:=MathieuGroup(11);; B
@gapprompt|gap>B @gapinput|p:=2;;deg:=14;;B
@gapprompt|gap>B @gapinput|A:=ModPCohomologyRing(G,p,deg);B
<algebra over GF(2), with 20 generators>
@gapprompt|gap>B @gapinput|gns:=ModPRingGenerators(A);B
[ v.1, v.6, v.8+v.10, v.13 ]
@gapprompt|gap>B @gapinput|List(gns,A!.degree);B
[ 0, 3, 4, 5 ]
\end{Verbatim}
The following additional command produces a rational function $f(x)$ whose series expansion $f(x) = \sum_{i=0}^\infty f_ix^i$ has coefficients $f_i$ which are guaranteed to satisfy $f_i = \dim H^i(G,\mathbb Z_p)$ in the range $0\le i\le deg$. We refer to $f(x)$ as the \emph{Poincare series} for the group at the prime $p=2$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@f:=PoincareSeries(A);|
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
!gapprompt@gap>| !gapinput@Let's use f to list the first few cohomology dimensions|
!gapprompt@gap>| !gapinput@ExpansionOfRationalFunction(f,deg); |
[ 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2 ]
\end{Verbatim}
An alternative command for computing the Poincare series is the following. In
this alternative we choose to ensure correctness in degrees $\le 100$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@PoincareSeriesPrimePart(MathieuGroup(11),2,100);|
The series is guaranteed correct for group cohomology in degrees < 101
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
\end{Verbatim}
If one needs to verify that the Poincare series is valid in all degrees then
more work is required. One readily implemented (but computationally
non\texttt{\symbol{45}}optimal) approach is to use Peter Symmonds result \cite{Symmonds} that: if a non\texttt{\symbol{45}}cyclic finite group $G$ has a faithful complex representation equal to a sum of irreducibles of
dimensions $n_i$ then the cohomology ring $H^\ast(G,\mathbb Z_p)$ is generated by elements of degree at most $\sum n_i^2$; a degree bound for the relations is $2 \sum n_i^2$. The following commands use this bound, in conjunction with Webb's result \ref{secWebb} on the Quillen complex, to obtained a Poincare series that is guaranteed
correct in all degree.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=MathieuGroup(11);;|
!gapprompt@gap>| !gapinput@h:=HomologicalGroupDecomposition(G,2);;|
!gapprompt@gap>| !gapinput@ModPCohomologyPresentationBounds(h[1][1]);|
rec( generators_degree_bound := 4, relators_degree_bound := 8 )
!gapprompt@gap>| !gapinput@A:=ModPCohomologyRing(h[1][1],2,9);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f11:=HilbertPoincareSeries(F);|
(x_1^2-x_1+1)/(x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)
!gapprompt@gap>| !gapinput@ModPCohomologyPresentationBounds(h[1][2]);|
rec( generators_degree_bound := 9, relators_degree_bound := 18 )
!gapprompt@gap>| !gapinput@A:=ModPCohomologyRing(h[1][2],2,19);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f12:=HilbertPoincareSeries(F);|
(x_1^2+1)/(x_1^4-x_1^3-x_1+1)
!gapprompt@gap>| !gapinput@ModPCohomologyPresentationBounds(h[2][1]);|
rec( generators_degree_bound := 4, relators_degree_bound := 8 )
!gapprompt@gap>| !gapinput@A:=ModPCohomologyRing(h[2][1],2,9);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f21:=HilbertPoincareSeries(F);|
(1)/(x_1^2-2*x_1+1)
!gapprompt@gap>| !gapinput@f11+f12-f21;|
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
\end{Verbatim}
\subsection{\textcolor{Chapter }{Ring presentations (for the commutative $p=2$ case)}}\logpage{[ 8, 1, 1 ]}
\hyperdef{L}{X870E0299782638AF}{}
{
The cohomology ring $H^\ast(G,\mathbb Z_p)$ is graded commutative which, in the case $p=2$, implies strictly commutative. The following additional commands can be
applied in the $p=2$ setting to determine a presentation for a graded commutative ring $F$ that is guaranteed to be isomorphic to the cohomology ring $H^\ast(G,\mathbb Z_p)$ in degrees $i\le deg$. If $deg$ is chosen "sufficiently large" then $F$ will be isomorphic to the cohomology ring.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=PresentationOfGradedStructureConstantAlgebra(A);|
Graded algebra GF(2)[ x_1, x_2, x_3 ] / [ x_1^2*x_2+x_3^2
] with indeterminate degrees [ 3, 4, 5 ]
\end{Verbatim}
The additional command
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@p:=HilbertPoincareSeries(F);|
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
\end{Verbatim}
invokes a call to \textsc{Singular} in order to calculate the Poincare series of the graded algebra $F$. }
}
\section{\textcolor{Chapter }{Poincare Series for Mod\texttt{\symbol{45}}$p$ cohomology}}\logpage{[ 8, 2, 0 ]}
\hyperdef{L}{X862538218748627F}{}
{
For a finite $p$\texttt{\symbol{45}}group $G$ the command \texttt{PoincarePolynomial(G)} returns a rational function $f(x)=p(x)/q(x)$ whose series expansion $f(x) = \sum_{i=0}^\infty f_ix^i$ has coefficients $f_i$ that are guaranteed to satisfy $f_i = \dim H^i(G,\mathbb Z_p)$ in the range $0\le i < 1+ deg$ for some displayed value of $deg$. Furthermore, the coefficients $f_i$ are guaranteed to be integers for all $0\le i\le 1000$ and the order of the pole of $f(x)$ at $x=1$ is guaranteed to equal the $p$\texttt{\symbol{45}}rank of $G$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SmallGroup(3^4,10);;|
!gapprompt@gap>| !gapinput@StructureDescription(G);|
"C3 . ((C3 x C3) : C3) = (C3 x C3) . (C3 x C3)"
!gapprompt@gap>| !gapinput@f:=PoincareSeries(G);|
The series is guaranteed correct for group cohomology in degrees < 14
(-x_1^3+x_1^2+1)/(x_1^6-2*x_1^5+2*x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)
\end{Verbatim}
If a higher value of $deg$ is required then this can be entered as an optional second argument. For
instance, the following increases the value to $deg=100$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@f:=PoincareSeries(G,100);|
The series is guaranteed correct for group cohomology in degrees < 101
(-x_1^3+x_1^2+1)/(x_1^6-2*x_1^5+2*x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)
\end{Verbatim}
As mentioned above, one approach to verifying that the Poincare series is
valid in all degrees is to use Peter Symmonds result \cite{Symmonds} that: if a non\texttt{\symbol{45}}cyclic finite group $G$ has a faithful complex representation equal to a sum of irreducibles of
dimensions $n_i$ then the cohomology ring $H^\ast(G,\mathbb Z_p)$ is generated by elements of degree at most $\sum n_i^2$; a degree bound for the relations is $2 \sum n_i^2$. Thus, if we use at least $\sum n_i^2$ degrees of a resolution to construct a presentation for the cohomology ring
then the presented ring maps surjectively onto the actual cohomology ring.
Furthermore, if this surjection is a bijection in the first $2 \sum n_i^2$ degrees then it is necessarily an isomorphism in all degrees.
The following commands use this approach to obtain a guaranteed presentation
and Poincare series for the Sylow $2$\texttt{\symbol{45}}subgroup of the Mathieu group $M_{12}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SylowSubgroup(MathieuGroup(12),2);;|
!gapprompt@gap>| !gapinput@ModPCohomologyPresentationBounds(G);|
rec( generators_degree_bound := 16, relators_degree_bound := 32 )
!gapprompt@gap>| !gapinput@A:=ModPCohomologyRing(G,16);;|
!gapprompt@gap>| !gapinput@F:=PresentationOfGradedStructureConstantAlgebra(A);|
Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x_5, x_6, x_7 ] /
[ x_1*x_3, x_1*x_2, x_1*x_4, x_2*x_3^2+x_3^3+x_3*x_4+x_3*x_5,
x_2*x_6+x_3*x_6+x_4*x_5, x_2*x_3*x_4+x_3^2*x_4+x_3*x_6,
x_2^2*x_4+x_3^2*x_4+x_3*x_6+x_4^2, x_3^2*x_6+x_3*x_4^2+x_3*x_4*x_5,
x_2*x_4*x_5+x_4*x_6, x_3^2*x_4*x_5+x_3*x_4*x_6+x_3*x_5*x_6,
x_1^3*x_6+x_1^2*x_7+x_1*x_5*x_6+x_3*x_5*x_6+x_4*x_5^2+x_6^2,
x_3*x_4^2*x_5+x_3*x_6^2 ] with indeterminate degrees [ 1, 1, 1, 2, 2, 3, 4 ]
!gapprompt@gap>| !gapinput@f:=HilbertPoincareSeries(F);|
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
!gapprompt@gap>| !gapinput@ff:=PoincareSeries(G,32);|
The series is guaranteed correct for group cohomology in degrees < 33
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
\end{Verbatim}
An alternative approach to obtaining a guaranteed presentation is to implement
Len even's spectral sequence proof of the finite generation of cohomology
rings of finite groups. The following example determines a guaranteed
presentation in this way for the cohomology ring $H^\ast(Syl_2(M_{12}),\mathbb Z_2)$. The Lyndon\texttt{\symbol{45}}Hochschild\texttt{\symbol{45}}Serre spectral
sequence, and Groebner basis routines from \textsc{Singular} (for commutative rings), are used to determine how much of a resolution is
needed to compute the guaranteed correct presentation.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SylowSubgroup(MathieuGroup(12),2);;|
!gapprompt@gap>| !gapinput@F:=Mod2CohomologyRingPresentation(G);|
Alpha version of completion test code will be used. This needs further work.
Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x_5, x_6, x_7 ] /
[ x_2*x_3, x_1*x_2, x_2*x_4, x_1^3+x_1^2*x_3+x_1*x_5,
x_1*x_3*x_4+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_3*x_6+x_4*x_5,
x_1^2*x_4+x_1^2*x_5+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_4^2,
x_1^2*x_3^2+x_1^2*x_5+x_1*x_3*x_5+x_1*x_6+x_3*x_6+x_4^2+x_4*x_5,
x_1^2*x_6+x_1*x_3*x_6+x_1*x_4*x_5+x_3^2*x_6+x_3*x_4^2+x_3*x_4*x_5,
x_1*x_3^2*x_5+x_3^3*x_4+x_1*x_3*x_6+x_1*x_4^2+x_3^2*x_6+x_3*x_4^2+x_4*x_6,
x_1^2*x_3*x_5+x_1*x_3*x_6+x_1*x_4^2+x_1*x_5^2,
x_3^3*x_6+x_3^2*x_4^2+x_3^2*x_4*x_5+x_3*x_4*x_6+x_3*x_5*x_6+x_4^3+x_4*x_5^2,
x_1*x_3^2*x_6+x_1*x_4*x_6+x_2^2*x_7+x_2*x_5*x_6+x_3*x_4*x_6+x_3*x_5*x_6+x_6^2,
x_1^2*x_5^2+x_1*x_3*x_5^2+x_3^2*x_4^2+x_3^2*x_4*x_5+x_2^2*x_7+x_2*x_5*x_6+x_3*x_5*x_6+x_6^2 ]
with indeterminate degrees [ 1, 1, 1, 2, 2, 3, 4 ]
!gapprompt@gap>| !gapinput@f:=HilbertPoincareSeries(F);|
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
\end{Verbatim}
}
\section{\textcolor{Chapter }{Functorial ring homomorphisms in Mod\texttt{\symbol{45}}$p$ cohomology}}\logpage{[ 8, 3, 0 ]}
\hyperdef{L}{X780DF87680C3F52B}{}
{
The following example constructs the ring homomorphism
$F\colon H^{\le deg}(G,\mathbb Z_p) \rightarrow H^{\le deg}(H,\mathbb Z_p)$
induced by the group homomorphism $f\colon H\rightarrow G$ with $H=A_5$, $G=S_5$, $f$ the canonical inclusion of the alternating group into the symmetric group, $p=2$ and $deg=7$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SymmetricGroup(5);;H:=AlternatingGroup(5);;|
!gapprompt@gap>| !gapinput@f:=GroupHomomorphismByFunction(H,G,x->x);;|
!gapprompt@gap>| !gapinput@p:=2;; deg:=7;;|
!gapprompt@gap>| !gapinput@F:=ModPCohomologyRing(f,p,deg);|
[ v.1, v.2, v.4+v.6, v.5, v.7, v.8, v.9, v.12+v.15, v.13, v.14, v.16+v.17,
v.18, v.19, v.20, v.22+v.24+v.28, v.23, v.25, v.26, v.27 ] ->
[ v.1, 0*v.1, v.4+v.5+v.6, 0*v.1, v.7+v.8, 0*v.1, 0*v.1, v.14+v.15, 0*v.1,
0*v.1, v.16+v.17+v.19, 0*v.1, 0*v.1, 0*v.1, v.22+v.23+v.26+v.27+v.28,
v.25, 0*v.1, 0*v.1, 0*v.1 ]
\end{Verbatim}
\subsection{\textcolor{Chapter }{Testing homomorphism properties}}\logpage{[ 8, 3, 1 ]}
\hyperdef{L}{X834CED9D7A104695}{}
{
The following commands are consistent with $F$ being a ring homomorphism.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@x:=Random(Source(F));|
v.4+v.6+v.8+v.9+v.12+v.13+v.14+v.15+v.18+v.20+v.22+v.24+v.25+v.28+v.32+v.35
!gapprompt@gap>| !gapinput@y:=Random(Source(F));|
v.1+v.2+v.7+v.9+v.13+v.23+v.26+v.27+v.32+v.33+v.34+v.35
!gapprompt@gap>| !gapinput@Image(F,x)+Image(F,y)=Image(F,x+y);|
true
!gapprompt@gap>| !gapinput@Image(F,x)*Image(F,y)=Image(F,x*y);|
true
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Testing functorial properties}}\logpage{[ 8, 3, 2 ]}
\hyperdef{L}{X7A0D505D844F0CD4}{}
{
The following example takes two "random" automorphisms $f,g\colon K\rightarrow K$ of the group $K$ of order $24$ arising as the direct product $K=C_3\times Q_8$ and constructs the three ring isomorphisms $F,G,FG\colon H^{\le 5}(K,\mathbb Z_2) \rightarrow H^{\le 5}(K,\mathbb Z_2)$ induced by $f, g$ and the composite $f\circ g$. It tests that $FG$ is indeed the composite $G\circ F$. Note that when we create the ring $H^{\le 5}(K,\mathbb Z_2)$ twice in \textsc{GAP} we obtain two canonically isomorphic but distinct implimentations of the ring.
Thus the canocial isomorphism between these distinct implementations needs to
be incorporated into the test. Note also that \textsc{GAP} defines $g\ast f = f\circ g$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=SmallGroup(24,11);;|
!gapprompt@gap>| !gapinput@aut:=AutomorphismGroup(K);;|
!gapprompt@gap>| !gapinput@f:=Elements(aut)[5];;|
!gapprompt@gap>| !gapinput@g:=Elements(aut)[8];;|
!gapprompt@gap>| !gapinput@fg:=g*f;;|
!gapprompt@gap>| !gapinput@F:=ModPCohomologyRing(f,2,5);|
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7 ] -> [ v.1, v.2+v.3, v.3, v.4+v.5, v.5,
v.6, v.7 ]
!gapprompt@gap>| !gapinput@G:=ModPCohomologyRing(g,2,5);|
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7 ] -> [ v.1, v.2+v.3, v.2, v.5, v.4+v.5,
v.6, v.7 ]
!gapprompt@gap>| !gapinput@FG:=ModPCohomologyRing(fg,2,5);|
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7 ] -> [ v.1, v.3, v.2, v.4, v.4+v.5, v.6,
v.7 ]
!gapprompt@gap>| !gapinput@sF:=Source(F);;tF:=Target(F);;|
!gapprompt@gap>| !gapinput@sG:=Source(G);; |
!gapprompt@gap>| !gapinput@tGsF:=AlgebraHomomorphismByImages(tF,sG,Basis(tF),Basis(sG));;|
!gapprompt@gap>| !gapinput@List(GeneratorsOfAlgebra(sF),x->Image(G,Image(tGsF,Image(F,x))));|
[ v.1, v.3, v.2, v.4, v.4+v.5, v.6, v.7 ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Computing with larger groups}}\logpage{[ 8, 3, 3 ]}
\hyperdef{L}{X855764877FA44225}{}
{
Mod\texttt{\symbol{45}}$p$ cohomology rings of finite groups are constructed as the rings of stable
elements in the cohomology of a (non\texttt{\symbol{45}}functorially) chosen
Sylow $p$\texttt{\symbol{45}}subgroup and thus require the construction of a free
resolution only for the Sylow subgroup. However, to ensure the functoriality
of induced cohomology homomorphisms the above computations construct free
resolutions for the entire groups $G,H$. This is a more expensive computation than finding resolutions just for Sylow
subgroups.
The default algorithm used by the function \texttt{ModPCohomologyRing()} for constructing resolutions of a finite group $G$ is \texttt{ResolutionFiniteGroup()} or \texttt{ResolutionPrimePowerGroup()} in the case when $G$ happens to be a group of prime\texttt{\symbol{45}}power order. If the user is
able to construct the first $deg$ terms of free resolutions $RG, RH$ for the groups $G, H$ then the pair \texttt{[RG,RH]} can be entered as the third input variable of \texttt{ModPCohomologyRing()}.
For instance, the following example constructs the ring homomorphism
$F\colon H^{\le 7}(A_6,\mathbb Z_2) \rightarrow H^{\le 7}(S_6,\mathbb Z_2)$
induced by the the canonical inclusion of the alternating group $A_6$ into the symmetric group $S_6$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SymmetricGroup(6);;|
!gapprompt@gap>| !gapinput@H:=AlternatingGroup(6);;|
!gapprompt@gap>| !gapinput@f:=GroupHomomorphismByFunction(H,G,x->x);;|
!gapprompt@gap>| !gapinput@RG:=ResolutionFiniteGroup(G,7);; |
!gapprompt@gap>| !gapinput@RH:=ResolutionFiniteSubgroup(RG,H);;|
!gapprompt@gap>| !gapinput@F:=ModPCohomologyRing(f,2,[RG,RH]); |
[ v.1, v.2+v.3, v.6+v.8+v.10, v.7+v.9, v.11+v.12, v.13+v.15+v.16+v.18+v.19,
v.14+v.16+v.19, v.17, v.22, v.23+v.28+v.32+v.35,
v.24+v.26+v.27+v.29+v.32+v.33+v.35, v.25+v.26+v.27+v.29+v.32+v.33+v.35,
v.30+v.32+v.33+v.34+v.35, v.36+v.39+v.43+v.45+v.47+v.49+v.50+v.55,
v.38+v.45+v.47+v.49+v.50+v.55, v.40,
v.41+v.43+v.45+v.47+v.48+v.49+v.50+v.53+v.55,
v.42+v.43+v.45+v.46+v.47+v.49+v.53+v.54, v.44+v.45+v.46+v.47+v.49+v.53+v.54,
v.51+v.52, v.58+v.60, v.59+v.68+v.73+v.77+v.81+v.83,
v.62+v.68+v.74+v.77+v.78+v.80+v.81+v.83+v.84,
v.63+v.69+v.73+v.74+v.78+v.80+v.84, v.64+v.68+v.73+v.77+v.81+v.83, v.65,
v.66+v.75+v.81, v.67+v.68+v.69+v.70+v.73+v.74+v.78+v.80+v.84,
v.71+v.72+v.73+v.76+v.77+v.78+v.80+v.82+v.83+v.84, v.79 ] ->
[ v.1, 0*v.1, v.4+v.5+v.6, 0*v.1, v.8, v.8, 0*v.1, v.7, 0*v.1,
v.12+v.13+v.14+v.15, v.12+v.13+v.14+v.15, v.12+v.13+v.14+v.15,
v.12+v.13+v.14+v.15, v.18+v.19, 0*v.1, 0*v.1, v.18+v.19, v.18+v.19,
v.18+v.19, v.16+v.17, 0*v.1, v.25, v.22+v.24+v.25+v.26+v.27+v.28,
v.22+v.24+v.25+v.26+v.27+v.28, 0*v.1, 0*v.1, v.25, v.22+v.24+v.26+v.27+v.28,
v.22+v.24+v.26+v.27+v.28, v.23 ]
\end{Verbatim}
}
}
\section{\textcolor{Chapter }{Steenrod operations for finite $2$\texttt{\symbol{45}}groups}}\logpage{[ 8, 4, 0 ]}
\hyperdef{L}{X80114B0483EF9A67}{}
{
The command \texttt{CohomologicalData(G,n)} prints complete information for the cohomology ring $H^\ast(G, Z_2 )$ and steenrod operations for a $2$\texttt{\symbol{45}}group $G$ provided that the integer $n$ is at least the maximal degree of a generator or relator in a minimal set of
generatoirs and relators for the ring.
The following example produces complete information on the Steenrod algebra of
group number $8$ in \textsc{GAP}'s library of groups of order $32$. Groebner basis routines (for commutative rings) from \textsc{Singular} are called in the example. (This example take over 2 hours to run. Most other
groups of order 32 run significantly quicker.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@CohomologicalData(SmallGroup(32,8),12);|
Integer argument is large enough to ensure completeness of cohomology ring presentation.
Group number: 8
Group description: C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)
Cohomology generators
Degree 1: a, b
Degree 2: c, d
Degree 3: e
Degree 5: f, g
Degree 6: h
Degree 8: p
Cohomology relations
1: f^2
2: c*h+e*f
3: c*f
4: b*h+c*g
5: b*e+c*d
6: a*h
7: a*g
8: a*f+b*f
9: a*e+c^2
10: a*c
11: a*b
12: a^2
13: d*e*h+e^2*g+f*h
14: d^2*h+d*e*f+d*e*g+f*g
15: c^2*d+b*f
16: b*c*g+e*f
17: b*c*d+c*e
18: b^2*g+d*f
19: b^2*c+c^2
20: b^3+a*d
21: c*d^2*e+c*d*g+d^2*f+e*h
22: c*d^3+d*e^2+d*h+e*f+e*g
23: b^2*d^2+c*d^2+b*f+e^2
24: b^3*d
25: d^3*e^2+d^2*e*f+c^2*p+h^2
26: d^4*e+b*c*p+e^2*g+g*h
27: d^5+b*d^2*g+b^2*p+f*g+g^2
Poincare series
(x^5+x^2+1)/(x^8-2*x^7+2*x^6-2*x^5+2*x^4-2*x^3+2*x^2-2*x+1)
Steenrod squares
Sq^1(c)=0
Sq^1(d)=b*b*b+d*b
Sq^1(e)=c*b*b
Sq^2(e)=e*d+f
Sq^1(f)=c*d*b*b+d*d*b*b
Sq^2(f)=g*b*b
Sq^4(f)=p*a
Sq^1(g)=d*d*d+g*b
Sq^2(g)=0
Sq^4(g)=c*d*d*d*b+g*d*b*b+g*d*d+p*a+p*b
Sq^1(h)=c*d*d*b+e*d*d
Sq^2(h)=d*d*d*b*b+c*d*d*d+g*c*b
Sq^4(h)=d*d*d*d*b*b+g*e*d+p*c
Sq^1(p)=c*d*d*d*b
Sq^2(p)=d*d*d*d*b*b+c*d*d*d*d
Sq^4(p)=d*d*d*d*d*b*b+d*d*d*d*d*d+g*d*d*d*b+g*g*d+p*d*d
\end{Verbatim}
}
\section{\textcolor{Chapter }{Steenrod operations on the classifying space of a finite $p$\texttt{\symbol{45}}group}}\logpage{[ 8, 5, 0 ]}
\hyperdef{L}{X7D5ACA56870A40E9}{}
{
The following example constructs the first eight degrees of the
mod\texttt{\symbol{45}}$3$ cohomology ring $H^\ast(G,\mathbb Z_3)$ for the group $G$ number 4 in \textsc{GAP}'s library of groups of order $81$. It determines a minimal set of ring generators lying in degree $\le 8$ and it evaluates the Bockstein operator on these generators. Steenrod powers
for $p\ge 3$ are not implemented as no efficient method of implementation is known.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SmallGroup(81,4);;|
!gapprompt@gap>| !gapinput@A:=ModPSteenrodAlgebra(G,8);;|
!gapprompt@gap>| !gapinput@List(ModPRingGenerators(A),x->Bockstein(A,x));|
[ 0*v.1, 0*v.1, v.5, 0*v.1, (Z(3))*v.7+v.8+(Z(3))*v.9 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Mod\texttt{\symbol{45}}$p$ cohomology rings of crystallographic groups}}\logpage{[ 8, 6, 0 ]}
\hyperdef{L}{X7D2D26C0784A0E14}{}
{
Mod $p$ cohomology ring computations can be attempted for any group $G$ for which we can compute sufficiently many terms of a free $ZG$\texttt{\symbol{45}}resolution with contracting homotopy. The contracting
homotopy is not needed if only the dimensions of the cohomology in each degree
are sought. Crystallographic groups are one class of infinite groups where
such computations can be attempted.
\subsection{\textcolor{Chapter }{Poincare series for crystallographic groups}}\logpage{[ 8, 6, 1 ]}
\hyperdef{L}{X81C107C07CF02F0E}{}
{
Consider the space group $G=SpaceGroupOnRightIT(3,226,'1')$. The following computation computes the infinite series
$(-2x^4+2x^2+1)/(-x^5+2x^4-x^3+x^2-2x+1)$
in which the coefficient of the monomial $x^n$ is guaranteed to equal the dimension of the vector space $H^n(G,\mathbb Z_2)$ in degrees $n\le 14$. One would need to involve a theoretical argument to establish that this
equality in fact holds in every degree $n\ge 0$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SpaceGroupIT(3,226);|
SpaceGroupOnRightIT(3,226,'1')
!gapprompt@gap>| !gapinput@R:=ResolutionSpaceGroup(G,15);|
Resolution of length 15 in characteristic 0 for <matrix group with
8 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@D:=List([0..14],n->Cohomology(HomToIntegersModP(R,2),n));|
[ 1, 2, 5, 9, 11, 15, 20, 23, 28, 34, 38, 44, 51, 56, 63 ]
!gapprompt@gap>| !gapinput@PoincareSeries(D,14);|
(-2*x_1^4+2*x_1^2+1)/(-x_1^5+2*x_1^4-x_1^3+x_1^2-2*x_1+1)
\end{Verbatim}
Consider the space group $SpaceGroupOnRightIT(3,103,'1')$. The following computation uses a different construction of a free resolution
to compute the infinite series
$ (x^3+2x^2+2x+1)/(-x+1) $
in which the coefficient of the monomial $x^n$ is guaranteed to equal the dimension of the vector space $H^n(G,\mathbb Z_2)$ in degrees $n\le 99$. The final commands show that $G$ acts on a (cubical) cellular decomposition of $\mathbb R^3$ with cell ctabilizers being either trivial or cyclic of order $2$ or $4$. From this extra calculation it follows that the cohomology is periodic in
degrees greater than $3$ and that the Poincare series is correct in every degree $n \ge 0$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|G:=SpaceGroupIT(3,103);A
SpaceGroupOnRightIT(3,103,'1')
@gapprompt|gap>A @gapinput|R:=ResolutionCubicalCrystGroup(G,100);A
Resolution of length 100 in characteristic 0 for <matrix group with 6 generators> .
@gapprompt|gap>A @gapinput|D:=List([0..99],n->Cohomology(HomToIntegersModP(R,2),n));;A
@gapprompt|gap>A @gapinput|PoincareSeries(D,99);A
(x_1^3+2*x_1^2+2*x_1+1)/(-x_1+1)
#Torsion subgroups are cyclic
@gapprompt|gap>A @gapinput|B:=CrystGFullBasis(G);;A
@gapprompt|gap>A @gapinput|C:=CrystGcomplex(GeneratorsOfGroup(G),B,1);;A
@gapprompt|gap>A @gapinput|for n in [0..3] doA
@gapprompt|>A @gapinput|for k in [1..C!.dimension(n)] doA
@gapprompt|>A @gapinput|Print(StructureDescription(C!.stabilizer(n,k))," ");A
@gapprompt|>A @gapinput|od;od;A
C4 C2 C4 1 1 C4 C2 C4 1 1 1 1
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Mod $2$ cohomology rings of $3$\texttt{\symbol{45}}dimensional crystallographic groups}}\logpage{[ 8, 6, 2 ]}
\hyperdef{L}{X7F5C242F7BC938A5}{}
{
Computations in the \emph{integral} cohomology of a crystallographic group are illustrated in Section \ref{secOrbifolds}. The commands underlying that illustration could be further developed and
adapted to mod $p$ cohomology. Indeed, the authors of the paper \cite{liuye} have developed commands for accessing the mod $2$ cohomology of $3$\texttt{\symbol{45}}dimensional crystallographic groups with the aim of
establishing a connection between these rings and the lattice structure of
crystals with space group symmetry. Their code is available at the github
repository \cite{liuyegithub}. In particular, their code contains the command
\begin{itemize}
\item \texttt{SpaceGroupCohomologyRingGapInterface(ITC)}
\end{itemize}
that inputs an integer in the range $1\le ITC\le 230$ corresponding to the numbering of a $3$\texttt{\symbol{45}}dimensional space group $G$ in the International Table for Crystallography. This command returns
\begin{itemize}
\item a presentation for the mod $2$ cohomology ring $H^\ast(G,\mathbb Z_2)$. The presentation is guaranteed to be correct for low degree cohomology. In
cases where the cohomology is periodic in degrees $ \ge 5$ (which can be tested using \texttt{IsPeriodicSpaceGroup(G)}) the presentation is guaranteed correct in all degrees. In
non\texttt{\symbol{45}}periodic cases some additional mathematical argument
needs to be provided to be mathematically sure that the presentation is
correct in all degrees.
\item the Lieb\texttt{\symbol{45}}Schultz\texttt{\symbol{45}}Mattis anomaly
(degree\texttt{\symbol{45}}3 cocycles) associated with the Irreducible Wyckoff
Position (see the paper \cite{liuye} for a definition).
\end{itemize}
The command \texttt{SpaceGroupCohomologyRingGapInterface(ITC)} is fast for most groups (a few seconds to a few minutes) but can be very slow
for certain space groups (e.g. ITC $= 228$ and ITC $= 142$). The following illustration assumes that two relevant files have been
downloaded from \cite{liuyegithub} and illustrates the command for ITC $ =30$ and ITC $=216$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Read("SpaceGroupCohomologyData.gi"); #These two files must be |
!gapprompt@gap>| !gapinput@Read("SpaceGroupCohomologyFunctions.gi"); #downloaded from|
!gapprompt@gap>| !gapinput@ #https://github.com/liuchx1993/Space-Group-Cohomology-and-LSM/|
!gapprompt@gap>| !gapinput@IsPeriodicSpaceGroup(SpaceGroupIT(3,30));|
true
!gapprompt@gap>| !gapinput@SpaceGroupCohomologyRingGapInterface(30);|
===========================================
Mod-2 Cohomology Ring of Group No. 30:
Z2[Ac,Am,Ax,Bb]/<R2,R3,R4>
R2: Ac.Am Am^2 Ax^2+Ac.Ax
R3: Am.Bb
R4: Bb^2
===========================================
LSM:
2a Ac.Bb+Ax.Bb
2b Ax.Bb
true
!gapprompt@gap>| !gapinput@IsPeriodicSpaceGroup(SpaceGroupIT(3,216));|
false
!gapprompt@gap>| !gapinput@SpaceGroupCohomologyRingGapInterface(216);|
===========================================
Mod-2 Cohomology Ring of Group No. 216:
Z2[Am,Ba,Bb,Bxyxzyz,Ca,Cb,Cc,Cxyz]/<R4,R5,R6>
R4: Am.Ca Am.Cb Ba.Bxyxzyz+Am.Cc Bb^2+Am.Cc+Ba.Bb Bb.Bxyxzyz+Am^2.Bb+Am.Cxyz Bxyxzyz^2
R5: Bxyxzyz.Ca Ba.Cb+Bb.Ca Bb.Cb+Bb.Ca Bxyxzyz.Cb Bxyxzyz.Cc Ba.Cxyz+Am.Ba.Bb+Bb.Cc Bb.Cxyz+Am^2.Cc+Am.Ba.Bb+Bb.Cc Bxyxzyz.Cxyz+Am^3.Bb+Am^2.Cxyz
===========================================
LSM:
4a Ca+Cc+Cxyz
4b Cb+Cc+Cxyz
4c Cb+Cxyz
4d Cxyz
true
\end{Verbatim}
In the example the naming convention for ring generators follows the paper \cite{liuye}. }
}
}
\chapter{\textcolor{Chapter }{Bredon homology}}\logpage{[ 9, 0, 0 ]}
\hyperdef{L}{X786DB80A8693779E}{}
{
\section{\textcolor{Chapter }{Davis complex}}\logpage{[ 9, 1, 0 ]}
\hyperdef{L}{X7B0212F97F3D442A}{}
{
The following example computes the Bredon homology
$\underline H_0(W,{\cal R}) = \mathbb Z^{21}$
for the infinite Coxeter group $W$ associated to the Dynkin diagram shown in the computation, with coefficients
in the complex representation ring.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,6]]];;|
!gapprompt@gap>| !gapinput@CoxeterDiagramDisplay(D);|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@C:=DavisComplex(D);;|
!gapprompt@gap>| !gapinput@D:=TensorWithComplexRepresentationRing(C);;|
!gapprompt@gap>| !gapinput@Homology(D,0);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Arithmetic groups}}\logpage{[ 9, 2, 0 ]}
\hyperdef{L}{X7AFFB32587D047FE}{}
{
The following example computes the Bredon homology
$\underline H_0(SL_2({\cal O}_{-3}),{\cal R}) = \mathbb Z_2\oplus \mathbb Z^{9}$
$\underline H_1(SL_2({\cal O}_{-3}),{\cal R}) = \mathbb Z$
for ${\cal O}_{-3}$ the ring of integers of the number field $\mathbb Q(\sqrt{-3})$, and $\cal R$ the complex reflection ring.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ContractibleGcomplex("SL(2,O-3)");;|
!gapprompt@gap>| !gapinput@IsRigid(R);|
false
!gapprompt@gap>| !gapinput@S:=BaryCentricSubdivision(R);;|
!gapprompt@gap>| !gapinput@IsRigid(S);|
true
!gapprompt@gap>| !gapinput@C:=TensorWithComplexRepresentationRing(S);;|
!gapprompt@gap>| !gapinput@Homology(C,0);|
[ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(C,1);|
[ 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Crystallographic groups}}\logpage{[ 9, 3, 0 ]}
\hyperdef{L}{X7DEBF2BB7D1FB144}{}
{
The following example computes the Bredon homology
$\underline H_0(G,{\cal R}) = \mathbb Z^{17}$
for $G$ the second crystallographic group of dimension $4$ in \textsc{GAP}'s library of crystallographic groups, and for $\cal R$ the Burnside ring.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SpaceGroup(4,2);;|
!gapprompt@gap>| !gapinput@gens:=GeneratorsOfGroup(G);;|
!gapprompt@gap>| !gapinput@B:=CrystGFullBasis(G);;|
!gapprompt@gap>| !gapinput@R:=CrystGcomplex(gens,B,1);;|
!gapprompt@gap>| !gapinput@IsRigid(R);|
false
!gapprompt@gap>| !gapinput@S:=CrystGcomplex(gens,B,0);;|
!gapprompt@gap>| !gapinput@IsRigid(S);|
true
!gapprompt@gap>| !gapinput@D:=TensorWithBurnsideRing(S);;|
!gapprompt@gap>| !gapinput@Homology(D,0);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Chain Complexes}}\logpage{[ 10, 0, 0 ]}
\hyperdef{L}{X7A06103979B92808}{}
{
HAP uses implementations of chain complexes of free $\mathbb K$\texttt{\symbol{45}}modules for each of the rings $\mathbb K = \mathbb Z$, $\mathbb K = \mathbb Q$, $\mathbb K = \mathbb F_p$ with $p$ a prime number, $\mathbb K = \mathbb ZG$, $\mathbb K = \mathbb F_pG$ with $G$ a group. The implemented chain complexes have the form
$ C_n \stackrel{d_n}{\longrightarrow } C_{n-1}
\stackrel{d_{n-1}}{\longrightarrow } \cdots \stackrel{d_2}{\longrightarrow }
C_1 \stackrel{d_1}{\longrightarrow } C_0 \stackrel{d_0}{\longrightarrow } 0\ .$
Such a complex is said to have \emph{length} $n$ and the rank of the free $\mathbb K$\texttt{\symbol{45}}module $C_k$ is referred to as the \emph{dimenion} of the complex in degree $k$.
