1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 1: Simplicial complexes & CW complexes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap1" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap0.html">[Previous Chapter]</a> <a href="chap2.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap1_mj.html">[MathJax on]</a></p>
<p><a id="X7E5EA9587D4BCFB4" name="X7E5EA9587D4BCFB4"></a></p>
<div class="ChapSects"><a href="chap1.html#X7E5EA9587D4BCFB4">1 <span class="Heading">Simplicial complexes & CW complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X85691C6980034524">1.1 <span class="Heading">The Klein bottle as a simplicial complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7B8F88487B1B766C">1.2 <span class="Heading">Other simplicial surfaces</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X80A72C347D99A58E">1.3 <span class="Heading">The Quillen complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7C4A2B8B79950232">1.4 <span class="Heading">The Quillen complex as a reduced CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X782AAB84799E3C44">1.5 <span class="Heading">Simple homotopy equivalences</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X80474C7885AC1578">1.6 <span class="Heading">Cellular simplifications preserving homeomorphism type</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7A15484C7E680AC9">1.7 <span class="Heading">Constructing a CW-structure on a knot complement</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X829793717FB6DDCE">1.8 <span class="Heading">Constructing a regular CW-complex by attaching cells</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7B7354E68025FC92">1.9 <span class="Heading">Constructing a regular CW-complex from its face lattice</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X823FA6A9828FF473">1.10 <span class="Heading">Cup products</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7F9B01CF7EE1D2FC">1.11 <span class="Heading">Intersection forms of <span class="SimpleMath">4</span>-manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X80B6849C835B7F19">1.12 <span class="Heading">Cohomology Rings</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X83035DEC7C9659C6">1.13 <span class="Heading">Bockstein homomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X87135D067B6CDEEC">1.14 <span class="Heading">Diagonal maps on associahedra and other polytopes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X8771FF2885105154">1.15 <span class="Heading">CW maps and induced homomorphisms</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X853D6B247D0E18DB">1.16 <span class="Heading">Constructing a simplicial complex from a regular CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7900FD197F175551">1.17 <span class="Heading">Some limitations to representing spaces as regular CW complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X85A579217DCB6CC8">1.18 <span class="Heading">Equivariant CW complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X86881717878ADCD6">1.19 <span class="Heading">Orbifolds and classifying spaces</span></a>
</span>
</div>
</div>
<h3>1 <span class="Heading">Simplicial complexes & CW complexes</span></h3>
<p><a id="X85691C6980034524" name="X85691C6980034524"></a></p>
<h4>1.1 <span class="Heading">The Klein bottle as a simplicial complex</span></h4>
<p><img src="images/klein.jpg" align="center" width="250" alt="Klein bottle"/> <img src="images/kleingrid.jpg" align="center" width="250"/ alt="simplicial Klein bottle"/></p>
<p>The following example constructs the Klein bottle as a simplicial complex <span class="SimpleMath">K</span> on <span class="SimpleMath">9</span> vertices, and then constructs the cellular chain complex <span class="SimpleMath">C_∗=C_∗(K)</span> from which the integral homology groups <span class="SimpleMath">H_1(K, Z)= Z_2⊕ Z</span>, <span class="SimpleMath">H_2(K, Z)=0</span> are computed. The chain complex <span class="SimpleMath">D_∗=C_∗ ⊗_ Z Z_2</span> is also constructed and used to compute the mod-<span class="SimpleMath">2</span> homology vector spaces <span class="SimpleMath">H_1(K, Z_2)= Z_2⊕ Z_2</span>, <span class="SimpleMath">H_2(K, Z)= Z_2</span>. Finally, a presentation <span class="SimpleMath">π_1(K) = ⟨ x,y : yxy^-1x⟩</span> is computed for the fundamental group of <span class="SimpleMath">K</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">2simplices:=</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[1,2,5], [2,5,8], [2,3,8], [3,8,9], [1,3,9], [1,4,9],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [4,5,8], [4,6,8], [6,8,9], [6,7,9], [4,7,9], [4,5,7],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [1,4,6], [1,2,6], [2,6,7], [2,3,7], [3,5,7], [1,3,5]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=SimplicialComplex(2simplices);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplex(K);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,1);</span>
[ 2, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,2);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=TensorWithIntegersModP(C,2);</span>
Chain complex of length 2 in characteristic 2 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(D,1);</span>
2
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(D,2);</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(K);</span>
<fp group of size infinity on the generators [ f1, f2 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">RelatorsOfFpGroup(G);</span>
[ f2*f1*f2^-1*f1 ]
</pre></div>
<p><a id="X7B8F88487B1B766C" name="X7B8F88487B1B766C"></a></p>
<h4>1.2 <span class="Heading">Other simplicial surfaces</span></h4>
<p>The following example constructs the real projective plane <span class="SimpleMath">P</span>, the Klein bottle <span class="SimpleMath">K</span> and the torus <span class="SimpleMath">T</span> as simplicial complexes, using the surface genus <span class="SimpleMath">g</span> as input in the oriented case and <span class="SimpleMath">-g</span> as input in the unoriented cases. It then confirms that the connected sums <span class="SimpleMath">M=K#P</span> and <span class="SimpleMath">N=T#P</span> have the same integral homology.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=ClosedSurface(-1);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ClosedSurface(-2);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=ClosedSurface(1);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=ConnectedSum(K,P);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=ConnectedSum(T,P);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(M,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(N,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(M,1);</span>
[ 2, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(N,1);</span>
[ 2, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(M,2);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(N,2);</span>
[ ]
</pre></div>
<p><a id="X80A72C347D99A58E" name="X80A72C347D99A58E"></a></p>
<h4>1.3 <span class="Heading">The Quillen complex</span></h4>
<p>Given a group <span class="SimpleMath">G</span> one can consider the partially ordered set <span class="SimpleMath">cal A_p(G)</span> of all non-trivial elementary abelian <span class="SimpleMath">p</span>-subgroups of <span class="SimpleMath">G</span>, the partial order being set inclusion. The order complex <span class="SimpleMath">∆cal A_p(G)</span> is a simplicial complex which is called the <em>Quillen complex </em>.</p>
<p>The following example constructs the Quillen complex <span class="SimpleMath">∆cal A_2(S_7)</span> for the symmetric group of degree <span class="SimpleMath">7</span> and <span class="SimpleMath">p=2</span>. This simplicial complex involves <span class="SimpleMath">11291</span> simplices, of which <span class="SimpleMath">4410</span> are <span class="SimpleMath">2</span>-simplices..</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=QuillenComplex(SymmetricGroup(7),2);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(K);</span>
11291
<span class="GAPprompt">gap></span> <span class="GAPinput">K!.nrSimplices(2);</span>
4410
</pre></div>
<p><a id="X7C4A2B8B79950232" name="X7C4A2B8B79950232"></a></p>
<h4>1.4 <span class="Heading">The Quillen complex as a reduced CW-complex</span></h4>
