1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
\contentsline {chapter}{\numberline {1}\textcolor {Chapter }{Simplicial complexes \& CW complexes}}{7}{chapter.1}%
\contentsline {section}{\numberline {1.1}\textcolor {Chapter }{The Klein bottle as a simplicial complex}}{7}{section.1.1}%
\contentsline {section}{\numberline {1.2}\textcolor {Chapter }{Other simplicial surfaces}}{8}{section.1.2}%
\contentsline {section}{\numberline {1.3}\textcolor {Chapter }{The Quillen complex}}{8}{section.1.3}%
\contentsline {section}{\numberline {1.4}\textcolor {Chapter }{The Quillen complex as a reduced CW\texttt {\symbol {45}}complex}}{9}{section.1.4}%
\contentsline {section}{\numberline {1.5}\textcolor {Chapter }{Simple homotopy equivalences}}{9}{section.1.5}%
\contentsline {section}{\numberline {1.6}\textcolor {Chapter }{Cellular simplifications preserving homeomorphism type}}{10}{section.1.6}%
\contentsline {section}{\numberline {1.7}\textcolor {Chapter }{Constructing a CW\texttt {\symbol {45}}structure on a knot complement}}{10}{section.1.7}%
\contentsline {section}{\numberline {1.8}\textcolor {Chapter }{Constructing a regular CW\texttt {\symbol {45}}complex by attaching cells}}{11}{section.1.8}%
\contentsline {section}{\numberline {1.9}\textcolor {Chapter }{Constructing a regular CW\texttt {\symbol {45}}complex from its face lattice}}{12}{section.1.9}%
\contentsline {section}{\numberline {1.10}\textcolor {Chapter }{Cup products}}{13}{section.1.10}%
\contentsline {section}{\numberline {1.11}\textcolor {Chapter }{Intersection forms of $4$\texttt {\symbol {45}}manifolds}}{18}{section.1.11}%
\contentsline {section}{\numberline {1.12}\textcolor {Chapter }{Cohomology Rings}}{19}{section.1.12}%
\contentsline {section}{\numberline {1.13}\textcolor {Chapter }{Bockstein homomorphism}}{20}{section.1.13}%
\contentsline {section}{\numberline {1.14}\textcolor {Chapter }{Diagonal maps on associahedra and other polytopes}}{21}{section.1.14}%
\contentsline {section}{\numberline {1.15}\textcolor {Chapter }{CW maps and induced homomorphisms}}{21}{section.1.15}%
\contentsline {section}{\numberline {1.16}\textcolor {Chapter }{Constructing a simplicial complex from a regular CW\texttt {\symbol {45}}complex}}{22}{section.1.16}%
\contentsline {section}{\numberline {1.17}\textcolor {Chapter }{Some limitations to representing spaces as regular CW complexes}}{23}{section.1.17}%
\contentsline {section}{\numberline {1.18}\textcolor {Chapter }{Equivariant CW complexes}}{24}{section.1.18}%
\contentsline {section}{\numberline {1.19}\textcolor {Chapter }{Orbifolds and classifying spaces}}{26}{section.1.19}%
\contentsline {chapter}{\numberline {2}\textcolor {Chapter }{Cubical complexes \& permutahedral complexes}}{31}{chapter.2}%
\contentsline {section}{\numberline {2.1}\textcolor {Chapter }{Cubical complexes}}{31}{section.2.1}%
\contentsline {section}{\numberline {2.2}\textcolor {Chapter }{Permutahedral complexes}}{32}{section.2.2}%
\contentsline {section}{\numberline {2.3}\textcolor {Chapter }{Constructing pure cubical and permutahedral complexes}}{34}{section.2.3}%
\contentsline {section}{\numberline {2.4}\textcolor {Chapter }{Computations in dynamical systems}}{35}{section.2.4}%
\contentsline {chapter}{\numberline {3}\textcolor {Chapter }{Covering spaces}}{36}{chapter.3}%
