1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Contents</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap0" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap0_mj.html">[MathJax on]</a></p>
<p><a id="X7D2C85EC87DD46E5" name="X7D2C85EC87DD46E5"></a></p>
<div class="pcenter">
<h1>A HAP tutorial</h1>
<h2>(See also an <span class="URL"><a href="../www/SideLinks/About/aboutContents.html">older tutorial</a></span> or <span class="URL"><a href="comp.pdf">mini-course notes</a></span> or related <span class="URL"><a href="https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980">book</a></span>) <span class="URL"><a href="../www/index.html">The <strong class="button">HAP</strong> home page is here</a></span></h2>
</div>
<p><b>Graham Ellis</b>
</p>
<p><a id="X8537FEB07AF2BEC8" name="X8537FEB07AF2BEC8"></a></p>
<div class="contents">
<h3>Contents<a id="contents" name="contents"></a></h3>
<div class="ContChap"><a href="chap1.html#X7E5EA9587D4BCFB4">1 <span class="Heading">Simplicial complexes & CW complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X85691C6980034524">1.1 <span class="Heading">The Klein bottle as a simplicial complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7B8F88487B1B766C">1.2 <span class="Heading">Other simplicial surfaces</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X80A72C347D99A58E">1.3 <span class="Heading">The Quillen complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7C4A2B8B79950232">1.4 <span class="Heading">The Quillen complex as a reduced CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X782AAB84799E3C44">1.5 <span class="Heading">Simple homotopy equivalences</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X80474C7885AC1578">1.6 <span class="Heading">Cellular simplifications preserving homeomorphism type</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7A15484C7E680AC9">1.7 <span class="Heading">Constructing a CW-structure on a knot complement</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X829793717FB6DDCE">1.8 <span class="Heading">Constructing a regular CW-complex by attaching cells</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7B7354E68025FC92">1.9 <span class="Heading">Constructing a regular CW-complex from its face lattice</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X823FA6A9828FF473">1.10 <span class="Heading">Cup products</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7F9B01CF7EE1D2FC">1.11 <span class="Heading">Intersection forms of <span class="SimpleMath">4</span>-manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X80B6849C835B7F19">1.12 <span class="Heading">Cohomology Rings</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X83035DEC7C9659C6">1.13 <span class="Heading">Bockstein homomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X87135D067B6CDEEC">1.14 <span class="Heading">Diagonal maps on associahedra and other polytopes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X8771FF2885105154">1.15 <span class="Heading">CW maps and induced homomorphisms</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X853D6B247D0E18DB">1.16 <span class="Heading">Constructing a simplicial complex from a regular CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7900FD197F175551">1.17 <span class="Heading">Some limitations to representing spaces as regular CW complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X85A579217DCB6CC8">1.18 <span class="Heading">Equivariant CW complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X86881717878ADCD6">1.19 <span class="Heading">Orbifolds and classifying spaces</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap2.html#X7F8376F37AF80AAC">2 <span class="Heading">Cubical complexes & permutahedral complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X7D67D5F3820637AD">2.1 <span class="Heading">Cubical complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X85D8195379F2A8CA">2.2 <span class="Heading">Permutahedral complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X78D3037283B506E0">2.3 <span class="Heading">Constructing pure cubical and permutahedral complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap2.html#X8462CF66850CC3A8">2.4 <span class="Heading">Computations in dynamical systems</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap3.html#X87472058788D76C0">3 <span class="Heading">Covering spaces</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X85FB4CA987BC92CC">3.1 <span class="Heading">Cellular chains on the universal cover</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X7E5CC04E7E3CCDAD">3.2 <span class="Heading">Spun knots and the Satoh tube map</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X7C304A1C7EF0BA60">3.3 <span class="Heading">Cohomology with local coefficients</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X7A4F34B780FA2CD5">3.4 <span class="Heading">Distinguishing between two non-homeomorphic homotopy equivalent spaces</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X869FD75B84AAC7AD">3.5 <span class="Heading"> Second homotopy groups of spaces with finite fundamental group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X87F8F6C3812A7E73">3.6 <span class="Heading">Third homotopy groups of simply connected spaces</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X7B506CF27DE54DBE">3.6-1 <span class="Heading">First example: Whitehead's certain exact sequence</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap3.html#X828F0FAB86AA60E9">3.6-2 <span class="Heading">Second example: the Hopf invariant</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap3.html#X7EAF7E677FB9D53F">3.7 <span class="Heading">Computing the second homotopy group of a space with infinite fundamental group</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap4.html#X7BFA4D1587D8DF49">4 <span class="Heading">Three Manifolds</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X82D1348C79238C2D">4.1 <span class="Heading">Dehn