For the case $\mathbb K = \mathbb ZG$ (resp. $\mathbb K = \mathbb F_pG$) the main focus is on free chain complexes that are exact at each degree $k$, i.e. ${\rm im}(d_{k+1})={\rm ker}(d_k)$, for $0 < k < n$ and with $C_0/{\rm im}(d_1) \cong \mathbb Z$ (resp. $C_0/{\rm im}(d_1) \cong \mathbb F_p$). We refer to such a chain complex as a \emph{resolution of length } $n$ even though $d_n$ will typically not be injective. More correct terminology would refer to such
a chain complex as the first $n$ degrees of a free resolution.
The following sections illustrate some constructions of chain complexes.
Constructions for resolutions are described in the next chapter \ref{resolutions}.
\section{\textcolor{Chapter }{Chain complex of a simplicial complex and simplicial pair}}\logpage{[ 10, 1, 0 ]}
\hyperdef{L}{X782DE78884DD6992}{}
{
The following example constructs the Quillen simplicial complex $Q={\mathcal A}_p(G)$ for $p=2$ and $G=A_8$; this is the order complex of the poset of non\texttt{\symbol{45}}trivial
elementary $2$\texttt{\symbol{45}}subgroups of $G$. The chain complex $C_\ast = C_\ast(Q)$ is then computed and seen to have the same number of free generators as $Q$ has simplices. (To ensure indexing of subcomplexes is consistent with that of
the large complex it is best to work with vertices represented as integers.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuillenComplex(AlternatingGroup(8),2);|
Simplicial complex of dimension 3.
!gapprompt@gap>| !gapinput@C:=ChainComplex(Q);|
Chain complex of length 3 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(Q);|
55015
!gapprompt@gap>| !gapinput@Size(C);|
55015
\end{Verbatim}
Next the simplicial complex $Q$ is converted to one whose vertices are represented by integers and a
contactible subcomplex $L < Q$ is computed. The chain complex $D_\ast=C_\ast(Q,L)$ of the simplicial pair $(Q,L)$ is constructed and seen to have the correct size.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=IntegerSimplicialComplex(Q);|
Simplicial complex of dimension 3.
!gapprompt@gap>| !gapinput@L:=ContractibleSubcomplex(Q);|
Simplicial complex of dimension 3.
!gapprompt@gap>| !gapinput@D:=ChainComplexOfPair(Q,L);|
Chain complex of length 3 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(D)=Size(Q)-Size(L);|
true
!gapprompt@gap>| !gapinput@Size(D);|
670
gap>
\end{Verbatim}
The next commands produce a smalled chain complex $B_\ast$ chain homotopy equivalent to $D_\ast$ and compute the homology $H_k(Q,\mathbb Z) \cong H_k(B_\ast)$ for $k=1,2,3$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@B:=ContractedComplex(D);|
Chain complex of length 3 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(B);|
64
!gapprompt@gap>| !gapinput@Homology(B,1);|
[ ]
!gapprompt@gap>| !gapinput@Homology(B,2);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(B,3);|
[ ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Chain complex of a cubical complex and cubical pair}}\logpage{[ 10, 2, 0 ]}
\hyperdef{L}{X79E7A13E7DE9C412}{}
{
The following example reads in the digital image
as a $2$\texttt{\symbol{45}}dimensional pure cubical complex $M$ and constructs the chain complex $C_\ast=C_\ast(M)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ReadImageAsPureCubicalComplex(file,400);|
Pure cubical complex of dimension 2.
!gapprompt@gap>| !gapinput@C:=ChainComplex(K);|
Chain complex of length 2 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(C); |
173243
\end{Verbatim}
Next an acyclic pure cubical subcomplex $L < M$ is computed and the chain complex $D_\ast=C_\ast(M,L)$ of the pair is constructed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=AcyclicSubcomplexOfPureCubicalComplex(K);|
Pure cubical complex of dimension 2.
!gapprompt@gap>| !gapinput@D:=ChainComplexOfPair(K,L);|
Chain complex of length 2 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(D);|
618
\end{Verbatim}
Finally the chain complex $D_\ast$ is simplified to a homotopy equivalent chain complex $B_\ast$ and the homology $H_1(M,\mathbb Z) \cong H_1(B_\ast)$ is computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@B:=ContractedComplex(D);|
Chain complex of length 2 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(B);|
20
!gapprompt@gap>| !gapinput@Homology(B,1);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Chain complex of a regular CW\texttt{\symbol{45}}complex}}\logpage{[ 10, 3, 0 ]}
\hyperdef{L}{X86C38E87817F2EAD}{}
{
The next example constructs a $15$\texttt{\symbol{45}}dimensional regular CW\texttt{\symbol{45}}complex $Y$ that is homotopy equivalent to the $2$\texttt{\symbol{45}}dimensional torus.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Circle:=PureCubicalComplex([[1,1,1,1,1],[1,1,0,1,1],[1,1,1,1,1]]);|
Pure cubical complex of dimension 2.
!gapprompt@gap>| !gapinput@Torus:=DirectProductOfPureCubicalComplexes(Circle,Circle);|
Pure cubical complex of dimension 4.
!gapprompt@gap>| !gapinput@CTorus:=CechComplexOfPureCubicalComplex(Torus);|
Simplicial complex of dimension 15.
!gapprompt@gap>| !gapinput@Y:=RegularCWComplex(CTorus);|
Regular CW-complex of dimension 15
\end{Verbatim}
Next the cellular chain complex $C_\ast=C_\ast(Y)$ is constructed. Also, a minimally generated chain complex $D_\ast=C_\ast(Y')$ of a non\texttt{\symbol{45}}regular CW\texttt{\symbol{45}}complex $Y'\simeq Y$ is constructed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@C:=ChainComplexOfRegularCWComplex(Y);|
Chain complex of length 15 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(C);|
1172776
!gapprompt@gap>| !gapinput@D:=ChainComplex(Y);|
Chain complex of length 15 in characteristic 0 .
!gapprompt@gap>| !gapinput@Size(D);|
4
\end{Verbatim}
}
\section{\textcolor{Chapter }{Chain Maps of simplicial and regular CW maps}}\logpage{[ 10, 4, 0 ]}
\hyperdef{L}{X7F9662EF83A1FA76}{}
{
The next example realizes the complement of the first prime knot on $11$ crossings as a pure permutahedral complex. The complement is converted to a
regular CW\texttt{\symbol{45}}complex $Y$ and the boundary inclusion $f\colon \partial Y \hookrightarrow Y$ is constructed as a map of regular CW\texttt{\symbol{45}}complexes. Then the
induced chain map $F\colon C_\ast(\partial Y) \hookrightarrow C_\ast(Y)$ is constructed. Finally the homology homomorphism $H_1(F)\colon H_1(C_\ast(\partial Y)) \rightarrow H_1(C_\ast(Y))$ is computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=PurePermutahedralKnot(11,1);;|
!gapprompt@gap>| !gapinput@M:=PureComplexComplement(K);|
Pure permutahedral complex of dimension 3.
!gapprompt@gap>| !gapinput@Y:=RegularCWComplex(M);|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@f:=BoundaryMap(Y);|
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@F:=ChainMap(f);|
Chain Map between complexes of length 2 .
!gapprompt@gap>| !gapinput@H:=Homology(F,1);|
[ g1, g2 ] -> [ g1^-1, g1^-1 ]
!gapprompt@gap>| !gapinput@Kernel(H);|
Pcp-group with orders [ 0 ]
\end{Verbatim}
The command \texttt{ChainMap(f)} can be used to construct the chain map $C_\ast(K) \rightarrow C_\ast(K')$ induced by a map $f\colon K\rightarrow K'$ of simplicial complexes. }
\section{\textcolor{Chapter }{Constructions for chain complexes}}\logpage{[ 10, 5, 0 ]}
\hyperdef{L}{X8127E17383F45359}{}
{
It is straightforward to implement basic constructions on chain complexes. A
few constructions are illustrated in the following example.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|res:=ResolutionFiniteGroup(SymmetricGroup(5),5);;B
@gapprompt|gap>B @gapinput|C:=TensorWithIntegers(res);B
Chain complex of length 5 in characteristic 0 .
@gapprompt|gap>B @gapinput|D:=ContractedComplex(C);#A chain homotopic complexB
Chain complex of length 5 in characteristic 0 .
@gapprompt|gap>B @gapinput|List([0..5],C!.dimension);B
[ 1, 4, 10, 20, 35, 56 ]
@gapprompt|gap>B @gapinput|List([0..5],D!.dimension);B
[ 1, 1, 2, 4, 6, 38 ]
@gapprompt|gap>B @gapinput|CxC:=TensorProduct(C,C);B
Chain complex of length 10 in characteristic 0 .
@gapprompt|gap>B @gapinput|SC:=SuspendedChainComplex(C);B
Chain complex of length 6 in characteristic 0 .
@gapprompt|gap>B @gapinput|RC:=ReducedSuspendedChainComplex(C);B
Chain complex of length 6 in characteristic 0 .
@gapprompt|gap>B @gapinput|PC:=PathObjectForChainComplex(C);B
Chain complex of length 5 in characteristic 0 .
@gapprompt|gap>B @gapinput|dualC:=HomToIntegers(C);B
Cochain complex of length 5 in characteristic 0 .
@gapprompt|gap>B @gapinput|Cxp:=TensorWithIntegersModP(C,5);B
Chain complex of length 5 in characteristic 5 .
@gapprompt|gap>B @gapinput|CxQ:=TensorWithRationals(C); #The quirky -1/2 denotes rationalsB
Chain complex of length 5 in characteristic -1/2 .
\end{Verbatim}
}
\section{\textcolor{Chapter }{Filtered chain complexes}}\logpage{[ 10, 6, 0 ]}
\hyperdef{L}{X7AAAB26682CD8AC4}{}
{
A sequence of inclusions of chain complexes $C_{0,\ast} \le C_{1,\ast} \le \cdots \le C_{T-1,\ast} \le C_{T,\ast}$ in which the preferred basis of $C_{k-1,\ell}$ is the beginning of the preferred basis of $C_{k,\ell}$ is referred to as a \emph{filtered chain complex}. Filtered chain complexes give rise to spectral sequences such as the \emph{equivariant spectral sequence} of a $G-CW$\texttt{\symbol{45}}complex with subgroup $H < G$. A particular case is the
Lyndon\texttt{\symbol{45}}Hochschild\texttt{\symbol{45}}Serre spectral
sequence for the homology of a group extension $N \rightarrowtail G \twoheadrightarrow Q$ with $E^2_{p,q}=H_p(Q,H_q(N, \mathbb Z))$.
The following commands construct the filtered chain complex underlying the
Lyndon\texttt{\symbol{45}}Hochschild\texttt{\symbol{45}}Serre spectral
sequence for the dihedral group $G=D_{32}$ of order 64 and its centre $N=Z(G)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=DihedralGroup(64);;|
!gapprompt@gap>| !gapinput@N:=Center(G);;|
!gapprompt@gap>| !gapinput@R:=ResolutionNormalSeries([G,N],3);;|
!gapprompt@gap>| !gapinput@C:=FilteredTensorWithIntegersModP(R,2);|
Chain complex of length 3 in characteristic 2 .
\end{Verbatim}
The differentials $d^r_{p,q}$ in a given page $E^r$ of the spectral sequence arise from the induced homology homomorphisms $\iota^{s,t}_\ell\colon H_{\ell}(C_{s,\ast}) \rightarrow H_{\ell}(C_{t,\ast})$ for $s\le t$. Textbooks traditionally picture the differential in $E^r$ as an array of sloping arrows with non\texttt{\symbol{45}}zero groups $E^r_{p,q}\neq 0$ represented by dots. An alternative representation of this information is as a
barcode (of the sort used in Topological Data Analysis). The homomorphisms $\iota^{\ast,\ast}_2$ in the example, with coefficients converted to mod $2$, are pictured by the bar code
which was produced by the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@p:=2;;k:=2;;|
!gapprompt@gap>| !gapinput@P:=PersistentHomologyOfFilteredChainComplex(C,k,p);;|
!gapprompt@gap>| !gapinput@BarCodeDisplay(P);|
\end{Verbatim}
}
\section{\textcolor{Chapter }{Sparse chain complexes}}\logpage{[ 10, 7, 0 ]}
\hyperdef{L}{X856F202D823280F8}{}
{
Boundary homomorphisms in all of the above examples of chain complexes are
represented by matrices. In cases where the matrices are large and have many
zero entries it is better to use sparse matrices.
The following commands demonstrate the conversion of the matrix
$A=\left(\begin{array}{ccc} 0 &2 &0\\ -3 &0 & 0\\ 0 & 0 &4 \end{array}\right)$
to sparse form, and vice\texttt{\symbol{45}}versa.
\begin{Verbatim}[commandchars=@|D,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>D @gapinput|A:=[[0,2,0],[-3,0,0],[0,0,4]];;D
@gapprompt|gap>D @gapinput|S:=SparseMat(A);D
Sparse matrix with 3 rows and 3 columns in characteristic 0
@gapprompt|gap>D @gapinput|NamesOfComponents(S);D
[ "mat", "characteristic", "rows", "cols" ]
@gapprompt|gap>D @gapinput|S!.mat;D
[ [ [ 2, 2 ] ], [ [ 1, -3 ] ], [ [ 3, 4 ] ] ]
@gapprompt|gap>D @gapinput|B:=SparseMattoMat(S);D
[ [ 0, 2, 0 ], [ -3, 0, 0 ], [ 0, 0, 4 ] ]
\end{Verbatim}
To illustrate the use of sparse chain complexes we consider the data points
represented in the following digital image.
The following commands read in this image as a $2$\texttt{\symbol{45}}dimensional pure cubical complex and store the Euclidean
coordinates of the black pixels in a list. Then 200 points are selected at
random from this list and used to construct a $200\times 200$ symmetric matrix $S$ whose entries are the Euclidean distance between the sample data points.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|file:=HapFile("data500.png");;B
@gapprompt|gap>B @gapinput|M:=ReadImageAsPureCubicalComplex(file,400);;B
@gapprompt|gap>B @gapinput|A:=M!.binaryArray;;B
@gapprompt|gap>B @gapinput|data:=[];;B
@gapprompt|gap>B @gapinput|for i in [1..Length(A)] doB
@gapprompt|>B @gapinput|for j in [1..Length(A[1])] doB
@gapprompt|>B @gapinput|if A[i][j]=1 then Add(data,[i,j]); fi;B
@gapprompt|>B @gapinput|od;B
@gapprompt|>B @gapinput|od;B
@gapprompt|gap>B @gapinput|sample:=List([1..200],i->Random(data));;B
@gapprompt|gap>B @gapinput|S:=VectorsToSymmetricMatrix(sample,EuclideanApproximatedMetric);;B
\end{Verbatim}
The symmetric distance matrix $S$ is next converted to a filtered chain complex arising from a filtered
simplicial complex (using the standard \emph{persistent homology} pipeline).
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SymmetricMatrixToFilteredGraph(S,10,100);; |
#Filtration length T=10, distances greater than 100 discarded.
!gapprompt@gap>| !gapinput@N:=SimplicialNerveOfFilteredGraph(G,2);;|
!gapprompt@gap>| !gapinput@C:=SparseFilteredChainComplexOfFilteredSimplicialComplex(N);;|
Filtered sparse chain complex of length 2 in characteristic 0 .
\end{Verbatim}
Next, the induced homology homomorphisms in degrees 1 and 2, with rational
coefficients, are computed and displayed a barcodes.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P0:=PersistentHomologyOfFilteredSparseChainComplex(C,0);;|
!gapprompt@gap>| !gapinput@P1:=PersistentHomologyOfFilteredSparseChainComplex(C,1);;|
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P0);|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@BarCodeCompactDisplay(P1);|
\end{Verbatim}
The barcodes are consistent with the data points having been sampled from a
space with the homotopy type of an annulus. }
}
\chapter{\textcolor{Chapter }{Resolutions}}\label{resolutions}
\logpage{[ 11, 0, 0 ]}
\hyperdef{L}{X7C0B125E7D5415B4}{}
{
There is a range of functions in HAP that input a group $G$, integer $n$, and attempt to return the first $n$ terms of a free $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast$ of the trivial module $\mathbb Z$. In some cases an explicit contracting homotopy is provided on the
resolution. The function \texttt{Size(R)} returns a list whose $k$th term is the sum of the lengths of the boundaries of the generators in
degree $k$.
\section{\textcolor{Chapter }{Resolutions for small finite groups}}\logpage{[ 11, 1, 0 ]}
\hyperdef{L}{X83E8F9DA7CDC0DA7}{}
{
The following uses discrete Morse theory to construct a resolution.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SymmetricGroup(6);; n:=6;;|
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(G,n);|
Resolution of length 6 in characteristic 0 for Group([ (1,2), (1,2,3,4,5,6)
]) .
!gapprompt@gap>| !gapinput@Size(R);|
[ 10, 58, 186, 452, 906, 1436 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for very small finite groups}}\logpage{[ 11, 2, 0 ]}
\hyperdef{L}{X7EEA738385CC3AEA}{}
{
The following uses linear algebra over $\mathbb Z$ to construct a resolution.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuaternionGroup(128);;|
!gapprompt@gap>| !gapinput@R:=ResolutionSmallGroup(Q,20);|
Resolution of length 20 in characteristic 0 for <pc group of size 128 with
2 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128 ]
\end{Verbatim}
The suspicion that this resolution $R_\ast$ is periodic of period $4$ can be confirmed by constructing the chain complex $C_\ast=R_\ast\otimes_{\mathbb Z}\mathbb ZG$ and verifying that boundary matrices repeat with period $4$.
A second example of a periodic resolution, for the Dihedral group $D_{2k+1}=\langle x, y\ |\ x^2= xy^kx^{-1}y^{-k-1} = 1\rangle$ of order $2k+2$ in the case $k=1$, is constructed and verified for periodicity in the next example.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(2);;D:=F/[F.1^2,F.1*F.2*F.1^-1*F.2^-2];;|
!gapprompt@gap>| !gapinput@R:=ResolutionSmallGroup(D,15);;|
!gapprompt@gap>| !gapinput@Size(R);|
[ 4, 7, 8, 6, 4, 8, 8, 6, 4, 8, 8, 6, 4, 8, 8 ]
!gapprompt@gap>| !gapinput@C:=TensorWithIntegersOverSubgroup(R,Group(One(D)));;|
!gapprompt@gap>| !gapinput@n:=4;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);|
true
!gapprompt@gap>| !gapinput@n:=5;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);|
true
!gapprompt@gap>| !gapinput@n:=6;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);|
true
!gapprompt@gap>| !gapinput@n:=7;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);|
true
!gapprompt@gap>| !gapinput@n:=8;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);|
true
\end{Verbatim}
This periodic resolution for $D_3$ can be found in a paper by R. Swan \cite{swan2}. The resolution was proved for arbitrary $D_{2k+1}$ by Irina Kholodna \cite{kholodna} (Corollary 5.5) and is the cellular chain complex of the universal cover of a
CW\texttt{\symbol{45}}complex $X$ with two cells in dimensions $1, 2 \bmod 4$ and one cell in dimensions $0,3 \bmod 4$. The $2$\texttt{\symbol{45}}skelecton is the $2$\texttt{\symbol{45}}complex for the given presentation of $D_{2k+1}$ and an attaching map for the $3$\texttt{\symbol{45}}cell is represented as follows.
A slightly different periodic resolution for $D_{2k+1}$ has been obtain more recently by FEA Johnson \cite{johnson}. Johnson's resolution has two free generators in each degree. Interestingly,
running the following code for many values of $k >1$ seems to produce a periodic resolution with two free generators in each degree
for most values of $k$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|k:=20;;rels:=[x^2,x*y^k*x^-1*y^(-1-k)];;D:=F/rels;;A
@gapprompt|gap>A @gapinput|R:=ResolutionSmallGroup(D,7);;A
@gapprompt|gap>A @gapinput|List([0..7],R!.dimension);A
[ 1, 2, 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
The performance of the function \texttt{ResolutionSmallGroup(G,n)} is very sensistive to the choice of presentation for the input group $G$. If $G$ is an fp\texttt{\symbol{45}}group then the defining presentation for $G$ is used. If $G$ is a permutaion group or finite matrix group then \textsc{GAP} functions are invoked to find a presentation for $G$. The following commands use a geometrically derived presentation for $SL(2,5)$ as input in order to obtain the first few terms of a periodic resolution for
this group of period $4$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|Y:=PoincareDodecahedronCWComplex( A
@gapprompt|>A @gapinput|[[1,2,3,4,5],[6,7,8,9,10]],A
@gapprompt|>A @gapinput|[[1,11,16,12,2],[19,9,8,18,14]],A
@gapprompt|>A @gapinput|[[2,12,17,13,3],[20,10,9,19,15]],A
@gapprompt|>A @gapinput|[[3,13,18,14,4],[16,6,10,20,11]],A
@gapprompt|>A @gapinput|[[4,14,19,15,5],[17,7,6,16,12]],A
@gapprompt|>A @gapinput|[[5,15,20,11,1],[18,8,7,17,13]]);;A
@gapprompt|gap>A @gapinput|G:=FundamentalGroup(Y);A
<fp group on the generators [ f1, f2 ]>
@gapprompt|gap>A @gapinput|RelatorsOfFpGroup(G);A
[ f2^-1*f1^-1*f2*f1^-1*f2^-1*f1, f2^-1*f1*f2^2*f1*f2^-1*f1^-1 ]
@gapprompt|gap>A @gapinput|StructureDescription(G);A
"SL(2,5)"
@gapprompt|gap>A @gapinput|R:=ResolutionSmallGroup(G,3);;A
@gapprompt|gap>A @gapinput|List([0..3],R!.dimension); A
[ 1, 2, 2, 1 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for finite groups acting on orbit polytopes}}\logpage{[ 11, 3, 0 ]}
\hyperdef{L}{X86C0983E81F706F5}{}
{
The following uses Polymake convex hull computations and homological
perturbation theory to construct a resolution.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SignedPermutationGroup(5);;|
!gapprompt@gap>| !gapinput@StructureDescription(G);|
"C2 x ((C2 x C2 x C2 x C2) : S5)"
!gapprompt@gap>| !gapinput@v:=[1,2,3,4,5];; #The resolution depends on the choice of vector.|
!gapprompt@gap>| !gapinput@P:=PolytopalComplex(G,[1,2,3,4,5]);|
Non-free resolution in characteristic 0 for <matrix group of size 3840 with
9 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R:=FreeGResolution(P,6);|
Resolution of length 5 in characteristic 0 for <matrix group of size
3840 with 9 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 10, 60, 214, 694, 6247, 273600 ]
\end{Verbatim}
The convex polytope $P_G(v)={\rm Convex~Hull}\{g\cdot v\ |\ g\in G\}$ used in the resolution depends on the choice of vector $v\in \mathbb R^n$. Two such polytopes for the alternating group $G=A_4$ acting on $\mathbb R^4$ can be visualized as follows.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=AlternatingGroup(4);;|
!gapprompt@gap>| !gapinput@OrbitPolytope(G,[1,2,3,4],["VISUAL"]);|
!gapprompt@gap>| !gapinput@OrbitPolytope(G,[1,1,3,4],["VISUAL"]);|
!gapprompt@gap>| !gapinput@P1:=PolytopalComplex(G,[1,2,3,4]);;|
!gapprompt@gap>| !gapinput@P2:=PolytopalComplex(G,[1,1,3,4]);;|
!gapprompt@gap>| !gapinput@R1:=FreeGResolution(P1,20);;|
!gapprompt@gap>| !gapinput@R2:=FreeGResolution(P2,20);;|
!gapprompt@gap>| !gapinput@Size(R1);|
[ 6, 11, 32, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093,
1107, 2456, 2344, 6115 ]
!gapprompt@gap>| !gapinput@Size(R2);|
[ 4, 11, 20, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093,
1107, 2456, 2344, 6115 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Minimal resolutions for finite $p$\texttt{\symbol{45}}groups over $\mathbb F_p$}}\logpage{[ 11, 4, 0 ]}
\hyperdef{L}{X85374EA47E3D97CF}{}
{
The following uses linear algebra to construct a minimal free $\mathbb F_pG$\texttt{\symbol{45}}resolution of the trivial module $\mathbb F$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=SylowSubgroup(MathieuGroup(12),2);;|
!gapprompt@gap>| !gapinput@R:=ResolutionPrimePowerGroup(P,20);|
Resolution of length 20 in characteristic 2 for Group(
[ (2,8,4,12)(3,11,7,9), (2,3)(4,7)(6,10)(9,11), (3,7)(6,10)(8,11)(9,12),
(1,10)(3,7)(5,6)(8,12), (2,4)(3,7)(8,12)(9,11), (1,5)(6,10)(8,12)(9,11)
]) .
!gapprompt@gap>| !gapinput@Size(R);|
[ 6, 62, 282, 740, 1810, 3518, 6440, 10600, 17040, 24162, 34774, 49874,
62416, 81780, 106406, 145368, 172282, 208926, 262938, 320558 ]
\end{Verbatim}
The resolution has the minimum number of generators possible in each degree
and can be used to guess a formula for the Poincare series
$P(x) = \Sigma_{k\ge 0} \dim_{\mathbb F_p}H^k(G,\mathbb F_p)\,x^k$.
The guess is certainly correct for the coefficients of $x^k$ for $k\le 20$ and can be used to guess the dimension of say $H^{2000}(G,\mathbb F_p)$.
Most likely $\dim_{\mathbb F_2}H^{2000}(G,\mathbb F_2) = 2001000$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=PoincareSeries(R,20);|
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
!gapprompt@gap>| !gapinput@ExpansionOfRationalFunction(P,2000)[2000];|
2001000
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for abelian groups}}\logpage{[ 11, 5, 0 ]}
\hyperdef{L}{X866C8D91871D1170}{}
{
The following uses the formula for the tensor product of chain complexes to
construct a resolution.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=AbelianPcpGroup([2,4,8,0,0]);;|
!gapprompt@gap>| !gapinput@StructureDescription(A);|
"Z x Z x C8 x C4 x C2"
!gapprompt@gap>| !gapinput@R:=ResolutionAbelianGroup(A,10);|
Resolution of length 10 in characteristic 0 for Pcp-group with orders
[ 2, 4, 8, 0, 0 ] .
!gapprompt@gap>| !gapinput@Size(R);|
[ 14, 90, 296, 680, 1256, 2024, 2984, 4136, 5480, 7016 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for nilpotent groups}}\logpage{[ 11, 6, 0 ]}
\hyperdef{L}{X7B332CBE85120B38}{}
{
The following uses the NQ package to express the free nilpotent group of class $3$ on three generators as a Pcp group $G$, and then uses homological perturbation on the lower central series to
construct a resolution. The resolution is used to exhibit $2$\texttt{\symbol{45}}torsion in $H_4(G,\mathbb Z)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(3);;|
!gapprompt@gap>| !gapinput@G:=Image(NqEpimorphismNilpotentQuotient(F,3));;|
!gapprompt@gap>| !gapinput@R:=ResolutionNilpotentGroup(G,5);|
Resolution of length 5 in characteristic 0 for Pcp-group with orders
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] .
!gapprompt@gap>| !gapinput@Size(R);|
[ 28, 377, 2377, 9369, 25850 ]
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R),4);|
[ 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
The following example uses a simplification procedure for resolutions to
construct a resolution $S_\ast$ for the free nilpotent group $G$ of class $2$ on $3$ generators that has the minimal possible number of free generators in each
degree.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(3),2));;|
!gapprompt@gap>| !gapinput@R:=ResolutionNilpotentGroup(G,10);;|
!gapprompt@gap>| !gapinput@S:=ContractedComplex(R);;|
!gapprompt@gap>| !gapinput@C:=TensorWithIntegers(S);; |
!gapprompt@gap>| !gapinput@List([1..10],i->IsZero(BoundaryMatrix(C,i)));|
[ true, true, true, true, true, true, true, true, true, true ]
\end{Verbatim}
The following example uses homological perturbation on the lower central
series to construct a resolution for the Sylow $2$\texttt{\symbol{45}}subgroup $P=Syl_2(M_{12})$ of the Mathieu simple group $M_{12}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=MathieuGroup(12);;|
!gapprompt@gap>| !gapinput@P:=SylowSubgroup(G,2);;|
!gapprompt@gap>| !gapinput@StructureDescription(P);|
"((C4 x C4) : C2) : C2"
!gapprompt@gap>| !gapinput@R:=ResolutionNilpotentGroup(P,9);|
Resolution of length 9 in characteristic
0 for <permutation group with 279 generators> .
!gapprompt@gap>| !gapinput@Size(R);|
[ 12, 80, 310, 939, 2556, 6768, 19302, 61786, 237068 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for groups with subnormal series}}\logpage{[ 11, 7, 0 ]}
\hyperdef{L}{X7B03997084E00509}{}
{
The following uses homological perturbation on a subnormal series to construct
a resolution for the Sylow $2$\texttt{\symbol{45}}subgroup $P=Syl_2(M_{12})$ of the Mathieu simple group $M_{12}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=SylowSubgroup(MathieuGroup(12),2);;|
!gapprompt@gap>| !gapinput@sn:=ElementaryAbelianSeries(P);;|
!gapprompt@gap>| !gapinput@R:=ResolutionSubnormalSeries(sn,9);|
Resolution of length 9 in characteristic
0 for <permutation group with 64 generators> .
!gapprompt@gap>| !gapinput@Size(R);|
[ 12, 78, 288, 812, 1950, 4256, 8837, 18230, 39120 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for groups with normal series}}\logpage{[ 11, 8, 0 ]}
\hyperdef{L}{X814FFCE080B3A826}{}
{
The following uses homological perturbation on a normal series to construct a
resolution for the Sylow $2$\texttt{\symbol{45}}subgroup $P=Syl_2(M_{12})$ of the Mathieu simple group $M_{12}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=SylowSubgroup(MathieuGroup(12),2);;|
!gapprompt@gap>| !gapinput@P1:=EfficientNormalSubgroups(P)[1];;|
!gapprompt@gap>| !gapinput@P2:=Intersection(DerivedSubgroup(P),P1);;|
!gapprompt@gap>| !gapinput@P3:=Group(One(P));;|
!gapprompt@gap>| !gapinput@R:=ResolutionNormalSeries([P,P1,P2,P3],9);|
Resolution of length 9 in characteristic
0 for <permutation group with 64 generators> .