\contentsline {section}{\numberline {3.1}\textcolor {Chapter }{Cellular chains on the universal cover}}{36}{section.3.1}%
\contentsline {section}{\numberline {3.2}\textcolor {Chapter }{Spun knots and the Satoh tube map}}{37}{section.3.2}%
\contentsline {section}{\numberline {3.3}\textcolor {Chapter }{Cohomology with local coefficients}}{39}{section.3.3}%
\contentsline {section}{\numberline {3.4}\textcolor {Chapter }{Distinguishing between two non\texttt {\symbol {45}}homeomorphic homotopy equivalent spaces}}{40}{section.3.4}%
\contentsline {section}{\numberline {3.5}\textcolor {Chapter }{ Second homotopy groups of spaces with finite fundamental group}}{40}{section.3.5}%
\contentsline {section}{\numberline {3.6}\textcolor {Chapter }{Third homotopy groups of simply connected spaces}}{41}{section.3.6}%
\contentsline {subsection}{\numberline {3.6.1}\textcolor {Chapter }{First example: Whitehead's certain exact sequence}}{41}{subsection.3.6.1}%
\contentsline {subsection}{\numberline {3.6.2}\textcolor {Chapter }{Second example: the Hopf invariant}}{42}{subsection.3.6.2}%
\contentsline {section}{\numberline {3.7}\textcolor {Chapter }{Computing the second homotopy group of a space with infinite fundamental group}}{43}{section.3.7}%
\contentsline {chapter}{\numberline {4}\textcolor {Chapter }{Three Manifolds}}{45}{chapter.4}%
\contentsline {section}{\numberline {4.1}\textcolor {Chapter }{Dehn Surgery}}{45}{section.4.1}%
\contentsline {section}{\numberline {4.2}\textcolor {Chapter }{Connected Sums}}{46}{section.4.2}%
\contentsline {section}{\numberline {4.3}\textcolor {Chapter }{Dijkgraaf\texttt {\symbol {45}}Witten Invariant}}{46}{section.4.3}%
\contentsline {section}{\numberline {4.4}\textcolor {Chapter }{Cohomology rings}}{47}{section.4.4}%
\contentsline {section}{\numberline {4.5}\textcolor {Chapter }{Linking Form}}{48}{section.4.5}%
\contentsline {section}{\numberline {4.6}\textcolor {Chapter }{Determining the homeomorphism type of a lens space}}{49}{section.4.6}%
\contentsline {section}{\numberline {4.7}\textcolor {Chapter }{Surgeries on distinct knots can yield homeomorphic manifolds}}{51}{section.4.7}%
\contentsline {section}{\numberline {4.8}\textcolor {Chapter }{Finite fundamental groups of $3$\texttt {\symbol {45}}manifolds}}{52}{section.4.8}%
\contentsline {section}{\numberline {4.9}\textcolor {Chapter }{Poincare's cube manifolds}}{53}{section.4.9}%
\contentsline {section}{\numberline {4.10}\textcolor {Chapter }{There are at least 25 distinct cube manifolds}}{54}{section.4.10}%
\contentsline {subsection}{\numberline {4.10.1}\textcolor {Chapter }{Face pairings for 25 distinct cube manifolds}}{56}{subsection.4.10.1}%
\contentsline {subsection}{\numberline {4.10.2}\textcolor {Chapter }{Platonic cube manifolds}}{60}{subsection.4.10.2}%
\contentsline {section}{\numberline {4.11}\textcolor {Chapter }{There are at most 41 distinct cube manifolds}}{60}{section.4.11}%
\contentsline {section}{\numberline {4.12}\textcolor {Chapter }{There are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are euclidean}}{62}{section.4.12}%
\contentsline {section}{\numberline {4.13}\textcolor {Chapter }{Cube manifolds with boundary}}{64}{section.4.13}%
\contentsline {section}{\numberline {4.14}\textcolor {Chapter }{Octahedral manifolds}}{65}{section.4.14}%
\contentsline {section}{\numberline {4.15}\textcolor {Chapter }{Dodecahedral manifolds}}{65}{section.4.15}%
