File: chap0_mj.html

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (657 lines) | stat: -rw-r--r-- 47,242 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (HAP commands) - Contents</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap0"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap0.html">[MathJax off]</a></p>
<p><a id="X7D2C85EC87DD46E5" name="X7D2C85EC87DD46E5"></a></p>
<div class="pcenter">

<h1>A HAP tutorial</h1>


<h2>(See also an <span class="URL"><a href="../www/SideLinks/About/aboutContents.html">older tutorial</a></span> or <span class="URL"><a href="comp.pdf">mini-course notes</a></span> or related <span class="URL"><a href="https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980">book</a></span>) <span class="URL"><a href="../www/index.html">The <strong class="button">HAP</strong> home page is here</a></span></h2>

</div>
<p><b>Graham Ellis</b>
</p>

<p><a id="X8537FEB07AF2BEC8" name="X8537FEB07AF2BEC8"></a></p>

<div class="contents">
<h3>Contents<a id="contents" name="contents"></a></h3>

<div class="ContChap"><a href="chap1_mj.html#X7E5EA9587D4BCFB4">1 <span class="Heading">Simplicial complexes &amp; CW complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X85691C6980034524">1.1 <span class="Heading">The Klein bottle as a simplicial complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X7B8F88487B1B766C">1.2 <span class="Heading">Other simplicial surfaces</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X80A72C347D99A58E">1.3 <span class="Heading">The Quillen complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X7C4A2B8B79950232">1.4 <span class="Heading">The Quillen complex as a reduced CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X782AAB84799E3C44">1.5 <span class="Heading">Simple homotopy equivalences</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X80474C7885AC1578">1.6 <span class="Heading">Cellular simplifications preserving homeomorphism type</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X7A15484C7E680AC9">1.7 <span class="Heading">Constructing a CW-structure on a knot complement</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X829793717FB6DDCE">1.8 <span class="Heading">Constructing a regular CW-complex by attaching cells</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X7B7354E68025FC92">1.9 <span class="Heading">Constructing a regular CW-complex from its face lattice</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X823FA6A9828FF473">1.10 <span class="Heading">Cup products</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X7F9B01CF7EE1D2FC">1.11 <span class="Heading">Intersection forms of <span class="SimpleMath">\(4\)</span>-manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X80B6849C835B7F19">1.12 <span class="Heading">Cohomology Rings</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X83035DEC7C9659C6">1.13 <span class="Heading">Bockstein homomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X87135D067B6CDEEC">1.14 <span class="Heading">Diagonal maps on associahedra and other polytopes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X8771FF2885105154">1.15 <span class="Heading">CW maps and induced homomorphisms</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X853D6B247D0E18DB">1.16 <span class="Heading">Constructing a simplicial complex from a regular CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X7900FD197F175551">1.17 <span class="Heading">Some limitations to representing spaces as regular CW complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X85A579217DCB6CC8">1.18 <span class="Heading">Equivariant CW complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1_mj.html#X86881717878ADCD6">1.19 <span class="Heading">Orbifolds and classifying spaces</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap2_mj.html#X7F8376F37AF80AAC">2 <span class="Heading">Cubical complexes &amp;  permutahedral complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2_mj.html#X7D67D5F3820637AD">2.1 <span class="Heading">Cubical complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2_mj.html#X85D8195379F2A8CA">2.2 <span class="Heading">Permutahedral complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2_mj.html#X78D3037283B506E0">2.3 <span class="Heading">Constructing pure cubical and permutahedral complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2_mj.html#X8462CF66850CC3A8">2.4 <span class="Heading">Computations in dynamical systems</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap3_mj.html#X87472058788D76C0">3 <span class="Heading">Covering spaces</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X85FB4CA987BC92CC">3.1 <span class="Heading">Cellular chains on the universal cover</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X7E5CC04E7E3CCDAD">3.2 <span class="Heading">Spun knots and the Satoh tube map</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X7C304A1C7EF0BA60">3.3 <span class="Heading">Cohomology with local coefficients</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X7A4F34B780FA2CD5">3.4 <span class="Heading">Distinguishing between two