!gapprompt@gap>| !gapinput@Size(R);|
[ 10, 60, 200, 532, 1238, 2804, 6338, 15528, 40649 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for polycyclic (almost) crystallographic groups }}\logpage{[ 11, 9, 0 ]}
\hyperdef{L}{X81227BF185C417AF}{}
{
The following uses the Polycyclic package and homological perturbation to
construct a resolution for the crystallographic group \texttt{G:=SpaceGroup(3,165)}.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SpaceGroup(3,165);;|
!gapprompt@gap>| !gapinput@G:=Image(IsomorphismPcpGroup(G));;|
!gapprompt@gap>| !gapinput@R:=ResolutionAlmostCrystalGroup(G,20);|
Resolution of length 20 in characteristic 0 for Pcp-group with orders
[ 3, 2, 0, 0, 0 ] .
!gapprompt@gap>| !gapinput@Size(R);|
[ 10, 49, 117, 195, 273, 351, 429, 507, 585, 663, 741, 819, 897, 975, 1053,
1131, 1209, 1287, 1365, 1443 ]
\end{Verbatim}
The following constructs a resolution for an almost crystallographic Pcp group $G$. The final commands establish that $G$ is not isomorphic to a crystallographic group.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );;|
!gapprompt@gap>| !gapinput@R:=ResolutionAlmostCrystalGroup(G,20);|
Resolution of length 20 in characteristic 0 for Pcp-group with orders
[ 4, 0, 0, 0, 0 ] .
!gapprompt@gap>| !gapinput@Size(R);|
[ 10, 53, 137, 207, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223,
223, 223, 223, 223, 223 ]
!gapprompt@gap>| !gapinput@T:=Kernel(NaturalHomomorphismOnHolonomyGroup(G));;|
!gapprompt@gap>| !gapinput@IsAbelian(T);|
false
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for Bieberbach groups }}\logpage{[ 11, 10, 0 ]}
\hyperdef{L}{X814BCDD6837BB9C5}{}
{
The following constructs a resolution for the Bieberbach group \texttt{G=SpaceGroup(3,165)} by using convex hull algorithms to construct a Dirichlet domain for its free
action on Euclidean space $\mathbb R^3$. By construction the resolution is trivial in degrees $\ge 3$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SpaceGroup(3,165);;|
!gapprompt@gap>| !gapinput@R:=ResolutionBieberbachGroup(G);|
Resolution of length 4 in characteristic
0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 10, 18, 8, 0 ]
\end{Verbatim}
The fundamental domain constructed for the above resolution can be visualized
using the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FundamentalDomainBieberbachGroup(G);|
<polymake object>
!gapprompt@gap>| !gapinput@Display(F);|
\end{Verbatim}
A different fundamental domain and resolution for $G$ can be obtained by changing the choice of vector $v\in \mathbb R^3$ in the definition of the Dirichlet domain
$D(v) = \{x\in \mathbb R^3\ | \ ||x-v|| \le ||x-g.v||\ {\rm for~all~} g\in G\}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionBieberbachGroup(G,[1/2,1/2,1/2]);|
Resolution of length 4 in characteristic
0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 28, 42, 16, 0 ]
!gapprompt@gap>| !gapinput@F:=FundamentalDomainBieberbachGroup(G);|
<polymake object>
!gapprompt@gap>| !gapinput@Display(F);|
\end{Verbatim}
A higher dimensional example is handled in the next session. A list of the $62$ $7$\texttt{\symbol{45}}dimensional Hantze\texttt{\symbol{45}}Wendt Bieberbach
groups is loaded and a resolution is computed for the first group in the list.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("HW-7dim.txt");;|
!gapprompt@gap>| !gapinput@Read(file);|
!gapprompt@gap>| !gapinput@G:=HWO7Gr[1];|
<matrix group with 7 generators>
!gapprompt@gap>| !gapinput@R:=ResolutionBieberbachGroup(G);|
Resolution of length 8 in characteristic 0 for <matrix group with
7 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 284, 1512, 3780, 4480, 2520, 840, 84, 0 ]
\end{Verbatim}
The homological perturbation techniques needed to extend this method to
crystallographic groups acting non\texttt{\symbol{45}}freely on $\mathbb R^n$ has not yet been implemenyed. This is on the TO\texttt{\symbol{45}}DO list. }
\section{\textcolor{Chapter }{Resolutions for arbitrary crystallographic groups}}\logpage{[ 11, 11, 0 ]}
\hyperdef{L}{X87ADCB7D7FC0B4D3}{}
{
An implementation of the above method for Bieberbach groups is also available
for arbitrary crystallographic groups. The following example constructs a
resolution for the group \texttt{G:=SpaceGroupIT(3,227)}.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SpaceGroupIT(3,227);;|
!gapprompt@gap>| !gapinput@R:=ResolutionSpaceGroup(G,11);|
Resolution of length 11 in characteristic 0 for <matrix group with
8 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 38, 246, 456, 644, 980, 1427, 2141, 2957, 3993, 4911, 6179 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for crystallographic groups admitting cubical fundamental domain}}\logpage{[ 11, 12, 0 ]}
\hyperdef{L}{X7B9B3AF487338A9B}{}
{
The following uses subdivision techniques to construct a resolution for the
Bieberbach group \texttt{G:=SpaceGroup(4,122)}. The resolution is endowed with a contracting homotopy.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SpaceGroup(4,122);;|
!gapprompt@gap>| !gapinput@R:=ResolutionCubicalCrystGroup(G,20);|
Resolution of length 20 in characteristic 0 for <matrix group with
6 generators> .
!gapprompt@gap>| !gapinput@Size(R);|
[ 8, 24, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
Subdivision and homological perturbation are used to construct the following
resolution (with contracting homotopy) for a crystallographic group with
non\texttt{\symbol{45}}free action.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SpaceGroup(4,1100);;|
!gapprompt@gap>| !gapinput@R:=ResolutionCubicalCrystGroup(G,20);|
Resolution of length 20 in characteristic 0 for <matrix group with
8 generators> .
!gapprompt@gap>| !gapinput@Size(R);|
[ 40, 215, 522, 738, 962, 1198, 1466, 1734, 2034, 2334, 2666, 2998, 3362,
3726, 4122, 4518, 4946, 5374, 5834, 6294 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for Coxeter groups }}\logpage{[ 11, 13, 0 ]}
\hyperdef{L}{X78DD8D068349065A}{}
{
The following session constructs the Coxeter diagram for the Coxeter group $B=B_7$ of order $645120$. A resolution for $G$ is then computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,3]],[5,[6,3]],[6,[7,4]]];;|
!gapprompt@gap>| !gapinput@CoxeterDiagramDisplay(D);;|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionCoxeterGroup(D,5);|
Resolution of length 5 in characteristic
0 for <permutation group of size 645120 with 7 generators> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 14, 112, 492, 1604, 5048 ]
\end{Verbatim}
The routine extension of this method to infinite Coxeter groups is on the
TO\texttt{\symbol{45}}DO list. }
\section{\textcolor{Chapter }{Resolutions for Artin groups }}\logpage{[ 11, 14, 0 ]}
\hyperdef{L}{X7C69E7227F919CC9}{}
{
The following session constructs a resolution for the infinite Artin group $G$ associated to the Coxeter group $B_7$. Exactness of the resolution depends on the solution to the $K(\pi,1)$ Conjecture for Artin groups of spherical type.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionArtinGroup(D,8);|
Resolution of length 8 in characteristic 0 for <fp group on the generators
[ f1, f2, f3, f4, f5, f6, f7 ]> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 14, 98, 310, 610, 918, 1326, 2186, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for $G=SL_2(\mathbb Z[1/m])$}}\logpage{[ 11, 15, 0 ]}
\hyperdef{L}{X8032647F8734F4EB}{}
{
The following uses homological perturbation to construct a resolution for $G=SL_2(\mathbb Z[1/6])$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionSL2Z(6,10);|
Resolution of length 10 in characteristic 0 for SL(2,Z[1/6]) .
!gapprompt@gap>| !gapinput@Size(R);|
[ 44, 679, 6910, 21304, 24362, 48506, 43846, 90928, 86039, 196210 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for selected groups $G=SL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )$}}\logpage{[ 11, 16, 0 ]}
\hyperdef{L}{X7BE4DE82801CD38E}{}
{
The following uses finite "Voronoi complexes" and homological perturbation to
construct a resolution for $G=SL_2({\mathcal O}(\mathbb Q(\sqrt{-5}))$. The finite complexes were contributed independently by A. Rahm, M.
Dutour\texttt{\symbol{45}}Scikiric and S. Schoenenbeck and are stored in the
folder \texttt{\texttt{\symbol{126}}pkg/Hap1.v/lib/Perturbations/Gcomplexes}.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionSL2QuadraticIntegers(-5,10);|
Resolution of length 10 in characteristic 0 for matrix group .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 22, 114, 120, 200, 146, 156, 136, 254, 168, 170 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for selected groups $G=PSL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )$}}\logpage{[ 11, 17, 0 ]}
\hyperdef{L}{X7D9CCB2C7DAA2310}{}
{
The following uses finite "Voronoi complexes" and homological perturbation to
construct a resolution for $G=PSL_2({\mathcal O}(\mathbb Q(\sqrt{-11}))$. The finite complexes were contributed independently by A. Rahm, M.
Dutour\texttt{\symbol{45}}Scikiric and S. Schoenenbeck and are stored in the
folder \texttt{\texttt{\symbol{126}}pkg/Hap1.v/lib/Perturbations/Gcomplexes}.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionPSL2QuadraticIntegers(-11,10);|
Resolution of length 10 in characteristic 0 for PSL(2,O-11) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 12, 59, 89, 107, 125, 230, 208, 270, 326, 515 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for a few higher\texttt{\symbol{45}}dimensional arithmetic groups }}\logpage{[ 11, 18, 0 ]}
\hyperdef{L}{X7F699587845E6DB1}{}
{
The following uses finite "Voronoi complexes" and homological perturbation to
construct a resolution for $G=PSL_4(\mathbb Z)$. The finite complexes were contributed by M.
Dutour\texttt{\symbol{45}}Scikiric and are stored in the folder \texttt{\texttt{\symbol{126}}pkg/Hap1.v/lib/Perturbations/Gcomplexes}.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@ V:=ContractibleGcomplex("PSL(4,Z)_d");|
Non-free resolution in characteristic 0 for matrix group .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R:=FreeGResolution(V,5);|
Resolution of length 5 in characteristic 0 for matrix group .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 18, 210, 1444, 26813 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for finite\texttt{\symbol{45}}index subgroups }}\logpage{[ 11, 19, 0 ]}
\hyperdef{L}{X7812EB3F7AC45F87}{}
{
The next commands first construct the congruence subgroup $\Gamma_0(I)$ of index $144$ in $SL_2({\cal O}\mathbb Q(\sqrt{-2}))$ for the ideal $I$ in ${\cal O}\mathbb Q(\sqrt{-2})$ generated by $4+5\sqrt{-2}$. The commands then compute a resolution for the congruence subgroup $G=\Gamma_0(I) \le SL_2({\cal O}\mathbb Q(\sqrt{-2}))$
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-2);;|
!gapprompt@gap>| !gapinput@OQ:=RingOfIntegers(Q);;|
!gapprompt@gap>| !gapinput@I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;|
!gapprompt@gap>| !gapinput@G:=HAP_CongruenceSubgroupGamma0(I);|
<[group of 2x2 matrices in characteristic 0>
!gapprompt@gap>| !gapinput@|
!gapprompt@gap>| !gapinput@IndexInSL2O(G);|
144
!gapprompt@gap>| !gapinput@R:=ResolutionSL2QuadraticIntegers(-2,4,true);;|
!gapprompt@gap>| !gapinput@S:=ResolutionFiniteSubgroup(R,G);|
Resolution of length 4 in characteristic 0 for <matrix group with
290 generators> .
!gapprompt@gap>| !gapinput@Size(S);|
[ 1152, 8496, 30960, 59616 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Simplifying resolutions }}\logpage{[ 11, 20, 0 ]}
\hyperdef{L}{X84CAAA697FAC8E0D}{}
{
The next commands construct a resolution $R_\ast$ for the symmetric group $S_5$ and convert it to a resolution $S_\ast$ for the finite index subgroup $A_4 < S_5$. An heuristic algorithm is applied to $S_\ast$ in the hope of obtaining a smaller resolution $T_\ast$ for the alternating group $A_4$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionFiniteGroup(SymmetricGroup(5),5);;|
!gapprompt@gap>| !gapinput@S:=ResolutionFiniteSubgroup(R,AlternatingGroup(4));|
Resolution of length 5 in characteristic 0 for Alt( [ 1 .. 4 ] ) .
!gapprompt@gap>| !gapinput@Size(S);|
[ 80, 380, 1000, 2040, 3400 ]
!gapprompt@gap>| !gapinput@T:=SimplifiedComplex(S);|
Resolution of length 5 in characteristic 0 for Alt( [ 1 .. 4 ] ) .
!gapprompt@gap>| !gapinput@Size(T);|
[ 4, 34, 22, 19, 196 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Resolutions for graphs of groups and for groups with aspherical presentations }}\logpage{[ 11, 21, 0 ]}
\hyperdef{L}{X780C3F038148A1C7}{}
{
The following example constructs a resolution for a finitely presented group
whose presentation is known to have the property that its associated $2$\texttt{\symbol{45}}complex is aspherical.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;|
!gapprompt@gap>| !gapinput@rels:=[x*y*x*(y*x*y)^-1, y*z*y*(z*y*z)^-1, z*x*z*(x*z*x)^-1];;|
!gapprompt@gap>| !gapinput@G:=F/rels;;|
!gapprompt@gap>| !gapinput@R:=ResolutionAsphericalPresentation(G,10);|
Resolution of length 10 in characteristic 0 for <fp group on the generators
[ f1, f2, f3 ]> .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Size(R);|
[ 6, 18, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
The following commands create a resolution for a graph of groups corresponding
to the amalgamated product $G=H\ast_AK$ where $H=S_5$ is the symmetric group of degree $5$, $K=S_4$ is the symmetric group of degree $4$ and the common subgroup is $A=S_3$. }
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@S5:=SymmetricGroup(5);SetName(S5,"S5");;|
Sym( [ 1 .. 5 ] )
!gapprompt@gap>| !gapinput@S4:=SymmetricGroup(4);SetName(S4,"S4");;|
Sym( [ 1 .. 4 ] )
!gapprompt@gap>| !gapinput@A:=SymmetricGroup(3);SetName(A,"S3");;|
Sym( [ 1 .. 3 ] )
!gapprompt@gap>| !gapinput@AS5:=GroupHomomorphismByFunction(A,S5,x->x);;|
!gapprompt@gap>| !gapinput@AS4:=GroupHomomorphismByFunction(A,S4,x->x);;|
!gapprompt@gap>| !gapinput@D:=[S5,S4,[AS5,AS4]];;|
!gapprompt@gap>| !gapinput@GraphOfGroupsDisplay(D);;|
\end{Verbatim}
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionGraphOfGroups(D,8);;|
!gapprompt@gap>| !gapinput@Size(R);|
[ 16, 68, 162, 302, 480, 627, 869, 1290 ]
\end{Verbatim}
\section{\textcolor{Chapter }{Resolutions for $\mathbb FG$\texttt{\symbol{45}}modules }}\logpage{[ 11, 22, 0 ]}
\hyperdef{L}{X85AB973F8566690A}{}
{
Let $\mathbb F=\mathbb F_p$ be the field of $p$ elements and let $M$ be some $\mathbb FG$\texttt{\symbol{45}}module for $G$ a finite $p$\texttt{\symbol{45}}group. We might wish to construct a free $\mathbb FG$\texttt{\symbol{45}}resolution for $M$. We can handle this by constructing a short exact sequence
$ DM \rightarrowtail P \twoheadrightarrow M$
in which $P$ is free (or projective). Then any resolution of $DM$ yields a resolution of $M$ and we can represent $DM$ as a submodule of $P$. We refer to $DM$ as the \emph{desuspension} of $M$. Consider for instance $G=Syl_2(GL(4,2))$ and $\mathbb F=\mathbb F_2$. The matrix group $G$ acts via matrix multiplication on $M=\mathbb F^4$. The following example constructs a free $\mathbb FG$\texttt{\symbol{45}}resolution for $M$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|G:=GL(4,2);;A
@gapprompt|gap>A @gapinput|S:=SylowSubgroup(G,2);;A
@gapprompt|gap>A @gapinput|M:=GModuleByMats(GeneratorsOfGroup(S),GF(2));;A
@gapprompt|gap>A @gapinput|DM:=DesuspensionMtxModule(M);;A
@gapprompt|gap>A @gapinput|R:=ResolutionFpGModule(DM,20);A
Resolution of length 20 in characteristic 2 for <matrix group of
size 64 with 3 generators> .
@gapprompt|gap>A @gapinput|List([0..20],R!.dimension);A
[ 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136,
153, 171, 190, 210, 231, 253 ]
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Simplicial groups}}\label{chapSimplicialGroups}
\logpage{[ 12, 0, 0 ]}
\hyperdef{L}{X7D818E5F80F4CF63}{}
{
\section{\textcolor{Chapter }{Crossed modules}}\label{secCrossedModules}
\logpage{[ 12, 1, 0 ]}
\hyperdef{L}{X808C6B357F8BADC1}{}
{
A \emph{crossed module} consists of a homomorphism of groups $\partial\colon M\rightarrow G$ together with an action $(g,m)\mapsto\, {^gm}$ of $G$ on $M$ satisfying
\begin{enumerate}
\item $\partial(^gm) = gmg^{-1}$
\item $^{\partial m}m' = mm'm^{-1}$
\end{enumerate}
for $g\in G$, $m,m'\in M$.
A crossed module $\partial\colon M\rightarrow G$ is equivalent to a cat$^1$\texttt{\symbol{45}}group $(H,s,t)$ (see \ref{secCat1}) where $H=M \rtimes G$, $s(m,g) = (1,g)$, $t(m,g)=(1,(\partial m)g)$. A cat$^1$\texttt{\symbol{45}}group is, in turn, equivalent to a simplicial group with
Moore complex has length $1$. The simplicial group is constructed by considering the cat$^1$\texttt{\symbol{45}}group as a category and taking its nerve. Alternatively,
the simplicial group can be constructed by viewing the crossed module as a
crossed complex and using a nonabelian version of the
Dold\texttt{\symbol{45}}Kan theorem.
The following example concerns the crossed module
$\partial\colon G\rightarrow Aut(G), g\mapsto (x\mapsto gxg^{-1})$
associated to the dihedral group $G$ of order $16$. This crossed module represents, up to homotopy type, a connected space $X$ with $\pi_iX=0$ for $i\ge 3$, $\pi_2X=Z(G)$, $\pi_1X = Aut(G)/Inn(G)$. The space $X$ can be represented, up to homotopy, by a simplicial group. That simplicial
group is used in the example to compute
$H_1(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2$,
$H_2(X,\mathbb Z)= \mathbb Z_2 $,
$H_3(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2$,
$H_4(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2$,
$H_5(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus
\mathbb Z_2\oplus \mathbb Z_2\oplus \mathbb Z_2$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(16));|
Cat-1-group with underlying group Group(
[ f1, f2, f3, f4, f5, f6, f7, f8, f9 ] ) .
!gapprompt@gap>| !gapinput@Size(C);|
512
!gapprompt@gap>| !gapinput@Q:=QuasiIsomorph(C);|
Cat-1-group with underlying group Group( [ f9, f8, f1, f2*f3, f5 ] ) .
!gapprompt@gap>| !gapinput@Size(Q);|
32
!gapprompt@gap>| !gapinput@N:=NerveOfCatOneGroup(Q,6);|
Simplicial group of length 6
!gapprompt@gap>| !gapinput@K:=ChainComplexOfSimplicialGroup(N);|
Chain complex of length 6 in characteristic 0 .
!gapprompt@gap>| !gapinput@Homology(K,1);|
[ 2, 2 ]
!gapprompt@gap>| !gapinput@Homology(K,2);|
[ 2 ]
!gapprompt@gap>| !gapinput@Homology(K,3);|
[ 2, 2, 2 ]
!gapprompt@gap>| !gapinput@Homology(K,4);|
[ 2, 2, 2 ]
!gapprompt@gap>| !gapinput@Homology(K,5);|
[ 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Eilenberg\texttt{\symbol{45}}MacLane spaces as simplicial groups (not
recommended)}}\label{eilennot}
\logpage{[ 12, 2, 0 ]}
\hyperdef{L}{X795E339978B42775}{}
{
The following example concerns the Eilenberg\texttt{\symbol{45}}MacLane space $X=K(\mathbb Z_3,3)$ which is a path\texttt{\symbol{45}}connected space with $\pi_3X=\mathbb Z_3$, $\pi_iX=0$ for $3\ne i\ge 1$. This space is represented by a simplicial group, and perturbation techniques
are used to compute
$H_7(X,\mathbb Z)=\mathbb Z_3 \oplus \mathbb Z_3$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=AbelianGroup([3]);;AbelianInvariants(A); |
[ 3 ]
!gapprompt@gap>| !gapinput@ K:=EilenbergMacLaneSimplicialGroup(A,3,8);|
Simplicial group of length 8
!gapprompt@gap>| !gapinput@C:=ChainComplex(K);|
Chain complex of length 8 in characteristic 0 .
!gapprompt@gap>| !gapinput@Homology(C,7); |
[ 3, 3 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Eilenberg\texttt{\symbol{45}}MacLane spaces as simplicial free abelian groups
(recommended)}}\label{eilen}
\logpage{[ 12, 3, 0 ]}
\hyperdef{L}{X7D91E64D7DD7F10F}{}
{
For integer $n>1$ and abelian group $A$ the Eilenberg\texttt{\symbol{45}}MacLane space $K(A,n)$ is better represented as a simplicial free abelian group. (The reason is that
the functorial bar resolution of a group can be replaced in computations by
the smaller functorial Chevalley\texttt{\symbol{45}}Eilenberg complex of the
group when the group is free abelian, obviating the need for perturbation
techniques. When $A$ has torision we can replace it with an inclusion of free abelian groups $A_1 \hookrightarrow A_0$ with $A\cong A_0/A_1$ and again invoke the Chevalley\texttt{\symbol{45}}Eilenberg complex. The
current implementation unfortunately handles only free abelian $A$ but the easy extension to non\texttt{\symbol{45}}free $A$ is planned for a future release.)
The following commands compute the integral homology $H_n(K(\mathbb Z,3),\mathbb Z)$ for $ 0\le n \le 16$. (Note that one typically needs fewer than $n$ terms of the Eilenberg\texttt{\symbol{45}}MacLance space to compute its $n$\texttt{\symbol{45}}th homology \texttt{\symbol{45}}\texttt{\symbol{45}} an
error is printed if too few terms of the space are available for a given
computation.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=AbelianPcpGroup([0]);; #infinite cyclic group |
!gapprompt@gap>| !gapinput@K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,14);|
Simplicial free abelian group of length 14
!gapprompt@gap>| !gapinput@for n in [0..16] do|
!gapprompt@>| !gapinput@Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");|
!gapprompt@>| !gapinput@od;|
Degree 0 integral homology of K is [ 0 ]
Degree 1 integral homology of K is [ ]
Degree 2 integral homology of K is [ ]
Degree 3 integral homology of K is [ 0 ]
Degree 4 integral homology of K is [ ]
Degree 5 integral homology of K is [ 2 ]
Degree 6 integral homology of K is [ ]
Degree 7 integral homology of K is [ 3 ]
Degree 8 integral homology of K is [ 2 ]
Degree 9 integral homology of K is [ 2 ]
Degree 10 integral homology of K is [ 3 ]
Degree 11 integral homology of K is [ 5, 2 ]
Degree 12 integral homology of K is [ 2 ]
Degree 13 integral homology of K is [ ]
Degree 14 integral homology of K is [ 10, 2 ]
Degree 15 integral homology of K is [ 7, 6 ]
Degree 16 integral homology of K is [ ]
\end{Verbatim}
For an $n$\texttt{\symbol{45}}connected pointed space $X$ the Freudenthal Suspension Theorem states that the map $X \rightarrow \Omega(\Sigma X)$ induces a map $\pi_k(X) \rightarrow \pi_k(\Omega(\Sigma X))$ which is an isomorphism for $k\le 2n$ and epimorphism for $k=2n+1$. Thus the Eilenberg\texttt{\symbol{45}}MacLane space $K(A,n+1)$ can be constructed from the suspension $\Sigma K(A,n)$ by attaching cells in dimensions $\ge 2n+1$. In particular, there is an isomorphism $ H_{k-1}(K(A,n),\mathbb Z) \rightarrow H_k(K(A,n+1),\mathbb Z)$ for $k\le 2n$ and epimorphism for $k=2n+1$.
For instance, $ H_{k-1}(K(\mathbb Z,3),\mathbb Z) \cong H_k(K(\mathbb Z,4),\mathbb Z) $ for $k\le 6$ and $ H_6(K(\mathbb Z,3),\mathbb Z) \twoheadrightarrow H_7(K(\mathbb Z,4),\mathbb Z) $. This assertion is seen in the following session.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=AbelianPcpGroup([0]);; #infinite cyclic group |
!gapprompt@gap>| !gapinput@K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,4,11);|
Simplicial free abelian group of length 11
!gapprompt@gap>| !gapinput@for n in [0..13] do|
!gapprompt@>| !gapinput@Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");|
!gapprompt@>| !gapinput@od;|
Degree 0 integral homology of K is [ 0 ]
Degree 1 integral homology of K is [ ]
Degree 2 integral homology of K is [ ]
Degree 3 integral homology of K is [ ]
Degree 4 integral homology of K is [ 0 ]
Degree 5 integral homology of K is [ ]
Degree 6 integral homology of K is [ 2 ]
Degree 7 integral homology of K is [ ]
Degree 8 integral homology of K is [ 3, 0 ]
Degree 9 integral homology of K is [ ]
Degree 10 integral homology of K is [ 2, 2 ]
Degree 11 integral homology of K is [ ]
Degree 12 integral homology of K is [ 5, 12, 0 ]
Degree 13 integral homology of K is [ 2 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Elementary theoretical information on $H^\ast(K(\pi,n),\mathbb Z)$}}\logpage{[ 12, 4, 0 ]}
\hyperdef{L}{X84ABCA497C577132}{}
{
The cup product is not implemented for the cohomology ring $H^\ast(K(\pi,n),\mathbb Z)$. Standard theoretical spectral sequence arguments have to be applied to
obtain basic information relating to the ring structure. To illustrate this
the following commands compute $H^n(K(\mathbb Z,2),\mathbb Z)$ for the first few values of $n$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,2,10);;|
!gapprompt@gap>| !gapinput@List([0..10],k->Cohomology(K,k));|
[ [ 0 ], [ ], [ 0 ], [ ], [ 0 ], [ ], [ 0 ], [ ], [ 0 ], [ ], [ 0 ] ]
\end{Verbatim}
There is a fibration sequence $K(\pi,n) \hookrightarrow \ast \twoheadrightarrow K(\pi,n+1)$ in which $\ast$ denotes a contractible space. For $n=1, \pi=\mathbb Z$ the terms of the $E_2$ page of the Serre integral cohomology spectral sequence for this fibration are
\begin{itemize}
\item $E_2^{pq}= H^p( K(\mathbb Z,2), H^q(K(\mathbb Z,1),\mathbb Z) )$ .
\end{itemize}
Since $K(\mathbb Z,1)$ can be taken to be the circle $S^1$ we know that it has non\texttt{\symbol{45}}trivial cohomology in degrees $0$ and $1$ only. The first few terms of the $E_2$ page are given in the following table. \begin{center}
\begin{tabular}{l|lllllllllll} $1$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ \\
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ &
$0$ &
$\mathbb Z$ \\
$q/p$ &
$0$ &
$1$ &
$2$ &
$3$ &
$4$ &
$5$ &
$6$ &
$7$ &
$8$ &
$9$ &
$10$ \\
\end{tabular}\\[2mm]
\textbf{Table: }$E^2$ cohomology page for $K(\mathbb Z,1) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,2)$\end{center}
Let $x$ denote the generator of $H^1(K(\mathbb Z,1),\mathbb Z)$ and $y$ denote the generator of $H^2(K(\mathbb Z,2),\mathbb Z)$. Since $\ast$ has zero cohomology in degrees $\ge 1$ we see that the differential must restrict to an isomorphism $d_2\colon E_2^{0,1} \rightarrow E_2^{2,0}$ with $d_2(x)=y$. Then we see that the differential must restrict to an isomorphism $d_2\colon E_2^{2,1} \rightarrow E_2^{4,0}$ defined on the generator $xy$ of $E_2^{2,1}$ by
\[d_2(xy) = d_2(x)y + (-1)^{{\rm deg}(x)}xd_2(y) =y^2\ . \]
Hence $E_2^{4,0} \cong H^4(K(\mathbb Z,2),\mathbb Z)$ is generated by $y^2$. The argument extends to show that $H^6(K(\mathbb Z,2),\mathbb Z)$ is generated by $y^3$, $H^8(K(\mathbb Z,2),\mathbb Z)$ is generated by $y^4$, and so on.
In fact, to obtain a complete description of the ring $H^\ast(K(\mathbb Z,2),\mathbb Z)$ in this fashion there is no benefit to using computer methods at all. We only
need to know the cohomology ring $H^\ast(K(\mathbb Z,1),\mathbb Z) =H^\ast(S^1,\mathbb Z)$ and the single cohomology group $H^2(K(\mathbb Z,2),\mathbb Z)$.
A similar approach can be attempted for $H^\ast(K(\mathbb Z,3),\mathbb Z)$ using the fibration sequence $K(\mathbb Z,2) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,3)$ and, as explained in Chapter 5 of \cite{hatcher}, yields the computation of the group $H^i(K(\mathbb Z,3),\mathbb Z)$ for $4\le i\le 13$. The method does not directly yield $H^3(K(\mathbb Z,3),\mathbb Z)$ and breaks down in degree $14$ yielding only that $H^{14}(K(\mathbb Z,3),\mathbb Z) = 0 {\rm ~or~} \mathbb Z_3$. The following commands provide $H^3(K(\mathbb Z,3),\mathbb Z)= \mathbb Z$ and $H^{14}(K(\mathbb Z,3),\mathbb Z) =0$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=AbelianPcpGroup([0]);;|
!gapprompt@gap>| !gapinput@K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,15);;|
!gapprompt@gap>| !gapinput@Cohomology(K,3);|
[ 0 ]
!gapprompt@gap>| !gapinput@Cohomology(K,14);|
[ ]
\end{Verbatim}
However, the implementation of these commands is currently a bit naive, and
computationally inefficient, since they do not currently employ any
homological perturbation techniques. }
\section{\textcolor{Chapter }{The first three non\texttt{\symbol{45}}trivial homotopy groups of spheres}}\label{firstthree}
\logpage{[ 12, 5, 0 ]}
\hyperdef{L}{X7F828D8D8463CC20}{}
{
The Hurewicz Theorem immediately gives
\[\pi_n(S^n)\cong \mathbb Z ~~~ (n\ge 1)\]
and
\[\pi_k(S^n)=0 ~~~ (k\le n-1).\]
As a CW\texttt{\symbol{45}}complex the Eilenberg\texttt{\symbol{45}}MacLane
space $K=K(\mathbb Z,n)$ can be obtained from an $n$\texttt{\symbol{45}}sphere $S^n=e^0\cup e^n$ by attaching cells in dimensions $\ge n+2$ so as to kill the higher homotopy groups of $S^n$. From the inclusion $\iota\colon S^n\hookrightarrow K(\mathbb Z,n)$ we can form the mapping cone $X=C(\iota)$. The long exact homotopy sequence
$ \cdots \rightarrow \pi_{k+1}K \rightarrow \pi_{k+1}(K,S^n) \rightarrow \pi_{k}
S^n \rightarrow \pi_kK \rightarrow \pi_k(K,S^n) \rightarrow \cdots$
implies that $\pi_k(K,S^n)=0$ for $0 \le k\le n+1$ and $\pi_{n+2}(K,S^n)\cong \pi_{n+1}(S^n)$. The relative Hurewicz Theorem gives an isomorphism $\pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z)$. The long exact homology sequence
$ \cdots H_{n+2}(S^n,\mathbb Z) \rightarrow H_{n+2}(K,\mathbb Z) \rightarrow
H_{n+2}(K,S^n, \mathbb Z) \rightarrow H_{n+1}(S^n,\mathbb Z) \rightarrow
\cdots$
arising from the cofibration $S^n \hookrightarrow K \twoheadrightarrow X$ implies that $\pi_{n+1}(S^n)\cong \pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z) \cong
H_{n+2}(K,\mathbb Z)$. From the \textsc{GAP} computations in \ref{eilen} and the Freudenthal Suspension Theorem we find:
\[ \pi_3S^2 \cong \mathbb Z, ~~~~~~ \pi_{n+1}(S^n)\cong \mathbb Z_2~~~(n\ge 3).\]
The Hopf fibration $S^3\rightarrow S^2$ has fibre $S^1 = K(\mathbb Z,1)$. It can be constructed by viewing $S^3$ as all pairs $(z_1,z_2)\in \mathbb C^2$ with $|z_1|^2+|z_2|^2=1$ and viewing $S^2$ as $\mathbb C\cup \infty$; the map sends $(z_1,z_2)\mapsto z_1/z_2$. The homotopy exact sequence of the Hopf fibration yields $\pi_k(S^3) \cong \pi_k(S^2)$ for $k\ge 3$, and in particular
\[\pi_4(S^2) \cong \pi_4(S^3) \cong \mathbb Z_2\ .\]
It will require further techniques (such as the Postnikov tower argument in
Section \ref{postnikov2} below) to establish that $\pi_5(S^3) \cong \mathbb Z_2$. Once we have this isomorphism for $\pi_5(S^3)$, the generalized Hopf fibration $S^3 \hookrightarrow S^7 \twoheadrightarrow S^4$ comes into play. This fibration is contructed as for the classical fibration,
but using pairs $(z_1,z_2)$ of quaternions rather than pairs of complex numbers. The Hurewicz Theorem
gives $\pi_3(S^7)=0$; the fibre $S^3$ is thus homotopic to a point in $S^7$ and the inclusion of the fibre induces the zero homomorphism $\pi_k(S^3) \stackrel{0}{\longrightarrow} \pi_k(S^7) ~~(k\ge 1)$. The exact homotopy sequence of the generalized Hopf fibration then gives $\pi_k(S^4)\cong \pi_k(S^7)\oplus \pi_{k-1}(S^3)$. On taking $k=6$ we obtain $\pi_6(S^4)\cong \pi_5(S^3) \cong \mathbb Z_2$. Freudenthal suspension then gives
\[\pi_{n+2}(S^n)\cong \mathbb Z_2,~~~(n\ge 2).\]
}
\section{\textcolor{Chapter }{The first two non\texttt{\symbol{45}}trivial homotopy groups of the suspension
and double suspension of a $K(G,1)$}}\label{firsttwo}
\logpage{[ 12, 6, 0 ]}
\hyperdef{L}{X81E2F80384ADF8C2}{}
{
For any group $G$ we consider the homotopy groups $\pi_n(\Sigma K(G,1))$ of the suspension $\Sigma K(G,1)$ of the Eilenberg\texttt{\symbol{45}}MacLance space $K(G,1)$. On taking $G=\mathbb Z$, and observing that $S^2 = \Sigma K(\mathbb Z,1)$, we specialize to the homotopy groups of the $2$\texttt{\symbol{45}}sphere $S^2$.