\contentsline {section}{\numberline {4.16}\textcolor {Chapter }{Prism manifolds}}{66}{section.4.16}%
\contentsline {section}{\numberline {4.17}\textcolor {Chapter }{Bipyramid manifolds}}{67}{section.4.17}%
\contentsline {chapter}{\numberline {5}\textcolor {Chapter }{Topological data analysis}}{68}{chapter.5}%
\contentsline {section}{\numberline {5.1}\textcolor {Chapter }{Persistent homology }}{68}{section.5.1}%
\contentsline {subsection}{\numberline {5.1.1}\textcolor {Chapter }{Background to the data}}{69}{subsection.5.1.1}%
\contentsline {section}{\numberline {5.2}\textcolor {Chapter }{Mapper clustering}}{69}{section.5.2}%
\contentsline {subsection}{\numberline {5.2.1}\textcolor {Chapter }{Background to the data}}{70}{subsection.5.2.1}%
\contentsline {section}{\numberline {5.3}\textcolor {Chapter }{Some tools for handling pure complexes}}{70}{section.5.3}%
\contentsline {section}{\numberline {5.4}\textcolor {Chapter }{Digital image analysis and persistent homology}}{71}{section.5.4}%
\contentsline {subsection}{\numberline {5.4.1}\textcolor {Chapter }{Naive example of image segmentation by automatic thresholding}}{71}{subsection.5.4.1}%
\contentsline {subsection}{\numberline {5.4.2}\textcolor {Chapter }{Refining the filtration}}{72}{subsection.5.4.2}%
\contentsline {subsection}{\numberline {5.4.3}\textcolor {Chapter }{Background to the data}}{72}{subsection.5.4.3}%
\contentsline {section}{\numberline {5.5}\textcolor {Chapter }{A second example of digital image segmentation}}{72}{section.5.5}%
\contentsline {section}{\numberline {5.6}\textcolor {Chapter }{A third example of digital image segmentation}}{73}{section.5.6}%
\contentsline {section}{\numberline {5.7}\textcolor {Chapter }{Naive example of digital image contour extraction}}{74}{section.5.7}%
\contentsline {section}{\numberline {5.8}\textcolor {Chapter }{Alternative approaches to computing persistent homology}}{75}{section.5.8}%
\contentsline {subsection}{\numberline {5.8.1}\textcolor {Chapter }{Non\texttt {\symbol {45}}trivial cup product}}{76}{subsection.5.8.1}%
\contentsline {subsection}{\numberline {5.8.2}\textcolor {Chapter }{Explicit homology generators}}{76}{subsection.5.8.2}%
\contentsline {section}{\numberline {5.9}\textcolor {Chapter }{Knotted proteins}}{77}{section.5.9}%
\contentsline {section}{\numberline {5.10}\textcolor {Chapter }{Random simplicial complexes}}{78}{section.5.10}%
\contentsline {section}{\numberline {5.11}\textcolor {Chapter }{Computing homology of a clique complex (Vietoris\texttt {\symbol {45}}Rips complex) }}{80}{section.5.11}%
\contentsline {chapter}{\numberline {6}\textcolor {Chapter }{Group theoretic computations}}{82}{chapter.6}%
\contentsline {section}{\numberline {6.1}\textcolor {Chapter }{Third homotopy group of a supsension of an Eilenberg\texttt {\symbol {45}}MacLane space }}{82}{section.6.1}%
\contentsline {section}{\numberline {6.2}\textcolor {Chapter }{Representations of knot quandles}}{82}{section.6.2}%
\contentsline {section}{\numberline {6.3}\textcolor {Chapter }{Identifying knots}}{83}{section.6.3}%
\contentsline {section}{\numberline {6.4}\textcolor {Chapter }{Aspherical $2$\texttt {\symbol {45}}complexes}}{83}{section.6.4}%
\contentsline {section}{\numberline {6.5}\textcolor {Chapter }{Group presentations and homotopical syzygies}}{83}{section.6.5}%