non-homeomorphic homotopy equivalent spaces</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X869FD75B84AAC7AD">3.5 <span class="Heading"> Second homotopy groups of spaces with finite fundamental group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X87F8F6C3812A7E73">3.6 <span class="Heading">Third homotopy groups of simply connected spaces</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X7B506CF27DE54DBE">3.6-1 <span class="Heading">First example: Whitehead's certain exact sequence</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap3_mj.html#X828F0FAB86AA60E9">3.6-2 <span class="Heading">Second example: the Hopf invariant</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap3_mj.html#X7EAF7E677FB9D53F">3.7 <span class="Heading">Computing the second homotopy group of a space with infinite fundamental group</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap4_mj.html#X7BFA4D1587D8DF49">4 <span class="Heading">Three Manifolds</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X82D1348C79238C2D">4.1 <span class="Heading">Dehn Surgery</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X848EDEE882B36F6C">4.2 <span class="Heading">Connected Sums</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X78AE684C7DBD7C70">4.3 <span class="Heading">Dijkgraaf-Witten Invariant</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X80B6849C835B7F19">4.4 <span class="Heading">Cohomology rings</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X7F56BB4C801AB894">4.5 <span class="Heading">Linking Form</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X850C76697A6A1654">4.6 <span class="Heading">Determining the homeomorphism type of a lens space</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X7EC6B008878CC77E">4.7 <span class="Heading">Surgeries on distinct knots can yield homeomorphic manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X7B425A3280A2AF07">4.8 <span class="Heading">Finite fundamental groups of <span class="SimpleMath">\(3\)</span>-manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X78912D227D753167">4.9 <span class="Heading">Poincare's cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X8761051F84C6CEC2">4.10 <span class="Heading">There are at least 25 distinct cube manifolds</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4_mj.html#X7D50795883E534A3">4.10-1 <span class="Heading">Face pairings for 25 distinct cube manifolds</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4_mj.html#X837811BB8181666E">4.10-2 <span class="Heading">Platonic cube manifolds</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X8084A36082B26D86">4.11 <span class="Heading">There are at most 41 distinct cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X7B63C22C80E53758">4.12 <span class="Heading">There are precisely 18 orientable cube manifolds, of which   9 are spherical and 5 are euclidean</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X796BF3817BD7F57D">4.13 <span class="Heading">Cube manifolds with boundary</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X7EC4359B7DF208B0">4.14 <span class="Heading">Octahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X85FFF9B97B7AD818">4.15 <span class="Heading">Dodecahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X78B75E2E79FBCC54">4.16 <span class="Heading">Prism manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4_mj.html#X7F31DFDA846E8E75">4.17 <span class="Heading">Bipyramid manifolds</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap5_mj.html#X7B7E077887694A9F">5 <span class="Heading">Topological data analysis</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X80A70B20873378E0">5.1 <span class="Heading">Persistent homology  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X7D512DA37F789B4C">5.1-1 <span class="Heading">Background to the data</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X849556107A23FF7B">5.2 <span class="Heading">Mapper clustering</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X7D512DA37F789B4C">5.2-1 <span class="Heading">Background to the data</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X7BBDE0567DB8C5DA">5.3 <span class="Heading">Some tools for handling pure complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X79616D12822FDB9A">5.4 <span class="Heading">Digital image analysis and persistent homology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X8066F9B17B78418E">5.4-1 <span class="Heading">Naive example of image segmentation by automatic thresholding</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X7E6436E0856761F2">5.4-2 <span class="Heading">Refining the filtration</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X7D512DA37F789B4C">5.4-3 <span class="Heading">Background to the data</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X7A8224DA7B00E0D9">5.5 <span class="Heading">A second example of digital image segmentation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X8290E7D287F69B98">5.6 <span class="Heading">A third example of digital image segmentation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X7957F329835373E9">5.7 <span class="Heading">Naive example of digital image contour extraction</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X7D2CC9CB85DF1BAF">5.8 <span class="Heading">Alternative approaches to computing persistent homology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X86FD0A867EC9E64F">5.8-1 <span class="Heading">Non-trivial cup product</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap5_mj.html#X783EF0F17B629C46">5.8-2 <span class="Heading">Explicit homology generators</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X80D0D8EB7BCD05E9">5.9 <span class="Heading">Knotted proteins</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X87AF06677F05C624">5.10 <span class="Heading">Random simplicial complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap5_mj.html#X875EE92F7DBA1E27">5.11 <span class="Heading">Computing homology of a clique complex (Vietoris-Rips complex) </span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap6_mj.html#X7C07F4BD8466991A">6 <span class="Heading">Group theoretic computations</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X86D7FBBD7E5287C9">6.1 <span class="Heading">Third homotopy group of a supsension of an Eilenberg-MacLane space </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X803FDFFE78A08446">6.2 <span class="Heading">Representations of knot quandles</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X7E4EFB987DA22017">6.3 <span class="Heading">Identifying knots</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X8664E986873195E6">6.4 <span class="Heading">Aspherical <span class="SimpleMath">\(2\)</span>-complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X84C0CB8B7C21E179">6.5 <span class="Heading">Group presentations and homotopical syzygies</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X7F719758856A443D">6.6 <span class="Heading">Bogomolov multiplier</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X8333413B838D787D">6.7 <span class="Heading">Second group cohomology and group extensions</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X7F04FA5E81FFA848">6.8 <span class="Heading">Cocyclic groups: a convenient way of representing  certain groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X863080FE8270468D">6.9 <span class="Heading">Effective group presentations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X7C60E2B578074532">6.10 <span class="Heading">Second group cohomology and cocyclic Hadamard matrices</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap6_mj.html#X78040D8580D35D53">6.11 <span class="Heading">Third group cohomology and homotopy <span class="SimpleMath">\(2\)</span>-types</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap7_mj.html#X787E37187B7308C9">7 <span class="Heading">Cohomology of groups (and Lie Algebras)</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X807B265978F90E01">7.1 <span class="Heading">Finite groups </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7_mj.html#X80A721AC7A8D30A3">7.1-1 <span class="Heading">Naive homology computation for a very small group</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7_mj.html#X838CEA3F850DFC82">7.1-2 <span class="Heading">A more efficient homology computation</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7_mj.html#X842E93467AD09EC1">7.1-3 <span class="Heading">Computation of an induced homology homomorphism</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7_mj.html#X8754D2937E6FD7CE">7.1-4 <span class="Heading">Some other finite group homology computations</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X8463EF6A821FFB69">7.2 <span class="Heading">Nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X82E8FAC67BC16C01">7.3 <span class="Heading">Crystallographic and Almost Crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X7AFFB32587D047FE">7.4 <span class="Heading">Arithmetic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X800CB6257DC8FB3A">7.5 <span class="Heading">Artin groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X7BAFCA3680E478AE">7.6 <span class="Heading">Graphs of groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X7CE849E58706796C">7.7 <span class="Heading">Lie algebra homology and free nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X7C3DEDD57BB4D537">7.8 <span class="Heading">Cohomology with coefficients in a module</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X7E573EA582CCEF2E">7.9 <span class="Heading">Cohomology as a functor of the first variable</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X796731727A7EBE59">7.10 <span class="Heading">Cohomology as a functor of the second variable and the long exact coefficient sequence</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X80F6FD3E7C7E4E8D">7.11 <span class="Heading">Transfer Homomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X79B1406C803FF178">7.12 <span class="Heading">Cohomology rings of finite fundamental groups of 3-manifolds