Surgery</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X848EDEE882B36F6C">4.2 <span class="Heading">Connected Sums</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X78AE684C7DBD7C70">4.3 <span class="Heading">Dijkgraaf-Witten Invariant</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X80B6849C835B7F19">4.4 <span class="Heading">Cohomology rings</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7F56BB4C801AB894">4.5 <span class="Heading">Linking Form</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X850C76697A6A1654">4.6 <span class="Heading">Determining the homeomorphism type of a lens space</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7EC6B008878CC77E">4.7 <span class="Heading">Surgeries on distinct knots can yield homeomorphic manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7B425A3280A2AF07">4.8 <span class="Heading">Finite fundamental groups of <span class="SimpleMath">3</span>-manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X78912D227D753167">4.9 <span class="Heading">Poincare's cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X8761051F84C6CEC2">4.10 <span class="Heading">There are at least 25 distinct cube manifolds</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7D50795883E534A3">4.10-1 <span class="Heading">Face pairings for 25 distinct cube manifolds</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X837811BB8181666E">4.10-2 <span class="Heading">Platonic cube manifolds</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X8084A36082B26D86">4.11 <span class="Heading">There are at most 41 distinct cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7B63C22C80E53758">4.12 <span class="Heading">There are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are euclidean</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X796BF3817BD7F57D">4.13 <span class="Heading">Cube manifolds with boundary</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7EC4359B7DF208B0">4.14 <span class="Heading">Octahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X85FFF9B97B7AD818">4.15 <span class="Heading">Dodecahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X78B75E2E79FBCC54">4.16 <span class="Heading">Prism manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7F31DFDA846E8E75">4.17 <span class="Heading">Bipyramid manifolds</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap5.html#X7B7E077887694A9F">5 <span class="Heading">Topological data analysis</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X80A70B20873378E0">5.1 <span class="Heading">Persistent homology </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D512DA37F789B4C">5.1-1 <span class="Heading">Background to the data</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X849556107A23FF7B">5.2 <span class="Heading">Mapper clustering</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D512DA37F789B4C">5.2-1 <span class="Heading">Background to the data</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7BBDE0567DB8C5DA">5.3 <span class="Heading">Some tools for handling pure complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X79616D12822FDB9A">5.4 <span class="Heading">Digital image analysis and persistent homology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X8066F9B17B78418E">5.4-1 <span class="Heading">Naive example of image segmentation by automatic thresholding</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7E6436E0856761F2">5.4-2 <span class="Heading">Refining the filtration</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X7D512DA37F789B4C">5.4-3 <span class="Heading">Background to the data</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7A8224DA7B00E0D9">5.5 <span class="Heading">A second example of digital image segmentation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X8290E7D287F69B98">5.6 <span class="Heading">A third example of digital image segmentation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7957F329835373E9">5.7 <span class="Heading">Naive example of digital image contour extraction</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X7D2CC9CB85DF1BAF">5.8 <span class="Heading">Alternative approaches to computing persistent homology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X86FD0A867EC9E64F">5.8-1 <span class="Heading">Non-trivial cup product</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap5.html#X783EF0F17B629C46">5.8-2 <span class="Heading">Explicit homology generators</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X80D0D8EB7BCD05E9">5.9 <span class="Heading">Knotted proteins</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X87AF06677F05C624">5.10 <span class="Heading">Random simplicial complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap5.html#X875EE92F7DBA1E27">5.11 <span class="Heading">Computing homology of a clique complex (Vietoris-Rips complex) </span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap6.html#X7C07F4BD8466991A">6 <span class="Heading">Group theoretic computations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X86D7FBBD7E5287C9">6.1 <span class="Heading">Third homotopy group of a supsension of an Eilenberg-MacLane space </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X803FDFFE78A08446">6.2 <span class="Heading">Representations of knot quandles</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X7E4EFB987DA22017">6.3 <span class="Heading">Identifying knots</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X8664E986873195E6">6.4 <span class="Heading">Aspherical <span class="SimpleMath">2</span>-complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X84C0CB8B7C21E179">6.5 <span class="Heading">Group presentations and homotopical syzygies</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X7F719758856A443D">6.6 <span class="Heading">Bogomolov multiplier</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X8333413B838D787D">6.7 <span class="Heading">Second group cohomology and group extensions</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X7F04FA5E81FFA848">6.8 <span class="Heading">Cocyclic groups: a convenient way of representing certain groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X863080FE8270468D">6.9 <span class="Heading">Effective group presentations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X7C60E2B578074532">6.10 <span class="Heading">Second group cohomology and cocyclic Hadamard matrices</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap6.html#X78040D8580D35D53">6.11 <span class="Heading">Third group cohomology and homotopy <span class="SimpleMath">2</span>-types</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap7.html#X787E37187B7308C9">7 <span class="Heading">Cohomology of groups (and Lie Algebras)</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X807B265978F90E01">7.1 <span class="Heading">Finite groups </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80A721AC7A8D30A3">7.1-1 <span class="Heading">Naive homology computation for a very small group</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X838CEA3F850DFC82">7.1-2 <span class="Heading">A more efficient homology computation</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X842E93467AD09EC1">7.1-3 <span class="Heading">Computation of an induced homology homomorphism</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8754D2937E6FD7CE">7.1-4 <span class="Heading">Some other finite group homology computations</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X8463EF6A821FFB69">7.2 <span class="Heading">Nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X82E8FAC67BC16C01">7.3 <span class="Heading">Crystallographic and Almost Crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7AFFB32587D047FE">7.4 <span class="Heading">Arithmetic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X800CB6257DC8FB3A">7.5 <span class="Heading">Artin groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7BAFCA3680E478AE">7.6 <span class="Heading">Graphs of groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7CE849E58706796C">7.7 <span class="Heading">Lie algebra homology and free nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7C3DEDD57BB4D537">7.8 <span class="Heading">Cohomology with coefficients in a module</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7E573EA582CCEF2E">7.9 <span class="Heading">Cohomology as a functor of the first variable</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X796731727A7EBE59">7.10 <span class="Heading">Cohomology as a functor of the second variable and the long exact coefficient sequence</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X80F6FD3E7C7E4E8D">7.11 <span class="Heading">Transfer Homomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X79B1406C803FF178">7.12 <span class="Heading">Cohomology rings of finite fundamental groups of 3-manifolds
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X833A19F0791C3B06">7.13 <span class="Heading">Explicit cocycles </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7C5233E27D2D603E">7.14 <span class="Heading">Quillen's complex and the <span class="SimpleMath">p</span>-part of homology </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X865CC8E0794C0E61">7.15 <span class="Heading">Homology of a Lie algebra</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X86B4EE4783A244F7">7.16 <span class="Heading">Covers of Lie algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7DFF32A67FF39C82">7.16-1 <span class="Heading">Computing a cover</span></a>
</span>
</div></div>
</div>
<div class="ContChap"><a href="chap8.html#X7ED29A58858AAAF2">8 <span class="Heading">Cohomology rings and Steenrod operations for groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X877CAF8B7E64DE04">8.1 <span class="Heading">Mod-<span class="SimpleMath">p</span> cohomology rings of finite groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X870E0299782638AF">8.1-1 <span class="Heading">Ring presentations (for the commutative <span class="SimpleMath">p=2</span> case)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X862538218748627F">8.2 <span class="Heading">Poincare Series for Mod-<span class="SimpleMath">p</span> cohomology</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X780DF87680C3F52B">8.3 <span class="Heading">Functorial ring homomorphisms in Mod-<span class="SimpleMath">p</span> cohomology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X834CED9D7A104695">8.3-1 <span class="Heading">Testing homomorphism properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7A0D505D844F0CD4">8.3-2 <span class="Heading">Testing functorial properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X855764877FA44225">8.3-3 <span class="Heading">Computing with larger groups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X80114B0483EF9A67">8.4 <span class="Heading">Steenrod operations for finite <span class="SimpleMath">2</span>-groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X7D5ACA56870A40E9">8.5 <span class="Heading">Steenrod operations on the classifying space of a finite <span class="SimpleMath">p</span>-group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8.html#X7D2D26C0784A0E14">8.6 <span class="Heading">Mod-<span class="SimpleMath">p</span> cohomology rings of crystallographic groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X81C107C07CF02F0E">8.6-1 <span class="Heading">Poincare series for crystallographic groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8.html#X7F5C242F7BC938A5">8.6-2 <span class="Heading">Mod <span class="SimpleMath">2</span> cohomology rings of <span class="SimpleMath">3</span>-dimensional crystallographic groups</span></a>
</span>
</div></div>
</div>