\contentsline {section}{\numberline {6.6}\textcolor {Chapter }{Bogomolov multiplier}}{85}{section.6.6}%
\contentsline {section}{\numberline {6.7}\textcolor {Chapter }{Second group cohomology and group extensions}}{85}{section.6.7}%
\contentsline {section}{\numberline {6.8}\textcolor {Chapter }{Cocyclic groups: a convenient way of representing certain groups}}{88}{section.6.8}%
\contentsline {section}{\numberline {6.9}\textcolor {Chapter }{Effective group presentations}}{89}{section.6.9}%
\contentsline {section}{\numberline {6.10}\textcolor {Chapter }{Second group cohomology and cocyclic Hadamard matrices}}{91}{section.6.10}%
\contentsline {section}{\numberline {6.11}\textcolor {Chapter }{Third group cohomology and homotopy $2$\texttt {\symbol {45}}types}}{91}{section.6.11}%
\contentsline {chapter}{\numberline {7}\textcolor {Chapter }{Cohomology of groups (and Lie Algebras)}}{94}{chapter.7}%
\contentsline {section}{\numberline {7.1}\textcolor {Chapter }{Finite groups }}{94}{section.7.1}%
\contentsline {subsection}{\numberline {7.1.1}\textcolor {Chapter }{Naive homology computation for a very small group}}{94}{subsection.7.1.1}%
\contentsline {subsection}{\numberline {7.1.2}\textcolor {Chapter }{A more efficient homology computation}}{95}{subsection.7.1.2}%
\contentsline {subsection}{\numberline {7.1.3}\textcolor {Chapter }{Computation of an induced homology homomorphism}}{95}{subsection.7.1.3}%
\contentsline {subsection}{\numberline {7.1.4}\textcolor {Chapter }{Some other finite group homology computations}}{96}{subsection.7.1.4}%
\contentsline {section}{\numberline {7.2}\textcolor {Chapter }{Nilpotent groups}}{97}{section.7.2}%
\contentsline {section}{\numberline {7.3}\textcolor {Chapter }{Crystallographic and Almost Crystallographic groups}}{98}{section.7.3}%
\contentsline {section}{\numberline {7.4}\textcolor {Chapter }{Arithmetic groups}}{98}{section.7.4}%
\contentsline {section}{\numberline {7.5}\textcolor {Chapter }{Artin groups}}{98}{section.7.5}%
\contentsline {section}{\numberline {7.6}\textcolor {Chapter }{Graphs of groups}}{99}{section.7.6}%
\contentsline {section}{\numberline {7.7}\textcolor {Chapter }{Lie algebra homology and free nilpotent groups}}{100}{section.7.7}%
\contentsline {section}{\numberline {7.8}\textcolor {Chapter }{Cohomology with coefficients in a module}}{101}{section.7.8}%
\contentsline {section}{\numberline {7.9}\textcolor {Chapter }{Cohomology as a functor of the first variable}}{103}{section.7.9}%
\contentsline {section}{\numberline {7.10}\textcolor {Chapter }{Cohomology as a functor of the second variable and the long exact coefficient sequence}}{104}{section.7.10}%
\contentsline {section}{\numberline {7.11}\textcolor {Chapter }{Transfer Homomorphism}}{105}{section.7.11}%
\contentsline {section}{\numberline {7.12}\textcolor {Chapter }{Cohomology rings of finite fundamental groups of 3\texttt {\symbol {45}}manifolds }}{106}{section.7.12}%
\contentsline {section}{\numberline {7.13}\textcolor {Chapter }{Explicit cocycles }}{108}{section.7.13}%
\contentsline {section}{\numberline {7.14}\textcolor {Chapter }{Quillen's complex and the $p$\texttt {\symbol {45}}part of homology }}{111}{section.7.14}%
\contentsline {section}{\numberline {7.15}\textcolor {Chapter }{Homology of a Lie algebra}}{114}{section.7.15}%