By construction,
\[\pi_1(\Sigma K(G,1))=0\ .\]
The Hurewicz Theorem gives
\[\pi_2(\Sigma K(G,1)) \cong G_{ab}\]
via the isomorphisms $\pi_2(\Sigma K(G,1)) \cong H_2(\Sigma K(G,1),\mathbb Z) \cong
H_1(K(G,1),\mathbb Z) \cong G_{ab}$. R. Brown and J.\texttt{\symbol{45}}L. Loday \cite{brownloday} obtained the formulae
\[\pi_3(\Sigma K(G,1)) \cong \ker (G\otimes G \rightarrow G, x\otimes y\mapsto
[x,y]) \ ,\]
\[\pi_4(\Sigma^2 K(G,1)) \cong \ker (G\, {\widetilde \otimes}\, G \rightarrow G,
x\, {\widetilde \otimes}\, y\mapsto [x,y]) \]
involving the nonabelian tensor square and nonabelian symmetric square of the
group $G$. The following commands use the nonabelian tensor and symmetric product to
compute the third and fourth homotopy groups for $G =Syl_2(M_{12})$ the Sylow $2$\texttt{\symbol{45}}subgroup of the Mathieu group $M_{12}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=SylowSubgroup(MathieuGroup(12),2);;|
!gapprompt@gap>| !gapinput@ThirdHomotopyGroupOfSuspensionB(G); |
[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
gap>
!gapprompt@gap>| !gapinput@FourthHomotopyGroupOfDoubleSuspensionB(G);|
[ 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Postnikov towers and $\pi_5(S^3)$ }}\label{postnikov2}
\logpage{[ 12, 7, 0 ]}
\hyperdef{L}{X83EAC40A8324571F}{}
{
A Postnikov system for the sphere $S^3$ consists of a sequence of fibrations $\cdots X_3\stackrel{p_3}{\rightarrow} X_2\stackrel{p_2}{\rightarrow}
X_1\stackrel{p_1}{\rightarrow} \ast$ and a sequence of maps $\phi_n\colon S^3 \rightarrow X_n$ such that
\begin{itemize}
\item $p_n \circ \phi_n =\phi_{n-1}$
\item The map $\phi_n\colon S^3 \rightarrow X_n$ induces an isomorphism $\pi_k(S^3)\rightarrow \pi_k(X_n)$ for all $k\le n$
\item $\pi_k(X_n)=0$ for $k > n$
\item and consequently each fibration $p_n$ has fibre an Eilenberg\texttt{\symbol{45}}MacLane space $K(\pi_n(S^3),n)$.
\end{itemize}
The space $X_n$ is obtained from $S^3$ by adding cells in dimensions $\ge n+2$ and thus
\begin{itemize}
\item $H_k(X_n,\mathbb Z)=H_k(S^3,\mathbb Z)$ for $k\le n+1$.
\end{itemize}
So in particular $X_1=X_2=\ast, X_3=K(\mathbb Z,3)$ and we have a fibration sequence $K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow K(\mathbb Z,3)$. The terms in the $E_2$ page of the Serre integral cohomology spectral sequence of this fibration are
\begin{itemize}
\item $E_2^{p,q}=H^p(\,K(\mathbb Z,3),\,H_q(K(\mathbb Z_2,4),\mathbb Z)\,)$.
\end{itemize}
The first few terms in the $E_2$ page can be computed using the commands of Sections \ref{eilennot} and \ref{eilen} and recorded as follows. \begin{center}
\begin{tabular}{l|llllllllll} $8$ &
$\mathbb Z_2$ &
$0$&
$0$&
&
&
&
&
&
&
\\
$7$ &
$\mathbb Z_2$ &
$0$&
$0$&
&
&
&
&
&
&
\\
$6$ &
$0$ &
$0$&
$0$&
&
&
&
&
&
&
\\
$5$ &
$\pi_4(S^3)$ &
$0$ &
$0$ &
$\pi_4(S^3)$ &
$0$ &
$0$&
$0$ &
$$&
&
\\
$4$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
&
\\
$3$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
&
\\
$2$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
&
\\
$1$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
&
\\
$0$ &
$\mathbb Z$ &
$0$ &
$0$ &
$\mathbb Z$ &
$0$ &
$0$ &
$\mathbb Z_2$ &
$0$ &
$\mathbb Z_3$ &
$\mathbb Z_2$ \\
$q/p$ &
$0$ &
$1$ &
$2$ &
$3$ &
$4$ &
$5$ &
$6$ &
$7$ &
$8$ &
$9$ \\
\end{tabular}\\[2mm]
\textbf{Table: }$E_2$ cohomology page for $K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow X_3$\end{center}
Since we know that $H^5(X_4,\mathbb Z) =0$, the differentials in the spectral sequence must restrict to an isomorphism $E_2^{0,5}=\pi_4(S^3) \stackrel{\cong}{\longrightarrow} E_2^{6,0}=\mathbb Z_2$. This provides an alternative derivation of $\pi_4(S^3) \cong \mathbb Z_2$. We can also immediately deduce that $H^6(X_4,\mathbb Z)=0$. Let $x$ be the generator of $E_2^{0,5}$ and $y$ the generator of $E_2^{3,0}$. Then the generator $xy$ of $E_2^{3,5}$ gets mapped to a non\texttt{\symbol{45}}zero element $d_7(xy)=d_7(x)y -xd_7(y)$. Hence the term $E_2^{0,7}=\mathbb Z_2$ must get mapped to zero in $E_2^{3,5}$. It follows that $H^7(X_4,\mathbb Z)=\mathbb Z_2$.
The integral cohomology of Eilenberg\texttt{\symbol{45}}MacLane spaces yields
the following information on the $E_2$ page $E_2^{p,q}=H_p(\,X_4,\,H^q(K(\pi_5S^3,5),\mathbb Z)\,)$ for the fibration $K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4$. \begin{center}
\begin{tabular}{l|llllllll} $6$ &
$\pi_5(S^3)$ &
$0$ &
$0$ &
$\pi_5(S^3)$ &
$0$ &
$0$ &
&
\\
$5$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$4$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$3$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$2$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$1$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$0$ &
$\mathbb Z$ &
$0$ &
$0$ &
$\mathbb Z$ &
$0$ &
$0$ &
$0$ &
$H^7(X_4,\mathbb Z)$ \\
$q/p$ &
$0$ &
$1$ &
$2$ &
$3$ &
$4$ &
$5$ &
$6$ &
$7$ \\
\end{tabular}\\[2mm]
\textbf{Table: }$E_2$ cohomology page for $K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4$\end{center}
Since we know that $H^6(X_5,\mathbb Z)=0$, the differentials in the spectral sequence must restrict to an isomorphism $E_2^{0,6}=\pi_5(S^3) \stackrel{\cong}{\longrightarrow}
E_2^{7,0}=H^7(X_4,\mathbb Z)$. We can conclude the desired result:
\[\pi_5(S^3) = \mathbb Z_2\ .\]
$~~~$
Note that the fibration $X_4 \twoheadrightarrow K(\mathbb Z,3)$ is determined by a cohomology class $\kappa \in H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2$. If $\kappa=0$ then we'd have $X_4 =K(\mathbb Z_2,4)\times K(\mathbb Z,3)$ and, as the following commands show, we'd then have $H_4(X_4,\mathbb Z)=\mathbb Z_2$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=EilenbergMacLaneSimplicialGroup(AbelianPcpGroup([0]),3,7);;|
!gapprompt@gap>| !gapinput@L:=EilenbergMacLaneSimplicialGroup(CyclicGroup(2),4,7);;|
!gapprompt@gap>| !gapinput@CK:=ChainComplex(K);;|
!gapprompt@gap>| !gapinput@CL:=ChainComplex(L);;|
!gapprompt@gap>| !gapinput@T:=TensorProduct(CK,CL);;|
!gapprompt@gap>| !gapinput@Homology(T,4);|
[ 2 ]
\end{Verbatim}
Since we know that $H_4(X_4,\mathbb Z)=0$ we can conclude that the Postnikov invariant $\kappa$ is the non\texttt{\symbol{45}}zero class in $H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2$. }
\section{\textcolor{Chapter }{Towards $\pi_4(\Sigma K(G,1))$ }}\label{postnikov}
\logpage{[ 12, 8, 0 ]}
\hyperdef{L}{X8227000D83B9A17F}{}
{
Consider the suspension $X=\Sigma K(G,1)$ of a classifying space of a group $G$ once again. This space has a Postnikov system in which $X_1 = \ast$, $X_2= K(G_{ab},2)$. We have a fibration sequence $K(\pi_3 X, 3) \hookrightarrow X_3 \twoheadrightarrow K(G_{ab},2)$. The corresponding integral cohomology Serre spectral sequence has $E_2$ page with terms
\begin{itemize}
\item $E_2^{p,q}=H^p(\,K(G_{ab},2), H^q(K(\pi_3 X,3)),\mathbb Z)\, )$.
\end{itemize}
As an example, for the Alternating group $G=A_4$ of order $12$ the following commands of Section \ref{firsttwo} compute $G_{ab} = \mathbb Z_3$ and $\pi_3 X = \mathbb Z_6$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@AbelianInvariants(G);|
[ 3 ]
!gapprompt@gap>| !gapinput@ThirdHomotopyGroupOfSuspensionB(G);|
[ 2, 3 ]
\end{Verbatim}
The first terms of the $E_2$ page can be calculated using the commands of Sections \ref{eilennot} and \ref{eilen}. \begin{center}
\begin{tabular}{l|llllllll} $7$ &
$\mathbb Z_2 $ &
$0$ &
$$ &
$$ &
$$ &
$$ &
&
\\
$6$ &
$\mathbb Z_2$ &
$0$ &
$0$ &
$0$ &
$$ &
$$ &
&
\\
$5$ &
$0$ &
$0$ &
$0$ &
$0$ &
$$ &
$$ &
$$ &
\\
$4$ &
$\mathbb Z_6$ &
$0$ &
$0$ &
$\mathbb Z_3$ &
$$ &
$$ &
$$ &
\\
$3$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$$ &
\\
$2$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$1$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$0$ &
$\mathbb Z$ &
$0$ &
$0$ &
$\mathbb Z_3$ &
$0$ &
$\mathbb Z_3$ &
$0$ &
$\mathbb Z_9$ \\
$q/p$ &
$0$ &
$1$ &
$2$ &
$3$ &
$4$ &
$5$ &
$6$ &
$7$ \\
\end{tabular}\\[2mm]
\textbf{Table: }$E^2$ cohomology page for $K(\pi_3 X,3) \hookrightarrow X_3 \twoheadrightarrow X_2$\end{center}
We know that $H^1(X_3,\mathbb Z)=0$, $H^2(X_3,\mathbb Z)=H^1(G,\mathbb Z) =0$, $H^3(X_3,\mathbb Z)=H^2(G,\mathbb Z) =\mathbb Z_3$, and that $H^4(X_3,\mathbb Z)$ is a subgroup of $H^3(G,\mathbb Z) = \mathbb Z_2$. It follows that the differential induces a surjection $E_2^{0,4}=\mathbb Z_6 \twoheadrightarrow E_2^{5,0}=\mathbb Z_3$. Consequently $H^4(X_3,\mathbb Z)=\mathbb Z_2$ and $H^5(X_3,\mathbb Z)=0$ and $H^6(X_3,\mathbb Z)=\mathbb Z_2$.
The $E_2$ page for the fibration $K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3$ contains the following terms. \begin{center}
\begin{tabular}{l|lllllll} $5$ &
$\pi_4 X$ &
$0$ &
$0$ &
$$ &
$$ &
$$ &
$$ \\
$4$ &
$0$ &
$0$ &
$0$ &
$0$ &
$$ &
$$ &
$$ \\
$3$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$$ \\
$2$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
\\
$1$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ &
$0$ \\
$0$ &
$\mathbb Z$ &
$0$ &
$0$ &
$\mathbb Z_3$ &
$\mathbb Z_2$ &
$0$ &
$\mathbb Z_2$ \\
$q/p$ &
$0$ &
$1$ &
$2$ &
$3$ &
$4$ &
$5$ &
$6$ \\
\end{tabular}\\[2mm]
\textbf{Table: }$E^2$ cohomology page for $K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3$\end{center}
We know that $H^5(X_4,\mathbb Z)$ is a subgroup of $H^4(G,\mathbb Z)=\mathbb Z_6$, and hence that there is a homomorphisms $\pi_4X \rightarrow \mathbb Z_2$ whose kernel is a subgroup of $\mathbb Z_6$. If follows that $|\pi_4 X|\le 12$. }
\section{\textcolor{Chapter }{Enumerating homotopy 2\texttt{\symbol{45}}types}}\logpage{[ 12, 9, 0 ]}
\hyperdef{L}{X7F5E6C067B2AE17A}{}
{
A \emph{2\texttt{\symbol{45}}type} is a CW\texttt{\symbol{45}}complex $X$ whose homotopy groups are trivial in dimensions $n=0 $ and $n>2$. As explained in \ref{secCat1} the homotopy type of such a space can be captured algebraically by a cat$^1$\texttt{\symbol{45}}group $G$. Let $X$, $Y$ be $2$\texttt{\symbol{45}}tytpes represented by cat$^1$\texttt{\symbol{45}}groups $G$, $H$. If $X$ and $Y$ are homotopy equivalent then there exists a sequence of morphisms of cat$^1$\texttt{\symbol{45}}groups
\[G \rightarrow K_1 \rightarrow K_2 \leftarrow K_3 \rightarrow \cdots
\rightarrow K_n \leftarrow H\]
in which each morphism induces isomorphisms of homotopy groups. When such a
sequence exists we say that $G$ is \emph{quasi\texttt{\symbol{45}}isomorphic} to $H$. We have the following result.
\textsc{Theorem.} The $2$\texttt{\symbol{45}}types $X$ and $Y$ are homotopy equivalent if and only if the associated cat$^1$\texttt{\symbol{45}}groups $G$ and $H$ are quasi\texttt{\symbol{45}}isomorphic.
The following commands produce a list $L$ of all of the $62$ non\texttt{\symbol{45}}isomorphic cat$^1$\texttt{\symbol{45}}groups whose underlying group has order $16$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=[];;|
!gapprompt@gap>| !gapinput@for G in AllSmallGroups(16) do|
!gapprompt@>| !gapinput@Append(L,CatOneGroupsByGroup(G));|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@Length(L);|
62
\end{Verbatim}
The next commands use the first and second homotopy groups to prove that the
list $L$ contains at least $37$ distinct quasi\texttt{\symbol{45}}isomorphism types.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Invariants:=function(G)|
!gapprompt@>| !gapinput@local inv;|
!gapprompt@>| !gapinput@inv:=[];|
!gapprompt@>| !gapinput@inv[1]:=IdGroup(HomotopyGroup(G,1));|
!gapprompt@>| !gapinput@inv[2]:=IdGroup(HomotopyGroup(G,2));|
!gapprompt@>| !gapinput@return inv;|
!gapprompt@>| !gapinput@end;;|
!gapprompt@gap>| !gapinput@C:=Classify(L,Invariants);;|
!gapprompt@gap>| !gapinput@Length(C);|
\end{Verbatim}
The following additional commands use second and third integral homology in
conjunction with the first two homotopy groups to prove that the list $L$ contains \textsc{at least} $49$ distinct quasi\texttt{\symbol{45}}isomorphism types.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Invariants2:=function(G)|
!gapprompt@>| !gapinput@local inv;|
!gapprompt@>| !gapinput@inv:=[];|
!gapprompt@>| !gapinput@inv[1]:=Homology(G,2);|
!gapprompt@>| !gapinput@inv[2]:=Homology(G,3);|
!gapprompt@>| !gapinput@return inv;|
!gapprompt@>| !gapinput@end;;|
!gapprompt@gap>| !gapinput@C:=RefineClassification(C,Invariants2);;|
!gapprompt@gap>| !gapinput@Length(C);|
49
\end{Verbatim}
The following commands show that the above list $L$ contains \textsc{at most} $51$ distinct quasi\texttt{\symbol{45}}isomorphism types.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=List(L,QuasiIsomorph);;|
!gapprompt@gap>| !gapinput@M:=[];;|
!gapprompt@gap>| !gapinput@for q in Q do|
!gapprompt@>| !gapinput@bool:=true;;|
!gapprompt@>| !gapinput@for m in M do|
!gapprompt@>| !gapinput@if not IsomorphismCatOneGroups(m,q)=fail then bool:=false; break; fi;|
!gapprompt@>| !gapinput@od;|
!gapprompt@>| !gapinput@if bool then Add(M,q); fi;|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@Length(M);|
51
\end{Verbatim}
}
\section{\textcolor{Chapter }{Identifying cat$^1$\texttt{\symbol{45}}groups of low order}}\logpage{[ 12, 10, 0 ]}
\hyperdef{L}{X7D99B7AA780D8209}{}
{
Let us define the \emph{order} of a cat$^1$\texttt{\symbol{45}}group to be the order of its underlying group. The
function \texttt{IdQuasiCatOneGroup(C)} inputs a cat$^1$\texttt{\symbol{45}}group $C$ of "low order" and returns an integer pair $[n,k]$ that uniquely idenifies the quasi\texttt{\symbol{45}}isomorphism type of $C$. The integer $n$ is the order of a smallest cat$^1$\texttt{\symbol{45}}group quasi\texttt{\symbol{45}}isomorphic to $C$. The integer $k$ identifies a particular cat$^1$\texttt{\symbol{45}}group of order $n$.
The following commands use this function to show that there are precisely $49$ distinct quasi\texttt{\symbol{45}}isomorphism types of cat$^1$\texttt{\symbol{45}}groups of order $16$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@L:=[];;|
!gapprompt@gap>| !gapinput@for G in AllSmallGroups(16) do|
!gapprompt@>| !gapinput@Append(L,CatOneGroupsByGroup(G));|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@M:=List(L,IdQuasiCatOneGroup);|
[ [ 16, 1 ], [ 16, 2 ], [ 16, 3 ], [ 16, 4 ], [ 16, 5 ], [ 4, 4 ], [ 1, 1 ],
[ 16, 6 ], [ 16, 7 ], [ 16, 8 ], [ 16, 9 ], [ 16, 10 ], [ 16, 11 ],
[ 16, 9 ], [ 16, 12 ], [ 16, 13 ], [ 16, 14 ], [ 16, 15 ], [ 4, 1 ],
[ 4, 2 ], [ 16, 16 ], [ 16, 17 ], [ 16, 18 ], [ 16, 19 ], [ 16, 20 ],
[ 16, 21 ], [ 16, 22 ], [ 16, 23 ], [ 16, 24 ], [ 16, 25 ], [ 16, 26 ],
[ 16, 27 ], [ 16, 28 ], [ 4, 3 ], [ 4, 1 ], [ 4, 4 ], [ 4, 4 ], [ 4, 2 ],
[ 4, 5 ], [ 16, 29 ], [ 16, 30 ], [ 16, 31 ], [ 16, 32 ], [ 16, 33 ],
[ 16, 34 ], [ 4, 3 ], [ 4, 4 ], [ 4, 4 ], [ 16, 35 ], [ 16, 36 ], [ 4, 3 ],
[ 16, 37 ], [ 16, 38 ], [ 16, 39 ], [ 16, 40 ], [ 16, 41 ], [ 16, 42 ],
[ 16, 43 ], [ 4, 3 ], [ 4, 4 ], [ 1, 1 ], [ 4, 5 ] ]
!gapprompt@gap>| !gapinput@Length(SSortedList(M));|
49
\end{Verbatim}
The next example first identifies the order and the identity number of the cat$^1$\texttt{\symbol{45}}group $C$ corresponding to the crossed module (see \ref{secCrossedModules})
\[\iota\colon G \longrightarrow Aut(G), g \mapsto (x\mapsto gxg^{-1})\]
for the dihedral group $G$ of order $10$. It then realizes a smallest possible cat$^1$\texttt{\symbol{45}}group $D$ of this quasi\texttt{\symbol{45}}isomorphism type.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(10));|
Cat-1-group with underlying group Group( [ f1, f2, f3, f4, f5 ] ) .
!gapprompt@gap>| !gapinput@Order(C);|
200
!gapprompt@gap>| !gapinput@IdCatOneGroup(C);|
[ 200, 42, 4 ]
!gapprompt@gap>| !gapinput@|
!gapprompt@gap>| !gapinput@IdQuasiCatOneGroup(C);|
[ 2, 1 ]
!gapprompt@gap>| !gapinput@D:=SmallCatOneGroup(2,1);|
Cat-1-group with underlying group Group( [ f1 ] ) .
\end{Verbatim}
}
\section{\textcolor{Chapter }{Identifying crossed modules of low order}}\logpage{[ 12, 11, 0 ]}
\hyperdef{L}{X7F386CF078CB9A20}{}
{
The following commands construct the crossed module $\partial \colon G\otimes G \rightarrow G$ involving the nonabelian tensor square of the dihedral group \$G\$ of order $10$, identify it as being number $71$ in the list of crossed modules of order $100$, create a quasi\texttt{\symbol{45}}isomorphic crossed module of order $4$, and finally construct the corresponding cat$^1$\texttt{\symbol{45}}group of order $100$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=DihedralGroup(10);;|
!gapprompt@gap>| !gapinput@T:=NonabelianTensorSquareAsCrossedModule(G);|
Crossed module with group homomorphism GroupHomomorphismByImages( Group(
[ f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1 ] ), Group( [ f1, f2 ] ),
[ f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1 ], [ <identity> of ..., f2^3 ] )
!gapprompt@gap>| !gapinput@IdCrossedModule(T);|
[ 100, 71 ]
!gapprompt@gap>| !gapinput@Q:=QuasiIsomorph(T);|
Crossed module with group homomorphism Pcgs([ f2 ]) -> [ <identity> of ... ]
!gapprompt@gap>| !gapinput@Order(Q);|
4
!gapprompt@gap>| !gapinput@C:=CatOneGroupByCrossedModule(T);|
Cat-1-group with underlying group Group( [ F1, F2, F1 ] ) .
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Congruence Subgroups, Cuspidal Cohomology and Hecke Operators}}\logpage{[ 13, 0, 0 ]}
\hyperdef{L}{X86D5DB887ACB1661}{}
{
In this chapter we explain how HAP can be used to make computions about
modular forms associated to congruence subgroups $\Gamma$ of $SL_2(\mathbb Z)$. Also, in Subsection 10.8 onwards, we demonstrate cohomology computations for
the \emph{Picard group} $SL_2(\mathbb Z[i])$, some \emph{Bianchi groups} $PSL_2({\cal O}_{-d}) $ where ${\cal O}_{d}$ is the ring of integers of $\mathbb Q(\sqrt{-d})$ for square free positive integer $d$, and some other groups of the form $SL_m({\cal O})$, $GL_m({\cal O})$, $PSL_m({\cal O})$, $PGL_m({\cal O})$, for $m=2,3,4$ and certain ${\cal O}=\mathbb Z, {\cal O}_{-d}$.
\section{\textcolor{Chapter }{Eichler\texttt{\symbol{45}}Shimura isomorphism}}\label{sec:EichlerShimura}
\logpage{[ 13, 1, 0 ]}
\hyperdef{L}{X79A1974B7B4987DE}{}
{
We begin by recalling the Eichler\texttt{\symbol{45}}Shimura isomorphism \cite{eichler}\cite{shimura}
\[ S_k(\Gamma) \oplus \overline{S_k(\Gamma)} \oplus E_k(\Gamma) \cong_{\sf Hecke}
H^1(\Gamma,P_{\mathbb C}(k-2))\]
which relates the cohomology of groups to the theory of modular forms
associated to a finite index subgroup $\Gamma$ of $SL_2(\mathbb Z)$. In subsequent sections we explain how to compute with the
right\texttt{\symbol{45}}hand side of the isomorphism. But first, for
completeness, let us define the terms on the left\texttt{\symbol{45}}hand
side.
Let $N$ be a positive integer. A subgroup $\Gamma$ of $SL_2(\mathbb Z)$ is said to be a \emph{congruence subgroup} of level $N $ if it contains the kernel of the canonical homomorphism $\pi_N\colon SL_2(\mathbb Z) \rightarrow SL_2(\mathbb Z/N\mathbb Z)$. So any congruence subgroup is of finite index in $SL_2(\mathbb Z)$, but the converse is not true.
One congruence subgroup of particular interest is the group $\Gamma_1(N)=\ker(\pi_N)$, known as the \emph{principal congruence subgroup} of level $N$. Another congruence subgroup of particular interest is the group $\Gamma_0(N)$ of those matrices that project to upper triangular matrices in $SL_2(\mathbb Z/N\mathbb Z)$.
A \emph{modular form} of weight $k$ for a congruence subgroup $\Gamma$ is a complex valued function on the upper\texttt{\symbol{45}}half plane, $f\colon {\frak{h}}=\{z\in \mathbb C : Re(z)>0\} \rightarrow \mathbb C$, satisfying:
\begin{itemize}
\item $\displaystyle f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)$ for $\left(\begin{array}{ll}a&b\\ c &d \end{array}\right) \in \Gamma$,
\item $f$ is `holomorphic' on the \emph{extended upper\texttt{\symbol{45}}half plane} $\frak{h}^\ast = \frak{h} \cup \mathbb Q \cup \{\infty\}$ obtained from the upper\texttt{\symbol{45}}half plane by `adjoining a point at
each cusp'.
\end{itemize}
The collection of all weight $k$ modular forms for $\Gamma$ form a vector space $M_k(\Gamma)$ over $\mathbb C$.
A modular form $f$ is said to be a \emph{cusp form} if $f(\infty)=0$. The collection of all weight $k$ cusp forms for $\Gamma$ form a vector subspace $S_k(\Gamma)$. There is a decomposition
\[M_k(\Gamma) \cong S_k(\Gamma) \oplus E_k(\Gamma)\]
involving a summand $E_k(\Gamma)$ known as the \emph{Eisenstein space}. See \cite{stein} for further introductory details on modular forms.
The Eichler\texttt{\symbol{45}}Shimura isomorphism is more than an isomorphism
of vector spaces. It is an isomorphism of Hecke modules: both sides admit
notions of \emph{Hecke operators}, and the isomorphism preserves these operators. The bar on the
left\texttt{\symbol{45}}hand side of the isomorphism denotes complex
conjugation, or \emph{anti\texttt{\symbol{45}}holomorphic} forms. See \cite{wieser} for a full account of the isomorphism.
On the right\texttt{\symbol{45}}hand side of the isomorphism, the $\mathbb Z\Gamma$\texttt{\symbol{45}}module $P_{\mathbb C}(k-2)\subset \mathbb C[x,y]$ denotes the space of homogeneous degree $k-2$ polynomials with action of $\Gamma$ given by
\[\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot p(x,y) =
p(dx-by,-cx+ay)\ .\]
In particular $P_{\mathbb C}(0)=\mathbb C$ is the trivial module. Below we shall compute with the integral analogue $P_{\mathbb Z}(k-2) \subset \mathbb Z[x,y]$.
In the following sections we explain how to use the
right\texttt{\symbol{45}}hand side of the Eichler\texttt{\symbol{45}}Shimura
isomorphism to compute eigenvalues of the Hecke operators restricted to the
subspace $S_k(\Gamma)$ of cusp forms. }
\section{\textcolor{Chapter }{Generators for $SL_2(\mathbb Z)$ and the cubic tree}}\logpage{[ 13, 2, 0 ]}
\hyperdef{L}{X7BFA2C91868255D9}{}
{
The matrices $S=\left(\begin{array}{rr}0&-1\\ 1 &0 \end{array}\right)$ and $T=\left(\begin{array}{rr}1&1\\ 0 &1 \end{array}\right)$ generate $SL_2(\mathbb Z)$ and it is not difficult to devise an algorithm for expressing an arbitrary
integer matrix $A$ of determinant $1$ as a word in $S$, $T$ and their inverses. The following illustrates such an algorithm.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@A:=[[4,9],[7,16]];;|
!gapprompt@gap>| !gapinput@word:=AsWordInSL2Z(A);|
[ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, -1 ], [ 0, 1 ] ],
[ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ],
[ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ],
[ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 1, 1 ], [ 0, 1 ] ] ]
!gapprompt@gap>| !gapinput@Product(word);|
[ [ 4, 9 ], [ 7, 16 ] ]
\end{Verbatim}
It is convenient to introduce the matrix $U=ST = \left(\begin{array}{rr}0&-1\\ 1 &1 \end{array}\right)$. The matrices $S$ and $U$ also generate $SL_2(\mathbb Z)$. In fact we have a free presentation $SL_2(\mathbb Z)= \langle S,U\, |\, S^4=U^6=1, S^2=U^3 \rangle $.
The \emph{cubic tree} $\cal T$ is a tree (\emph{i.e.} a $1$\texttt{\symbol{45}}dimensional contractible regular
CW\texttt{\symbol{45}}complex) with countably infinitely many edges in which
each vertex has degree $3$. We can realize the cubic tree $\cal T$ by taking the left cosets of ${\cal U}=\langle U\rangle$ in $SL_2(\mathbb Z)$ as vertices, and joining cosets $x\,{\cal U} $ and $y\,{\cal U}$ by an edge if, and only if, $x^{-1}y \in {\cal U}\, S\,{\cal U}$. Thus the vertex $\cal U $ is joined to $S\,{\cal U} $, $US\,{\cal U}$ and $U^2S\,{\cal U}$. The vertices of this tree are in
one\texttt{\symbol{45}}to\texttt{\symbol{45}}one correspondence with all
reduced words in $S$, $U$ and $U^2$ that, apart from the identity, end in $S$.
From our realization of the cubic tree $\cal T$ we see that $SL_2(\mathbb Z)$ acts on $\cal T$ in such a way that each vertex is stabilized by a cyclic subgroup conjugate to ${\cal U}=\langle U\rangle$ and each edge is stabilized by a cyclic subgroup conjugate to ${\cal S} =\langle S \rangle$.
In order to store this action of $SL_2(\mathbb Z)$ on the cubic tree $\cal T$ we just need to record the following finite amount of information.
}
\section{\textcolor{Chapter }{One\texttt{\symbol{45}}dimensional fundamental domains and generators for
congruence subgroups}}\logpage{[ 13, 3, 0 ]}
\hyperdef{L}{X7D1A56967A073A8B}{}
{
The modular group ${\cal M}=PSL_2(\mathbb Z)$ is isomorphic, as an abstract group, to the free product $\mathbb Z_2\ast \mathbb Z_3$. By the Kurosh subgroup theorem, any finite index subgroup $M \subset {\cal M}$ is isomorphic to the free product of finitely many copies of $\mathbb Z_2$s, $\mathbb Z_3$s and $\mathbb Z$s. A subset $\underline x \subset M$ is an \emph{independent} set of subgroup generators if $M$ is the free product of the cyclic subgroups $<x >$ as $x$ runs over $\underline x$. Let us say that a set of elements in $SL_2(\mathbb Z)$ is \emph{projectively independent} if it maps injectively onto an independent set of subgroup generators $\underline x\subset {\cal M}$. The generating set $\{S,U\}$ for $SL_2(\mathbb Z)$ given in the preceding section is projectively independent.
We are interested in constructing a set of generators for a given congruence
subgroup $\Gamma$. If a small generating set for $\Gamma$ is required then we should aim to construct one which is close to being
projectively independent.
It is useful to invoke the following general result which follows from a
perturbation result about free $\mathbb ZG$\texttt{\symbol{45}}resolutons in \cite[Theorem 2]{ellisharrisskoldberg} and an old observation of John Milnor that a free $\mathbb ZG$\texttt{\symbol{45}}resolution can be realized as the cellular chain complex
of a CW\texttt{\symbol{45}}complex if it can be so realized in low dimensions.
\textsc{Theorem.} Let $X$ be a contractible CW\texttt{\symbol{45}}complex on which a group $G$ acts by permuting cells. The cellular chain complex $C_\ast X$ is a $\mathbb ZG$\texttt{\symbol{45}}resolution of $\mathbb Z$ which typically is not free. Let $[e^n]$ denote the orbit of the n\texttt{\symbol{45}}cell $e^n$ under the action. Let $G^{e^n} \le G$ denote the stabilizer subgroup of $e^n$, in which group elements are not required to stabilize $e^n$ point\texttt{\symbol{45}}wise. Let $Y_{e^n}$ denote a contractible CW\texttt{\symbol{45}}complex on which $G^{e^n}$ acts cellularly and freely. Then there exists a contractible
CW\texttt{\symbol{45}}complex $W$ on which $G$ acts cellularly and freely, and in which the orbits of $n$\texttt{\symbol{45}}cells are labelled by $[e^p]\otimes [f^q]$ where $p+q=n$ and $[e^p]$ ranges over the $G$\texttt{\symbol{45}}orbits of $p$\texttt{\symbol{45}}cells in $X$, $[f^q]$ ranges over the $G^{e^p}$\texttt{\symbol{45}}orbits of $q$\texttt{\symbol{45}}cells in $Y_{e^p}$.