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X833A19F0791C3B06">7.13 <span class="Heading">Explicit cocycles </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X7C5233E27D2D603E">7.14 <span class="Heading">Quillen's complex and the <span class="SimpleMath">\(p\)</span>-part of homology </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X865CC8E0794C0E61">7.15 <span class="Heading">Homology of a Lie algebra</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7_mj.html#X86B4EE4783A244F7">7.16 <span class="Heading">Covers of Lie algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7_mj.html#X7DFF32A67FF39C82">7.16-1 <span class="Heading">Computing a cover</span></a>
</span>
</div></div>
</div>
<div class="ContChap"><a href="chap8_mj.html#X7ED29A58858AAAF2">8 <span class="Heading">Cohomology rings and Steenrod operations for groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap8_mj.html#X877CAF8B7E64DE04">8.1 <span class="Heading">Mod-<span class="SimpleMath">\(p\)</span> cohomology rings of finite groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap8_mj.html#X870E0299782638AF">8.1-1 <span class="Heading">Ring presentations (for the commutative <span class="SimpleMath">\(p=2\)</span> case)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap8_mj.html#X862538218748627F">8.2 <span class="Heading">Poincare Series for Mod-<span class="SimpleMath">\(p\)</span> cohomology</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap8_mj.html#X780DF87680C3F52B">8.3 <span class="Heading">Functorial ring homomorphisms in Mod-<span class="SimpleMath">\(p\)</span> cohomology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap8_mj.html#X834CED9D7A104695">8.3-1 <span class="Heading">Testing homomorphism properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap8_mj.html#X7A0D505D844F0CD4">8.3-2 <span class="Heading">Testing functorial properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap8_mj.html#X855764877FA44225">8.3-3 <span class="Heading">Computing with larger groups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap8_mj.html#X80114B0483EF9A67">8.4 <span class="Heading">Steenrod operations for finite <span class="SimpleMath">\(2\)</span>-groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap8_mj.html#X7D5ACA56870A40E9">8.5 <span class="Heading">Steenrod operations on the classifying space of a finite <span class="SimpleMath">\(p\)</span>-group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap8_mj.html#X7D2D26C0784A0E14">8.6 <span class="Heading">Mod-<span class="SimpleMath">\(p\)</span> cohomology rings of crystallographic groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap8_mj.html#X81C107C07CF02F0E">8.6-1 <span class="Heading">Poincare series for crystallographic groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap8_mj.html#X7F5C242F7BC938A5">8.6-2 <span class="Heading">Mod <span class="SimpleMath">\(2\)</span> cohomology rings of <span class="SimpleMath">\(3\)</span>-dimensional crystallographic groups</span></a>
</span>
</div></div>
</div>
<div class="ContChap"><a href="chap9_mj.html#X786DB80A8693779E">9 <span class="Heading">Bredon homology</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap9_mj.html#X7B0212F97F3D442A">9.1 <span class="Heading">Davis complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap9_mj.html#X7AFFB32587D047FE">9.2 <span class="Heading">Arithmetic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap9_mj.html#X7DEBF2BB7D1FB144">9.3 <span class="Heading">Crystallographic groups</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap10_mj.html#X7A06103979B92808">10 <span class="Heading">Chain Complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X782DE78884DD6992">10.1 <span class="Heading">Chain complex of a simplicial complex and simplicial pair</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X79E7A13E7DE9C412">10.2 <span class="Heading">Chain complex of a cubical complex and cubical pair</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X86C38E87817F2EAD">10.3 <span class="Heading">Chain complex of a regular CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X7F9662EF83A1FA76">10.4 <span class="Heading">Chain Maps of simplicial and regular CW maps</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X8127E17383F45359">10.5 <span class="Heading">Constructions for chain complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X7AAAB26682CD8AC4">10.6 <span class="Heading">Filtered chain complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap10_mj.html#X856F202D823280F8">10.7 <span class="Heading">Sparse chain complexes</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap11_mj.html#X7C0B125E7D5415B4">11 <span class="Heading">Resolutions</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X83E8F9DA7CDC0DA7">11.1 <span class="Heading">Resolutions for small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7EEA738385CC3AEA">11.2 <span class="Heading">Resolutions for very small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X86C0983E81F706F5">11.3 <span class="Heading">Resolutions for finite groups acting on orbit polytopes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X85374EA47E3D97CF">11.4 <span class="Heading">Minimal resolutions for finite <span