\contentsline {section}{\numberline {7.16}\textcolor {Chapter }{Covers of Lie algebras}}{114}{section.7.16}%
\contentsline {subsection}{\numberline {7.16.1}\textcolor {Chapter }{Computing a cover}}{115}{subsection.7.16.1}%
\contentsline {chapter}{\numberline {8}\textcolor {Chapter }{Cohomology rings and Steenrod operations for groups}}{116}{chapter.8}%
\contentsline {section}{\numberline {8.1}\textcolor {Chapter }{Mod\texttt {\symbol {45}}$p$ cohomology rings of finite groups}}{116}{section.8.1}%
\contentsline {subsection}{\numberline {8.1.1}\textcolor {Chapter }{Ring presentations (for the commutative $p=2$ case)}}{117}{subsection.8.1.1}%
\contentsline {section}{\numberline {8.2}\textcolor {Chapter }{Poincare Series for Mod\texttt {\symbol {45}}$p$ cohomology}}{118}{section.8.2}%
\contentsline {section}{\numberline {8.3}\textcolor {Chapter }{Functorial ring homomorphisms in Mod\texttt {\symbol {45}}$p$ cohomology}}{119}{section.8.3}%
\contentsline {subsection}{\numberline {8.3.1}\textcolor {Chapter }{Testing homomorphism properties}}{120}{subsection.8.3.1}%
\contentsline {subsection}{\numberline {8.3.2}\textcolor {Chapter }{Testing functorial properties}}{120}{subsection.8.3.2}%
\contentsline {subsection}{\numberline {8.3.3}\textcolor {Chapter }{Computing with larger groups}}{121}{subsection.8.3.3}%
\contentsline {section}{\numberline {8.4}\textcolor {Chapter }{Steenrod operations for finite $2$\texttt {\symbol {45}}groups}}{122}{section.8.4}%
\contentsline {section}{\numberline {8.5}\textcolor {Chapter }{Steenrod operations on the classifying space of a finite $p$\texttt {\symbol {45}}group}}{123}{section.8.5}%
\contentsline {section}{\numberline {8.6}\textcolor {Chapter }{Mod\texttt {\symbol {45}}$p$ cohomology rings of crystallographic groups}}{123}{section.8.6}%
\contentsline {subsection}{\numberline {8.6.1}\textcolor {Chapter }{Poincare series for crystallographic groups}}{123}{subsection.8.6.1}%
\contentsline {subsection}{\numberline {8.6.2}\textcolor {Chapter }{Mod $2$ cohomology rings of $3$\texttt {\symbol {45}}dimensional crystallographic groups}}{125}{subsection.8.6.2}%
\contentsline {chapter}{\numberline {9}\textcolor {Chapter }{Bredon homology}}{127}{chapter.9}%
\contentsline {section}{\numberline {9.1}\textcolor {Chapter }{Davis complex}}{127}{section.9.1}%
\contentsline {section}{\numberline {9.2}\textcolor {Chapter }{Arithmetic groups}}{127}{section.9.2}%
\contentsline {section}{\numberline {9.3}\textcolor {Chapter }{Crystallographic groups}}{128}{section.9.3}%
\contentsline {chapter}{\numberline {10}\textcolor {Chapter }{Chain Complexes}}{129}{chapter.10}%
\contentsline {section}{\numberline {10.1}\textcolor {Chapter }{Chain complex of a simplicial complex and simplicial pair}}{129}{section.10.1}%
\contentsline {section}{\numberline {10.2}\textcolor {Chapter }{Chain complex of a cubical complex and cubical pair}}{130}{section.10.2}%
\contentsline {section}{\numberline {10.3}\textcolor {Chapter }{Chain complex of a regular CW\texttt {\symbol {45}}complex}}{131}{section.10.3}%
\contentsline {section}{\numberline {10.4}\textcolor {Chapter }{Chain Maps of simplicial and regular CW maps}}{132}{section.10.4}%
\contentsline {section}{\numberline {10.5}\textcolor {Chapter }{Constructions for chain complexes}}{132}{section.10.5}%
\contentsline {section}{\numberline {10.6}\textcolor {Chapter }{Filtered chain complexes}}{133}{section.10.6}%