<div class="ContChap"><a href="chap9.html#X786DB80A8693779E">9 <span class="Heading">Bredon homology</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9.html#X7B0212F97F3D442A">9.1 <span class="Heading">Davis complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9.html#X7AFFB32587D047FE">9.2 <span class="Heading">Arithmetic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9.html#X7DEBF2BB7D1FB144">9.3 <span class="Heading">Crystallographic groups</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap10.html#X7A06103979B92808">10 <span class="Heading">Chain Complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X782DE78884DD6992">10.1 <span class="Heading">Chain complex of a simplicial complex and simplicial pair</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X79E7A13E7DE9C412">10.2 <span class="Heading">Chain complex of a cubical complex and cubical pair</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X86C38E87817F2EAD">10.3 <span class="Heading">Chain complex of a regular CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X7F9662EF83A1FA76">10.4 <span class="Heading">Chain Maps of simplicial and regular CW maps</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X8127E17383F45359">10.5 <span class="Heading">Constructions for chain complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X7AAAB26682CD8AC4">10.6 <span class="Heading">Filtered chain complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X856F202D823280F8">10.7 <span class="Heading">Sparse chain complexes</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap11.html#X7C0B125E7D5415B4">11 <span class="Heading">Resolutions</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X83E8F9DA7CDC0DA7">11.1 <span class="Heading">Resolutions for small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7EEA738385CC3AEA">11.2 <span class="Heading">Resolutions for very small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X86C0983E81F706F5">11.3 <span class="Heading">Resolutions for finite groups acting on orbit polytopes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X85374EA47E3D97CF">11.4 <span class="Heading">Minimal resolutions for finite <span class="SimpleMath">p</span>-groups over <span class="SimpleMath">F_p</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X866C8D91871D1170">11.5 <span class="Heading">Resolutions for abelian groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7B332CBE85120B38">11.6 <span class="Heading">Resolutions for nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7B03997084E00509">11.7 <span class="Heading">Resolutions for groups with subnormal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X814FFCE080B3A826">11.8 <span class="Heading">Resolutions for groups with normal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X81227BF185C417AF">11.9 <span class="Heading">Resolutions for polycyclic (almost) crystallographic groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X814BCDD6837BB9C5">11.10 <span class="Heading">Resolutions for Bieberbach groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X87ADCB7D7FC0B4D3">11.11 <span class="Heading">Resolutions for arbitrary crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7B9B3AF487338A9B">11.12 <span class="Heading">Resolutions for crystallographic groups admitting cubical fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X78DD8D068349065A">11.13 <span class="Heading">Resolutions for Coxeter groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7C69E7227F919CC9">11.14 <span class="Heading">Resolutions for Artin groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X8032647F8734F4EB">11.15 <span class="Heading">Resolutions for <span class="SimpleMath">G=SL_2( Z[1/m])</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7BE4DE82801CD38E">11.16 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">G=SL_2( mathcal O( Q(sqrtd) )</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7D9CCB2C7DAA2310">11.17 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">G=PSL_2( mathcal O( Q(sqrtd) )</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7F699587845E6DB1">11.18 <span class="Heading">Resolutions for a few higher-dimensional arithmetic groups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X7812EB3F7AC45F87">11.19 <span class="Heading">Resolutions for finite-index subgroups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X84CAAA697FAC8E0D">11.20 <span class="Heading">Simplifying resolutions
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X780C3F038148A1C7">11.21 <span class="Heading">Resolutions for graphs of groups and for groups with aspherical presentations
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11.html#X85AB973F8566690A">11.22 <span class="Heading">Resolutions for <span class="SimpleMath">FG</span>-modules
</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap12.html#X7D818E5F80F4CF63">12 <span class="Heading">Simplicial groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X808C6B357F8BADC1">12.1 <span class="Heading">Crossed modules</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X795E339978B42775">12.2 <span class="Heading">Eilenberg-MacLane spaces as simplicial groups (not recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X7D91E64D7DD7F10F">12.3 <span class="Heading">Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X84ABCA497C577132">12.4 <span class="Heading">Elementary theoretical information on