class="SimpleMath">\(p\)</span>-groups over <span class="SimpleMath">\(\mathbb F_p\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X866C8D91871D1170">11.5 <span class="Heading">Resolutions for abelian groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B332CBE85120B38">11.6 <span class="Heading">Resolutions for nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B03997084E00509">11.7 <span class="Heading">Resolutions for groups with subnormal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X814FFCE080B3A826">11.8 <span class="Heading">Resolutions for groups with normal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X81227BF185C417AF">11.9 <span class="Heading">Resolutions for polycyclic (almost) crystallographic groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X814BCDD6837BB9C5">11.10 <span class="Heading">Resolutions for Bieberbach groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X87ADCB7D7FC0B4D3">11.11 <span class="Heading">Resolutions for arbitrary crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B9B3AF487338A9B">11.12 <span class="Heading">Resolutions for crystallographic groups  admitting cubical fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X78DD8D068349065A">11.13 <span class="Heading">Resolutions for Coxeter groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7C69E7227F919CC9">11.14 <span class="Heading">Resolutions for Artin groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X8032647F8734F4EB">11.15 <span class="Heading">Resolutions for <span class="SimpleMath">\(G=SL_2(\mathbb Z[1/m])\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7BE4DE82801CD38E">11.16 <span class="Heading">Resolutions for selected groups 
<span class="SimpleMath">\(G=SL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7D9CCB2C7DAA2310">11.17 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">\(G=PSL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7F699587845E6DB1">11.18 <span class="Heading">Resolutions for a few higher-dimensional arithmetic groups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7812EB3F7AC45F87">11.19 <span class="Heading">Resolutions for finite-index subgroups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X84CAAA697FAC8E0D">11.20 <span class="Heading">Simplifying resolutions
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X780C3F038148A1C7">11.21 <span class="Heading">Resolutions for graphs of groups and for groups with aspherical presentations
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X85AB973F8566690A">11.22 <span class="Heading">Resolutions for <span class="SimpleMath">\(\mathbb FG\)</span>-modules
</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap12_mj.html#X7D818E5F80F4CF63">12 <span class="Heading">Simplicial groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X808C6B357F8BADC1">12.1 <span class="Heading">Crossed modules</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X795E339978B42775">12.2 <span class="Heading">Eilenberg-MacLane spaces as simplicial groups (not recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7D91E64D7DD7F10F">12.3 <span class="Heading">Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X84ABCA497C577132">12.4 <span class="Heading">Elementary theoretical information on  
<span class="SimpleMath">\(H^\ast(K(\pi,n),\mathbb Z)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7F828D8D8463CC20">12.5 <span class="Heading">The first three non-trivial homotopy groups of spheres</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X81E2F80384ADF8C2">12.6 <span class="Heading">The first two non-trivial homotopy groups of the suspension and double suspension of a <span class="SimpleMath">\(K(G,1)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X83EAC40A8324571F">12.7 <span class="Heading">Postnikov towers and <span class="SimpleMath">\(\pi_5(S^3)\)</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X8227000D83B9A17F">12.8 <span class="Heading">Towards <span class="SimpleMath">\(\pi_4(\Sigma K(G,1))\)</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7F5E6C067B2AE17A">12.9 <span class="Heading">Enumerating homotopy 2-types</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7D99B7AA780D8209">12.10 <span class="Heading">Identifying cat<span class="SimpleMath">\(^1\)</span>-groups of low order</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7F386CF078CB9A20">12.11 <span class="Heading">Identifying crossed modules of low order</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap13_mj.html#X86D5DB887ACB1661">13 <span class="Heading">Congruence Subgroups, Cuspidal Cohomology  and Hecke Operators</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X79A1974B7B4987DE">13.1 <span class="Heading">Eichler-Shimura isomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X7BFA2C91868255D9">13.2 <span class="Heading">Generators for <span class="SimpleMath">\(SL_2(\mathbb Z)\)</span> and the cubic tree</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X7D1A56967A073A8B">13.3 <span class="Heading">One-dimensional fundamental domains and  