\contentsline {section}{\numberline {10.7}\textcolor {Chapter }{Sparse chain complexes}}{134}{section.10.7}%
\contentsline {chapter}{\numberline {11}\textcolor {Chapter }{Resolutions}}{136}{chapter.11}%
\contentsline {section}{\numberline {11.1}\textcolor {Chapter }{Resolutions for small finite groups}}{136}{section.11.1}%
\contentsline {section}{\numberline {11.2}\textcolor {Chapter }{Resolutions for very small finite groups}}{136}{section.11.2}%
\contentsline {section}{\numberline {11.3}\textcolor {Chapter }{Resolutions for finite groups acting on orbit polytopes}}{138}{section.11.3}%
\contentsline {section}{\numberline {11.4}\textcolor {Chapter }{Minimal resolutions for finite $p$\texttt {\symbol {45}}groups over $\mathbb F_p$}}{139}{section.11.4}%
\contentsline {section}{\numberline {11.5}\textcolor {Chapter }{Resolutions for abelian groups}}{139}{section.11.5}%
\contentsline {section}{\numberline {11.6}\textcolor {Chapter }{Resolutions for nilpotent groups}}{140}{section.11.6}%
\contentsline {section}{\numberline {11.7}\textcolor {Chapter }{Resolutions for groups with subnormal series}}{141}{section.11.7}%
\contentsline {section}{\numberline {11.8}\textcolor {Chapter }{Resolutions for groups with normal series}}{141}{section.11.8}%
\contentsline {section}{\numberline {11.9}\textcolor {Chapter }{Resolutions for polycyclic (almost) crystallographic groups }}{141}{section.11.9}%
\contentsline {section}{\numberline {11.10}\textcolor {Chapter }{Resolutions for Bieberbach groups }}{142}{section.11.10}%
\contentsline {section}{\numberline {11.11}\textcolor {Chapter }{Resolutions for arbitrary crystallographic groups}}{143}{section.11.11}%
\contentsline {section}{\numberline {11.12}\textcolor {Chapter }{Resolutions for crystallographic groups admitting cubical fundamental domain}}{143}{section.11.12}%
\contentsline {section}{\numberline {11.13}\textcolor {Chapter }{Resolutions for Coxeter groups }}{144}{section.11.13}%
\contentsline {section}{\numberline {11.14}\textcolor {Chapter }{Resolutions for Artin groups }}{144}{section.11.14}%
\contentsline {section}{\numberline {11.15}\textcolor {Chapter }{Resolutions for $G=SL_2(\mathbb Z[1/m])$}}{145}{section.11.15}%
\contentsline {section}{\numberline {11.16}\textcolor {Chapter }{Resolutions for selected groups $G=SL_2( {\mathcal O}(\mathbb Q(\sqrt {d}) )$}}{145}{section.11.16}%
\contentsline {section}{\numberline {11.17}\textcolor {Chapter }{Resolutions for selected groups $G=PSL_2( {\mathcal O}(\mathbb Q(\sqrt {d}) )$}}{145}{section.11.17}%
\contentsline {section}{\numberline {11.18}\textcolor {Chapter }{Resolutions for a few higher\texttt {\symbol {45}}dimensional arithmetic groups }}{146}{section.11.18}%
\contentsline {section}{\numberline {11.19}\textcolor {Chapter }{Resolutions for finite\texttt {\symbol {45}}index subgroups }}{146}{section.11.19}%
\contentsline {section}{\numberline {11.20}\textcolor {Chapter }{Simplifying resolutions }}{147}{section.11.20}%
\contentsline {section}{\numberline {11.21}\textcolor {Chapter }{Resolutions for graphs of groups and for groups with aspherical presentations }}{147}{section.11.21}%
\contentsline {section}{\numberline {11.22}\textcolor {Chapter }{Resolutions for $\mathbb FG$\texttt {\symbol {45}}modules }}{148}{section.11.22}%