<p>Any simplicial complex <span class="SimpleMath">K</span> can be regarded as a regular CW complex. Different datatypes are used in <strong class="button">HAP</strong> for these two notions. The following continuation of the above Quillen complex example constructs a regular CW complex <span class="SimpleMath">Y</span> isomorphic to (i.e. with the same face lattice as) <span class="SimpleMath">K=∆cal A_2(S_7)</span>. An advantage to working in the category of CW complexes is that it may be possible to find a CW complex <span class="SimpleMath">X</span> homotopy equivalent to <span class="SimpleMath">Y</span> but with fewer cells than <span class="SimpleMath">Y</span>. The cellular chain complex <span class="SimpleMath">C_∗(X)</span> of such a CW complex <span class="SimpleMath">X</span> is computed by the following commands. From the number of free generators of <span class="SimpleMath">C_∗(X)</span>, which correspond to the cells of <span class="SimpleMath">X</span>, we see that there is a single <span class="SimpleMath">0</span>-cell and <span class="SimpleMath">160</span> <span class="SimpleMath">2</span>-cells. Thus the Quillen complex $$\Delta{\cal A}_2(S_7) \simeq \bigvee_{1\le i\le 160} S^2$$ has the homotopy type of a wedge of <span class="SimpleMath">160</span> <span class="SimpleMath">2</span>-spheres. This homotopy equivalence is given in <a href="chapBib.html#biBksontini">[Kso00, (15.1)]</a> where it was obtained by purely theoretical methods.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=RegularCWComplex(K);</span>
Regular CW-complex of dimension 2
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplex(Y);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">C!.dimension(0);</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">C!.dimension(1);</span>
0
<span class="GAPprompt">gap></span> <span class="GAPinput">C!.dimension(2);</span>
160
</pre></div>
<p><a id="X782AAB84799E3C44" name="X782AAB84799E3C44"></a></p>
<h4>1.5 <span class="Heading">Simple homotopy equivalences</span></h4>
<p>For any regular CW complex <span class="SimpleMath">Y</span> one can look for a sequence of simple homotopy collapses <span class="SimpleMath">Y↘ Y_1 ↘ Y_2 ↘ ... ↘ Y_N=X</span> with <span class="SimpleMath">X</span> a smaller, and typically non-regular, CW complex. Such a sequence of collapses can be recorded using what is now known as a <em>discrete vector field</em> on <span class="SimpleMath">Y</span>. The sequence can, for example, be used to produce a chain homotopy equivalence <span class="SimpleMath">f: C_∗ Y → C_∗ X</span> and its chain homotopy inverse <span class="SimpleMath">g: C_∗ X → C_∗ Y</span>. The function <code class="code">ChainComplex(Y)</code> returns the cellular chain complex <span class="SimpleMath">C_∗(X)</span>, wheras the function <code class="code">ChainComplexOfRegularCWComplex(Y)</code> returns the chain complex <span class="SimpleMath">C_∗(Y)</span>.</p>
<p>For the above Quillen complex <span class="SimpleMath">Y=∆cal A_2(S_7)</span> the following commands produce the chain homotopy equivalence <span class="SimpleMath">f: C_∗ Y → C_∗ X</span> and <span class="SimpleMath">g: C_∗ X → C_∗ Y</span>. The number of generators of <span class="SimpleMath">C_∗ Y</span> equals the number of cells of <span class="SimpleMath">Y</span> in each degree, and this number is listed for each degree.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=QuillenComplex(SymmetricGroup(7),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=RegularCWComplex(K);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CY:=ChainComplexOfRegularCWComplex(Y);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">CX:=ChainComplex(Y);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">equiv:=ChainComplexEquivalenceOfRegularCWComplex(Y);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=equiv[1];</span>
Chain Map between complexes of length 2 .
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=equiv[2];</span>
Chain Map between complexes of length 2 .
<span class="GAPprompt">gap></span> <span class="GAPinput">CY!.dimension(0);</span>
1316
<span class="GAPprompt">gap></span> <span class="GAPinput">CY!.dimension(1);</span>
5565
<span class="GAPprompt">gap></span> <span class="GAPinput">CY!.dimension(2);</span>
4410
</pre></div>
<p><a id="X80474C7885AC1578" name="X80474C7885AC1578"></a></p>
<h4>1.6 <span class="Heading">Cellular simplifications preserving homeomorphism type</span></h4>
<p>For some purposes one might need to simplify the cell structure on a regular CW-complex <span class="SimpleMath">Y</span> so as to obtained a homeomorphic CW-complex <span class="SimpleMath">W</span> with fewer cells.</p>
<p>The following commands load a <span class="SimpleMath">4</span>-dimensional simplicial complex <span class="SimpleMath">Y</span> representing the K3 complex surface. Its simplicial structure is taken from <a href="chapBib.html#biBspreerkhuenel">[SK11]</a> and involves <span class="SimpleMath">1704</span> cells of various dimensions. The commands then convert the cell structure into that of a homeomorphic regular CW-complex <span class="SimpleMath">W</span> involving <span class="SimpleMath">774</span> cells.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=RegularCWComplex(SimplicialK3Surface());</span>
Regular CW-complex of dimension 4
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Y);</span>
1704
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=SimplifiedComplex(Y);</span>
Regular CW-complex of dimension 4
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(W);</span>
774
</pre></div>
<p><a id="X7A15484C7E680AC9" name="X7A15484C7E680AC9"></a></p>
<h4>1.7 <span class="Heading">Constructing a CW-structure on a knot complement</span></h4>
<p>The following commands construct the complement <span class="SimpleMath">M=S^3∖ K</span> of the trefoil knot <span class="SimpleMath">K</span>. This complement is returned as a <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">M</span> with regular CW-structure involving four <span class="SimpleMath">3</span>-cells.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">arc:=ArcPresentation(PureCubicalKnot(3,1));</span>
[ [ 2, 5 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 4 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=SphericalKnotComplement(arc);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">S!.nrCells(3);</span>
4
</pre></div>
<p>The following additional commands then show that <span class="SimpleMath">M</span> is homotopy equivalent to a reduced CW-complex <span class="SimpleMath">Y</span> of dimension <span class="SimpleMath">2</span> involving one <span class="SimpleMath">0</span>-cell, two <span class="SimpleMath">1</span>-cells and one <span class="SimpleMath">2</span>-cell. The fundamental group of <span class="SimpleMath">Y</span> is computed and used to calculate the Alexander polynomial of the trefoil knot.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=ContractedComplex(S);</span>
Regular CW-complex of dimension 2
<span class="GAPprompt">gap></span> <span class="GAPinput">CriticalCells(Y);</span>
[ [ 2, 1 ], [ 1, 9 ], [ 1, 11 ], [ 0, 22 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(Y);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AlexanderPolynomial(G);</span>
x_1^2-x_1+1
</pre></div>
<p><a id="X829793717FB6DDCE" name="X829793717FB6DDCE"></a></p>
<h4>1.8 <span class="Heading">Constructing a regular CW-complex by attaching cells</span></h4>
<p><img src="images/cwspace2.jpg" align="center" width="250" alt="CW space"/></p>
<p>The following example creates the projective plane <span class="SimpleMath">Y</span> as a regular CW-complex, and tests that it has the correct integral homology <span class="SimpleMath">H_0(Y, Z)= Z</span>, <span class="SimpleMath">H_1(Y, Z)= Z_2</span>, <span class="SimpleMath">H_2(Y, Z)=0</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">attch:=RegularCWComplex_AttachCellDestructive;; #Function for attaching cells</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=RegularCWDiscreteSpace(3); #Discrete CW-complex consisting of points {1,2,3}</span>
Regular CW-complex of dimension 0
<span class="GAPprompt">gap></span> <span class="GAPinput">e1:=attch(Y,1,[1,2]);; #Attach 1-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">e2:=attch(Y,1,[1,2]);; #Attach 1-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">e3:=attch(Y,1,[1,3]);; #Attach 1-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">e4:=attch(Y,1,[1,3]);; #Attach 1-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">e5:=attch(Y,1,[2,3]);; #Attach 1-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">e6:=attch(Y,1,[2,3]);; #Attach 1-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f1:=attch(Y,2,[e1,e3,e5]);; #Attach 2-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f2:=attch(Y,2,[e2,e4,e5]);; #Attach 2-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f3:=attch(Y,2,[e2,e3,e6]);; #Attach 2-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f4:=attch(Y,2,[e1,e4,e6]);; #Attach 2-cell</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Y,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Y,1);</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Y,2);</span>
[ ]`
</pre></div>
<p>The following example creates a 2-complex <span class="SimpleMath">K</span> corresponding to the group presentation</p>
<p><span class="SimpleMath">G=⟨ x,y,z : xyx^-1y^-1=1, yzy^-1z^-1=1, zxz^-1x^-1=1⟩</span>.</p>