Let $W$ be as in the theorem. Then the quotient CW\texttt{\symbol{45}}complex $B_G=W/G$ is a classifying space for $G$. Let $T$ denote a maximal tree in the $1$\texttt{\symbol{45}}skeleton $B^1_G$. Basic geometric group theory tells us that the $1$\texttt{\symbol{45}}cells in $B^1_G\setminus T$ correspond to a generating set for $G$.
Suppose we wish to compute a set of generators for a principal congruence
subgroup $\Gamma=\Gamma_1(N)$. In the above theorem take $X={\cal T}$ to be the cubic tree, and note that $\Gamma$ acts freely on $\cal T$ and thus that $W={\cal T}$. To determine the $1$\texttt{\symbol{45}}cells of $B_{\Gamma}\setminus T$ we need to determine a cellular subspace $D_\Gamma \subset \cal T$ whose images under the action of $\Gamma$ cover $\cal T$ and are pairwise either disjoint or identical. The subspace $D_\Gamma$ will not be a CW\texttt{\symbol{45}}complex as it won't be closed, but it can
be chosen to be connected, and hence contractible. We call $D_\Gamma$ a \emph{fundamental region} for $\Gamma$. We denote by $\mathring D_\Gamma$ the largest CW\texttt{\symbol{45}}subcomplex of $D_\Gamma$. The vertices of $\mathring D_\Gamma$ are the same as the vertices of $D_\Gamma$. Thus $\mathring D_\Gamma$ is a subtree of the cubic tree with $|\Gamma|/6$ vertices. For each vertex $v$ in the tree $\mathring D_\Gamma$ define $\eta(v)=3 -{\rm degree}(v)$. Then the number of generators for $ \Gamma $ will be $(1/2)\sum_{v\in \mathring D_\Gamma} \eta(v)$.
The following commands determine projectively independent generators for $\Gamma_1(6)$ and display $\mathring D_{\Gamma_1(6)}$. The subgroup $\Gamma_1(6)$ is free on $13$ generators.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=HAP_PrincipalCongruenceSubgroup(6);;|
!gapprompt@gap>| !gapinput@HAP_SL2TreeDisplay(G);|
!gapprompt@gap>| !gapinput@gens:=GeneratorsOfGroup(G);|
[ [ [ -83, -18 ], [ 60, 13 ] ], [ [ -77, -18 ], [ 30, 7 ] ],
[ [ -65, -12 ], [ 168, 31 ] ], [ [ -53, -12 ], [ 84, 19 ] ],
[ [ -47, -18 ], [ 222, 85 ] ], [ [ -41, -12 ], [ 24, 7 ] ],
[ [ -35, -6 ], [ 6, 1 ] ], [ [ -11, -18 ], [ 30, 49 ] ],
[ [ -11, -6 ], [ 24, 13 ] ], [ [ -5, -18 ], [ 12, 43 ] ],
[ [ -5, -12 ], [ 18, 43 ] ], [ [ -5, -6 ], [ 6, 7 ] ],
[ [ 1, 0 ], [ -6, 1 ] ] ]
\end{Verbatim}
An alternative but very related approach to computing generators of congruence
subgroups of $SL_2(\mathbb Z)$ is described in \cite{kulkarni}.
The congruence subgroup $\Gamma_0(N)$ does not act freely on the vertices of $\cal T$, and so one needs to incorporate a generator for the cyclic stabilizer group
according to the above theorem. Alternatively, we can replace the cubic tree
by a six\texttt{\symbol{45}}fold cover ${\cal T}'$ on whose vertex set $\Gamma_0(N)$ acts freely. This alternative approach will produce a redundant set of
generators. The following commands display $\mathring D_{\Gamma_0(39)}$ for a fundamental region in ${\cal T}'$. They also use the corresponding generating set for $\Gamma_0(39)$, involving $18$ generators, to compute the abelianization $\Gamma_0(39)^{ab}= \mathbb Z_2 \oplus \mathbb Z_3^2 \oplus \mathbb Z^9$. The abelianization shows that any generating set has at least $11$ generators.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@G:=HAP_CongruenceSubgroupGamma0(39);;|
!gapprompt@gap>| !gapinput@HAP_SL2TreeDisplay(G);|
!gapprompt@gap>| !gapinput@Length(GeneratorsOfGroup(G));|
18
!gapprompt@gap>| !gapinput@AbelianInvariants(G);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3 ]
\end{Verbatim}
Note that to compute $D_\Gamma$ one only needs to be able to test whether a given matrix lies in $\Gamma$ or not. Given an inclusion $\Gamma'\subset \Gamma$ of congruence subgroups, it is straightforward to use the trees $\mathring D_{\Gamma'}$ and $\mathring D_{\Gamma}$ to compute a system of coset representative for $\Gamma'\setminus \Gamma$. }
\section{\textcolor{Chapter }{Cohomology of congruence subgroups}}\logpage{[ 13, 4, 0 ]}
\hyperdef{L}{X818BFA9A826C0DB3}{}
{
To compute the cohomology $H^n(\Gamma,A)$ of a congruence subgroup $\Gamma$ with coefficients in a $\mathbb Z\Gamma$\texttt{\symbol{45}}module $A$ we need to construct $n+1$ terms of a free $\mathbb Z\Gamma$\texttt{\symbol{45}}resolution of $\mathbb Z$. We can do this by first using perturbation techniques (as described in \cite{buiellis}) to combine the cubic tree with resolutions for the cyclic groups of order $4$ and $6$ in order to produce a free $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast$ for $G=SL_2(\mathbb Z)$. This resolution is also a free $\mathbb Z\Gamma$\texttt{\symbol{45}}resolution with each term of rank
\[{\rm rank}_{\mathbb Z\Gamma} R_k = |G:\Gamma|\times {\rm rank}_{\mathbb ZG}
R_k\ .\]
For congruence subgroups of lowish index in $G$ this resolution suffices to make computations.
The following commands compute
\[H^1(\Gamma_0(39),\mathbb Z) = \mathbb Z^9\ .\]
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionSL2Z_alt(2);|
Resolution of length 2 in characteristic 0 for SL(2,Integers) .
!gapprompt@gap>| !gapinput@gamma:=HAP_CongruenceSubgroupGamma0(39);;|
!gapprompt@gap>| !gapinput@S:=ResolutionFiniteSubgroup(R,gamma);|
Resolution of length 2 in characteristic 0 for
CongruenceSubgroupGamma0( 39) .
!gapprompt@gap>| !gapinput@Cohomology(HomToIntegers(S),1);|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
This computation establishes that the space $M_2(\Gamma_0(39))$ of weight $2$ modular forms is of dimension $9$.
The following commands show that ${\rm rank}_{\mathbb Z\Gamma_0(39)} R_1 = 112$ but that it is possible to apply `Tietze like' simplifications to $R_\ast$ to obtain a free $\mathbb Z\Gamma_0(39)$\texttt{\symbol{45}}resolution $T_\ast$ with ${\rm rank}_{\mathbb Z\Gamma_0(39)} T_1 = 11$. It is more efficient to work with $T_\ast$ when making cohomology computations with coefficients in a module $A$ of large rank.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|S!.dimension(1);A
112
@gapprompt|gap>A @gapinput|T:=TietzeReducedResolution(S);A
Resolution of length 2 in characteristic 0 for CongruenceSubgroupGamma0(
39) .
@gapprompt|gap>A @gapinput|T!.dimension(1);A
11
\end{Verbatim}
The following commands compute
\[H^1(\Gamma_0(39),P_{\mathbb Z}(8)) = \mathbb Z_3 \oplus \mathbb Z_6 \oplus
\mathbb Z_{168} \oplus \mathbb Z^{84}\ ,\]
\[H^1(\Gamma_0(39),P_{\mathbb Z}(9)) = \mathbb Z_2 \oplus \mathbb Z_2 .\]
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=HomogeneousPolynomials(gamma,8);;|
!gapprompt@gap>| !gapinput@c:=Cohomology(HomToIntegralModule(T,P),1);|
[ 3, 6, 168, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Length(c);|
87
!gapprompt@gap>| !gapinput@P:=HomogeneousPolynomials(gamma,9);;|
!gapprompt@gap>| !gapinput@c:=Cohomology(HomToIntegralModule(T,P),1);|
[ 2, 2 ]
\end{Verbatim}
This computation establishes that the space $M_{10}(\Gamma_0(39))$ of weight $10$ modular forms is of dimension $84$, and $M_{11}(\Gamma_0(39))$ is of dimension $0$. (There are never any modular forms of odd weight, and so $M_k(\Gamma)=0$ for all odd $k$ and any congruence subgroup $\Gamma$.)
\subsection{\textcolor{Chapter }{Cohomology with rational coefficients}}\logpage{[ 13, 4, 1 ]}
\hyperdef{L}{X7F55F8EA82FE9122}{}
{
To calculate cohomology $H^n(\Gamma,A)$ with coefficients in a $\mathbb Q\Gamma$\texttt{\symbol{45}}module $A$ it suffices to construct a resolution of $\mathbb Z$ by non\texttt{\symbol{45}}free $\mathbb Z\Gamma$\texttt{\symbol{45}}modules where $\Gamma$ acts with finite stabilizer groups on each module in the resolution. Computing
over $\mathbb Q$ is computationally less expensive than computing over $\mathbb Z$. The following commands first compute $H^1(\Gamma_0(39),\mathbb Q) = H_1(\Gamma_0(39),\mathbb Q)= \mathbb Q^9$. As a larger example, they then compute $H^1(\Gamma_0(2^{13}-1),\mathbb Q) =\mathbb Q^{1365}$ where $\Gamma_0(2^{13}-1)$ has index $8192$ in $SL_2(\mathbb Z)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ContractibleGcomplex("SL(2,Z)");|
Non-free resolution in characteristic 0 for SL(2,Integers) .
!gapprompt@gap>| !gapinput@gamma:=HAP_CongruenceSubgroupGamma0(39);;|
!gapprompt@gap>| !gapinput@KK:=NonFreeResolutionFiniteSubgroup(K,gamma);|
Non-free resolution in characteristic 0 for <matrix group with
18 generators> .
!gapprompt@gap>| !gapinput@C:=TensorWithRationals(KK);|
!gapprompt@gap>| !gapinput@Homology(C,1);|
9
!gapprompt@gap>| !gapinput@G:=HAP_CongruenceSubgroupGamma0(2^13-1);;|
!gapprompt@gap>| !gapinput@IndexInSL2Z(G);|
8192
!gapprompt@gap>| !gapinput@KK:=NonFreeResolutionFiniteSubgroup(K,G);;|
!gapprompt@gap>| !gapinput@C:=TensorWithRationals(KK);;|
!gapprompt@gap>| !gapinput@Homology(C,1);|
1365
\end{Verbatim}
}
}
\section{\textcolor{Chapter }{Cuspidal cohomology}}\logpage{[ 13, 5, 0 ]}
\hyperdef{L}{X84D30F1580CD42D1}{}
{
To define and compute cuspidal cohomology we consider the action of $SL_2(\mathbb Z)$ on the upper\texttt{\symbol{45}}half plane ${\frak h}$ given by
\[\left(\begin{array}{ll}a&b\\ c &d \end{array}\right) z = \frac{az +b}{cz+d}\ .\]
A standard 'fundamental domain' for this action is the region
\[\begin{array}{ll} D=&\{z\in {\frak h}\ :\ |z| > 1, |{\rm Re}(z)| <
\frac{1}{2}\} \\ & \cup\ \{z\in {\frak h} \ :\ |z| \ge 1, {\rm
Re}(z)=-\frac{1}{2}\}\\ & \cup\ \{z \in {\frak h}\ :\ |z|=1, -\frac{1}{2} \le
{\rm Re}(z) \le 0\} \end{array} \]
illustrated below.
The action factors through an action of $PSL_2(\mathbb Z) =SL_2(\mathbb Z)/\langle \left(\begin{array}{rr}-1&0\\ 0 &-1
\end{array}\right)\rangle$. The images of $D$ under the action of $PSL_2(\mathbb Z)$ cover the upper\texttt{\symbol{45}}half plane, and any two images have at most
a single point in common. The possible common points are the bottom
left\texttt{\symbol{45}}hand corner point which is stabilized by $\langle U\rangle$, and the bottom middle point which is stabilized by $\langle S\rangle$.
A congruence subgroup $\Gamma$ has a `fundamental domain' $D_\Gamma$ equal to a union of finitely many copies of $D$, one copy for each coset in $\Gamma\setminus SL_2(\mathbb Z)$. The quotient space $X=\Gamma\setminus {\frak h}$ is not compact, and can be compactified in several ways. We are interested in
the Borel\texttt{\symbol{45}}Serre compactification. This is a space $X^{BS}$ for which there is an inclusion $X\hookrightarrow X^{BS}$ and this inclusion is a homotopy equivalence. One defines the \emph{boundary} $\partial X^{BS} = X^{BS} - X$ and uses the inclusion $\partial X^{BS} \hookrightarrow X^{BS} \simeq X$ to define the cuspidal cohomology group, over the ground ring $\mathbb C$, as
\[ H_{cusp}^n(\Gamma,P_{\mathbb C}(k-2)) = \ker (\ H^n(X,P_{\mathbb C}(k-2))
\rightarrow H^n(\partial X^{BS},P_{\mathbb C}(k-2)) \ ).\]
Strictly speaking, this is the definition of \emph{interior cohomology} $H_!^n(\Gamma,P_{\mathbb C}(k-2))$ which in general contains the cuspidal cohomology as a subgroup. However, for
congruence subgroups of $SL_2(\mathbb Z)$ there is equality $H_!^n(\Gamma,P_{\mathbb C}(k-2)) = H_{cusp}^n(\Gamma,P_{\mathbb C}(k-2))$.
Working over $\mathbb C$ has the advantage of avoiding the technical issue that $\Gamma $ does not necessarily act freely on ${\frak h}$ since there are points with finite cyclic stabilizer groups in $SL_2(\mathbb Z)$. But it has the disadvantage of losing information about torsion in
cohomology. So HAP confronts the issue by working with a contractible
CW\texttt{\symbol{45}}complex $\tilde X^{BS}$ on which $\Gamma$ acts freely, and $\Gamma$\texttt{\symbol{45}}equivariant inclusion $\partial \tilde X^{BS} \hookrightarrow \tilde X^{BS}$. The definition of cuspidal cohomology that we use, which coincides with the
above definition when working over $\mathbb C$, is
\[ H_{cusp}^n(\Gamma,A) = \ker (\ H^n({\rm Hom}_{\, \mathbb
Z\Gamma}(C_\ast(\tilde X^{BS}), A)\, ) \rightarrow H^n(\ {\rm Hom}_{\, \mathbb
Z\Gamma}(C_\ast(\tilde \partial X^{BS}), A)\, \ ).\]
The following data is recorded and, using perturbation theory, is combined
with free resolutions for $C_4$ and $C_6$ to constuct $\tilde X^{BS}$.
The following commands calculate
\[H^1_{cusp}(\Gamma_0(39),\mathbb Z) = \mathbb Z^6\ .\]
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gamma:=HAP_CongruenceSubgroupGamma0(39);;|
!gapprompt@gap>| !gapinput@k:=2;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);|
[ g1, g2, g3, g4, g5, g6, g7, g8, g9 ] -> [ g1^-1*g3, g1^-1*g3, g1^-1*g3,
g1^-1*g3, g1^-1*g2, g1^-1*g3, g1^-1*g4, g1^-1*g4, g1^-1*g4 ]
!gapprompt@gap>| !gapinput@AbelianInvariants(Kernel(c));|
[ 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
From the Eichler\texttt{\symbol{45}}Shimura isomorphism and the already
calculated dimension of $M_2(\Gamma_0(39))\cong \mathbb C^9$, we deduce from this cuspidal cohomology that the space $S_2(\Gamma_0(39))$ of cuspidal weight $2$ forms is of dimension $3$, and the Eisenstein space $E_2(\Gamma_0(39))\cong \mathbb C^3$ is of dimension $3$.
The following commands show that the space $S_4(\Gamma_0(39))$ of cuspidal weight $4$ forms is of dimension $12$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gamma:=HAP_CongruenceSubgroupGamma0(39);;|
!gapprompt@gap>| !gapinput@k:=4;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);;|
!gapprompt@gap>| !gapinput@AbelianInvariants(Kernel(c));|
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Hecke operators on forms of weight 2}}\logpage{[ 13, 6, 0 ]}
\hyperdef{L}{X80861D3F87C29C43}{}
{
A congruence subgroup $\Gamma \le SL_2(\mathbb Z)$ and element $g\in SL_2(\mathbb Q)$ determine the subgroup $\Gamma' = \Gamma \cap g\Gamma g^{-1} $ and homomorphisms
\[ \Gamma\ \hookleftarrow\ \Gamma'\ \ \stackrel{\gamma \mapsto g^{-1}\gamma
g}{\longrightarrow}\ \ g^{-1}\Gamma' g\ \hookrightarrow \Gamma\ . \]
These homomorphisms give rise to homomorphisms of cohomology groups
\[H^n(\Gamma,\mathbb Z)\ \ \stackrel{tr}{\leftarrow} \ \ H^n(\Gamma',\mathbb Z)
\ \ \stackrel{\alpha}{\leftarrow} \ \ H^n(g^{-1}\Gamma' g,\mathbb Z) \ \
\stackrel{\beta}{\leftarrow} H^n(\Gamma, \mathbb Z) \]
with $\alpha$, $\beta$ functorial maps, and $tr$ the transfer map. We define the composite $T_g=tr \circ \alpha \circ \beta\colon H^n(\Gamma, \mathbb Z) \rightarrow
H^n(\Gamma, \mathbb Z)$ to be the \emph{ Hecke component } determined by $g$.
For $\Gamma=\Gamma_0(N)$, prime integer $p$ coprime to $N$, and cohomology degree $n=1$ we define the \emph{Hecke operator} $T_p =T_g$ where $g=\left(\begin{array}{cc}1&0\\0&p\end{array}\right)$. Further details on this description of Hecke operators can be found in \cite[Appendix by P. Gunnells]{stein}.
The following commands compute $T_2$ and $T_5$ and $\Gamma=\Gamma_0(39)$. The commands also compute the eigenvalues of these two Hecke operators. The
final command confirms that $T_2$ and $T_5$ commute. (It is a fact that $T_pT_q=T_qT_p$ for all $p,q$.)
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gamma:=HAP_CongruenceSubgroupGamma0(39);;|
!gapprompt@gap>| !gapinput@p:=2;;k:=2;;T2:=HeckeOperator(gamma,p,k);;|
!gapprompt@gap>| !gapinput@Display(T2);|
[ [ -2, -2, 2, 2, 1, 2, 0, 0, 0 ],
[ -2, 0, 1, 2, -2, 2, 2, 2, -2 ],
[ -2, -1, 2, 2, -1, 2, 1, 1, -1 ],
[ -2, -1, 2, 2, 1, 1, 0, 0, 0 ],
[ -1, 0, 0, 2, -3, 2, 3, 3, -3 ],
[ 0, 1, 1, 1, -1, 0, 1, 1, -1 ],
[ -1, 1, 1, -1, 0, 1, 2, -1, 1 ],
[ -1, -1, 0, 2, -3, 2, 1, 4, -1 ],
[ 0, 1, 0, -1, -2, 1, 1, 1, 2 ] ]
!gapprompt@gap>| !gapinput@Eigenvalues(Rationals,T2);|
[ 3, 1 ]
!gapprompt@gap>| !gapinput@p:=5;;k:=2;;h:=HeckeOperator(gamma,p,k);;|
!gapprompt@gap>| !gapinput@Display(T5);|
[ [ -1, -1, 3, 4, 0, 0, 1, 1, -1 ],
[ -5, -1, 5, 4, 0, 0, 3, 3, -3 ],
[ -2, 0, 4, 4, 1, 0, -1, -1, 1 ],
[ -2, 0, 3, 2, -3, 2, 4, 4, -4 ],
[ -4, -2, 4, 4, 3, 0, 1, 1, -1 ],
[ -6, -4, 5, 6, 1, 2, 2, 2, -2 ],
[ 1, 5, 0, -4, -3, 2, 5, -1, 1 ],
[ -2, -2, 2, 4, 0, 0, -2, 4, 2 ],
[ 1, 3, 0, -4, -4, 2, 2, 2, 4 ] ]
!gapprompt@gap>| !gapinput@Eigenvalues(Rationals,T5);|
[ 6, 2 ]
gap>T2*T5=T5*T2;
true
\end{Verbatim}
}
\section{\textcolor{Chapter }{Hecke operators on forms of weight $ \ge 2$}}\logpage{[ 13, 7, 0 ]}
\hyperdef{L}{X831BB0897B988DA3}{}
{
The above definition of Hecke operator $T_p$ for $\Gamma=\Gamma_0(N)$ extends to a Hecke operator $T_p\colon H^1(\Gamma,P_{\mathbb Q}(k-2) ) \rightarrow H^1(\Gamma,P_{\mathbb
Q}(k-2) )$ for $k\ge 2$. We work over the rationals since that is a setting of much interest. The
following commands compute the matrix of $T_2\colon H^1(\Gamma,P_{\mathbb Q}(k-2) ) \rightarrow H^1(\Gamma,P_{\mathbb
Q}(k-2) )$ for $\Gamma=SL_2(\mathbb Z)$ and $k=4$;
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@H:=HAP_CongruenceSubgroupGamma0(1);;|
!gapprompt@gap>| !gapinput@h:=HeckeOperator(H,2,12);;Display(h);|
[ [ 2049, -7560, 0 ],
[ 0, -24, 0 ],
[ 0, 0, -24 ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Reconstructing modular forms from cohomology computations}}\logpage{[ 13, 8, 0 ]}
\hyperdef{L}{X84CC51EE8525E0D9}{}
{
Given a modular form $f\colon {\frak h} \rightarrow \mathbb C$ associated to a congruence subgroup $\Gamma$, and given a compact edge $e$ in the tessellation of ${\frak h}$ (\emph{i.e.} an edge in the cubic tree $\cal T$) arising from the above fundamental domain for $SL_2(\mathbb Z)$, we can evaluate
\[\int_e f(z)\,dz \ .\]
In this way we obtain a cochain $f_1\colon C_1({\cal T}) \rightarrow \mathbb C$ in $Hom_{\mathbb Z\Gamma}(C_1({\cal T}), \mathbb C)$ representing a cohomology class $c(f) \in H^1(\, Hom_{\mathbb Z\Gamma}(C_\ast({\cal T}), \mathbb C) \,) =
H^1(\Gamma,\mathbb C)$. The correspondence $f\mapsto c(f)$ underlies the Eichler\texttt{\symbol{45}}Shimura isomorphism. Hecke operators
can be used to recover modular forms from cohomology classes.
Let $\Gamma=\Gamma_0(N)$. The above defined Hecke operators restrict to operators on cuspidal
cohomology. On the left\texttt{\symbol{45}}hand side of the
Eichler\texttt{\symbol{45}}Shimura isomorphism Hecke operators restrict to
operators $T_s\colon S_2(\Gamma) \rightarrow S_2(\Gamma)$ for $s\ge 1$.
Consider the function $q=q(z)=e^{2\pi i z}$ which is holomorphic on $\mathbb C$. For any modular form $f(z) \in M_k(\Gamma)$ there are numbers $a_s$ such that
\[f(z) = \sum_{s=0}^\infty a_sq^s \]
for all $z\in {\frak h}$. The form $f$ is a cusp form if $a_0=0$.
A non\texttt{\symbol{45}}zero cusp form $f\in S_2(\Gamma)$ is a cusp \emph{eigenform} if it is simultaneously an eigenvector for the Hecke operators $T_s$ for all $s =1,2,3,\cdots$ coprime to the level $N$. A cusp eigenform is said to be \emph{normalized} if its coefficient $a_1=1$. It turns out that if $f$ is normalized then the coefficient $a_s$ is an eigenvalue for $T_s$ (see for instance \cite{stein} for details). It can be shown \cite{atkinlehner} that $S_2(\Gamma_0(N))$ admits a "basis constructed from eigenforms".
This all implies that, in principle, we can construct an approximation to an
explicit basis for the space $S_2(\Gamma_0(N))$ of cusp forms by computing eigenvalues for Hecke operators.
Suppose that we would like a basis for $S_2(\Gamma_0(11))$. The following commands first show that $H^1_{cusp}(\Gamma_0(11),\mathbb Z)=\mathbb Z\oplus \mathbb Z$ from which we deduce that $S_2(\Gamma_0(11)) =\mathbb C$ is $1$\texttt{\symbol{45}}dimensional and thus admits a basis of eigenforms. Then
eigenvalues of Hecke operators are calculated to establish that the modular
form
\[f = q -2q^2 -q^3 +2q^4 +q^5 +2q^6 -2q^7 + -2q^9 -2q^{10} + \cdots \]
constitutes a basis for $S_2(\Gamma_0(11))$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@gamma:=HAP_CongruenceSubgroupGamma0(11);;|
!gapprompt@gap>| !gapinput@AbelianInvariants(Kernel(CuspidalCohomologyHomomorphism(gamma,1,2)));|
[ 0, 0 ]
!gapprompt@gap>| !gapinput@T1:=HeckeOperator(gamma,1,2);; Display(T1);|
[ [ 1, 0, 0 ],
[ 0, 1, 0 ],
[ 0, 0, 1 ] ]
!gapprompt@gap>| !gapinput@T2:=HeckeOperator(gamma,2,2);; Display(T2);|
[ [ 3, -4, 4 ],
[ 0, -2, 0 ],
[ 0, 0, -2 ] ]
!gapprompt@gap>| !gapinput@T3:=HeckeOperator(gamma,3,2);; Display(T3);|
[ [ 4, -4, 4 ],
[ 0, -1, 0 ],
[ 0, 0, -1 ] ]
!gapprompt@gap>| !gapinput@T5:=HeckeOperator(gamma,5,2);; Display(T5);|
[ [ 6, -4, 4 ],
[ 0, 1, 0 ],
[ 0, 0, 1 ] ]
!gapprompt@gap>| !gapinput@T7:=HeckeOperator(gamma,7,2);; Display(T7);|
[ [ 8, -8, 8 ],
[ 0, -2, 0 ],
[ 0, 0, -2 ] ]
\end{Verbatim}
For a normalized eigenform $f=1 + \sum_{s=2}^\infty a_sq^s$ the coefficients $a_s$ with $s$ a composite integer can be expressed in terms of the coefficients $a_p$ for prime $p$. If $r,s$ are coprime then $T_{rs} =T_rT_s$. If $p$ is a prime that is not a divisor of the level $N$ of $\Gamma$ then $a_{p^m} =a_{p^{m-1}}a_p - p a_{p^{m-2}}.$ If the prime $ p$ divides $N$ then $a_{p^m} = (a_p)^m$. It thus suffices to compute the coefficients $a_p$ for prime integers $p$ only.
The following commands establish that $S_{12}(SL_2(\mathbb Z))$ has a basis consisting of one cusp eigenform
$q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 - 16744q^7 + 84480q^8 -
113643q^9 $
$- 115920q^{10} + 534612q^{11} - 370944q^{12} - 577738q^{13} + 401856q^{14} +
1217160q^{15} + 987136q^{16}$
$ - 6905934q^{17} + 2727432q^{18} + 10661420q^{19} + ...$
\begin{Verbatim}[commandchars=@|D,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>D @gapinput|R:=ResolutionSL2Z_alt(2);;D
@gapprompt|gap>D @gapinput|G:=R!.group;;D
@gapprompt|gap>D @gapinput|P:=HomogeneousPolynomials(G,14);D
MappingByFunction( SL(2,Integers), <matrix group with
2 generators>, function( x ) ... end )
@gapprompt|gap>D @gapinput|Cohomology(HomToIntegralModule(R,P),1);D
[ 2, 2, 156, 0, 0, 0 ]
@gapprompt|gap>D @gapinput|#Thus the space S_12 of cusp forms is of dimension 1D
@gapprompt|gap>D @gapinput|G:=HAP_CongruenceSubgroupGamma0(1);;D
@gapprompt|gap>D @gapinput|for p in [2,3,5,7,11,13,17,19] doD
@gapprompt|>D @gapinput|T:=HeckeOperator(G,p,12);;D
@gapprompt|>D @gapinput|Print("eigenvalues= ",Eigenvalues(Rationals,T), " and eigenvectors = ", Eigenvectors(Rationals,T)," for p= ",p,"\n");D
@gapprompt|>D @gapinput|od;D
eigenvalues= [ 2049, -24 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 2
eigenvalues= [ 177148, 252 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 3
eigenvalues= [ 48828126, 4830 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 5
eigenvalues= [ 1977326744, -16744 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 7
eigenvalues= [ 285311670612, 534612 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 11
eigenvalues= [ 1792160394038, -577738 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 13
eigenvalues= [ 34271896307634, -6905934 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 17
eigenvalues= [ 116490258898220, 10661420 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 19
\end{Verbatim}
}
\section{\textcolor{Chapter }{The Picard group}}\logpage{[ 13, 9, 0 ]}
\hyperdef{L}{X8180E53C834301EF}{}
{
Let us now consider the \emph{Picard group} $G=SL_2(\mathbb Z[ i])$ and its action on \emph{upper\texttt{\symbol{45}}half space}
\[{\frak h}^3 =\{(z,t) \in \mathbb C\times \mathbb R\ |\ t > 0\} \ . \]
To describe the action we introduce the symbol $j$ satisfying $j^2=-1$, $ij=-ji$ and write $z+tj$ instead of $(z,t)$. The action is given by
\[\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \
\left(a(z+tj)+b\right)\left(c(z+tj)+d\right)^{-1}\ .\]
Alternatively, and more explicitly, the action is given by
\[\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \
\frac{(az+b)\overline{(cz+d) } + a\overline c t^2}{|cz +d|^2 + |c|^2t^2} \ +\
\frac{t}{|cz+d|^2+|c|^2t^2}\, j \ .\]
A standard 'fundamental domain' $D$ for this action is the following region (with some of the boundary points
removed).
\[ \{z+tj\in {\frak h}^3\ |\ 0 \le |{\rm Re}(z)| \le \frac{1}{2}, 0\le {\rm
Im}(z) \le \frac{1}{2}, z\overline z +t^2 \ge 1\} \]
The four bottom vertices of $D$ are $a = -\frac{1}{2} +\frac{1}{2}i +\frac{\sqrt{2}}{2}j$, $b = -\frac{1}{2} +\frac{\sqrt{3}}{2}j$, $c = \frac{1}{2} +\frac{\sqrt{3}}{2}j$, $d = \frac{1}{2} +\frac{1}{2}i +\frac{\sqrt{2}}{2}j$.
The upper\texttt{\symbol{45}}half space ${\frak h}^3$ can be retracted onto a $2$\texttt{\symbol{45}}dimensional subspace ${\cal T} \subset {\frak h}^3$. The space ${\cal T}$ is a contractible $2$\texttt{\symbol{45}}dimensional regular CW\texttt{\symbol{45}}complex, and the
action of the Picard group $G$ restricts to a cellular action of $G$ on ${\cal T}$.