\contentsline {chapter}{\numberline {12}\textcolor {Chapter }{Simplicial groups}}{149}{chapter.12}%
\contentsline {section}{\numberline {12.1}\textcolor {Chapter }{Crossed modules}}{149}{section.12.1}%
\contentsline {section}{\numberline {12.2}\textcolor {Chapter }{Eilenberg\texttt {\symbol {45}}MacLane spaces as simplicial groups (not recommended)}}{150}{section.12.2}%
\contentsline {section}{\numberline {12.3}\textcolor {Chapter }{Eilenberg\texttt {\symbol {45}}MacLane spaces as simplicial free abelian groups (recommended)}}{150}{section.12.3}%
\contentsline {section}{\numberline {12.4}\textcolor {Chapter }{Elementary theoretical information on $H^\ast (K(\pi ,n),\mathbb Z)$}}{152}{section.12.4}%
\contentsline {section}{\numberline {12.5}\textcolor {Chapter }{The first three non\texttt {\symbol {45}}trivial homotopy groups of spheres}}{153}{section.12.5}%
\contentsline {section}{\numberline {12.6}\textcolor {Chapter }{The first two non\texttt {\symbol {45}}trivial homotopy groups of the suspension and double suspension of a $K(G,1)$}}{154}{section.12.6}%
\contentsline {section}{\numberline {12.7}\textcolor {Chapter }{Postnikov towers and $\pi _5(S^3)$ }}{154}{section.12.7}%
\contentsline {section}{\numberline {12.8}\textcolor {Chapter }{Towards $\pi _4(\Sigma K(G,1))$ }}{156}{section.12.8}%
\contentsline {section}{\numberline {12.9}\textcolor {Chapter }{Enumerating homotopy 2\texttt {\symbol {45}}types}}{157}{section.12.9}%
\contentsline {section}{\numberline {12.10}\textcolor {Chapter }{Identifying cat$^1$\texttt {\symbol {45}}groups of low order}}{158}{section.12.10}%
\contentsline {section}{\numberline {12.11}\textcolor {Chapter }{Identifying crossed modules of low order}}{159}{section.12.11}%
\contentsline {chapter}{\numberline {13}\textcolor {Chapter }{Congruence Subgroups, Cuspidal Cohomology and Hecke Operators}}{161}{chapter.13}%
\contentsline {section}{\numberline {13.1}\textcolor {Chapter }{Eichler\texttt {\symbol {45}}Shimura isomorphism}}{161}{section.13.1}%
\contentsline {section}{\numberline {13.2}\textcolor {Chapter }{Generators for $SL_2(\mathbb Z)$ and the cubic tree}}{162}{section.13.2}%
\contentsline {section}{\numberline {13.3}\textcolor {Chapter }{One\texttt {\symbol {45}}dimensional fundamental domains and generators for congruence subgroups}}{163}{section.13.3}%
\contentsline {section}{\numberline {13.4}\textcolor {Chapter }{Cohomology of congruence subgroups}}{164}{section.13.4}%
\contentsline {subsection}{\numberline {13.4.1}\textcolor {Chapter }{Cohomology with rational coefficients}}{166}{subsection.13.4.1}%
\contentsline {section}{\numberline {13.5}\textcolor {Chapter }{Cuspidal cohomology}}{166}{section.13.5}%
\contentsline {section}{\numberline {13.6}\textcolor {Chapter }{Hecke operators on forms of weight 2}}{168}{section.13.6}%
\contentsline {section}{\numberline {13.7}\textcolor {Chapter }{Hecke operators on forms of weight $ \ge 2$}}{169}{section.13.7}%
\contentsline {section}{\numberline {13.8}\textcolor {Chapter }{Reconstructing modular forms from cohomology computations}}{169}{section.13.8}%
\contentsline {section}{\numberline {13.9}\textcolor {Chapter }{The Picard group}}{171}{section.13.9}%
\contentsline {section}{\numberline {13.10}\textcolor {Chapter }{Bianchi groups}}{172}{section.13.10}%