<p>The complex is shown to have the correct fundamental group and homology (since it is the 2-skeleton of the 3-torus <span class="SimpleMath">S^1× S^1× S^1</span>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S1:=RegularCWSphere(1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=WedgeSum(S1,S1,S1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalGroupWithPathReps(W);; x:=F.1;;y:=F.2;;z:=F.3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=RegularCWComplexWithAttachedRelatorCells(W,F,Comm(x,y),Comm(y,z),Comm(x,z));</span>
Regular CW-complex of dimension 2
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(K);</span>
<fp group on the generators [ f1, f2, f3 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">RelatorsOfFpGroup(G);</span>
[ f2^-1*f1*f2*f1^-1, f1^-1*f3*f1*f3^-1, f2^-1*f3*f2*f3^-1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(K,1);</span>
[ 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(K,2);</span>
[ 0, 0, 0 ]
</pre></div>
<p><a id="X7B7354E68025FC92" name="X7B7354E68025FC92"></a></p>
<h4>1.9 <span class="Heading">Constructing a regular CW-complex from its face lattice</span></h4>
<p><img src="images/cwspace.jpg" align="center" width="250" alt="CW space"/></p>
<p>The following example creats a <span class="SimpleMath">2</span>-dimensional annulus <span class="SimpleMath">A</span> as a regular CW-complex, and testing that it has the correct integral homology <span class="SimpleMath">H_0(A, Z)= Z</span>, <span class="SimpleMath">H_1(A, Z)= Z</span>, <span class="SimpleMath">H_2(A, Z)=0</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">FL:=[];; #The face lattice</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">FL[1]:=[[1,0],[1,0],[1,0],[1,0]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">FL[2]:=[[2,1,2],[2,3,4],[2,1,4],[2,2,3],[2,1,4],[2,2,3]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">FL[3]:=[[4,1,2,3,4],[4,1,2,5,6]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">FL[4]:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=RegularCWComplex(FL);</span>
Regular CW-complex of dimension 2
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(A,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(A,1);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(A,2);</span>
[ ]
</pre></div>
<p>Next we construct the direct product <span class="SimpleMath">Y=A× A× A× A× A</span> of five copies of the annulus. This is a <span class="SimpleMath">10</span>-dimensional CW complex involving <span class="SimpleMath">248832</span> cells. It will be homotopy equivalent <span class="SimpleMath">Y≃ X</span> to a CW complex <span class="SimpleMath">X</span> involving fewer cells. The CW complex <span class="SimpleMath">X</span> may be non-regular. We compute the cochain complex <span class="SimpleMath">D_∗ = Hom_ Z(C_∗(X), Z)</span> from which the cohomology groups <br /> <span class="SimpleMath">H^0(Y, Z)= Z</span>, <br /> <span class="SimpleMath">H^1(Y, Z)= Z^5</span>, <br /> <span class="SimpleMath">H^2(Y, Z)= Z^10</span>, <br /> <span class="SimpleMath">H^3(Y, Z)= Z^10</span>, <br /> <span class="SimpleMath">H^4(Y, Z)= Z^5</span>, <br /> <span class="SimpleMath">H^5(Y, Z)= Z</span>, <br /> <span class="SimpleMath">H^6(Y, Z)=0</span><br /> are obtained.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=DirectProduct(A,A,A,A,A);</span>
Regular CW-complex of dimension 10
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Y);</span>
248832
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplex(Y);</span>
Chain complex of length 10 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=HomToIntegers(C);</span>
Cochain complex of length 10 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(D,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(D,1);</span>
[ 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(D,2);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(D,3);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(D,4);</span>
[ 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(D,5);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(D,6);</span>
[ ]
</pre></div>
<p><a id="X823FA6A9828FF473" name="X823FA6A9828FF473"></a></p>
<h4>1.10 <span class="Heading">Cup products</span></h4>
<p><strong class="button">Strategy 1: Use geometric group theory in low dimensions.</strong></p>
<p>Continuing with the previous example, we consider the first and fifth generators <span class="SimpleMath">g_1^1, g_5^1∈ H^1(Y, Z) = Z^5</span> and establish that their cup product <span class="SimpleMath">g_1^1 ∪ g_5^1 = - g_7^2 ∈ H^2(Y, Z) = Z^10</span> is equal to minus the seventh generator of <span class="SimpleMath">H^2(Y, Z)</span>. We also verify that <span class="SimpleMath">g_5^1∪ g_1^1 = - g_1^1 ∪ g_5^1</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">cup11:=CupProduct(FundamentalGroup(Y));</span>
function( a, b ) ... end
<span class="GAPprompt">gap></span> <span class="GAPinput">cup11([1,0,0,0,0],[0,0,0,0,1]);</span>
[ 0, 0, 0, 0, 0, 0, -1, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cup11([0,0,0,0,1],[1,0,0,0,0]);</span>
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ]
</pre></div>
<p>This computation of low-dimensional cup products is achieved using group-theoretic methods to approximate the diagonal map <span class="SimpleMath">∆ : Y → Y× Y</span> in dimensions <span class="SimpleMath">≤ 2</span>. In order to construct cup products in higher degrees <strong class="button">HAP</strong> invokes three further strategies.</p>
<p><strong class="button">Strategy 2: implement the Alexander-Whitney map for simplicial complexes.</strong></p>
<p>For simplicial complexes the cup product is implemented using the standard formula for the Alexander-Whitney chain map, together with homotopy equivalences to improve efficiency.</p>
<p>As a first example, the following commands construct simplicial complexes <span class="SimpleMath">K=( S^1 × S^1) # ( S^1 × S^1)</span> and <span class="SimpleMath">L=( S^1 × S^1) ∨ S^1 ∨ S^1</span> and establish that they have the same cohomology groups. It is then shown that the cup products <span class="SimpleMath">∪_K: H^2(K, Z)× H^2(K, Z) → H^4(K, Z)</span> and <span class="SimpleMath">∪_L: H^2(L, Z)× H^2(L, Z) → H^4(L, Z)</span> are antisymmetric bilinear forms of different ranks; hence <span class="SimpleMath">K</span> and <span class="SimpleMath">L</span> have different homotopy types.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ClosedSurface(2);</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=WedgeSum(WedgeSum(ClosedSurface(1),Sphere(1)),Sphere(1));</span>
Simplicial complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(K,0);Cohomology(L,0);</span>
[ 0 ]
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(K,1);Cohomology(L,1);</span>
[ 0, 0, 0, 0 ]
[ 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(K,2);Cohomology(L,2);</span>
[ 0 ]
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cupK:=CupProduct(K);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cupL:=CupProduct(L);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=NullMat(4,4);;B:=NullMat(4,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for j in [1..4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">A[i][j]:=cupK(1,1,gens[i],gens[j])[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput">B[i][j]:=cupL(1,1,gens[i],gens[j])[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(A);</span>
[ [ 0, 0, 0, 1 ],
[ 0, 0, 1, 0 ],
[ 0, -1, 0, 0 ],
[ -1, 0, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(B);</span>
[ [ 0, 1, 0, 0 ],
[ -1, 0, 0, 0 ],
[ 0, 0, 0, 0 ],
[ 0, 0, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Rank(A);</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">Rank(B);</span>
2
</pre></div>
<p>As a second example of the computation of cups products, the following commands construct the connected sums <span class="SimpleMath">V=M# M</span> and <span class="SimpleMath">W=M# overline M</span> where <span class="SimpleMath">M</span> is the <span class="SimpleMath">K3</span> complex surface which is stored as a pure simplicial complex of dimension 4 and where <span class="SimpleMath">overline M</span> denotes the opposite orientation on <span class="SimpleMath">M</span>. The simplicial structure on the <span class="SimpleMath">K3</span> surface is taken from <a href="chapBib.html#biBspreerkhuenel">[SK11]</a>. The commands then show that <span class="SimpleMath">H^2(V, Z)=H^2(W, Z)= Z^44</span> and <span class="SimpleMath">H^4(V, Z)=H^4(W, Z)= Z</span>. The final commands compute the matrix <span class="SimpleMath">AV=(x∪ y)</span> as <span class="SimpleMath">x,y</span> range over a generating set for <span class="SimpleMath">H^2(V, Z)</span> and the corresponding matrix <span class="SimpleMath">AW</span> for <span class="SimpleMath">W</span>. These two matrices are seen to have a different number of positive eigenvalues from which we can conclude that <span class="SimpleMath">V</span> is not homotopy equivalent to <span class="SimpleMath">W</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=SimplicialK3Surface();;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:=ConnectedSum(M,M,+1);</span>
Simplicial complex of dimension 4.