Using perturbation techniques, the $2$\texttt{\symbol{45}}complex ${\cal T}$ can be combined with free resolutions for the cell stabilizer groups to
contruct a regular CW\texttt{\symbol{45}}complex $X$ on which the Picard group $G$ acts freely. The following commands compute the first few terms of the free $\mathbb ZG$\texttt{\symbol{45}}resolution $R_\ast =C_\ast X$. Then $R_\ast$ is used to compute
\[H^1(G,\mathbb Z) =0\ ,\]
\[H^2(G,\mathbb Z) =\mathbb Z_2\oplus \mathbb Z_2\ ,\]
\[H^3(G,\mathbb Z) =\mathbb Z_6\ ,\]
\[H^4(G,\mathbb Z) =\mathbb Z_4\oplus \mathbb Z_{24}\ ,\]
and compute a free presentation for $G$ involving four generators and seven relators.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ContractibleGcomplex("SL(2,O-1)");;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(K,5);;|
!gapprompt@gap>| !gapinput@Cohomology(HomToIntegers(R),1);|
[ ]
!gapprompt@gap>| !gapinput@Cohomology(HomToIntegers(R),2);|
[ 2, 2 ]
!gapprompt@gap>| !gapinput@Cohomology(HomToIntegers(R),3);|
[ 6 ]
!gapprompt@gap>| !gapinput@Cohomology(HomToIntegers(R),4);|
[ 4, 24 ]
!gapprompt@gap>| !gapinput@P:=PresentationOfResolution(R);|
rec( freeGroup := <free group on the generators [ f1, f2, f3, f4 ]>,
gens := [ 184, 185, 186, 187 ],
relators := [ f1^2*f2^-1*f1^-1*f2^-1, f1*f2*f1*f2^-2,
f3*f2^2*f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-2,
f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-1*f3^-1,
f4*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1, f1*f4^-1*f1^-2*f4^-1,
f3*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1*f3^-1*f4*f2 ] )
\end{Verbatim}
We can also compute the cohomology of $G=SL_2(\mathbb Z[i])$ with coefficients in a module such as the module $P_{\mathbb Z[i]}(k)$ of degree $k$ homogeneous polynomials with coefficients in $\mathbb Z[i]$ and with the action described above. For instance, the following commands
compute
\[H^1(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^4 \oplus \mathbb Z_4 \oplus
\mathbb Z_8 \oplus \mathbb Z_{40} \oplus \mathbb Z_{80}\, ,\]
\[H^2(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{24} \oplus \mathbb
Z_{520030}\oplus \mathbb Z_{1040060} \oplus \mathbb Z^2\, ,\]
\[H^3(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{22} \oplus \mathbb Z_{4}\oplus
(\mathbb Z_{12})^2 \, .\]
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|G:=R!.group;;A
@gapprompt|gap>A @gapinput|M:=HomogeneousPolynomials(G,24);;A
@gapprompt|gap>A @gapinput|C:=HomToIntegralModule(R,M);;A
@gapprompt|gap>A @gapinput|Cohomology(C,1);A
[ 2, 2, 2, 2, 4, 8, 40, 80 ]
@gapprompt|gap>A @gapinput|Cohomology(C,2);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
520030, 1040060, 0, 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,3);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12, 12
]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Bianchi groups}}\logpage{[ 13, 10, 0 ]}
\hyperdef{L}{X858B1B5D8506FE81}{}
{
The \emph{Bianchi groups} are the groups $G=PSL_2({\cal O}_{-d})$ where $d$ is a square free positive integer and ${\cal O}_{-d}$ is the ring of integers of the imaginary quadratic field $\mathbb Q(\sqrt{-d})$. More explicitly,
\[{\cal O}_{-d} = \mathbb Z\left[\sqrt{-d}\right]~~~~~~~~ {\rm if~} d \equiv 1,2
{\rm ~mod~} 4\, ,\]
\[{\cal O}_{-d} = \mathbb Z\left[\frac{1+\sqrt{-d}}{2}\right]~~~~~ {\rm if~} d
\equiv 3 {\rm ~mod~} 4\, .\]
These groups act on upper\texttt{\symbol{45}}half space ${\frak h}^3$ in the same way as the Picard group. Upper\texttt{\symbol{45}}half space can
be tessellated by a 'fundamental domain' for this action. Moreover, as with
the Picard group, this tessellation contains a $2$\texttt{\symbol{45}}dimensional cellular subspace ${\cal T}\subset {\frak h}^3$ where ${\cal T}$ is a contractible CW\texttt{\symbol{45}}complex on which $G$ acts cellularly. It should be mentioned that the fundamental domain and the
contractible $2$\texttt{\symbol{45}}complex ${\cal T}$ are not uniquely determined by $G$. Various algorithms exist for computing ${\cal T}$ and its cell stabilizers. One algorithm due to Swan \cite{swan} has been implemented by Alexander Rahm \cite{rahmthesis} and the output for various values of $d$ are stored in HAP. Another approach is to use Voronoi's theory of perfect
forms. This approach has been implemented by Sebastian Schoennenbeck \cite{schoennenbeck} and, again, its output for various values of $d$ are stored in HAP. The following commands combine data from Schoennenbeck's
algorithm with free resolutions for cell stabiliers to compute
\[H^1(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) = (\mathbb Z_2)^4 \oplus
\mathbb Z_{12} \oplus \mathbb Z_{24} \oplus \mathbb Z_{9240} \oplus \mathbb
Z_{55440} \oplus \mathbb Z^4\,, \]
\[H^2(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) = \begin{array}{l} (\mathbb
Z_2)^{26} \oplus \mathbb (Z_{6})^8 \oplus \mathbb (Z_{12})^{9} \oplus \mathbb
Z_{24} \oplus (\mathbb Z_{120})^2 \oplus (\mathbb Z_{840})^3\\ \oplus \mathbb
Z_{2520} \oplus (\mathbb Z_{27720})^2 \oplus (\mathbb Z_{24227280})^2 \oplus
(\mathbb Z_{411863760})^2\\ \oplus \mathbb
Z_{2454438243748928651877425142836664498129840}\\ \oplus \mathbb
Z_{14726629462493571911264550857019986988779040}\\ \oplus \mathbb
Z^4\end{array}\ , \]
\[H^3(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) = (\mathbb Z_2)^{23} \oplus
\mathbb Z_{4} \oplus (\mathbb Z_{12})^2\ . \]
Note that the action of $SL_2({\cal O}_{-d})$ on $P_{{\cal O}_{-d}}(k)$ induces an action of $PSL_2({\cal O}_{-d})$ provided $k$ is even.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|R:=ResolutionPSL2QuadraticIntegers(-6,4);A
Resolution of length 4 in characteristic 0 for PSL(2,O-6) .
No contracting homotopy available.
@gapprompt|gap>A @gapinput|G:=R!.group;;A
@gapprompt|gap>A @gapinput|M:=HomogeneousPolynomials(G,24);;A
@gapprompt|gap>A @gapinput|C:=HomToIntegralModule(R,M);;A
@gapprompt|gap>A @gapinput|Cohomology(C,1);A
[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,2);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120, 120,
840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760, 411863760,
2454438243748928651877425142836664498129840,
14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,3);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12,
12 ]
\end{Verbatim}
We can also consider the coefficient module
\[ P_{{\cal O}_{-d}}(k,\ell) = P_{{\cal O}_{-d}}(k) \otimes_{{\cal O}_{-d}}
\overline{P_{{\cal O}_{-d}}(\ell)} \]
where the bar denotes a twist in the action obtained from complex conjugation.
For an action of the projective linear group we must insist that $k+\ell$ is even. The following commands compute
\[H^2(PSL_2({\cal O}_{-11}),P_{{\cal O}_{-11}}(5,5)) = (\mathbb Z_2)^8 \oplus
\mathbb Z_{60} \oplus (\mathbb Z_{660})^3 \oplus \mathbb Z^6\,, \]
a computation which was first made, along with many other cohomology
computationsfor Bianchi groups, by Mehmet Haluk Sengun \cite{sengun}.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|R:=ResolutionPSL2QuadraticIntegers(-11,3);;A
@gapprompt|gap>A @gapinput|M:=HomogeneousPolynomials(R!.group,5,5);;A
@gapprompt|gap>A @gapinput|C:=HomToIntegralModule(R,M);;A
@gapprompt|gap>A @gapinput|Cohomology(C,2);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 60, 660, 660, 660, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
The function \texttt{ResolutionPSL2QuadraticIntegers(\texttt{\symbol{45}}d,n)} relies on a limited data base produced by the algorithms implemented by
Schoennenbeck and Rahm. The function also covers some cases covered by
entering a sring "\texttt{\symbol{45}}d+I" as first variable. These cases
correspond to projective special groups of module automorphisms of lattices of
rank 2 over the integers of the imaginary quadratic number field $\mathbb Q(\sqrt{-d})$ with non\texttt{\symbol{45}}trivial Steinitz\texttt{\symbol{45}}class. In the
case of a larger class group there are cases labelled
"\texttt{\symbol{45}}d+I2",...,"\texttt{\symbol{45}}d+Ik" and the Ij together
with O\texttt{\symbol{45}}d form a system of representatives of elements of
the class group modulo squares and Galois action. For instance, the following
commands compute
\[H_2(PSL({\cal O}_{-21+I2}),\mathbb Z) = \mathbb Z_2\oplus \mathbb Z^6\, .\]
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionPSL2QuadraticIntegers("-21+I2",3);|
Resolution of length 3 in characteristic 0 for PSL(2,O-21+I2)) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(R),2);|
[ 2, 0, 0, 0, 0, 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{(Co)homology of Bianchi groups and $SL_2({\cal O}_{-d})$}}\logpage{[ 13, 11, 0 ]}
\hyperdef{L}{X851390E07C3B3BB1}{}
{
The (co)homology of Bianchi groups has been studied in papers such as \cite{Schwermer} \cite{Vogtmann} \cite{Berkove00} \cite{Berkove06} \cite{Rahm11} \cite{Rahm13} \cite{Rahm13a} \cite{Rahm20}. Calculations in these papers can often be verified by computer. For
instance, the calculation
\[H_q(PSL_2({\cal O}_{-15}),\mathbb Z) = \left\{\begin{array}{ll} \mathbb Z^2
\oplus \mathbb Z_6 & q=1,\\ \mathbb Z \oplus \mathbb Z_6 & q=2,\\ \mathbb Z_6
& q\ge 3\\ \end{array}\right. \]
obtained in \cite{Rahm11} can be verified as follows, once we note that Bianchi groups have virtual
cohomological dimension 2 and, if all stabilizer groups are periodic with
period dividing m, then the homology has period dividing m in degree $\ge 3$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=ContractibleGcomplex("SL(2,O-15)");;A
@gapprompt|gap>A @gapinput|PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;A
@gapprompt|gap>A @gapinput|for n in [0..2] doA
@gapprompt|>A @gapinput|for k in [1..K!.dimension(n)] doA
@gapprompt|>A @gapinput|Print( CohomologicalPeriod(K!.stabilizer(n,k))," ");A
@gapprompt|>A @gapinput|od;od;A
2 2 2 2 2 2 2 2 2 2 2 2 2 2
@gapprompt|gap>A @gapinput|R:=FreeGResolution(PK,5);;A
@gapprompt|gap>A @gapinput|for n in [0..4] doA
@gapprompt|>A @gapinput|Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");A
@gapprompt|>A @gapinput|od;A
H_0 = [ 0 ]
H_1 = [ 6, 0, 0 ]
H_2 = [ 6, 0 ]
H_3 = [ 6 ]
H_4 = [ 6 ]
\end{Verbatim}
All finite subgroups of $SL_2({\cal O}_{-d})$ are periodic. Thus the above example can be adapted from PSL to SL for any
square=free $d\ge 1$. For example, the calculation
\[H^q(SL_2({\cal O}_{-2}),\mathbb Z) = \left\{\begin{array}{ll} \mathbb Z &
q=1,\\ \mathbb Z_6 & q=2 {\rm \ mod\ } 4,\\ \mathbb Z_2 \oplus \mathbb Z_{12}
& q= 3 {\rm \ mod\ } 4\\ \mathbb Z_2 \oplus \mathbb Z_{24} & q= 0 {\rm \ mod\
} 4 (q>0)\\ \mathbb Z_{12} & q= 1 {\rm \ mod\ } 4 (q > 1)\\ \end{array}\right. \]
obtained in \cite{Schwermer} can be verified as follows.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=ContractibleGcomplex("SL(2,O-2)");;A
@gapprompt|gap>A @gapinput|for n in [0..2] doA
@gapprompt|>A @gapinput|for k in [1..K!.dimension(n)] doA
@gapprompt|>A @gapinput|Print(CohomologicalPeriod(K!.stabilizer(n,k))," ");A
@gapprompt|>A @gapinput|od;od;A
2 4 2 4 2 2 2 2 2 2 2 2
@gapprompt|gap>A @gapinput|R:=FreeGResolution(K,11);;A
@gapprompt|gap>A @gapinput|for n in [0..10] doA
@gapprompt|>A @gapinput|Print("H^",n," = ", Cohomology(HomToIntegers(R),n),"\n");A
@gapprompt|>A @gapinput|od;A
H^0 = [ 0 ]
H^1 = [ 0 ]
H^2 = [ 6 ]
H^3 = [ 2, 12 ]
H^4 = [ 2, 24 ]
H^5 = [ 12 ]
H^6 = [ 6 ]
H^7 = [ 2, 12 ]
H^8 = [ 2, 24 ]
H^9 = [ 12 ]
H^10 = [ 6 ]
\end{Verbatim}
A quotient of a periodic group by a central subgroup of order 2 need not be
periodic. For this reason the (co)homology of PSL can be a bit more tricky
than SL. For example, the calculation
\[H^q(PSL_2({\cal O}_{-13}),\mathbb Z) = \left\{\begin{array}{ll} \mathbb Z^3
\oplus (\mathbb Z_2)^2 & q=1,\\ \mathbb Z^2 \oplus \mathbb Z_4 \oplus (\mathbb
Z_3)^2 \oplus \mathbb Z_2 & q=2,\\ (\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2 &
q= 3 {\rm \ mod\ } 4\\ (\mathbb Z_2)^q & q= 0 {\rm \ mod\ } 4 (q>0)\\ (\mathbb
Z_2)^q & q= 1 {\rm \ mod\ } 4 (q>1)\\ (\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2
& q= 2 {\rm \ mod\ } 4 (q > 2)\\ \end{array}\right. \]
was obtained in \cite{Rahm11}. The following commands verify the calculation in the first 34 degrees, but
for a proof valid for all degrees one needs to analyse the computation to spot
that there is a certain "periodicity of period 2" in the computations for $q\ge 3$. This analysis is done in \cite{Rahm11}.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=ContractibleGcomplex("SL(2,O-13)");;A
@gapprompt|gap>A @gapinput|PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;A
@gapprompt|gap>A @gapinput|for n in [0..2] doA
@gapprompt|>A @gapinput|for k in [1..PK!.dimension(n)] doA
@gapprompt|>A @gapinput|S:=SmallGroup(IdGroup(PK!.stabilizer( n, k )));A
@gapprompt|>A @gapinput|Print( [n,k]," is periodic ",IsPeriodic(S),"\n ");A
@gapprompt|>A @gapinput|od;od;A
[ 0, 1 ] is periodic true
[ 0, 2 ] is periodic true
[ 0, 3 ] is periodic true
[ 0, 4 ] is periodic true
[ 0, 5 ] is periodic true
[ 0, 6 ] is periodic true
[ 0, 7 ] is periodic false
[ 0, 8 ] is periodic false
[ 1, 1 ] is periodic true
[ 1, 2 ] is periodic true
[ 1, 3 ] is periodic true
[ 1, 4 ] is periodic true
[ 1, 5 ] is periodic true
[ 1, 6 ] is periodic true
[ 1, 7 ] is periodic true
[ 1, 8 ] is periodic true
[ 1, 9 ] is periodic true
[ 1, 10 ] is periodic true
[ 1, 11 ] is periodic true
[ 1, 12 ] is periodic true
[ 1, 13 ] is periodic true
[ 2, 1 ] is periodic true
[ 2, 2 ] is periodic true
[ 2, 3 ] is periodic true
[ 2, 4 ] is periodic true
[ 2, 5 ] is periodic true
[ 2, 6 ] is periodic true
[ 2, 7 ] is periodic true
[ 2, 8 ] is periodic true
[ 2, 9 ] is periodic true
[ 2, 10 ] is periodic true
[ 2, 11 ] is periodic true
@gapprompt|gap>A @gapinput|R:=ResolutionPSL2QuadraticIntegers(-13,35);;A
@gapprompt|gap>A @gapinput|for n in [0..34] doA
@gapprompt|>A @gapinput|Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");A
@gapprompt|>A @gapinput|od;A
H_0 = [ 0 ]
H_1 = [ 2, 2, 0, 0, 0 ]
H_2 = [ 6, 12, 0, 0 ]
H_3 = [ 2, 6, 6 ]
H_4 = [ 2, 2, 2, 2 ]
H_5 = [ 2, 2, 2, 2, 2 ]
H_6 = [ 2, 2, 2, 2, 6, 6 ]
H_7 = [ 2, 2, 2, 2, 2, 6, 6 ]
H_8 = [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_9 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_10 = [ 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_11 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_12 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_13 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_14 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_15 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_16 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_17 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_18 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_19 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_20 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_21 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_22 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_23 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_24 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_25 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_26 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_27 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_28 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_29 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_30 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_31 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_32 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_33 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_34 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
\end{Verbatim}
The Lyndon\texttt{\symbol{45}}Hochschild\texttt{\symbol{45}}Serre spectral
sequence $H_p(G/N,H_q(N,A)) \Rightarrow H_{p+q}(G,A)$ for the groups $G=SL_2({\mathcal O}_{-d})$ and $N\cong C_2$ the central subgroup with $G/N\cong PSL_2({\mathcal O}_{-d})$, and the trivial module $A = \mathbb Z_{\ell}$, implies that for primes $\ell>2$ we have a natural isomorphism $H_n(PSL_2({\mathcal O}_{-d}),\mathbb Z_{\ell}) \cong H_n(SL_2({\mathcal
O}_{-d}),\mathbb Z_{\ell})$. It follows that we have an isomorphism of $\ell$\texttt{\symbol{45}}primary parts $H_n(PSL_2({\mathcal O}_{-d}),\mathbb Z)_{(\ell)} \cong H_n(SL_2({\mathcal
O}_{-d}),\mathbb Z)_{(\ell)}$. Since $ H_n(SL_2({\mathcal O}_{-d}),\mathbb Z)_{(\ell)}$ is periodic in degrees $ \ge 3$ we can recover the $3$\texttt{\symbol{45}}primary part of $H_n(PSL_2({\mathcal O}_{-13}),\mathbb Z)$ in all degrees $q\ge1$ from the following computation by ignoring all $2$\texttt{\symbol{45}}power factors in the output.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionSL2QuadraticIntegers(-13,13);;|
!gapprompt@gap>| !gapinput@for n in [3..12] do|
!gapprompt@>| !gapinput@Print("H_",n," at prime p=3 is: ", Filtered(Homology(TensorWithIntegers(R),n), m->IsInt(m/3)),"\n");|
!gapprompt@>| !gapinput@od;|
H_3 at prime p=3 is: [ 6, 24 ]
H_4 at prime p=3 is: [ ]
H_5 at prime p=3 is: [ ]
H_6 at prime p=3 is: [ 6, 12 ]
H_7 at prime p=3 is: [ 6, 24 ]
H_8 at prime p=3 is: [ ]
H_9 at prime p=3 is: [ ]
H_10 at prime p=3 is: [ 6, 12 ]
H_11 at prime p=3 is: [ 6, 24 ]
H_12 at prime p=3 is: [ ]
!gapprompt@gap>| !gapinput@#Ignore the 2-power factors in the output|
\end{Verbatim}
The ring ${\mathcal O}_{-163}$ is an example of a principal ideal domain that is not a Euclidean domain. It
seems that no complete calculation of $H_n(PSL_2({\mathcal O}_{-163}),\mathbb Z)$ is yet available in the literature. The following comands compute this
homology in the first $31$ degrees. The computation suggests a general formula in higher degrees. All but
two of the stabilizer groups for the action of $PSL_2({\mathcal O}_{-163})$ are periodic. The non\texttt{\symbol{45}}periodic group $A_4$ occurs twice in degree $0$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R:=ResolutionPSL2QuadraticIntegers(-163,32);;|
!gapprompt@gap>| !gapinput@for n in [1..31] do|
!gapprompt@>| !gapinput@Print("H_",n,"= ",Homology(TensorWithIntegers(R),n),"\n");|
!gapprompt@>| !gapinput@od;|
H_1= [ 0, 0, 0, 0, 0, 0, 0 ]
H_2= [ 2, 12, 0, 0, 0, 0, 0, 0 ]
H_3= [ 6 ]
H_4= [ ]
H_5= [ 2, 2, 2 ]
H_6= [ 2, 6 ]
H_7= [ 6 ]
H_8= [ 2, 2, 2, 2 ]
H_9= [ 2, 2, 2 ]
H_10= [ 2, 6 ]
H_11= [ 2, 2, 2, 2, 6 ]
H_12= [ 2, 2, 2, 2 ]
H_13= [ 2, 2, 2 ]
H_14= [ 2, 2, 2, 2, 2, 6 ]
H_15= [ 2, 2, 2, 2, 6 ]
H_16= [ 2, 2, 2, 2 ]
H_17= [ 2, 2, 2, 2, 2, 2, 2 ]
H_18= [ 2, 2, 2, 2, 2, 6 ]
H_19= [ 2, 2, 2, 2, 6 ]
H_20= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_21= [ 2, 2, 2, 2, 2, 2, 2 ]
H_22= [ 2, 2, 2, 2, 2, 6 ]
H_23= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_24= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_25= [ 2, 2, 2, 2, 2, 2, 2 ]
H_26= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_27= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_28= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_29= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_30= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_31= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Some other infinite matrix groups}}\logpage{[ 13, 12, 0 ]}
\hyperdef{L}{X86A6858884B9C05B}{}
{
Analogous to the functions for Bianchi groups, HAP has functions
\begin{itemize}
\item \texttt{ResolutionSL2QuadraticIntegers(\texttt{\symbol{45}}d,n)}
\item \texttt{ResolutionSL2ZInvertedInteger(m,n)}
\item \texttt{ResolutionGL2QuadraticIntegers(\texttt{\symbol{45}}d,n)}
\item \texttt{ResolutionPGL2QuadraticIntegers(\texttt{\symbol{45}}d,n)}
\item \texttt{ResolutionGL3QuadraticIntegers(\texttt{\symbol{45}}d,n)}
\item \texttt{ResolutionPGL3QuadraticIntegers(\texttt{\symbol{45}}d,n)}
\end{itemize}
for computing free resolutions for certain values of $SL_2({\cal O}_{-d})$, $SL_2(\mathbb Z[\frac{1}{m}])$, $GL_2({\cal O}_{-d})$ and $PGL_2({\cal O}_{-d})$. Additionally, the function
\begin{itemize}
\item \texttt{ResolutionArithmeticGroup("string",n)}
\end{itemize}
can be used to compute resolutions for groups whose data (provided by
Sebastian Schoennenbeck, Alexander Rahm and Mathieu Dutour) is stored in the
directory \texttt{gap/pkg/Hap/lib/Perturbations/Gcomplexes} .
For instance, the following commands compute
\[H^1(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) = (\mathbb Z_2)^4 \oplus
\mathbb Z_{12} \oplus \mathbb Z_{24} \oplus \mathbb Z_{9240} \oplus \mathbb
Z_{55440} \oplus \mathbb Z^4\,, \]
\[H^2(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) = \begin{array}{l} (\mathbb
Z_2)^{26} \oplus \mathbb (Z_{6})^7 \oplus \mathbb (Z_{12})^{10} \oplus \mathbb
Z_{24} \oplus (\mathbb Z_{120})^2 \oplus (\mathbb Z_{840})^3\\ \oplus \mathbb
Z_{2520} \oplus (\mathbb Z_{27720})^2 \oplus (\mathbb Z_{24227280})^2 \oplus
(\mathbb Z_{411863760})^2\\ \oplus \mathbb
Z_{2454438243748928651877425142836664498129840}\\ \oplus \mathbb
Z_{14726629462493571911264550857019986988779040}\\ \oplus \mathbb
Z^4\end{array}\ , \]
\[H^3(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) = (\mathbb Z_2)^{58} \oplus
(\mathbb Z_{4})^4 \oplus (\mathbb Z_{12})\ . \]
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|R:=ResolutionSL2QuadraticIntegers(-6,4);A
Resolution of length 4 in characteristic 0 for PSL(2,O-6) .
No contracting homotopy available.
@gapprompt|gap>A @gapinput|G:=R!.group;;A
@gapprompt|gap>A @gapinput|M:=HomogeneousPolynomials(G,24);;A
@gapprompt|gap>A @gapinput|C:=HomToIntegralModule(R,M);;A
@gapprompt|gap>A @gapinput|Cohomology(C,1);A
[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,2);A
@gapprompt|gap>A @gapinput|Cohomology(C,2);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120,
120, 840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760,
411863760, 2454438243748928651877425142836664498129840,
14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]
@gapprompt|gap>A @gapinput|Cohomology(C,3);A
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 12, 12 ]
\end{Verbatim}
The following commands construct free resolutions up to degree 5 for the
groups $SL_2(\mathbb Z[\frac{1}{2}])$, $GL_2({\cal O}_{-2})$, $GL_2({\cal O}_{2})$, $PGL_2({\cal O}_{2})$, $GL_3({\cal O}_{-2})$, $PGL_3({\cal O}_{-2})$. The final command constructs a free resolution up to degree 3 for $PSL_4(\mathbb Z)$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@R1:=ResolutionSL2ZInvertedInteger(2,5);|
Resolution of length 5 in characteristic 0 for SL(2,Z[1/2]) .
!gapprompt@gap>| !gapinput@R2:=ResolutionGL2QuadraticIntegers(-2,5);|
Resolution of length 5 in characteristic 0 for GL(2,O-2) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R3:=ResolutionGL2QuadraticIntegers(2,5);|
Resolution of length 5 in characteristic 0 for GL(2,O2) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R4:=ResolutionPGL2QuadraticIntegers(2,5);|
Resolution of length 5 in characteristic 0 for PGL(2,O2) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R5:=ResolutionGL3QuadraticIntegers(-2,5);|
Resolution of length 5 in characteristic 0 for GL(3,O-2) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R6:=ResolutionPGL3QuadraticIntegers(-2,5);|
Resolution of length 5 in characteristic 0 for PGL(3,O-2) .
No contracting homotopy available.
!gapprompt@gap>| !gapinput@R7:=ResolutionArithmeticGroup("PSL(4,Z)",3);|
Resolution of length 3 in characteristic 0 for <matrix group with 655 generators> .
No contracting homotopy available.
\end{Verbatim}
}
\section{\textcolor{Chapter }{Ideals and finite quotient groups}}\logpage{[ 13, 13, 0 ]}
\hyperdef{L}{X7EF5D97281EB66DA}{}
{
The following commands first construct the number field $\mathbb Q(\sqrt{-7})$, its ring of integers ${\cal O}_{-7}={\cal O}(\mathbb Q(\sqrt{-7}))$, and the principal ideal $I=\langle 5 + 2\sqrt{-7}\rangle \triangleleft {\cal O}(\mathbb Q(\sqrt{-7}))$ of norm ${\cal N}(I)=53$. The ring $I$ is prime since its norm is a prime number. The primality of $I$ is also demonstrated by observing that the quotient ring $R={\cal O}_{-7}/I$ is an integral domain and hence isomorphic to the unique finite field of order $53 $, $R\cong \mathbb Z/53\mathbb Z$ . (In a ring of quadratic integers \emph{prime ideal} is the same as \emph{maximal ideal}).
The finite group $G=SL_2({\cal O}_{-7}\,/\,I)$ is then constructed and confirmed to be isomorphic to $SL_2(\mathbb Z/53\mathbb Z)$. The group $G$ is shown to admit a periodic $\mathbb ZG$\texttt{\symbol{45}}resolution of $\mathbb Z$ of period dividing $52$.
Finally the integral homology
\[H_n(G,\mathbb Z) = \left\{\begin{array}{ll} 0 & n\ne 3,7, {\rm~for~} 0\le n
\le 8,\\ \mathbb Z_{2808} & n=3,7, \end{array}\right.\]
is computed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-7);|
Q(Sqrt(-7))
!gapprompt@gap>| !gapinput@OQ:=RingOfIntegers(Q);|
O(Q(Sqrt(-7)))
!gapprompt@gap>| !gapinput@I:=QuadraticIdeal(OQ,5+2*Sqrt(-7));|
ideal of norm 53 in O(Q(Sqrt(-7)))
!gapprompt@gap>| !gapinput@R:=OQ mod I;|
ring mod ideal of norm 53
!gapprompt@gap>| !gapinput@IsIntegralRing(R);|
true
!gapprompt@gap>| !gapinput@gens:=GeneratorsOfGroup( SL2QuadraticIntegers(-7) );;|
!gapprompt@gap>| !gapinput@G:=Group(gens*One(R));;G:=Image(IsomorphismPermGroup(G));;|
!gapprompt@gap>| !gapinput@StructureDescription(G);|
"SL(2,53)"
!gapprompt@gap>| !gapinput@IsPeriodic(G);|
true
!gapprompt@gap>| !gapinput@CohomologicalPeriod(G);|
52
!gapprompt@gap>| !gapinput@GroupHomology(G,1);|
[ ]
!gapprompt@gap>| !gapinput@GroupHomology(G,2);|
[ ]
!gapprompt@gap>| !gapinput@GroupHomology(G,3);|
[ 8, 27, 13 ]
!gapprompt@gap>| !gapinput@GroupHomology(G,4);|
[ ]
!gapprompt@gap>| !gapinput@GroupHomology(G,5);|
[ ]
!gapprompt@gap>| !gapinput@GroupHomology(G,6);|
[ ]
!gapprompt@gap>| !gapinput@GroupHomology(G,7);|
[ 8, 27, 13 ]
!gapprompt@gap>| !gapinput@GroupHomology(G,8);|
[ ]
\end{Verbatim}
The following commands show that the rational prime $7$ is not prime in ${\cal O}_{-5}={\cal O}(\mathbb Q(\sqrt{-5}))$. Moreover, $7$ totally splits in ${\cal O}_{-5}$ since the final command shows that only the rational primes $2$ and $5$ ramify in ${\cal O}_{-5}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-5);;|
!gapprompt@gap>| !gapinput@OQ:=RingOfIntegers(Q);;|
!gapprompt@gap>| !gapinput@I:=QuadraticIdeal(OQ,7);;|
!gapprompt@gap>| !gapinput@IsPrime(I);|
false
!gapprompt@gap>| !gapinput@Factors(Discriminant(OQ));|
[ -2, 2, 5 ]
\end{Verbatim}
For $d < 0$ the rings ${\cal O}_d={\cal O}(\mathbb Q(\sqrt{d}))$ are unique factorization domains for precisely
\[ d = -1, -2, -3, -7, -11, -19, -43, -67, -163.\]
This result was conjectured by Gauss, and essentially proved by Kurt Heegner,
and then later proved by Harold Stark.
The following commands construct the classic example of a prime ideal $I$ that is not principal. They then illustrate reduction modulo $I$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-5);;|
!gapprompt@gap>| !gapinput@OQ:=RingOfIntegers(Q);;|
!gapprompt@gap>| !gapinput@I:=QuadraticIdeal(OQ,[2,1+Sqrt(-5)]);|
ideal of norm 2 in O(Q(Sqrt(-5)))
!gapprompt@gap>| !gapinput@6 mod I;|
0
\end{Verbatim}
}
\section{\textcolor{Chapter }{Congruence subgroups for ideals}}\logpage{[ 13, 14, 0 ]}
\hyperdef{L}{X7D1F72287F14C5E1}{}
{
Given a ring of integers ${\cal O}$ and ideal $I \triangleleft {\cal O}$ there is a canonical homomorphism $\pi_I\colon SL_2({\cal O}) \rightarrow SL_2({\cal O}/I)$. A subgroup $\Gamma \le SL_2({\cal O})$ is said to be a \emph{congruence subgroup} if it contains $\ker \pi_I$. Thus congruence subgroups are of finite index. Generalizing the definition
in \ref{sec:EichlerShimura} above, we define the \emph{principal congruence subgroup} $\Gamma_1(I)=\ker \pi_I$, and the congruence subgroup $\Gamma_0(I)$ consisting of preimages of the upper triangular matrices in $SL_2({\cal O}/I)$.
The following commands construct $\Gamma=\Gamma_0(I)$ for the ideal $I\triangleleft {\cal O}\mathbb Q(\sqrt{-5})$ generated by $12$ and $36\sqrt{-5}$. The group $\Gamma$ has index $385$ in $SL_2({\cal O}\mathbb Q(\sqrt{-5}))$. The final command displays a tree in a Cayley graph for $SL_2({\cal O}\mathbb Q(\sqrt{-5}))$ whose nodes represent a transversal for $\Gamma$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-5);;|
!gapprompt@gap>| !gapinput@OQ:=RingOfIntegers(Q);;|
!gapprompt@gap>| !gapinput@I:=QuadraticIdeal(OQ,[36*Sqrt(-5), 12]);;|
!gapprompt@gap>| !gapinput@G:=HAP_CongruenceSubgroupGamma0(I);|
CongruenceSubgroupGamma0(ideal of norm 144 in O(Q(Sqrt(-5))))
!gapprompt@gap>| !gapinput@IndexInSL2O(G);|
385
!gapprompt@gap>| !gapinput@HAP_SL2TreeDisplay(G);|
\end{Verbatim}
The next commands first construct the congruence subgroup $\Gamma_0(I)$ of index $144$ in $SL_2({\cal O}\mathbb Q(\sqrt{-2}))$ for the ideal $I$ in ${\cal O}\mathbb Q(\sqrt{-2})$ generated by $4+5\sqrt{-2}$. The commands then compute
\[H_1(\Gamma_0(I),\mathbb Z) = \mathbb Z_3 \oplus \mathbb Z_6 \oplus \mathbb
Z_{30} \oplus \mathbb Z^8\, ,\]
\[H_2(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \oplus \mathbb Z^7\, ,\]
\[H_3(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \, .\]
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-2);;|
!gapprompt@gap>| !gapinput@OQ:=RingOfIntegers(Q);;|
!gapprompt@gap>| !gapinput@I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;|
!gapprompt@gap>| !gapinput@G:=HAP_CongruenceSubgroupGamma0(I);|
CongruenceSubgroupGamma0(ideal of norm 66 in O(Q(Sqrt(-2))))
!gapprompt@gap>| !gapinput@IndexInSL2O(G);|
144
!gapprompt@gap>| !gapinput@R:=ResolutionSL2QuadraticIntegers(-2,4,true);;|
!gapprompt@gap>| !gapinput@S:=ResolutionFiniteSubgroup(R,G);;|
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(S),1);|
[ 3, 6, 30, 0, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(S),2);|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0 ]
!gapprompt@gap>| !gapinput@Homology(TensorWithIntegers(S),3);|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{First homology}}\logpage{[ 13, 15, 0 ]}
\hyperdef{L}{X85E912617AFE03F4}{}
{
The isomorphism $H_1(G,\mathbb Z) \cong G_{ab}$ allows for the computation of first integral homology using computational
methods for finitely presented groups. Such methods underly the following
computation of
\[H_1( \Gamma_0(I),\mathbb Z) \cong \mathbb Z_2 \oplus \cdots \oplus \mathbb
Z_{4078793513671}\]
where $I$ is the prime ideal in the Gaussian integers generated by $41+56\sqrt{-1}$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-1);;|
!gapprompt@gap>| !gapinput@OQ:=RingOfIntegers(Q);;|
!gapprompt@gap>| !gapinput@I:=QuadraticIdeal(OQ,41+56*Sqrt(-1));|
ideal of norm 4817 in O(GaussianRationals)
!gapprompt@gap>| !gapinput@G:=HAP_CongruenceSubgroupGamma0(I);;|
!gapprompt@gap>| !gapinput@AbelianInvariants(G);|
[ 2, 2, 4, 5, 7, 16, 29, 43, 157, 179, 1877, 7741, 22037, 292306033,
4078793513671 ]
\end{Verbatim}
We write $G^{ab}_{tors}$ to denote the maximal finite summand of the first homology group of $G$ and refer to this as the \emph{torsion subgroup}. Nicholas Bergeron and Akshay Venkatesh \cite{bergeron} have conjectured relationships between the torsion in congruence subgroups $\Gamma$ and the volume of their quotient manifold ${\frak h}^3/\Gamma$. For instance, for the Gaussian integers they conjecture
\[ \frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)} \rightarrow
\frac{\lambda}{18\pi},\ \lambda =L(2,\chi_{\mathbb Q(\sqrt{-1})}) = 1
-\frac{1}{9} + \frac{1}{25} - \frac{1}{49} + \cdots\]
as the norm of the prime ideal $I$ tends to $\infty$. The following approximates $\lambda/18\pi = 0.0161957$ and $\frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)} = 0.0210325$ for the above example.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Q:=QuadraticNumberField(-1);;|
!gapprompt@gap>| !gapinput@Lfunction(Q,2)/(18*3.142);|
0.0161957
Loge10:=0.434294481903;; #Log_10(e)
!gapprompt@gap>| !gapinput@1.0*Log(Product(AbelianInvariants(G)),10)/(Loge*Norm(I));|
0.0210325
\end{Verbatim}
The link with volume is given by the Humbert volume formula
\[ {\rm Vol} ( {\frak h}^3 / PSL_2( {\cal O}_{d} ) ) = \frac{|D|^{3/2}}{24}
\zeta_{ \mathbb Q( \sqrt{d} ) }(2)/\zeta_{\mathbb Q}(2) \]
valid for square\texttt{\symbol{45}}free $d<0$, where $D$ is the discriminant of $\mathbb Q(\sqrt{d})$. The volume of a finite index subgroup $\Gamma$ is obtained by multiplying the right\texttt{\symbol{45}}hand side by the index $|PSL_2({\cal O}_d)\,:\, \Gamma|$.