generators for congruence subgroups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X818BFA9A826C0DB3">13.4 <span class="Heading">Cohomology of congruence subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap13_mj.html#X7F55F8EA82FE9122">13.4-1 <span class="Heading">Cohomology with rational coefficients</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X84D30F1580CD42D1">13.5 <span class="Heading">Cuspidal cohomology</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X80861D3F87C29C43">13.6 <span class="Heading">Hecke operators on forms of weight 2</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X831BB0897B988DA3">13.7 <span class="Heading">Hecke operators on forms of weight <span class="SimpleMath">\( \ge 2\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X84CC51EE8525E0D9">13.8 <span class="Heading">Reconstructing modular forms from cohomology computations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X8180E53C834301EF">13.9 <span class="Heading">The Picard group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X858B1B5D8506FE81">13.10 <span class="Heading">Bianchi groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X851390E07C3B3BB1">13.11 <span class="Heading">(Co)homology of Bianchi groups and <span class="SimpleMath">\(SL_2({\cal O}_{-d})\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X86A6858884B9C05B">13.12 <span class="Heading">Some other infinite matrix groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X7EF5D97281EB66DA">13.13 <span class="Heading">Ideals and finite quotient groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X7D1F72287F14C5E1">13.14 <span class="Heading">Congruence subgroups for ideals</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13_mj.html#X85E912617AFE03F4">13.15 <span class="Heading">First homology</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap14_mj.html#X805848868005D528">14 <span class="Heading">Fundamental domains for Bianchi groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X858B1B5D8506FE81">14.1 <span class="Heading">Bianchi groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X872D22507F797001">14.2 <span class="Heading">Swan's description of a fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X7B9DE54F7ECB7E44">14.3 <span class="Heading">Computing a fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X7A489A5D79DA9E5C">14.4 <span class="Heading">Examples</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X86CD59CB7A04EE5A">14.5 <span class="Heading">Establishing correctness of a fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X78476F127B73BBD1">14.6 <span class="Heading">Computing a free resolution for <span class="SimpleMath">\(SL_2({\mathcal O}_{-d})\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X784B2156823AEB15">14.7 <span class="Heading">Some sanity checks</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap14_mj.html#X7E5A36D47F9D4A47">14.7-1 <span class="Heading">Equivariant Euler characteristic</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap14_mj.html#X852CDAFF84C5DF01">14.7-2 <span class="Heading">Boundary squares to zero</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap14_mj.html#X7E64819A7C058EDD">14.7-3 <span class="Heading">Compare different algorithms or implementations</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap14_mj.html#X8223864085412705">14.7-4 <span class="Heading">Compare geometry to algebra</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X78BC9D077956089A">14.8 <span class="Heading">Group presentations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap14_mj.html#X786CFAA17C0A6E7A">14.9 <span class="Heading">Finite index subgroups</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap15_mj.html#X7F571E8F7BBC7514">15 <span class="Heading">Parallel computation</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15_mj.html#X7EAE286B837D27BA">15.1 <span class="Heading">An embarassingly parallel computation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15_mj.html#X80F359DD7C54D405">15.2 <span class="Heading">A non-embarassingly parallel computation</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap15_mj.html#X8496786F7FCEC24A">15.3 <span class="Heading">Parallel persistent homology</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chap16_mj.html#X7C57D4AB8232983E">16 <span class="Heading">Regular CW-structure on knots (written by Kelvin Killeen)</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap16_mj.html#X86F56A85848347FF">16.1 <span class="Heading">Knot complements in the 3-ball</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap16_mj.html#X83EA2A38801E7A4C">16.2 <span class="Heading">Tubular neighbourhoods</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap16_mj.html#X78C28038837300BD">16.3 <span class="Heading">Knotted surface complements in the 4-ball</span></a>
</span>
</div>
</div>
<div class="ContChap"><a href="chapBib_mj.html"><span class="Heading">References</span></a></div>
<div class="ContChap"><a href="chapInd_mj.html"><span class="Heading">Index</span></a></div>
<br />
</div>

<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>