<span class="SimpleMath">H^∗(K(π,n), Z)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X7F828D8D8463CC20">12.5 <span class="Heading">The first three non-trivial homotopy groups of spheres</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X81E2F80384ADF8C2">12.6 <span class="Heading">The first two non-trivial homotopy groups of the suspension and double suspension of a <span class="SimpleMath">K(G,1)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X83EAC40A8324571F">12.7 <span class="Heading">Postnikov towers and <span class="SimpleMath">π_5(S^3)</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X8227000D83B9A17F">12.8 <span class="Heading">Towards <span class="SimpleMath">π_4(Σ K(G,1))</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X7F5E6C067B2AE17A">12.9 <span class="Heading">Enumerating homotopy 2-types</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X7D99B7AA780D8209">12.10 <span class="Heading">Identifying cat<span class="SimpleMath">^1</span>-groups of low order</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12.html#X7F386CF078CB9A20">12.11 <span class="Heading">Identifying crossed modules of low order</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap13.html#X86D5DB887ACB1661">13 <span class="Heading">Congruence Subgroups, Cuspidal Cohomology and Hecke Operators</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X79A1974B7B4987DE">13.1 <span class="Heading">Eichler-Shimura isomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7BFA2C91868255D9">13.2 <span class="Heading">Generators for <span class="SimpleMath">SL_2( Z)</span> and the cubic tree</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7D1A56967A073A8B">13.3 <span class="Heading">One-dimensional fundamental domains and
generators for congruence subgroups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X818BFA9A826C0DB3">13.4 <span class="Heading">Cohomology of congruence subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap13.html#X7F55F8EA82FE9122">13.4-1 <span class="Heading">Cohomology with rational coefficients</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X84D30F1580CD42D1">13.5 <span class="Heading">Cuspidal cohomology</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X80861D3F87C29C43">13.6 <span class="Heading">Hecke operators on forms of weight 2</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X831BB0897B988DA3">13.7 <span class="Heading">Hecke operators on forms of weight <span class="SimpleMath">≥ 2</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X84CC51EE8525E0D9">13.8 <span class="Heading">Reconstructing modular forms from cohomology computations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X8180E53C834301EF">13.9 <span class="Heading">The Picard group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X858B1B5D8506FE81">13.10 <span class="Heading">Bianchi groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X851390E07C3B3BB1">13.11 <span class="Heading">(Co)homology of Bianchi groups and <span class="SimpleMath">SL_2(cal O_-d)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X86A6858884B9C05B">13.12 <span class="Heading">Some other infinite matrix groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7EF5D97281EB66DA">13.13 <span class="Heading">Ideals and finite quotient groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7D1F72287F14C5E1">13.14 <span class="Heading">Congruence subgroups for ideals</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X85E912617AFE03F4">13.15 <span class="Heading">First homology</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap14.html#X805848868005D528">14 <span class="Heading">Fundamental domains for Bianchi groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X858B1B5D8506FE81">14.1 <span class="Heading">Bianchi groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X872D22507F797001">14.2 <span class="Heading">Swan's description of a fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X7B9DE54F7ECB7E44">14.3 <span class="Heading">Computing a fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X7A489A5D79DA9E5C">14.4 <span class="Heading">Examples</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X86CD59CB7A04EE5A">14.5 <span class="Heading">Establishing correctness of a fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X78476F127B73BBD1">14.6 <span class="Heading">Computing a free resolution for <span class="SimpleMath">SL_2(mathcal O_-d)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X784B2156823AEB15">14.7 <span class="Heading">Some sanity checks</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap14.html#X7E5A36D47F9D4A47">14.7-1 <span class="Heading">Equivariant Euler characteristic</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap14.html#X852CDAFF84C5DF01">14.7-2 <span class="Heading">Boundary squares to zero</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap14.html#X7E64819A7C058EDD">14.7-3 <span class="Heading">Compare different algorithms or implementations</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap14.html#X8223864085412705">14.7-4 <span class="Heading">Compare geometry to algebra</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X78BC9D077956089A">14.8 <span class="Heading">Group presentations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap14.html#X786CFAA17C0A6E7A">14.9 <span class="Heading">Finite index subgroups</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap15.html#X7F571E8F7BBC7514">15 <span class="Heading">Parallel computation</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap15.html#X7EAE286B837D27BA">15.1 <span class="Heading">An embarassingly parallel computation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap15.html#X80F359DD7C54D405">15.2 <span class="Heading">A non-embarassingly parallel computation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap15.html#X8496786F7FCEC24A">15.3 <span class="Heading">Parallel persistent homology</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap16.html#X7C57D4AB8232983E">16 <span class="Heading">Regular CW-structure on knots (written by Kelvin Killeen)</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap16.html#X86F56A85848347FF">16.1 <span class="Heading">Knot complements in the 3-ball</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap16.html#X83EA2A38801E7A4C">16.2 <span class="Heading">Tubular neighbourhoods</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap16.html#X78C28038837300BD">16.3 <span class="Heading">Knotted surface complements in the 4-ball</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chapBib.html"><span class="Heading">References</span></a></div>
<div class="ContChap"><a href="chapInd.html"><span class="Heading">Index</span></a></div>
<br />
</div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap1.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|