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=ConnectedSum(M,M,-1);</span>
Simplicial complex of dimension 4.
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(V,2);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(W,2);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(V,4);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(W,4);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cupV:=CupProduct(V);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cupW:=CupProduct(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AV:=NullMat(44,44);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AW:=NullMat(44,44);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:=IdentityMat(44);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..44] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for j in [1..44] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">AV[i][j]:=cupV(2,2,gens[i],gens[j])[1]; </span>
<span class="GAPprompt">></span> <span class="GAPinput">AW[i][j]:=cupW(2,2,gens[i],gens[j])[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SignatureOfSymmetricMatrix(AV);</span>
rec( determinant := 1, negative_eigenvalues := 22, positive_eigenvalues := 22,
zero_eigenvalues := 0 )
<span class="GAPprompt">gap></span> <span class="GAPinput">SignatureOfSymmetricMatrix(AW);</span>
rec( determinant := 1, negative_eigenvalues := 6, positive_eigenvalues := 38,
zero_eigenvalues := 0 )
</pre></div>
<p>A cubical cubical version of the Alexander-Whitney formula, due to J.-P. Serre, could be used for computing the cohomology ring of a regular CW-complex whose cells all have a cubical combinatorial face lattice. This has not been implemented in HAP. However, the following more general approach has been implemented.</p>
<p><strong class="button">Strategy 3: Implement a cellular approximation to the diagonal map on an arbitrary finite regular CW-complex.</strong></p>
<p>The following example calculates the cup product <span class="SimpleMath">H^2(W, Z)× H^2(W, Z) → H^4(W, Z)</span> for the <span class="SimpleMath">4</span>-dimensional orientable manifold <span class="SimpleMath">W=M× M</span> where <span class="SimpleMath">M</span> is the closed surface of genus <span class="SimpleMath">2</span>. The manifold <span class="SimpleMath">W</span> is stored as a regular CW-complex.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=RegularCWComplex(ClosedSurface(2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=DirectProduct(M,M);</span>
Regular CW-complex of dimension 4
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(W);</span>
5776
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=SimplifiedComplex(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(W); </span>
1024
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,2); </span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,4);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">cup:=CupProduct(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SecondCohomologtGens:=IdentityMat(18);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=NullMat(18,18);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..18] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for j in [1..18] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">A[i][j]:=cup(2,2,SecondCohomologtGens[i],SecondCohomologtGens[j])[1];</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(A);</span>
[ [ 0, -1, 0, 0, 0, 0, 3, -2, 0, 0, 0, 1, -1, 0, 0, 1, 0, 0 ],
[ -1, -10, 1, 2, -2, 1, 6, -1, 0, -3, 4, -1, -1, -1, 4, -2, -2, 0 ],
[ 0, 1, -2, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, 0, 1, -1, 0, 0 ],
[ 0, 2, 1, -2, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 2, 0, 0 ],
[ 0, -2, 0, 1, 0, 0, 1, -1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0 ],
[ 0, 1, -1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0 ],
[ 3, 6, 0, 0, 1, 0, -4, 0, -1, 2, 4, -5, 2, -1, 1, 0, 3, 0 ],
[ -2, -1, 0, -1, -1, 1, 0, 4, -2, 0, 0, 3, -1, 1, -1, 0, -2, 0 ],
[ 0, 0, 1, 0, 0, -1, -1, -2, 4, -3, -10, 1, 0, 0, -3, 3, 0, 0 ],
[ 0, -3, 0, 1, 0, 1, 2, 0, -3, 2, 3, 0, 0, 0, 1, -3, 0, 0 ],
[ 0, 4, -1, 0, -1, 0, 4, 0, -10, 3, 18, 1, 0, 0, 0, 4, 0, 1 ],
[ 1, -1, 1, 0, 0, 0, -5, 3, 1, 0, 1, 0, 0, 0, -2, -1, -1, 0 ],
[ -1, -1, 0, 0, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, -1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0 ],
[ 0, 4, 1, -1, 0, 1, 1, -1, -3, 1, 0, -2, 1, 0, 0, 2, 2, 0 ],
[ 1, -2, -1, 2, -1, -1, 0, 0, 3, -3, 4, -1, 0, -1, 2, 0, 0, 0 ],
[ 0, -2, 0, 0, 0, 0, 3, -2, 0, 0, 0, -1, 0, -1, 2, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SignatureOfSymmetricMatrix(A);</span>
rec( determinant := -1, negative_eigenvalues := 9, positive_eigenvalues := 9,
zero_eigenvalues := 0 )
</pre></div>
<p>The matrix <span class="SimpleMath">A</span> representing the cup product <span class="SimpleMath">H^2(W, Z)× H^2(W, Z) → H^4(W, Z)</span> is shown to have <span class="SimpleMath">9</span> positive eigenvalues, <span class="SimpleMath">9</span> negative eigenvalues, and no zero eigenvalue.</p>
<p><strong class="button">Strategy 4: Guess and verify a cellular approximation to the diagonal map.</strong></p>
<p>Many naturally occuring cell structures are neither simplicial nor cubical. For a general regular CW-complex we can attempt to construct a cellular inclusion <span class="SimpleMath">overline Y ↪ Y× Y</span> with <span class="SimpleMath">{(y,y) : y∈ Y}⊂ overline Y</span> and with projection <span class="SimpleMath">p: overline Y ↠ Y</span> that induces isomorphisms on integral homology. The function <code class="code">DiagonalApproximation(Y)</code> constructs a candidate inclusion, but the projection <span class="SimpleMath">p: overline Y ↠ Y</span> needs to be tested for homology equivalence. If the candidate inclusion passes this test then the function <code class="code">CupProductOfRegularCWComplex_alt(Y)</code>, involving the candidate space, can be used for cup products. (I think the test is passed for all regular CW-complexes that are subcomplexes of some Euclidean space with all cells convex polytopes -- but a proof needs to be written down!)</p>
<p>The following example calculates <span class="SimpleMath">g_1^2 ∪ g_2^2 ne 0</span> where <span class="SimpleMath">Y=T× T</span> is the direct product of two copies of a simplicial torus <span class="SimpleMath">T</span>, and where <span class="SimpleMath">g_k^n</span> denotes the <span class="SimpleMath">k</span>-th generator in some basis of <span class="SimpleMath">H^n(Y, Z)</span>. The direct product <span class="SimpleMath">Y</span> is a CW-complex which is not a simplicial complex.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=RegularCWComplex(ClosedSurface(1));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=DirectProduct(K,K);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cup:=CupProductOfRegularCWComplex_alt(Y);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,0]);</span>
[ 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=DiagonalApproximation(Y);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=D!.projection;</span>
Map of regular CW-complexes
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=ChainMap(p);</span>
Chain Map between complexes of length 4 .