\contentsline {section}{\numberline {13.11}\textcolor {Chapter }{(Co)homology of Bianchi groups and $SL_2({\cal O}_{-d})$}}{174}{section.13.11}%
\contentsline {section}{\numberline {13.12}\textcolor {Chapter }{Some other infinite matrix groups}}{179}{section.13.12}%
\contentsline {section}{\numberline {13.13}\textcolor {Chapter }{Ideals and finite quotient groups}}{181}{section.13.13}%
\contentsline {section}{\numberline {13.14}\textcolor {Chapter }{Congruence subgroups for ideals}}{182}{section.13.14}%
\contentsline {section}{\numberline {13.15}\textcolor {Chapter }{First homology}}{183}{section.13.15}%
\contentsline {chapter}{\numberline {14}\textcolor {Chapter }{Fundamental domains for Bianchi groups}}{186}{chapter.14}%
\contentsline {section}{\numberline {14.1}\textcolor {Chapter }{Bianchi groups}}{186}{section.14.1}%
\contentsline {section}{\numberline {14.2}\textcolor {Chapter }{Swan's description of a fundamental domain}}{186}{section.14.2}%
\contentsline {section}{\numberline {14.3}\textcolor {Chapter }{Computing a fundamental domain}}{187}{section.14.3}%
\contentsline {section}{\numberline {14.4}\textcolor {Chapter }{Examples}}{187}{section.14.4}%
\contentsline {section}{\numberline {14.5}\textcolor {Chapter }{Establishing correctness of a fundamental domain}}{188}{section.14.5}%
\contentsline {section}{\numberline {14.6}\textcolor {Chapter }{Computing a free resolution for $SL_2({\mathcal O}_{-d})$}}{189}{section.14.6}%
\contentsline {section}{\numberline {14.7}\textcolor {Chapter }{Some sanity checks}}{190}{section.14.7}%
\contentsline {subsection}{\numberline {14.7.1}\textcolor {Chapter }{Equivariant Euler characteristic}}{190}{subsection.14.7.1}%
\contentsline {subsection}{\numberline {14.7.2}\textcolor {Chapter }{Boundary squares to zero}}{191}{subsection.14.7.2}%
\contentsline {subsection}{\numberline {14.7.3}\textcolor {Chapter }{Compare different algorithms or implementations}}{191}{subsection.14.7.3}%
\contentsline {subsection}{\numberline {14.7.4}\textcolor {Chapter }{Compare geometry to algebra}}{192}{subsection.14.7.4}%
\contentsline {section}{\numberline {14.8}\textcolor {Chapter }{Group presentations}}{192}{section.14.8}%
\contentsline {section}{\numberline {14.9}\textcolor {Chapter }{Finite index subgroups}}{193}{section.14.9}%
\contentsline {chapter}{\numberline {15}\textcolor {Chapter }{Parallel computation}}{195}{chapter.15}%
\contentsline {section}{\numberline {15.1}\textcolor {Chapter }{An embarassingly parallel computation}}{195}{section.15.1}%
\contentsline {section}{\numberline {15.2}\textcolor {Chapter }{A non\texttt {\symbol {45}}embarassingly parallel computation}}{195}{section.15.2}%
\contentsline {section}{\numberline {15.3}\textcolor {Chapter }{Parallel persistent homology}}{197}{section.15.3}%
\contentsline {chapter}{\numberline {16}\textcolor {Chapter }{Regular CW\texttt {\symbol {45}}structure on knots (written by Kelvin Killeen)}}{198}{chapter.16}%
\contentsline {section}{\numberline {16.1}\textcolor {Chapter }{Knot complements in the 3\texttt {\symbol {45}}ball}}{198}{section.16.1}%
\contentsline {section}{\numberline {16.2}\textcolor {Chapter }{Tubular neighbourhoods}}{199}{section.16.2}%
\contentsline {section}{\numberline {16.3}\textcolor {Chapter }{Knotted surface complements in the 4\texttt {\symbol {45}}ball}}{202}{section.16.3}%
\contentsline {chapter}{References}{212}{chapter*.2}%
|