The following commands produce a graph of $ \frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)}$ against ${\rm Norm}(I)$ for prime ideals $I$ of norm $49 \le {\rm Norm}(I) \le 4357$ (where one ideal for each norm is taken).
\begin{Verbatim}[commandchars=@|D,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>D @gapinput|Q:=QuadraticNumberField(-1);;D
@gapprompt|gap>D @gapinput|OQ:=RingOfIntegers(Q);;D
@gapprompt|gap>D @gapinput|N:=QuadraticIntegersByNorm(OQ,20000);;D
@gapprompt|gap>D @gapinput|#########################################D
@gapprompt|gap>D @gapinput|fn:=function(x);D
@gapprompt|gap>D @gapinput|if IsRat(x) then return x; fi;D
@gapprompt|gap>D @gapinput|return x!.rational+x!.irrational*Sqrt(-1);D
@gapprompt|gap>D @gapinput|end;D
@gapprompt|gap>D @gapinput|#########################################D
@gapprompt|gap>D @gapinput|NN:=List(N,fn);D
@gapprompt|gap>D @gapinput|P:=Filtered(NN,x->IsPrime(QuadraticIdeal(OQ,x)));D
@gapprompt|gap>D @gapinput|PP:=Classify(P,x->Norm(Q,x));D
@gapprompt|gap>D @gapinput|PP:=List(PP,x->x[1]);;D
@gapprompt|gap>D @gapinput|PP:=Filtered(PP,x->not x=0);D
@gapprompt|gap>D @gapinput|Loge:=0.434294481903;; ###Log_10(e)D
@gapprompt|gap>D @gapinput|#########################################D
@gapprompt|gap>D @gapinput|ffn:=function(x)D
@gapprompt|gap>D @gapinput|local I, G, A, S, F;D
@gapprompt|gap>D @gapinput|I:=QuadraticIdeal(OQ,x);D
@gapprompt|gap>D @gapinput|G:=HAP_CongruenceSubgroupGamma0(I);;D
@gapprompt|gap>D @gapinput|A:=AbelianInvariants(G);D
@gapprompt|gap>D @gapinput|A:=Filtered(A,x->not x=0);D
@gapprompt|gap>D @gapinput|return [Norm(Q,x),1.0*Log(Product(Filtered(AbelianInvariants(G),i->not i=0)),10)/(Loge*Norm(I))];D
@gapprompt|gap>D @gapinput|end;D
@gapprompt|gap>D @gapinput|#########################################D
@gapprompt|gap>D @gapinput|S:=List(PP{[9..267]},ffn);D
@gapprompt|gap>D @gapinput|ScatterPlot(S);D
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Fundamental domains for Bianchi groups}}\logpage{[ 14, 0, 0 ]}
\hyperdef{L}{X805848868005D528}{}
{
\section{\textcolor{Chapter }{Bianchi groups}}\logpage{[ 14, 1, 0 ]}
\hyperdef{L}{X858B1B5D8506FE81}{}
{
The \emph{Bianchi groups} are the groups $G_{-d}=PSL_2({\cal O}_{-d})$ where $d$ is a square free positive integer and ${\cal O}_{-d}$ is the ring of integers of the imaginary quadratic field $\mathbb Q(\sqrt{-d})$. These groups act on \emph{upper\texttt{\symbol{45}}half space}
\[{\frak h}^3 =\{(z,t) \in \mathbb C\times \mathbb R\ |\ t > 0\} \]
by the formula
\[\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \
\left(a(z+tj)+b\right)\left(c(z+tj)+d\right)^{-1}\ \]
where we use the symbol $j$ satisfying $j^2=-1$, $ij=-ji$ and write $z+tj$ instead of $(z,t)$. Alternatively, the action is given by
\[\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \
\frac{(az+b)\overline{(cz+d) } + a\overline c t^2}{|cz +d|^2 + |c|^2t^2} \ +\
\frac{t}{|cz+d|^2+|c|^2t^2}\, j \ .\]
We take the boundary $\partial {\frak h}^3$ to be the Riemann sphere $\mathbb C \cup \infty$ and let $\overline{\frak h}^3$ denote the union of ${\frak h}^3$ and its boundary. The action of $G_{-d}$ extends to the boundary. The element $\infty$ and each element of the number field $\mathbb Q(\sqrt{-d})$ are thought of as lying in the boundary $\partial {\frak h}^3$ and are referred to as \emph{cusps}. Let $X$ denote the union of ${\frak h}^3$ with the set of cusps, $X={\frak h}^3 \cup \{\infty\} \cup \mathbb Q(\sqrt{-d})$. It follows from work of Bianchi and Humbert that the space $X$ admits the structure of a regular CW\texttt{\symbol{45}}complex (depending on $d$) for which the action of $G_{-d}$ on ${\frak h}^3$ extends to a cellular action on $X$ which permutes cells. Moreover, $G_{-d}$ acts transitively on the $3$\texttt{\symbol{45}}cells of $X$ and each $3$\texttt{\symbol{45}}cell has trivial stabilizer in $G_{-d}$. Details are provided in Richard Swan's paper \cite{swanB}.
We refer to the closure in $X$ of any one of these $3$\texttt{\symbol{45}}cells as a \emph{fundamental domain} for the action $G_{-d}$. Cohomology of $G_{-d}$ can be computed from a knowledge of the combinatorial structure of this
fundamental domain together with a knowledge of the stabilizer groups of the
cells of dimension $\le 2$. }
\section{\textcolor{Chapter }{Swan's description of a fundamental domain}}\logpage{[ 14, 2, 0 ]}
\hyperdef{L}{X872D22507F797001}{}
{
A pair $(a,b)$ of elements in ${\cal O}_{-d}$ is said to be \emph{unimodular} if the ideal generated by $a,b$ is the whole ring ${\cal O}_{-d}$ and $a\ne 0$. A unimodular pair can be represented by a hemisphere in $\overline{\frak h}^3$ with base centred at the point $b/a \in \mathbb C$ and of radius $|1/a|$. The radius is $\le 1$. Think of the points in ${\frak h}^3$ as lying strictly above $\mathbb C$. Let $B$ denote the space obtained by removing all such hemispheres from ${\frak h}^3$.
When $d \equiv 3 {\rm \ mod\ } 4$ let $F$ be the subspace of $\overline{\frak h}^3$ consisting of the points $x+iy+jt$ with $-1/2 \le x \le 1/2$, $-1/4 \le y \le 1/4$, $t \ge 0$. Otherwise, let $F$ be the subspace of $\overline{\frak h}^3$ consisting of the points $x+iy+jt$ with $-1/2 \le x \le 1/2$, $-1/2 \le y \le 1/2$, $t \ge 0$.
It is explained in \cite{swanB} that $F\cap B$ is a $3$\texttt{\symbol{45}}cell in the above mentioned regular
CW\texttt{\symbol{45}}complex structure on $X$. }
\section{\textcolor{Chapter }{Computing a fundamental domain}}\logpage{[ 14, 3, 0 ]}
\hyperdef{L}{X7B9DE54F7ECB7E44}{}
{
Explicit fundamental domains for certain values of $d$ were calculated by Bianchi in the 1890s and further calculations were made by
Swan in 1971 \cite{swanB}. In the 1970s, building on Swan's work, \href{https://www.sciencedirect.com/science/article/pii/S0723086913000042} {Robert Riley} developed a computer program for computing fundamental domains of certain
Kleinian groups (including Bianchi groups). In their 2010 PhD theses \href{https://theses.hal.science/tel-00526976/en/} {Alexander Rahm} and \href{https://wrap.warwick.ac.uk/id/eprint/35128/} {M.T. Aranes} independently developed Pari/GP and Sage software based on Swan's ideas. In
2011 \href{https://mathstats.uncg.edu/sites/yasaki/publications/bianchipolytope.pdf} {Dan Yasaki} used a different approach based on Voronoi's theory of perfect forms in his
Magma software for fundamental domains of Bianchi groups. \href{http://www.normalesup.org/~page/Recherche/Logiciels/logiciels-en.html} {Aurel Page} developed software for fundamental domains of Kleinian groups in his 2010
masters thesis. In 2018 \href{https://github.com/schoennenbeck/VMH-DivisionAlgebras} {Sebastian Schoennenbeck} used a more general approach based on perfect forms in his Magma software for
computing fundamental domains of Bianchi and other groups. Output from the
code of Alexander Rahm and Sebastian Schoennenbeck for certain Bianchi groups
has been stored iin \textsc{HAP} for use in constructing free resolutions.
More recently a \textsc{GAP} implementation of Swan's algorithm has been included in \textsc{HAP}. The implementation uses exact computations in $\mathbb Q(\sqrt{-d})$ and in $\mathbb Q(\sqrt{d})$. A bespoke implementation of these two fields is part of the implementation
so as to avoid making apparently slower computations with cyclotomic numbers.
The account of Swan's algorithm in the thesis of Alexander Rahm was the main
reference during the implementation. }
\section{\textcolor{Chapter }{Examples}}\logpage{[ 14, 4, 0 ]}
\hyperdef{L}{X7A489A5D79DA9E5C}{}
{
The fundamental domain $D=\overline{F \cap B}$ (where the overline denotes closure) has boundary $\partial D$ involving the four vertical quadrilateral $2$\texttt{\symbol{45}}cells contained in the four vertical quadrilateral $2$\texttt{\symbol{45}}cells of $\partial F$. We refer to these as the \emph{vertical $2$\texttt{\symbol{45}}cells} of $D$. When visualizing $D$ we ignore the $3$\texttt{\symbol{45}}cell and the four vertical $2$\texttt{\symbol{45}}cells entirely and visualize only the remaining $2$\texttt{\symbol{45}}cells. These $2$\texttt{\symbol{45}}cells can be viewed as a $2$\texttt{\symbol{45}}dimensional image by projecting them onto the complex
plane, or they can be viewed as an interactive $3$\texttt{\symbol{45}}dimensional image.
A fundamental domain for $G_{-39}$ can be visualized using the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=BianchiPolyhedron(-39);|
3-dimensional Bianchi polyhedron over OQ( Sqrt(-39) )
involving hemispheres of minimum squared radius 1/39
and non-cuspidal vertices of minimum squared height 1/49 .
!gapprompt@gap>| !gapinput@Display3D(D);;|
!gapprompt@gap>| !gapinput@Display2D(D);;|
\end{Verbatim}
A \emph{cusp vertex} of $D$ is any vertex of $D$ lying in $\mathbb C \cup \infty$. In the above visualizations for $G_{-39}$ several cusp vertices in $\mathbb C$ are : in the 2\texttt{\symbol{45}}dimensional visualization they are
represented by red dots. Computer calculations show that these cusps lie in
precisely three orbits under the action of $G_{-d}$. Thus, together with the orbit of $\infty$ there are four distinct orbits of cusps. By the well\texttt{\symbol{45}}known
correspondence between cusp orbits and elements of the class group it follows
that the class group of $\mathbb Q(\sqrt{-39})$ is of order $4$.
The following additional commands comvert the Bianchi polyhedron $D$ to a regular CW\texttt{\symbol{45}}complex and then display its $1$\texttt{\symbol{45}}skeleton.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=BianchiPolyhedron(-39);;|
!gapprompt@gap>| !gapinput@Y:=RegularCWComplex(D);|
Regular CW-complex of dimension 2
!gapprompt@gap>| !gapinput@Display(GraphOfRegularCWComplex(Y));|
\end{Verbatim}
A fundamental domain for $G_{-22}$ can be visualized using the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=BianchiPolyhedron(-22);;|
!gapprompt@gap>| !gapinput@Display3D(OQ,D);;|
!gapprompt@gap>| !gapinput@Display2D(OQ,D);;|
\end{Verbatim}
Two cusps are visible in the visualizations for $G_{-22}$. They lie in a single orbit. Thus, together with the orbit of $\infty$, there are two orbits of cusps for this group.
A fundamental domain for $G_{-163}$ can be visualized using the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=BianchiPolyhedron(-163);;|
!gapprompt@gap>| !gapinput@Display3D(OQ,D);;|
!gapprompt@gap>| !gapinput@Display2D(OQ,D);;|
\end{Verbatim}
There is just a single orbit of cusps in this example, the orbit containing $\infty$, since $\mathbb Q(\sqrt{-163})$ is a principal ideal domain and hence has trivial class group.
A fundamental domain for $G_{-33}$ is visualized using the following commands.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@D:=BianchiPolyhedron(-33);;|
!gapprompt@gap>| !gapinput@Display3D(OQ,D);;|
!gapprompt@gap>| !gapinput@Display2D(OQ,D);;|
\end{Verbatim}
}
\section{\textcolor{Chapter }{Establishing correctness of a fundamental domain}}\logpage{[ 14, 5, 0 ]}
\hyperdef{L}{X86CD59CB7A04EE5A}{}
{
The cusps of a fundamental domain can be calculated independently of the
domain computation. The remaining vertices of the domain will have positive
heights. To prove that the computation is correct we need to establish that no
non\texttt{\symbol{45}}cuspidal vertex lies below any hemishpere centered on
the complex plane at $b/a\in \mathbb C$ with $(a,b)$ a unimodular pair. As these hemispheres have increasingly smaller radius we
only need to check those finitely many hemispheres with radius smaller than
the height of the lowest non\texttt{\symbol{45}}cuspidal vertex.
For a few values of $d$ the smallest radius $r$ of a hemisphere contributing to the fundamental domain boundary has been
stored. For cases where this smallest radius is not stored a very slow method
for finding $r$ is implemented and the user is advised to speed things up by guessiing a value $N=1/r^2$ and then test that this value of $N$ is indeed large enough. The following commands illustrate this for $d=-46$ with a guess of $N=600$. Once the test is done we can see that in fact a smaller guess of $N=441$ would have sufficed.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@P:=BianchiPolyhedron(-46);|
Try
P:=BianchiPolyhedron(OQ,N);
for some guessed positive integer value of N and then try
SwanBianchiCriterion(P);
to test if the value of N was large enough. If the test returns false then you\
'll need to try a larger value of N.
A successful value of N can be stored as a pair [d,N] in the list HAPRECORD wh\
ich can be edited manually in the file hap/lib/Congruence/bianchi.gi .
!gapprompt@gap>| !gapinput@P:=BianchiPolyhedron(-46,600);|
3-dimensional Bianchi polyhedron over OQ( Sqrt(
-46) ) involving hemispheres of minimum squared radius 1/
441 and non-cuspidal vertices of minimum squared height 1/8280 .
!gapprompt@gap>| !gapinput@SwanBianchiCriterion(P);|
true
\end{Verbatim}
}
\section{\textcolor{Chapter }{Computing a free resolution for $SL_2({\mathcal O}_{-d})$}}\logpage{[ 14, 6, 0 ]}
\hyperdef{L}{X78476F127B73BBD1}{}
{
The above fundamental domains can be used to construct free resolutions for $SL_2({\mathcal O}_{-d})$ and $PSL_2({\mathcal O}_{-d})$. The following commands illustrate the computation of free resolutions for $SL_2({\mathcal O}_{-43})$ and $SL_2({\mathcal O}_{-10})$ and $SL_2({\mathcal O}_{-14})$ and their integral homology (which in each case is periodic of period dividing $4$ in degrees $\ge 3$). The computation of fundamental domains uses exact arithmetic in the two
field extensions $\mathbb Q(\sqrt{d})$ and $ \mathbb Q(\sqrt{-d})$.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=BianchiGcomplex(-43);;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(K,11);;|
!gapprompt@gap>| !gapinput@C:=TensorWithIntegers(R);;|
!gapprompt@gap>| !gapinput@List([0..10],n->Homology(C,n));|
[ [ 0 ], [ 0, 0 ], [ 2, 2, 12, 0 ], [ 2, 2, 24 ], [ 2, 2 ], [ 2 ],
[ 2, 2, 12 ], [ 2, 2, 24 ], [ 2, 2 ], [ 2 ], [ 2, 2, 12 ] ]
!gapprompt@gap>| !gapinput@K:=BianchiGcomplex(-10);;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(K,11);;|
!gapprompt@gap>| !gapinput@List([0..10],k->Homology(TensorWithIntegers(R),k));|
[ [ 0 ], [ 2, 2, 0, 0, 0 ], [ 2, 2, 2, 12, 0, 0 ], [ 2, 2, 2, 24 ],
[ 2, 4, 12 ], [ 2, 2, 2, 6 ], [ 2, 2, 2, 12 ], [ 2, 2, 2, 24 ],
[ 2, 4, 12 ], [ 2, 2, 2, 6 ], [ 2, 2, 2, 12 ] ]
!gapprompt@gap>| !gapinput@K:=BianchiGcomplex(-14);;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(K,11);;|
!gapprompt@gap>| !gapinput@List([0..10],k->Homology(TensorWithIntegers(R),k));|
[ [ 0 ], [ 6, 0, 0, 0, 0, 0 ], [ 2, 2, 2, 4, 12, 0, 0, 0, 0 ],
[ 2, 2, 2, 2, 24 ], [ 2, 2, 2, 4, 12 ], [ 2, 2, 2, 2, 24 ],
[ 2, 2, 2, 4, 12 ], [ 2, 2, 2, 2, 24 ], [ 2, 2, 2, 4, 12 ],
[ 2, 2, 2, 2, 24 ], [ 2, 2, 2, 4, 12 ] ]
\end{Verbatim}
The following commands count the number of orbits of cusps (in addition to the
orbit of $\infty$). They determine that there is precisely one element in the ideal class group
of ${\mathcal O}_{-43}$ (i.e it is a principal ideal domain) and that there are precisely two elements
in the ideal class group of ${\mathcal O}_{-10}$ and precisely four elements in the ideal class group of ${\mathcal O}_{-14}$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-43);;A
@gapprompt|gap>A @gapinput|List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));A
[ 24, 24, 6, 6, 4, 4, 12, 12 ]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-10);;A
@gapprompt|gap>A @gapinput|List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));A
[ 6, 6, 4, 4, 6, infinity ]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-14);;A
@gapprompt|gap>A @gapinput|List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));A
[ 6, 6, 2, 2, 2, infinity, infinity, 2, infinity, 6, 4 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Some sanity checks}}\logpage{[ 14, 7, 0 ]}
\hyperdef{L}{X784B2156823AEB15}{}
{
There is ample scope for bugs in the implementation of the above method for
computing resolutions of Bianchi groups. The following sanity checks lend
confidence to the implementation.
\subsection{\textcolor{Chapter }{Equivariant Euler characteristic}}\logpage{[ 14, 7, 1 ]}
\hyperdef{L}{X7E5A36D47F9D4A47}{}
{
Let $X$ be any cell complex with an action of a group $G$ such that (i) $X$ has finitely many $G$\texttt{\symbol{45}}orbits of cells, and (ii) the stabilizer subgroup in $G$ for each cell is either finite or free abelian. One defines the \emph{equivariant Euler characteristic} \$\$\texttt{\symbol{92}}chi{\textunderscore}G(X) =
\texttt{\symbol{92}}sum{\textunderscore}e
(\texttt{\symbol{45}}1)\texttt{\symbol{94}}\texttt{\symbol{123}}dim\texttt{\symbol{126}}
e\texttt{\symbol{125}} / |Stab{\textunderscore}G(e)|\$\$ where $e$ ranges over a set of representatives of the orbits of those cells with finite
stabilizers. If $G$ has a finite index torsion free subgroup and if the complex $X$ is contractible then one can define the Euler characteristic of the group to
be $\chi(G) = \chi_G(X)$. It is known that $\chi (SL_n({\mathcal O})) = \chi(GL_n({\mathcal O})) =0$ for $\mathcal O$ the ring of integers of a number field \cite{Gangl}.
One easy test to make in our computations is to check that the equivariant
Euler characteristic of the $2$\texttt{\symbol{45}}complex is indeed zero. The following commands perform
this test for the group $SL_2({\mathcal O}_{-23})$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-23);;A
@gapprompt|gap>A @gapinput|chi:=0;;A
@gapprompt|gap>A @gapinput|for n in [0..2] doA
@gapprompt|>A @gapinput|for k in [1..K!.dimension(n)] doA
@gapprompt|>A @gapinput|g:=Order(K!.stabilizer(n,k));A
@gapprompt|>A @gapinput|if g < infinity then chi:=chi + (-1)^n/g; fi;A
@gapprompt|>A @gapinput|od;od;A
@gapprompt|gap>A @gapinput|chi;A
0
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Boundary squares to zero}}\logpage{[ 14, 7, 2 ]}
\hyperdef{L}{X852CDAFF84C5DF01}{}
{
The signs in the boundary maps of the free resolution are delicate. Another
easy test is to check that the boundary in the resolution squares to zero. The
following commands perform this check for the group $SL_2({\mathcal O}_{-23})$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-23);;A
@gapprompt|gap>A @gapinput|R:=FreeGResolution(K,10);;A
@gapprompt|gap>A @gapinput|n:=2;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));A
[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ] ]
@gapprompt|gap>A @gapinput|n:=3;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));A
[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ] ]
@gapprompt|gap>A @gapinput|n:=4;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));A
[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ] ]
@gapprompt|gap>A @gapinput|n:=5;;List([1..R!.dimension(n)],k->ResolutionBoundaryOfWord(R,n-1,R!.boundary(n,k)));A
[ [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ], [ ],
[ ], [ ], [ ] ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Compare different algorithms or implementations}}\logpage{[ 14, 7, 3 ]}
\hyperdef{L}{X7E64819A7C058EDD}{}
{
Sebastian Schoennenbeck in his thesis work computed some contractible $2$\texttt{\symbol{45}}complexes on which Bianchi groups act with finite
stabilizers (even when the ideal class is greater than $1$) using a different approach to that of Swan. These computed complexes are
stored in \textsc{HAP} and provide an alternative way of computing cohomology for the stored groups.
Alexander Rahm in his thesis work implemented Swan's approach and has provided
some $2$\texttt{\symbol{45}}complexes that are also stored in \textsc{HAP} in cases where the ideal class is equal to $1$.
The following commands test that Sebastian Schoennenbeck's $2$\texttt{\symbol{45}}complex for $SL_2({\mathcal O}_{-23})$ yields the same integral homology as the above \textsc{HAP} implementation. Both computations use \textsc{HAP}'s implementation of Wall's perturbation technique for computing the
resolution from the $2$\texttt{\symbol{45}}complex.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@K:=ContractibleGcomplex("SL(2,O-23)");;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(K,10);;|
!gapprompt@gap>| !gapinput@List([0..9],n->Homology(TensorWithIntegers(R),n));|
[ [ 0 ], [ 12, 0, 0, 0 ], [ 2, 2, 12, 0, 0 ], [ 2, 2, 12 ], [ 2, 2, 12 ],
[ 2, 2, 12 ], [ 2, 2, 12 ], [ 2, 2, 12 ], [ 2, 2, 12 ], [ 2, 2, 12 ] ]
!gapprompt@gap>| !gapinput@K:=BianchiGcomplex(-23);;|
!gapprompt@gap>| !gapinput@R:=FreeGResolution(K,10);;|
!gapprompt@gap>| !gapinput@List([0..9],n->Homology(TensorWithIntegers(R),n));|
[ [ 0 ], [ 12, 0, 0, 0 ], [ 2, 2, 12, 0, 0 ], [ 2, 2, 12 ], [ 2, 2, 12 ],
[ 2, 2, 12 ], [ 2, 2, 12 ], [ 2, 2, 12 ], [ 2, 2, 12 ], [ 2, 2, 12 ] ]
\end{Verbatim}
}
\subsection{\textcolor{Chapter }{Compare geometry to algebra}}\logpage{[ 14, 7, 4 ]}
\hyperdef{L}{X8223864085412705}{}
{
The number of cusps (i.e. the number of orbits of vertices with infinite
stabilizer subgroup) must be precisely one less than the number of elements in
the ideal class group of ${\mathcal O}_{-d}$. The following commands check this for $SL_2({\mathcal O}_{-23})$ where ${\mathcal O}_{-23}$ is known to have class number 3. (This class number is easily computed from a
formula in Swan's paper.)
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-23);;A
@gapprompt|gap>A @gapinput|List([1..K!.dimension(0)],k->Order(K!.stabilizer(0,k)));A
[ 6, 2, 2, 4, infinity, infinity ]
\end{Verbatim}
A visualization of the fundamental domain tells us a certain amount about the
algebra. In the case of $SL_2({\mathcal O}_{-23})$
a fundamental domain for the action on $\mathbb C$ by the translation subgroup generated by the matrices \$\$
\texttt{\symbol{92}}left(\texttt{\symbol{92}}begin\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{123}}ll\texttt{\symbol{125}}
1 \&1\texttt{\symbol{92}}\texttt{\symbol{92}} 0
\&1\texttt{\symbol{92}}end\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{92}}right),
\texttt{\symbol{92}}left(\texttt{\symbol{92}}begin\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{123}}ll\texttt{\symbol{125}}
1 \&\texttt{\symbol{92}}omega\texttt{\symbol{92}}\texttt{\symbol{92}} 0
\&1\texttt{\symbol{92}}end\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{92}}right)
\$\$ $\omega = (1+\sqrt{-23})/2$ is indicated by the white rectangle. From this we see that under the action of $SL_2({\mathcal O}_{-23})$ there are at most $11$ orbits of $2$\texttt{\symbol{45}}cells, the central decagon and ten quadrilaterals.
However, the matrix \$\$
\texttt{\symbol{92}}left(\texttt{\symbol{92}}begin\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{123}}rr\texttt{\symbol{125}}
0 \&\texttt{\symbol{45}}1\texttt{\symbol{92}}\texttt{\symbol{92}} 1
\&0\texttt{\symbol{92}}end\texttt{\symbol{123}}array\texttt{\symbol{125}}\texttt{\symbol{92}}right)
\$\$ maps $(z,0)$ to $(-1/z,0)$ and fixes $(0,1)$. This isometry identifies points on the boundary of the decagon pairwise.
These observations are consistent with the above listing of the six orbit
stabilizers and the following algebraic information on the boundaries of the $2$\texttt{\symbol{45}}cells in the Bianchi $2$\texttt{\symbol{45}}complex.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-23);;A
@gapprompt|gap>A @gapinput|List([1..K!.dimension(2)],k->Length(K!.boundary(2,k)));A
[ 10, 4, 4, 4, 4, 4 ]
\end{Verbatim}
}
}
\section{\textcolor{Chapter }{Group presentations}}\logpage{[ 14, 8, 0 ]}
\hyperdef{L}{X78BC9D077956089A}{}
{
Swan's reason for studying fundamental domains was to obtain explicit group
presentations for $SL_2({\mathcal O}_{-d})$ for various values of $d$. The following commands obtain a presentation for $SL_2({\mathcal O}_{-23})$.
\begin{Verbatim}[commandchars=@|A,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>A @gapinput|K:=BianchiGcomplex(-23);;A
@gapprompt|gap>A @gapinput|R:=FreeGResolution(K,2);;A
@gapprompt|gap>A @gapinput|P:=PresentationOfResolution(R);A
@gapprompt|gap>A @gapinput|G:=SimplifiedFpGroup(P!.freeGroup/P!.relators);A
<fp group on the generators [ k, r, s, w, x ]>
@gapprompt|gap>A @gapinput|RelatorsOfFpGroup(G);A
[ w^-1*k*w*k^-1, s^-1*r*s*r^-1, k^6, x^-1*k^-3*x*k^-3, s^-1*k^-3*s*k^-3,
r^-1*w*x^-1*s*r*w^-1*x*s^-1, r^-1*k^-3*r*k^-3,
x*k^-2*r^-1*x*r^-1*s^-1*k^-1*s^-1, x^-1*k^3*s*r*x^-1*s*r ]
@gapprompt|gap>A @gapinput|#Next we identify the generators as matricesA
@gapprompt|gap>A @gapinput|GeneratorsOfGroup(P!.freeGroup);A
[ k, m, n, p, q, r, s, t, u, v, w, x, y, z ]
@gapprompt|gap>A @gapinput|P!.gens;A
[ 19, 6, 6, 20, 6, 21, 22, 6, 52, 53, 2, 50, 1, 4 ]
@gapprompt|gap>A @gapinput|k:=R!.elts[19];A
[ [ 1, 1 ],
[ -1, 0 ] ]
@gapprompt|gap>A @gapinput|r:=R!.elts[21];A
[ [ 3, 3 + -1 Sqrt(-23) ],
[ -3/2 + -1/2 Sqrt(-23), -5 ] ]
@gapprompt|gap>A @gapinput|s:=R!.elts[22];A
[ [ 2 + 1 Sqrt(-23), 13/2 + 1/2 Sqrt(-23) ],
[ 5/2 + -1/2 Sqrt(-23), -1 Sqrt(-23) ] ]
@gapprompt|gap>A @gapinput|w:=R!.elts[2];A
[ [ 3/2 + 1/2 Sqrt(-23), -3/2 + 1/2 Sqrt(-23) ],
[ 3/2 + -1/2 Sqrt(-23), 3 ] ]
@gapprompt|gap>A @gapinput|x:=R!.elts[50];A
[ [ 11/2 + 1/2 Sqrt(-23), 15/2 + -1/2 Sqrt(-23) ],
[ -1 Sqrt(-23), -4 + -1 Sqrt(-23) ] ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Finite index subgroups}}\logpage{[ 14, 9, 0 ]}
\hyperdef{L}{X786CFAA17C0A6E7A}{}
{
The following commands compute the integral homology of a congruence subgroup $G$ of index 24 in $SL_2({\mathcal O}_{-23})$. They also compute a presentation for $G$ with 13 generators and 24 relators.
\begin{Verbatim}[commandchars=@|D,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>D @gapinput|OQ:=RingOfIntegers(QuadraticNumberField(-23));;D
@gapprompt|gap>D @gapinput|I:=QuadraticIdeal(OQ,[Sqrt(-23)]);D
ideal of norm 23 in O(Q(Sqrt(-23)))
@gapprompt|gap>D @gapinput|G:=HAP_CongruenceSubgroupGamma0(I);D
<group of 2x2 matrices in characteristic 0>
@gapprompt|gap>D @gapinput|IndexInSL2O(G);D
24
@gapprompt|gap>D @gapinput|K:=BianchiGcomplex(-23);;D
@gapprompt|gap>D @gapinput|R:=FreeGResolution(K,11);;D
@gapprompt|gap>D @gapinput|R:=QuadraticToCyclotomicCoefficients(R);;D
@gapprompt|gap>D @gapinput|S:=ResolutionFiniteSubgroup(R,G);;D
@gapprompt|gap>D @gapinput|List([0..10],n->Homology(TensorWithIntegers(S),n));D
[ [ 0 ], [ 2, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0 ], [ 2, 2, 2, 2, 2, 2, 2, 2 ],
[ 2, 2, 2, 2, 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2, 2, 2, 2 ],
[ 2, 2, 2, 2, 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2, 2, 2, 2 ],
[ 2, 2, 2, 2, 2, 2, 2, 2 ], [ 2, 2, 2, 2, 2, 2, 2, 2 ],
[ 2, 2, 2, 2, 2, 2, 2, 2 ] ]
@gapprompt|gap>D @gapinput|P:=PresentationOfResolution(S);;D
@gapprompt|gap>D @gapinput|H:=SimplifiedFpGroup(P!.freeGroup/P!.relators);D
<fp group on the generators [ f8, f10, f15, f70, f86, f125, f132, f138, f182,
f187, f191, f273, f279 ]>
@gapprompt|gap>D @gapinput|Length(RelatorsOfFpGroup(H));D
24
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Parallel computation}}\logpage{[ 15, 0, 0 ]}
\hyperdef{L}{X7F571E8F7BBC7514}{}
{
\section{\textcolor{Chapter }{An embarassingly parallel computation}}\logpage{[ 15, 1, 0 ]}
\hyperdef{L}{X7EAE286B837D27BA}{}
{
The following example creates fifteen child processes and uses them
simultaneously to compute the second integral homology of each of the $2328$ groups of order $128$. The final command shows that
$H_2(G,\mathbb Z)=\mathbb Z_2^{21}$
for the $2328$\texttt{\symbol{45}}th group $G$ in \textsc{GAP}'s library of small groups. The penulimate command shows that the parallel
computation achieves a speedup of 10.4 .