<span class="GAPprompt">gap></span> <span class="GAPinput">IsIsomorphismOfAbelianFpGroups(Homology(P,0));</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsIsomorphismOfAbelianFpGroups(Homology(P,2));</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsIsomorphismOfAbelianFpGroups(Homology(P,3));</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsIsomorphismOfAbelianFpGroups(Homology(P,4));</span>
true
</pre></div>
<p>Of course, either of Strategies 2 or 3 could also be used for this example. To use the Alexander-Whitney formula of Strategy 2 we would need to give the direct product <span class="SimpleMath">Y=T× T</span> a simplicial structure. This could be obtained using the function <code class="code">DirectProduct(T,T)</code>. The details are as follows. (The result is consistent with the preceding computation since the choice of a basis for cohomology groups is far from unique.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ClosedSurface(1);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">KK:=DirectProduct(K,K);</span>
Simplicial complex of dimension 4.
<span class="GAPprompt">gap></span> <span class="GAPinput">cup:=CupProduct(KK);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">cup(2,2,[1,0,0,0,0,0],[0,1,0,0,0,0]);</span>
[ 0 ]
</pre></div>
<p><a id="X7F9B01CF7EE1D2FC" name="X7F9B01CF7EE1D2FC"></a></p>
<h4>1.11 <span class="Heading">Intersection forms of <span class="SimpleMath">4</span>-manifolds</span></h4>
<p>The cup product gives rise to the intersection form of a connected, closed, orientable <span class="SimpleMath">4</span>-manifold <span class="SimpleMath">Y</span> is a symmetric bilinear form</p>
<p><span class="SimpleMath">qY: H^2(Y, Z)/Torsion × H^2(Y, Z)/Torsion ⟶ Z</span></p>
<p>which we represent as a symmetric matrix.</p>
<p>The following example constructs the direct product <span class="SimpleMath">L=S^2× S^2</span> of two <span class="SimpleMath">2</span>-spheres, the connected sum <span class="SimpleMath">M= CP^2 # overline CP^2</span> of the complex projective plane <span class="SimpleMath">CP^2</span> and its oppositely oriented version <span class="SimpleMath">overline CP^2</span>, and the connected sum <span class="SimpleMath">N= CP^2 # CP^2</span>. The manifolds <span class="SimpleMath">L</span>, <span class="SimpleMath">M</span> and <span class="SimpleMath">N</span> are each shown to have a CW-structure involving one <span class="SimpleMath">0</span>-cell, two <span class="SimpleMath">1</span>-cells and one <span class="SimpleMath">2</span>-cell. They are thus simply connected and have identical cohomology.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=Sphere(2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=RegularCWComplex(S);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=DirectProduct(S,S);</span>
Regular CW-complex of dimension 4
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),-1);</span>
Simplicial complex of dimension 4.
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=ConnectedSum(ComplexProjectiveSpace(2),ComplexProjectiveSpace(2),+1);</span>
Simplicial complex of dimension 4.
<span class="GAPprompt">gap></span> <span class="GAPinput">CriticalCells(L);</span>
[ [ 4, 1 ], [ 2, 13 ], [ 2, 56 ], [ 0, 16 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CriticalCells(RegularCWComplex(M));</span>
[ [ 4, 1 ], [ 2, 109 ], [ 2, 119 ], [ 0, 8 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CriticalCells(RegularCWComplex(N));</span>
[ [ 4, 1 ], [ 2, 119 ], [ 2, 149 ], [ 0, 12 ] ]
</pre></div>
<p>John Milnor showed (as a corollary to a theorem of J. H. C. Whitehead) that the homotopy type of a simply connected 4-manifold is determined by its quadratic form. More precisely, a form is said to be of <em>type I (properly primitive)</em> if some diagonal entry of its matrix is odd. If every diagonal entry is even, then the form is of <em>type II (improperly primitive)</em>. The <em>index</em> of a form is defined as the number of positive diagonal entries minus the number of negative ones, after the matrix has been diagonalized over the real numbers.</p>
<p><strong class="button">Theorem.</strong> (Milnor <a href="chapBib.html#biBmilnor">[Mil58]</a>) The oriented homotopy type of a simply connected, closed, orientable 4-manifold is determined by its second Betti number and the index and type of its intersetion form; except possibly in the case of a manifold with definite quadratic form of rank r > 9.</p>
<p>The following commands compute matrices representing the intersection forms <span class="SimpleMath">qL</span>, <span class="SimpleMath">qM</span>, <span class="SimpleMath">qN</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">qL:=IntersectionForm(L);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">qM:=IntersectionForm(M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">qN:=IntersectionForm(N);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(qL);</span>
[ [ -2, 1 ],
[ 1, 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(qM);</span>
[ [ 1, 0 ],
[ 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(qN);</span>
[ [ 1, 0 ],
[ 0, -1 ] ]
</pre></div>
<p>Since <span class="SimpleMath">qL</span> is of type II, whereas <span class="SimpleMath">qM</span> and <span class="SimpleMath">qN</span> are of type I we see that the oriented homotopy type of <span class="SimpleMath">L</span> is distinct to that of <span class="SimpleMath">M</span> and that of <span class="SimpleMath">N</span>. Since <span class="SimpleMath">qM</span> has index <span class="SimpleMath">2</span> and <span class="SimpleMath">qN</span> has index <span class="SimpleMath">0</span> we see that that <span class="SimpleMath">M</span> and <span class="SimpleMath">N</span> also have distinct oriented homotopy types.</p>
<p><a id="X80B6849C835B7F19" name="X80B6849C835B7F19"></a></p>
<h4>1.12 <span class="Heading">Cohomology Rings</span></h4>
<p>The cup product gives the cohomology <span class="SimpleMath">H^∗(X,R)</span> of a space <span class="SimpleMath">X</span> with coefficients in a ring <span class="SimpleMath">R</span> the structure of a graded commutitive ring. The function <code class="code">CohomologyRing(Y,p)</code> returns the cohomology as an algebra for <span class="SimpleMath">Y</span> a simplicial complex and <span class="SimpleMath">R= Z_p</span> the field of <span class="SimpleMath">p</span> elements. For more general regular CW-complexes or <span class="SimpleMath">R= Z</span> the cohomology ring structure can be determined using the function <code class="code">CupProduct(Y)</code>.</p>
<p>The folowing commands compute the mod <span class="SimpleMath">2</span> cohomology ring <span class="SimpleMath">H^∗(W, Z_2)</span> of the above wedge sum <span class="SimpleMath">W=M∨ N</span> of a <span class="SimpleMath">2</span>-dimensional orientable simplicial surface of genus 2 and the <span class="SimpleMath">K3</span> complex simplicial surface (of real dimension 4).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=ClosedSurface(2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=SimplicialK3Surface();;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=WedgeSum(M,N);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=CohomologyRing(W,2);</span>
<algebra of dimension 29 over GF(2)>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Basis(A)[25];</span>
v.25
<span class="GAPprompt">gap></span> <span class="GAPinput">y:=Basis(A)[27];</span>
v.27
<span class="GAPprompt">gap></span> <span class="GAPinput">x*y;</span>
v.29
</pre></div>
<p>The functions <code class="code">CupProduct</code> and <code class="code">IntersectionForm</code> can be used to determine integral cohomology rings. For example, the integral cohomology ring of an arbitrary closed surface was calculated in <a href="chapBib.html#biBgoncalves">[GM15, Theorem 3.5]</a>. For any given surface <span class="SimpleMath">M</span> this result can be recalculated using the intersection form. For instance, for an orientable surface of genus <span class="SimpleMath">g</span> it is well-known that <span class="SimpleMath">H^1(M, Z)= Z^2g</span>, <span class="SimpleMath">H^2(M, Z)= Z</span>. The ring structure multiplication is thus given by the matrix of the intersection form. For say <span class="SimpleMath">g=3</span> the ring multiplication is given, with respect to some cohomology basis, in the following.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=ClosedSurface(3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(IntersectionForm(M));</span>
[ [ 0, 0, 1, -1, -1, 0 ],
[ 0, 0, 0, 1, 1, 0 ],
[ -1, 0, 0, 1, 1, -1 ],
[ 1, -1, -1, 0, 0, 1 ],
[ 1, -1, -1, 0, 0, 0 ],
[ 0, 0, 1, -1, 0, 0 ] ]
</pre></div>
<p>By changing the basis <span class="SimpleMath">B</span> for <span class="SimpleMath">H^1(M, Z)</span> we obtain the following simpler matrix representing multiplication in <span class="SimpleMath">H^∗(M, Z)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=[ [ 0, 1, -1, -1, 1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 0, 1, 1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 0, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 0, 1, -1, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 1, 0, 0 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 0, 0, 1, 1, 0, 1 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(IntersectionForm(M,B));</span>
[ [ 0, 1, 0, 0, 0, 0 ],
[ -1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 1 ],
[ 0, 0, -1, 0, 0, 0 ],
[ 0, 0, 0, -1, 0, 0 ] ]
</pre></div>
<p><a id="X83035DEC7C9659C6" name="X83035DEC7C9659C6"></a></p>
<h4>1.13 <span class="Heading">Bockstein homomorphism</span></h4>
<p>The following example evaluates the Bockstein homomorphism <span class="SimpleMath">β_2: H^∗(X, Z_2) → H^∗ +1(X, Z_2)</span> on an additive basis for <span class="SimpleMath">X=Σ^100( RP^2 × RP^2)</span> the <span class="SimpleMath">100</span>-fold suspension of the direct product of two projective planes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=SimplifiedComplex(RegularCWComplex(ClosedSurface(-1)));</span>
Regular CW-complex of dimension 2
<span class="GAPprompt">gap></span> <span class="GAPinput">PP:=DirectProduct(P,P);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SPP:=Suspension(PP,100); </span>
Regular CW-complex of dimension 104
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=CohomologyRing(SPP,2); </span>
<algebra of dimension 9 over GF(2)>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(Basis(A),x->Bockstein(A,x));</span>
[ 0*v.1, v.4, v.6, 0*v.1, v.7+v.8, 0*v.1, v.9, v.9, 0*v.1 ]
</pre></div>
<p>If only the Bockstein homomorphism is required, and not the cohomology ring structure, then the Bockstein could also be computedirectly from a chain complex. The following computes the Bockstein <span class="SimpleMath">β_2: H^2(Y, Z_2) → H^3(Y, Z_2)</span> for the direct product <span class="SimpleMath">Y=K × K × K × K</span> of four copies of the Klein bottle represented as a regular CW-complex with <span class="SimpleMath">331776</span> cells. The order of the kernel and image of <span class="SimpleMath">β_2</span> are computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ClosedSurface(-2);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=SimplifiedComplex(RegularCWComplex(K));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">KKKK:=DirectProduct(K,K,K,K); </span>
Regular CW-complex of dimension 8
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(KKKK);</span>
331776
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplex(KKKK);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">bk:=Bockstein(C,2,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(Kernel(bk));</span>
1024
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(Image(bk)); </span>
262144
</pre></div>
<p><a id="X87135D067B6CDEEC" name="X87135D067B6CDEEC"></a></p>
<h4>1.14 <span class="Heading">Diagonal maps on associahedra and other polytopes</span></h4>
<p>By a <em>diagonal approximation</em> on a regular CW-complex <span class="SimpleMath">X</span> we mean any cellular map <span class="SimpleMath">∆: X→ X× X</span> that is homotopic to the diagonal map <span class="SimpleMath">X→ X× X, x↦ (x,x)</span> and equal to the diagonal map when restricted to the <span class="SimpleMath">0</span>-skeleton. Theoretical formulae for diagonal maps on a polytope <span class="SimpleMath">X</span> can have interesting combinatorial aspects. To illustrate this let us consider, for <span class="SimpleMath">n=3</span>, the <span class="SimpleMath">n</span>-dimensional polytope <span class="SimpleMath">cal K^n+2</span> known as the associahedron. The following commands display the <span class="SimpleMath">1</span>-skeleton of <span class="SimpleMath">cal K^5</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=3;;Y:=RegularCWAssociahedron(n+2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(GraphOfRegularCWComplex(Y));</span>
</pre></div>
<p><img src="images/assoc.png" align="center" width="250" alt="Associahedron"/></p>
<p>The induced chain map <span class="SimpleMath">C_∗(cal K^n+2) → C_∗(cal K^n+2× cal K^n+2)</span> sends the unique free generator <span class="SimpleMath">e^n_1</span> of <span class="SimpleMath">C_n(cal K^n+2)</span> to a sum <span class="SimpleMath">∆(e^n_1)</span> of a number of distinct free generators of <span class="SimpleMath">C_n(cal K^n+2× cal K^n+2)</span>. Let <span class="SimpleMath">|∆(e^n_1)|</span> denote the number of free generators. For <span class="SimpleMath">n=3</span> the following commands show that <span class="SimpleMath">|∆(e^3_1)|=22</span> with each free generator occurring with coefficient <span class="SimpleMath">± 1</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=3;;Y:=RegularCWAssociahedron(n+2);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=DiagonalChainMap(Y);;Filtered(D!.mapping([1],n),x->x<>0);</span>
[ 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, 1, 1 ]
</pre></div>
<p>Repeating this example for <span class="SimpleMath">0≤ n≤ 6</span> yields the sequence <span class="SimpleMath">|∆(e^n_1)|: 1, 2, 6, 22, 91, 408, 1938, ⋯</span>. The <span class="URL"><a href="https://oeis.org/A000139">On-line Encyclopedia of Integer Sequences</a></span> explains that this is the beginning of the sequence given by the number of canopy intervals in the Tamari lattices.</p>
<p>Repeating the same experiment for the permutahedron, using the command <code class="code">RegularCWPermutahedron(n)</code>, yields the sequence <span class="SimpleMath">|∆(e^n_1)|: 1, 2, 8, 50, 432, 4802,⋯</span>. The <span class="URL"><a href="https://oeis.org/A007334">On-line Encyclopedia of Integer Sequences</a></span> explains that this is the beginning of the sequence given by the number of spanning trees in the graph <span class="SimpleMath">K_n/e</span>, which results from contracting an edge <span class="SimpleMath">e</span> in the complete graph <span class="SimpleMath">K_n</span> on <span class="SimpleMath">n</span> vertices.</p>
<p>Repeating the experiment for the cube, using the command <code class="code">RegularCWCube(n)</code>, yields the sequence <span class="SimpleMath">|∆(e^n_1)|: 1, 2, 4, 8, 16, 32,⋯</span>.</p>
<p>Repeating the experiment for the simplex, using the command <code class="code">RegularCWSimplex(n)</code>, yields the sequence <span class="SimpleMath">|∆(e^n_1)|: 1, 2, 3, 4, 5, 6,⋯</span>.</p>
<p><a id="X8771FF2885105154" name="X8771FF2885105154"></a></p>
<h4>1.15 <span class="Heading">CW maps and induced homomorphisms</span></h4>
<p>A <em>strictly cellular</em> map <span class="SimpleMath">f: X→ Y</span> of regular CW-complexes is a cellular map for which the image of any cell is a cell (of possibly lower dimension). Inclusions of CW-subcomplexes, and projections from a direct product to a factor, are examples of such maps. Strictly cellular maps can be represented in <strong class="button">HAP</strong>, and their induced homomorphisms on (co)homology and on fundamental groups can be computed.</p>
<p>The following example begins by visualizing the trefoil knot <span class="SimpleMath">κ ∈ R^3</span>. It then constructs a regular CW structure on the complement <span class="SimpleMath">Y= D^3∖ Nbhd(κ)</span> of a small tubular open neighbourhood of the knot lying inside a large closed ball <span class="SimpleMath">D^3</span>. The boundary of this tubular neighbourhood is a <span class="SimpleMath">2</span>-dimensional CW-complex <span class="SimpleMath">B</span> homeomorphic to a torus <span class="SimpleMath">S^1× S^1</span> with fundamental group <span class="SimpleMath">π_1(B)=<a,b : aba^-1b^-1=1></span>. The inclusion map <span class="SimpleMath">f: B↪ Y</span> is constructed. Then a presentation <span class="SimpleMath">π_1(Y)= <x,y | xy^-1x^-1yx^-1y^-1></span> and the induced homomorphism $$\pi_1(B)\rightarrow \pi_1(Y), a\mapsto y^{-1}xy^2xy^{-1}, b\mapsto y $$ are computed. This induced homomorphism is an example of a <em>peripheral system</em> and is known to contain sufficient information to characterize the knot up to ambient isotopy.</p>
<p>Finally, it is verified that the induced homology homomorphism <span class="SimpleMath">H_2(B, Z) → H_2(Y, Z)</span> is an isomomorphism.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=PureCubicalKnot(3,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ViewPureCubicalKnot(K);;</span>
</pre></div>
<p><img src="images/trefoil.png" align="center" width="150" alt="trefoil knot"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=PureCubicalKnot(3,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=KnotComplementWithBoundary(ArcPresentation(K));</span>
Map of regular CW-complexes
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(Target(f));</span>
<fp group of size infinity on the generators [ f1, f2 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">RelatorsOfFpGroup(G);</span>
[ f1*f2^-1*f1^-1*f2*f1^-1*f2^-1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalGroup(f);</span>
[ f1, f2 ] -> [ f2^-1*f1*f2^2*f1*f2^-1, f1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:=ChainMap(f);</span>
Chain Map between complexes of length 2 .