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@Processes:=List([1..15],i->ChildProcess());;|
!gapprompt@gap>| !gapinput@fn:=function(i);return GroupHomology(SmallGroup(128,i),2);end;;|
!gapprompt@gap>| !gapinput@for p in Processes do|
!gapprompt@>| !gapinput@ChildPut(fn,"fn",p);|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@Exec("date +%s");L:=ParallelList([1..2328],"fn",Processes);;Exec("date +%s");|
1716105545
1716105554
!gapprompt@gap>| !gapinput@Exec("date +%s");L1:=List([1..2328],fn);;Exec("date +%s");|
1716105586
1716105680
!gapprompt@gap>| !gapinput@speedup:=1.0*(680-586)/(554-545);|
10.4444
!gapprompt@gap>| !gapinput@L[2328];|
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
\end{Verbatim}
The function \texttt{ParallelList()} is built from \textsc{HAP}'s six core functions for parallel computation. }
\section{\textcolor{Chapter }{A non\texttt{\symbol{45}}embarassingly parallel computation}}\logpage{[ 15, 2, 0 ]}
\hyperdef{L}{X80F359DD7C54D405}{}
{
The following commands use core functions to compute the product $A=M\times N$ of two random matrices by distributing the work over two processors.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=RandomMat(10000,10000);;|
!gapprompt@gap>| !gapinput@N:=RandomMat(10000,10000);;|
!gapprompt@gap>| !gapinput@|
!gapprompt@gap>| !gapinput@s:=ChildProcess();;|
!gapprompt@gap>| !gapinput@|
!gapprompt@gap>| !gapinput@Exec("date +%s");|
1716109418
!gapprompt@gap>| !gapinput@Mtop:=M{[1..5000]};;|
!gapprompt@gap>| !gapinput@Mbottom:=M{[5001..10000]};;|
!gapprompt@gap>| !gapinput@ChildPut(Mtop,"Mtop",s);|
!gapprompt@gap>| !gapinput@ChildPut(N,"N",s);|
!gapprompt@gap>| !gapinput@NextAvailableChild([s]);;|
!gapprompt@gap>| !gapinput@ChildCommand("Atop:=Mtop*N;;",s);;|
!gapprompt@gap>| !gapinput@Abottom:=Mbottom*N;;|
!gapprompt@gap>| !gapinput@A:=ChildGet("Atop",s);;|
!gapprompt@gap>| !gapinput@Append(A,Abottom);;|
!gapprompt@gap>| !gapinput@Exec("date +%s");|
1716110143
!gapprompt@gap>| !gapinput@AA:=M*N;;Exec("date +%s");|
1716111389
!gapprompt@gap>| !gapinput@speedup:=1.0*(111389-110143)/(110143-109418);|
1.71862
\end{Verbatim}
The next commands compute the product $A=M\times N$ of two random matrices by distributing the work over fifteen processors. The
parallelization is very naive (the entire matrices $M$ and $N$ are communicated to all processes) and the computation achieves a speedup of
7.6.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@M:=RandomMat(15000,15000);;|
!gapprompt@gap>| !gapinput@N:=RandomMat(15000,15000);;|
!gapprompt@gap>| !gapinput@S:=List([1..15],i->ChildCreate());;|
!gapprompt@gap>| !gapinput@Exec("date +%s");|
1716156583
!gapprompt@gap>| !gapinput@ChildPutObj(M,"M",S);|
!gapprompt@gap>| !gapinput@ChildPutObj(N,"N",S);|
!gapprompt@gap>| !gapinput@for i in [1..15] do|
!gapprompt@>| !gapinput@cmd:=Concatenation("A:=M{[1..1000]+(",String(i),"-1)*1000}*N;");|
!gapprompt@>| !gapinput@ChildCommand(cmd,S[i]);|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@A:=[];;|
!gapprompt@gap>| !gapinput@for i in [1..15] do|
!gapprompt@>| !gapinput@ C:=ChildGet("A",S[i]);|
!gapprompt@>| !gapinput@ Append(A,C);|
!gapprompt@>| !gapinput@od;|
!gapprompt@gap>| !gapinput@Exec("date +%s");|
1716157489
!gapprompt@gap>| !gapinput@AA:=M*N;;Exec("date +%s");|
1716164405
!gapprompt@gap>| !gapinput@speedup:=1.0*(64405-57489)/(57489-56583);|
7.63355
\end{Verbatim}
}
\section{\textcolor{Chapter }{Parallel persistent homology}}\logpage{[ 15, 3, 0 ]}
\hyperdef{L}{X8496786F7FCEC24A}{}
{
Section \ref{secAltPersist} illustrates an alternative method of computing the persitent Betti numbers of
a filtered pure cubical complex. The method lends itself to parallelisation.
However, the following parallel computation of persistent Betti numbers
achieves only a speedup of $1.5$ due to a significant time spent transferring data structures between
processes. On the other hand, the persistent Betti function could be used to
distribute computations over several computers. This might be useful for
larger computations that require significant memory resources.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@file:=HapFile("data247.txt");;|
!gapprompt@gap>| !gapinput@Read(file);;|
!gapprompt@gap>| !gapinput@F:=ThickeningFiltration(T,25);;|
!gapprompt@gap>| !gapinput@S:=List([1..15],i->ChildCreate());;|
!gapprompt@gap>| !gapinput@N:=[0,1,2];;|
!gapprompt@gap>| !gapinput@Exec("date +%s");P:=ParallelPersistentBettiNumbers(F,N,S);;Exec("date +%s");|
1717160785
1717161285
!gapprompt@gap>| !gapinput@Exec("date +%s");Q:=PersistentBettiNumbersAlt(F,N);;Exec("date +%s");|
1717161528
1717162276
!gapprompt@gap>| !gapinput@speedup:=1.0*(1717162276-1717161528)/(1717161285-1717160785);|
1.496
\end{Verbatim}
}
}
\chapter{\textcolor{Chapter }{Regular CW\texttt{\symbol{45}}structure on knots (written by Kelvin Killeen)}}\logpage{[ 16, 0, 0 ]}
\hyperdef{L}{X7C57D4AB8232983E}{}
{
\section{\textcolor{Chapter }{Knot complements in the 3\texttt{\symbol{45}}ball}}\logpage{[ 16, 1, 0 ]}
\hyperdef{L}{X86F56A85848347FF}{}
{
While methods for endowing knot complements with
CW\texttt{\symbol{45}}structure already exist in HAP (see section 2.1), they
often result in a large number of cells which can make computing with them
taxing. The following example shows how one can obtain a comparatively small
3\texttt{\symbol{45}}dimensional regular CW\texttt{\symbol{45}}complex
corresponding to the complement of a thickened trefoil knot from an arc
presentation. Recall that an arc presentation is encoded in HAP as a list of
integer pairs corresponding to the position of the endpoints of each
horizontal arc in a grid.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@k_:=PureCubicalKnot(3,1); |
prime knot 1 with 3 crossings
!gapprompt@gap>| !gapinput@arc:=ArcPresentation(k_); |
[ [ 2, 5 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 4 ] ]
!gapprompt@gap>| !gapinput@k_:=RegularCWComplex(PureComplexComplement(k_));|
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@Size(k_);|
13291
!gapprompt@gap>| !gapinput@k:=KnotComplement(arc); |
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@Size(k);|
395
\end{Verbatim}
An optional argument of \texttt{"rand"} in the \texttt{KnotComplement} function randomises the order in which $2$\texttt{\symbol{45}}cells are added to the complex. This allows for alternate
presentations of the knot group.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@arc:=ArcPresentation(PureCubicalKnot(3,1));|
[ [ 2, 5 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 4 ] ]
!gapprompt@gap>| !gapinput@k:=KnotComplement(arc,"rand");|
Random 2-cell selection is enabled.
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@g:=FundamentalGroup(k); RelatorsOfFpGroup(g); |
#I there are 2 generators and 1 relator of total length 6
<fp group of size infinity on the generators [ f1, f2 ]>
[ f2^-1*f1*f2^-1*f1^-1*f2*f1^-1 ]
!gapprompt@gap>| !gapinput@k:=KnotComplement(arc,"rand"); |
Random 2-cell selection is enabled.
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@g:=FundamentalGroup(k); RelatorsOfFpGroup(g);|
#I there are 2 generators and 1 relator of total length 7
<fp group of size infinity on the generators [ f1, f2 ]>
[ f1*f2^-2*f1*f2*f1^-1*f2 ]
\end{Verbatim}
It is often useful to obtain an inclusion of regular
CW\texttt{\symbol{45}}complexes $\iota : \partial (N(K)) \hookrightarrow B^3 \backslash N(K)$ from the boundary of a tubular neighbourhood of some knot $N(K)$ into its complement in the $3$\texttt{\symbol{45}}ball $B^3 \backslash N(K)$. The below example does this for the first prime knot on 11 crossings.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@arc:=ArcPresentation(PureCubicalKnot(11,1));|
[ [ 2, 9 ], [ 1, 3 ], [ 2, 6 ], [ 4, 7 ], [ 3, 5 ], [ 6, 10 ], [ 4, 8 ],
[ 9, 11 ], [ 7, 10 ], [ 1, 8 ], [ 5, 11 ] ]
!gapprompt@gap>| !gapinput@k:=KnotComplementWithBoundary(arc);|
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@Size(Source(i));|
616
!gapprompt@gap>| !gapinput@Size(Target(i));|
1043
\end{Verbatim}
Note that we can add $n$\texttt{\symbol{45}}cells to regular CW\texttt{\symbol{45}}complexes by
specifying the $(n-1)$\texttt{\symbol{45}}cells in their boundaries and $(n+1)$\texttt{\symbol{45}}cells in their coboundaries.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|k:=KnotComplement([[1,2],[1,2]])!.boundaries;;B
@gapprompt|gap>B @gapinput|Homology(RegularCWComplex(k),0);B
[ 0 ]
@gapprompt|gap>B @gapinput|AddCell(k,0,[0],[]); B
@gapprompt|gap>B @gapinput|Homology(RegularCWComplex(k),0);B
[ 0, 0 ]
\end{Verbatim}
}
\section{\textcolor{Chapter }{Tubular neighbourhoods}}\logpage{[ 16, 2, 0 ]}
\hyperdef{L}{X83EA2A38801E7A4C}{}
{
Let $Y$ denote a CW\texttt{\symbol{45}}subcomplex of a regular
CW\texttt{\symbol{45}}complex $X$ and let $N(Y)$ denote an open tubular neighbourhood of $Y$. Given an inclusion of regular CW\texttt{\symbol{45}}complexes $f : Y \hookrightarrow X$, this algorithm describes a procedure for obtaining the associated inclusion $f' : \partial C \hookrightarrow C$ where $C=X \backslash N(Y)$ and $\partial C$ denotes the boundary of $C$. The following is also assumed:
Let $e^n$ denote a cell of $X \backslash Y$ of dimension $n$ with $\bar{e}^n$ denoting its closure. For each $n$\texttt{\symbol{45}}cell, all of the connected components of the subcomplex $\bar{e}^n \cap Y$ are contractible.
Some additional terminology and notation is needed to describe this algorithm.
The output regular CW\texttt{\symbol{45}}complex $X \backslash N(Y)$ consists of the cell complex $X \backslash Y$ as well as some additional cells to maintain regularity. A cell of $ X \backslash N(Y)$ is referred to as \emph{internal} if it lies in $X \backslash Y$, it is \emph{external} otherwise. Let $\bar{e}^n$ denote the closure in $X$ of an internal cell $e^n$. Note that $\bar{e}^n$ is a CW\texttt{\symbol{45}}subcomplex of $X$ and so is the intersection $\bar{e}^n \cap Y$ which can be expressed as the union
$\bar{e}^n \cap Y = A_1 \cup A_2 \cup \cdots \cup A_k$
of its path components $A_i$ all of which are CW\texttt{\symbol{45}}subcomplexes of $Y$. For each $n$\texttt{\symbol{45}}cell of $X \backslash Y$ there is one internal $n$\texttt{\symbol{45}}cell $e^n$ of $X \backslash N(Y)$. For $n \geq 1$ there is also one external $(n-1)$\texttt{\symbol{45}}cell $f^{e^n}_{A_i}$ for each path component $A_i$ of $\bar{e}^n \cap Y$. Lastly, we need a method for determining the homological boundary of the
internal and external cells:
$\bullet$ The boundary of an internal $n$\texttt{\symbol{45}}cell $e^n$ consists of all those internal $(n-1)$\texttt{\symbol{45}}cells of $\bar{e}^n$ together with all external $(n-1)$\texttt{\symbol{45}}cells $f^{e^n}_{A_i}$ where $A_i$ is a path component of $\bar{e}^n \cap Y$.
$\bullet$ The boundary of an external $(n-1)$\texttt{\symbol{45}}cell $f^{e^n}_{A_i}$ consists of all those external $(n-2)$\texttt{\symbol{45}}cells $f^{e^{n-1}}_{B_j}$ where $e^{n-1}$ is an $(n-1)$\texttt{\symbol{45}}cell of $\bar{e}^n$ and $B_j \subseteq A_i$ is a path component of $A_i$.
The following three steps comprise the algorithm.
$(1)$ For each internal $n$\texttt{\symbol{45}}cell $e^n \subset X \backslash Y$, compute the CW\texttt{\symbol{45}}complex $\bar{e}^n \cap Y$ as a union of path components $A_1 \cup A_2 \cup \cdots \cup A_k$. This information can be used to determine the number of cells of $X \backslash N(Y)$ in each dimension.
$(2)$ Create a list $B=[ \; [ \; \; ], [ \; \; ], \ldots, [ \; \; ] \; ]$ of length $\textrm{dim}X +1$.
$(3)$ For $0 \leq n \leq \textrm{dim}X$ set $B[n+1]=[ b_1, b_2, \ldots, b_{\alpha_n} ]$ where $\alpha_n$ is the number of $n$\texttt{\symbol{45}}cells in $X \backslash N(Y)$ and $b_i$ is a list of integers describing the $(n-1)$\texttt{\symbol{45}}cells of the $i ^ \textrm{th}$ $n$\texttt{\symbol{45}}cell of $X \backslash N(Y)$. The internal cells will always be listed before the external cells in each
sublist. Return B as a regular CW\texttt{\symbol{45}}complex.
The following example computes the tubular neighbourhood of a $1$\texttt{\symbol{45}}dimensional subcomplex of a $3$\texttt{\symbol{45}}dimensional complex corresponding to the Hopf link
embedded in the closed $3$\texttt{\symbol{45}}ball.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@arc:=[[2,4],[1,3],[2,4],[1,3]];; |
!gapprompt@gap>| !gapinput@f:=ArcPresentationToKnottedOneComplex(arc);|
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@comp:=RegularCWComplexComplement(f);|
Testing contractibility...
151 out of 151 cells tested.
The input is compatible with this algorithm.
Regular CW-complex of dimension 3
\end{Verbatim}
Note that the output of this algorithm is just a regular
CW\texttt{\symbol{45}}complex, not an inclusion map. The function \texttt{BoundaryMap} can be employed to obtain the boundary of a pure complex. This results in
three path components for this example: two corresponding to the boundary of
the knotted tori and the other corresponding to the boundary of the $3$\texttt{\symbol{45}}ball in which the link was embedded. These path components
can be obtained as individual CW\texttt{\symbol{45}}subcomplexes if desired. A
CW\texttt{\symbol{45}}subcomplex is represented in HAP as a list $[X,s]$ where $X$ is a regular CW\texttt{\symbol{45}}complex and $s$ is a list of length $n$ whose $i^\textrm{th}$ entry lists the indexing of each $(i-1)$\texttt{\symbol{45}}cell of the $n$\texttt{\symbol{45}}dimensional subcomplex of $X$. CW\texttt{\symbol{45}}subcomplexes and CW maps can be converted between each
other interchangeably. This next example obtains the inclusion detailed in the
above algorithm, finds the path components of the source of said inclusion,
shows that they are in fact disjoint, and then obtains the first four integral
homology groups of each component.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@f_:=BoundaryMap(comp);|
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@f_:=RegularCWMapToCWSubcomplex(f_);;|
!gapprompt@gap>| !gapinput@paths:=PathComponentsCWSubcomplex(f_);|
[ [ Regular CW-complex of dimension 3
,
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 20 ],
[ 1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 33, 34, 35, 46, 47, 48
], [ 11, 12, 13, 14, 15, 16, 35, 36 ] ] ],
[ Regular CW-complex of dimension 3
, [ [ 21, 24, 25, 27, 30, 31, 32, 37, 38, 39, 40, 43, 45, 46, 48 ],
[ 49, 51, 53, 56, 57, 59, 61, 63, 65, 67, 69, 71, 73, 74, 76, 79,
82, 83, 86, 87, 90, 91 ], [ 37, 39, 41, 44, 45, 47, 49 ] ] ],
[ Regular CW-complex of dimension 3
, [ [ 22, 23, 26, 28, 29, 33, 34, 35, 36, 41, 42, 44, 47, 49, 50 ],
[ 50, 52, 54, 55, 58, 60, 62, 64, 66, 68, 70, 72, 75, 77, 78, 80,
81, 84, 85, 88, 89, 92 ], [ 38, 40, 42, 43, 46, 48, 50 ] ] ] ]
!gapprompt@gap>| !gapinput@paths:=List(paths,CWSubcomplexToRegularCWMap);|
[ Map of regular CW-complexes
, Map of regular CW-complexes
, Map of regular CW-complexes
]
!gapprompt@gap>| !gapinput@List([1..3],x->List(Difference([1..3],[x]),y->IntersectionCWSubcomplex(paths[x],paths[y])));|
[ [ [ Regular CW-complex of dimension 3
, [ [ ], [ ], [ ] ] ], [ Regular CW-complex of dimension 3
, [ [ ], [ ], [ ] ] ] ], [ [ Regular CW-complex of dimension 3
, [ [ ], [ ], [ ] ] ], [ Regular CW-complex of dimension 3
, [ [ ], [ ], [ ] ] ] ], [ [ Regular CW-complex of dimension 3
, [ [ ], [ ], [ ] ] ], [ Regular CW-complex of dimension 3
, [ [ ], [ ], [ ] ] ] ] ]
!gapprompt@gap>| !gapinput@List(paths,x->List([0..3],y->Homology(Source(x),y)));|
[ [ [ 0 ], [ ], [ 0 ], [ ] ], [ [ 0 ], [ 0, 0 ], [ 0 ], [ ] ],
[ [ 0 ], [ 0, 0 ], [ 0 ], [ ] ] ]
\end{Verbatim}
As previously mentioned, for the tubular neighbourhood algorithm to work, we
require that no external cells yield non\texttt{\symbol{45}}contractible
path\texttt{\symbol{45}}components in their intersection with the subcomplex.
If this is ever the case then we can subdivide the offending cell to prevent
this from happening. We have implemented two subdivision algorithms in HAP,
one for barycentrically subdividing a given cell, and the other for
subdividing an $n$\texttt{\symbol{45}}cell into as many $n$\texttt{\symbol{45}}cells as there are $(n-1)$\texttt{\symbol{45}}cells in its boundary. Barycentric subdivision is
integrated into the \texttt{RegularCWComplexComplement} function and will be performed automatically as required. The following
example shows this automatic subdivision running via the complement of a
tubular neighbourhood of the unknot, then obtains an inclusion map from the
closure of an arbitrary $3$\texttt{\symbol{45}}cell of this complex and then compares the difference in
size of the two different subdivisions of a 2\texttt{\symbol{45}}cell in the
boundary of this $3$\texttt{\symbol{45}}cell.
\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
!gapprompt@gap>| !gapinput@arc:=[[1,2],[1,2]];;|
!gapprompt@gap>| !gapinput@unknot:=ArcPresentationToKnottedOneComplex(arc);|
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@f:=RegularCWComplexComplement(unknot);|
Testing contractibility...
79 out of 79 cells tested.
Subdividing 3 cell(s):
100% complete.
Testing contractibility...
145 out of 145 cells tested.
The input is compatible with this algorithm.
Regular CW-complex of dimension 3
!gapprompt@gap>| !gapinput@f:=Objectify(HapRegularCWMap,rec(source:=f,target:=f,mapping:={i,j}->j)); |
Map of regular CW-complexes
!gapprompt@gap>| !gapinput@closure:=ClosureCWCell(Target(f),3,1);|
[ Regular CW-complex of dimension 3
,
[ [ 1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 20, 21, 22, 23, 25 ],
[ 1, 2, 3, 7, 8, 9, 10, 11, 15, 16, 17, 20, 21, 22, 23, 24, 25, 27, 28, 55, 58, 59,
60, 63 ], [ 1, 4, 7, 8, 9, 13, 14, 15, 18, 52 ], [ 1 ] ] ]
!gapprompt@gap>| !gapinput@Size(Target(f)); |
195
!gapprompt@gap>| !gapinput@Size(Target(BarycentricallySubdivideCell(f,2,1))); |
231
!gapprompt@gap>| !gapinput@Size(Target(SubdivideCell(f,2,1))); |
207
\end{Verbatim}
}
\section{\textcolor{Chapter }{Knotted surface complements in the 4\texttt{\symbol{45}}ball}}\logpage{[ 16, 3, 0 ]}
\hyperdef{L}{X78C28038837300BD}{}
{
A construction of Satoh's, the tube map, associates a ribbon
torus\texttt{\symbol{45}}knot to virtual knot diagrams. A virtual knot diagram
differs from a knot diagram in that it allows for a third type of crossing, a
virtual crossing. The image of such a crossing via the tube map is two tori
which pass through each other. An arc diagram is a triple of lists \texttt{[arc,cross,cols]} that encode virtual knot diagrams. \texttt{arc} is an arc presentation. \texttt{cross} is a list of length the number of crossings in the knot associated to the arc
presentation whose entries are $-1,0$ or $1$ corresponding to an undercrossing (horizontal arc underneath vertical arc), a
virtual crossing (depicted by intersecting horizontal and vertical arcs) and
an overcrossing (horizontal arc above vertical arc) respectively. \texttt{cols} is a list of length the number of $0$ entries in \texttt{cross} and its entries are $1,2,3$ or $4$. It describes the types of 'colourings' we assign to the virtual crossings.
We interpret each integer as the change in 4\texttt{\symbol{45}}dimensional
height information as represented by a colour scale from blue (lower down in
4\texttt{\symbol{45}}space), to green (0 level), to red (higher up in
4\texttt{\symbol{45}}space). Without loss of generality, we impose that at
each virtual crossing, the vertical arc passes through the horizontal arc.
Thus, $1$ corresponds to the vertical bar entering the horizontal bar as blue and
leaving as blue, $2$ corresponds to entering as blue and leaving as red, $3$ corresponds to entering as red and leaving as blue and $4$ corresponds to entering and leaving as red. A coloured arc diagram can be
visualised using the \texttt{ViewColouredArcDiagram} function.
\begin{Verbatim}[commandchars=!|B,fontsize=\small,frame=single,label=Example]
!gapprompt|gap>B !gapinput|arc:=ArcPresentation(PureCubicalKnot(6,1));B
[ [ 5, 8 ], [ 4, 6 ], [ 3, 5 ], [ 2, 4 ], [ 1, 3 ], [ 2, 7 ], [ 6, 8 ], [ 1, 7 ] ]
!gapprompt|gap>B !gapinput|cross:=[0,0,1,-1,-1,0];;B
!gapprompt|gap>B !gapinput|cols:=[1,4,3];;B
!gapprompt|gap>B !gapinput|ViewArc2Presentation([arc,cross,cols]); B
convert-im6.q16: pixels are not authentic `/tmp/HAPtmpImage.txt' @ error/cache.c/QueueAuthenticPixelCacheNexus/4381.
\end{Verbatim}
Towards obtaining a regular CW\texttt{\symbol{45}}decomposition of ribbon
torus\texttt{\symbol{45}}knots, we first begin by embedding a
self\texttt{\symbol{45}}intersecting knotted torus in the
3\texttt{\symbol{45}}ball. The function \texttt{ArcDiagramToTubularSurface} inputs a coloured arc diagram and outputs an inclusion from the boundary of
some (potentially self\texttt{\symbol{45}}intersecting) torus in the $3$\texttt{\symbol{45}}ball. By inputting just an arc presentation, one can
obtain an inclusion identical to the \texttt{KnotComplementWithBoundary} function. By additionally inputting a list of $-1$s and $1$s, one can obtain an inclusion similar to \texttt{KnotComplementWithBoundary} but where there is extra freedom in determining whether or not a given
crossing is an under/overcrossing. If one inputs both of the above but
includes $0$ entries in the \texttt{cross} list and includes the list of colours, the output is then an inclusion from an
embedded self\texttt{\symbol{45}}intersecting torus into the
3\texttt{\symbol{45}}ball where each $2$\texttt{\symbol{45}}cell (the top\texttt{\symbol{45}}dimensional cells of the
self\texttt{\symbol{45}}intersecting surface) is assigned a colour.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|tub:=ArcDiagramToTubularSurface(arc); B
Map of regular CW-complexes
@gapprompt|gap>B @gapinput|tub:=ArcDiagramToTubularSurface([arc,cross]);B
Map of regular CW-complexes
@gapprompt|gap>B @gapinput|tub:=ArcDiagramToTubularSurface([arc,cross,cols]);B
Map of regular CW-complexes
@gapprompt|gap>B @gapinput|List([1..Length(Source(tub)!.boundaries[3])],x->tub!.colour(2,tub!.mapping(2,x)));B
[ [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ],
[ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ],
[ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ],
[ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ],
[ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ -1 ], [ -1 ],
[ 0 ], [ 0 ], [ -1 ], [ -1 ], [ -1 ], [ -1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 1 ], [ 1 ],
[ 0 ], [ 0 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 1 ], [ 1 ], [ 0 ],
[ 0 ], [ -1 ], [ -1 ], [ 1 ], [ -1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ -1 ], [ -1 ], [ 0 ],
[ 1 ], [ 1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 1 ], [ -1 ], [ 0 ] ]
\end{Verbatim}
From this self\texttt{\symbol{45}}intersecting surface with colour, we can
lift it to a surface without self\texttt{\symbol{45}}intersections in $\mathbb{R}^4$. We do this by constructing a regular CW\texttt{\symbol{45}}complex of the
direct product $B^3 \times [a,b]$ where $B^3$ denotes the $3$\texttt{\symbol{45}}ball, $a$ is $1$ less than the smallest integer assigned to a cell by the colouring, and $b$ is $1$ greater than the largest integer assigned to a cell by the colouring. The
subcomplex of the direct product corresponding to the surface without
intersection can be obtained using the colouring with additional care taken to
not lift any 1\texttt{\symbol{45}}cells arising as
double\texttt{\symbol{45}}point singularities. The following example
constructs the complement of a ribbon torus\texttt{\symbol{45}}link embedded
in $\mathbb{R}^4$ obtained from the Hopf link with one virtual crossing and then calculates some
invariants of the resulting space. We compare the size of this complex, as
well as how long it takes to obtain the same invariants, with a cubical
complex of the same space. As barycentric subdivision can massively increase
the size of the cell complex, the below method sequentially obtains the
tubular neighbourhood of the entire subcomplex by obtaining the tubular
neighbourhood of each individual $2$\texttt{\symbol{45}}cell. This has yet to be optimised so it currently takes
some time to complete.
\begin{Verbatim}[commandchars=@|B,fontsize=\small,frame=single,label=Example]
@gapprompt|gap>B @gapinput|arc:=[[2,4],[1,3],[2,4],[1,3]];; B
@gapprompt|gap>B @gapinput|tub:=ArcDiagramToTubularSurface([arc,[0,-1],[2]]);B
Map of regular CW-complexes
@gapprompt|gap>B @gapinput|tub:=LiftColouredSurface(tub);B
Map of regular CW-complexes
@gapprompt|gap>B @gapinput|Dimension(Source(tub));B
2
@gapprompt|gap>B @gapinput|Dimension(Source(tub));B
4
@gapprompt|gap>B @gapinput|map:=RegularCWMapToCWSubcomplex(tub);;B
@gapprompt|gap>B @gapinput|sub:=SortedList(map[2][3]);;B
@gapprompt|gap>B @gapinput|sub:=List(sub,x->x-(Position(sub,x)-1));;B
@gapprompt|gap>B @gapinput|clsr:=ClosureCWCell(map[1],2,sub[1])[2];;B
@gapprompt|gap>B @gapinput|seq:=CWSubcomplexToRegularCWMap([map[1],clsr]);;B
@gapprompt|gap>B @gapinput|tub:=RegularCWComplexComplement(seq);B
Testing contractibility...
3501 out of 3501 cells tested.
The input is compatible with this algorithm.
@gapprompt|gap>B @gapinput|for i in [2..Length(sub)] doB
@gapprompt|>B @gapinput| clsr:=ClosureCWCell(tub,2,sub[i])[2];;B
@gapprompt|>B @gapinput| seq:=CWSubcomplexToRegularCWMap([tub,clsr]);;B
@gapprompt|>B @gapinput| tub:=RegularCWComplexComplement(seq);B
@gapprompt|>B @gapinput|od;B
Testing contractibility...
3612 out of 3612 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
3693 out of 3693 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
3871 out of 3871 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
3925 out of 3925 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
4084 out of 4084 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
4216 out of 4216 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
4348 out of 4348 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
4529 out of 4529 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
4688 out of 4688 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
4723 out of 4723 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
4918 out of 4918 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
5107 out of 5107 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
5269 out of 5269 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
5401 out of 5401 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
5548 out of 5548 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
5702 out of 5702 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
5846 out of 5846 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6027 out of 6027 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6089 out of 6089 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6124 out of 6124 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6159 out of 6159 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6349 out of 6349 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6467 out of 6467 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6639 out of 6639 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6757 out of 6757 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
6962 out of 6962 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7052 out of 7052 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7242 out of 7242 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7360 out of 7360 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7470 out of 7470 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7561 out of 7561 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7624 out of 7624 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7764 out of 7764 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7904 out of 7904 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
7979 out of 7979 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8024 out of 8024 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8086 out of 8086 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8148 out of 8148 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8202 out of 8202 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8396 out of 8396 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8534 out of 8534 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8625 out of 8625 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8736 out of 8736 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8817 out of 8817 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
8983 out of 8983 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9073 out of 9073 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9218 out of 9218 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9323 out of 9323 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9442 out of 9442 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9487 out of 9487 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9538 out of 9538 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9583 out of 9583 cells tested.
The input is compatible with this algorithm.
Testing contractibility...
9634 out of 9634 cells tested.
The input is compatible with this algorithm.
@gapprompt|gap>B @gapinput|Size(tub); B
9685
@gapprompt|gap>B @gapinput|total_time_1:=0;;B
@gapprompt|gap>B @gapinput|List([0..4],x->Homology(tub,x)); total_time_1:=total_time_1+time;;B
[ [ 0 ], [ 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0 ], [ ] ]
@gapprompt|gap>B @gapinput|c:=ChainComplexOfUniversalCover(tub);; total_time_1:=total_time_1+time;;B
@gapprompt|gap>B @gapinput|l:=Filtered(LowIndexSubgroups(c!.group,5),g->Index(c!.group,g)=5);; total_time_1:=total_time_1+time;;B
@gapprompt|gap>B @gapinput|inv:=Set(l,g->Homology(TensorWithIntegersOverSubgroup(c,g),2)); total_time_1:=total_time_1+time;;B
[ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
]
@gapprompt|gap>B @gapinput|total_time_1;B
3407
@gapprompt|gap>B @gapinput|hopf:=PureComplexComplement(HopfSatohSurface());;B
@gapprompt|gap>B @gapinput|hopf:=RegularCWComplex(hopf);;B
@gapprompt|gap>B @gapinput|Size(hopf);B
4508573
@gapprompt|gap>B @gapinput|total_time_2:=0;;B
@gapprompt|gap>B @gapinput|c_:=ChainComplexOfUniversalCover(hopf);; total_time_2:=total_time_2+time;;B
@gapprompt|gap>B @gapinput|l_:=Filtered(LowIndexSubgroups(c_!.group,5),g->Index(c_!.group,g)=5);; total_time_2:=total_time_2+time;;B
@gapprompt|gap>B @gapinput|inv_:=Set(l_,g->Homology(TensorWithIntegersOverSubgroup(c_,g),2));; total_time_2:=total_time_2+time;;B
@gapprompt|gap>B @gapinput|total_time_2;B
1116000
@gapprompt|gap>B @gapinput|inv_=inv;B
true
\end{Verbatim}
}
}
\def\bibname{References\logpage{[ "Bib", 0, 0 ]}
\hyperdef{L}{X7A6F98FD85F02BFE}{}
}
\bibliographystyle{alpha}
\bibliography{mybib.xml}
\addcontentsline{toc}{chapter}{References}
\def\indexname{Index\logpage{[ "Ind", 0, 0 ]}
\hyperdef{L}{X83A0356F839C696F}{}
}
\cleardoublepage
\phantomsection
\addcontentsline{toc}{chapter}{Index}
\printindex
\newpage
\immediate\write\pagenrlog{["End"], \arabic{page}];}
\immediate\closeout\pagenrlog
\end{document}
|