<span class="GAPprompt">gap></span> <span class="GAPinput">H:=Homology(phi,2);</span>
[ g1 ] -> [ g1 ]
</pre></div>
<p><a id="X853D6B247D0E18DB" name="X853D6B247D0E18DB"></a></p>
<h4>1.16 <span class="Heading">Constructing a simplicial complex from a regular CW-complex</span></h4>
<p>The following example constructs a <span class="SimpleMath">3</span>-dimensional pure regular CW-complex <span class="SimpleMath">K</span> whose <span class="SimpleMath">3</span>-cells are permutahedra. It then constructs the simplicial complex <span class="SimpleMath">B</span> by taking barycentric subdivision. It then constructes a smaller, homotopy equivalent, simplicial complex <span class="SimpleMath">N</span> by taking the nerve of the cover of <span class="SimpleMath">K</span> by the closures of its <span class="SimpleMath">3</span>-cells.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=RegularCWComplex(PureComplexComplement(PurePermutahedralKnot(3,1)));</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(K);</span>
77923
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=BarycentricSubdivision(K);</span>
Simplicial complex of dimension 3.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(B);</span>
1622517
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=Nerve(K);</span>
Simplicial complex of dimension 3.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(N);</span>
48745
</pre></div>
<p><a id="X7900FD197F175551" name="X7900FD197F175551"></a></p>
<h4>1.17 <span class="Heading">Some limitations to representing spaces as regular CW complexes</span></h4>
<p>By a <em>classifying space</em> for a group <span class="SimpleMath">G</span> we mean a path-connected space <span class="SimpleMath">BG</span> with fundamental group <span class="SimpleMath">π_1(BG)≅ G</span> isomorphic to <span class="SimpleMath">G</span> and with higher homotopy groups <span class="SimpleMath">π_n(BG)=0</span> trivial for all <span class="SimpleMath">n≥ 2</span>. The homology of the group <span class="SimpleMath">G</span> can be defined to be the homology of <span class="SimpleMath">BG</span>: <span class="SimpleMath">H_n(G, Z) = H_n(BG, Z)</span>.</p>
<p>In principle <span class="SimpleMath">BG</span> can always be constructed as a regular CW-complex. For instance, the following extremely slow commands construct the <span class="SimpleMath">5</span>-skeleton <span class="SimpleMath">Y^5</span> of a regular CW-classifying space <span class="SimpleMath">Y=BG</span> for the dihedral group of order <span class="SimpleMath">16</span> and use it to calculate <span class="SimpleMath">H_1(G, Z)= Z_2⊕ Z_2</span>, <span class="SimpleMath">H_2(G, Z)= Z_2</span>, <span class="SimpleMath">H_3(G, Z)= Z_2⊕ Z_2 ⊕ Z_8</span>, <span class="SimpleMath">H_4(G, Z)= Z_2 ⊕ Z_2</span>. The final command shows that the constructed space <span class="SimpleMath">Y^5</span> in this example is a <span class="SimpleMath">5</span>-dimensional regular CW-complex with a total of <span class="SimpleMath">15289</span> cells.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=ClassifyingSpaceFiniteGroup(DihedralGroup(16),5);</span>
Regular CW-complex of dimension 5
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Y,1);</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Y,2);</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Y,3);</span>
[ 2, 2, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Y,4);</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Y);</span>
15289
</pre></div>
<p>The <span class="SimpleMath">n</span>-skeleton of a regular CW-classifying space of a finite group necessarily involves a large number of cells. For the group <span class="SimpleMath">G=C_2</span> of order two a classifying space can be take to be real projective space <span class="SimpleMath">BG= RP^∞</span> with <span class="SimpleMath">n</span>-skeleton <span class="SimpleMath">BG^n= RP^n</span>. To realize <span class="SimpleMath">BG^n= RP^n</span> as a simplicial complex it is known that one needs at least 6 vertices for <span class="SimpleMath">n=2</span>, at least 11 vertices for <span class="SimpleMath">n=3</span> and at least 16 vertices for <span class="SimpleMath">n=4</span>. One can do a bit better by allowing <span class="SimpleMath">BG</span> to be a regular CW-complex. For instance, the following creates <span class="SimpleMath">RP^4</span> as a regular CW-complex with 5 vertices. This construction of <span class="SimpleMath">RP^4</span> involves a total of 121 cells. A minimal triangulation of <span class="SimpleMath">RP^4</span> would require 991 simplices.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),4);</span>
Regular CW-complex of dimension 4
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.nrCells(0); </span>
5
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.nrCells(1);</span>
20
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.nrCells(2);</span>
40
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.nrCells(3); </span>
40
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.nrCells(4);</span>
16
</pre></div>
<p>The space <span class="SimpleMath">RP^n</span> can be given the structure of a regular CW-complex with <span class="SimpleMath">n+1</span> vertices. Kuehnel has described a triangulation of <span class="SimpleMath">RP^n</span> with <span class="SimpleMath">2^n+1-1</span> vertices.</p>
<p>The above examples suggest that it is inefficient/impractical to attempt to compute the <span class="SimpleMath">n</span>-th homology of a group <span class="SimpleMath">G</span> by first constructing a regular CW-complex corresponding for the <span class="SimpleMath">n+1</span> of a classifying space <span class="SimpleMath">BG</span>, even for quite small groups <span class="SimpleMath">G</span>, since such spaces seem to require a large number of cells in each dimension. On the other hand, by dropping the requirement that <span class="SimpleMath">BG</span> must be regular we can obtain much smaller CW-complexes. The following example constructs <span class="SimpleMath">RP^9</span> as a regular CW-complex and then shows that it can be given a non-regular CW-structure with just one cell in each dimension.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=ClassifyingSpaceFiniteGroup(CyclicGroup(2),9);</span>
Regular CW-complex of dimension 9
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Y);</span>
29524
<span class="GAPprompt">gap></span> <span class="GAPinput">CriticalCells(Y);</span>
[ [ 9, 1 ], [ 8, 124 ], [ 7, 1215 ], [ 6, 1246 ], [ 5, 487 ], [ 4, 254 ],
[ 3, 117 ], [ 2, 54 ], [ 1, 9 ], [ 0, 10 ] ]
</pre></div>
<p>It is of course well-known that <span class="SimpleMath">RP^∞</span> admits a theoretically described CW-structure with just one cell in each dimension. The question is: how best to represent this on a computer?</p>
<p><a id="X85A579217DCB6CC8" name="X85A579217DCB6CC8"></a></p>
<h4>1.18 <span class="Heading">Equivariant CW complexes</span></h4>
<p>As just explained, the representations of spaces as simplicial complexes and regular CW complexes have their limitations. One limitation is that the number of cells needed to describe a space can be unnecessarily large. A minimal simplicial complex structure for the torus has <span class="SimpleMath">7</span> vertices, <span class="SimpleMath">21</span> edges and <span class="SimpleMath">14</span> triangles. A minimal regular CW-complex structure for the torus has <span class="SimpleMath">4</span> vertices, <span class="SimpleMath">8</span> edges and <span class="SimpleMath">4</span> cells of dimension <span class="SimpleMath">2</span>. By using simplicial sets (which are like simplicial complexes except that they allow the freedom to attach simplicial cells by gluing their boundary non-homeomorphically) one obtains a minimal triangulation of the torus involving <span class="SimpleMath">1</span> vertex, <span class="SimpleMath">3</span> edges and <span class="SimpleMath">2</span> cells of dimension <span class="SimpleMath">2</span>. By using non-regular CW-complexes one obtains a minimal cell structure involving <span class="SimpleMath">1</span> vertex, <span class="SimpleMath">2</span> edges and <span class="SimpleMath">1</span> cell of dimension <span class="SimpleMath">2</span>. Minimal cell structures (in the four different categories) for the torus are illustrated as follows.</p>
<p><img src="images/mstorus.png" align="center" width="300" alt="minimal simplicial torus"/> <img src="images/mrtorus.png" align="center" width="300" alt="minimal regular CW torus"/></p>
<p><img src="images/mdtorus.png" align="center" width="300" alt="minimal delta complex torus"/> <img src="images/mctorus.png" align="center" width="300" alt="minimal delta complex torus"/></p>
<p>A second limitation to our representations of simplicial and regular CW-complexes is that they apply only to structures with finitely many cells. They do no apply, for instance, to the simplicial complex structure on the real line <span class="SimpleMath">R</span> in which each each integer <span class="SimpleMath">n</span> is a vertex and each interval <span class="SimpleMath">[n,n+1]</span> is an edge.</p>
<p>Simplicial sets provide one approach to the efficient combinatorial representation of certain spaces. So too do cubical sets (the analogues of simplicial sets in which each cell has the combinatorics of an <span class="SimpleMath">n</span>-cube rather than an <span class="SimpleMath">n</span>-simplex). Neither of these two approaches has been implemented in <strong class="button">HAP</strong>.</p>
<p>Simplicial sets endowed with the action of a (possibly infinite) group <span class="SimpleMath">G</span> provide for an efficient representation of (possibly infinite) cell structures on a wider class of spaces. Such a structure can be made precise and is known as a <em>simplicial group</em>. Some functionality for simplicial groups is implemented in <strong class="button">HAP</strong> and described in Chapter <a href="chap12.html#X7D818E5F80F4CF63"><span class="RefLink">12</span></a>.</p>
<p>A regular CW-complex endowed with the action of a (possibly infinite) group <span class="SimpleMath">G</span> is an alternative approach to the efficient combinatorial representation of (possibly infinite) cell structures on spaces. Much of <strong class="button">HAP</strong> is focused on this approach. As a first example of the idea, the following commands construct the infinite regular CW-complex <span class="SimpleMath">Y=widetilde T</span> arising as the universal cover of the torus <span class="SimpleMath">T= S^1× S^1</span> where <span class="SimpleMath">T</span> is given the above minimal non-regular CW structure involving <span class="SimpleMath">1</span> vertex, <span class="SimpleMath">2</span> edges, and <span class="SimpleMath">1</span> cell of dimension <span class="SimpleMath">2</span>. The homology <span class="SimpleMath">H_n(T, Z)</span> is computed and the fundamental group of the torus <span class="SimpleMath">T</span> is recovered.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(2);;x:=F.1;;y:=F.2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=F/[ x*y*x^-1*y^-1 ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=EquivariantTwoComplex(G);</span>
Equivariant CW-complex of dimension 2
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplexOfQuotient(Y);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,1);</span>
[ 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,2);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">FundamentalGroupOfQuotient(Y);</span>
<fp group of size infinity on the generators [ f1, f2 ]>
</pre></div>
<p>As a second example, the following comands load group number <span class="SimpleMath">9</span> in the library of <span class="SimpleMath">3</span>-dimensional crystallographic groups. They verify that <span class="SimpleMath">G</span> acts freely on <span class="SimpleMath">R^3</span> (i.e. <span class="SimpleMath">G</span> is a <em>Bieberbach group</em>) and then construct a <span class="SimpleMath">G</span>-equivariant CW-complex <span class="SimpleMath">Y= R^3</span> corresponding to the tessellation of <span class="SimpleMath">R^3</span> by a fundamental domain for <span class="SimpleMath">G</span>. Finally, the cohomology <span class="SimpleMath">H_n(M, Z)</span> of the <span class="SimpleMath">3</span>-dimensional closed manifold <span class="SimpleMath">M= R^3/G</span> is computed. The manifold <span class="SimpleMath">M</span> is seen to be non-orientable (since it's top-dimensional homology is trivial) and has a non-regular CW structure with <span class="SimpleMath">1</span> vertex, <span class="SimpleMath">3</span> edges, <span class="SimpleMath">3</span> cells of dimension <span class="SimpleMath">2</span>, and <span class="SimpleMath">1</span> cell of dimension <span class="SimpleMath">3</span>. (This example uses Polymake software.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroup(3,9);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAlmostBieberbachGroup(Image(IsomorphismPcpGroup(G)));</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=EquivariantEuclideanSpace(G,[0,0,0]);</span>
Equivariant CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.dimension(0);</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.dimension(1);</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.dimension(2);</span>
3
<span class="GAPprompt">gap></span> <span class="GAPinput">Y!.dimension(3);</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplexOfQuotient(Y);</span>
Chain complex of length 3 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,1);</span>
[ 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,2);</span>
[ 2, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,3);</span>
[ ]
</pre></div>
<p>The fundamental domain for the action of <span class="SimpleMath">G</span> in the above example is constructed to be the Dirichlet-Voronoi region in <span class="SimpleMath">R^3</span> whose points are closer to the origin <span class="SimpleMath">v=(0,0,0)</span> than to any other point <span class="SimpleMath">v^g</span> in the orbit of the origin under the action of <span class="SimpleMath">G</span>. This fundamental domain can be visualized as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalDomainStandardSpaceGroup([0,0,0],G);</span>
<polymake object>
<span class="GAPprompt">gap></span> <span class="GAPinput">Polymake(F,"VISUAL");</span>
</pre></div>
<p><img src="images/fdspace9.png" align="center" width="300" alt="fundamental domain"/></p>
<p>Other fundamental domains for the same group action can be obtained by choosing some other starting vector <span class="SimpleMath">v</span>. For example:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalDomainStandardSpaceGroup([1/2,1/3,1/5],G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Polymake(F,"VISUAL");</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalDomainStandardSpaceGroup([1/7,1/2,1/2],G);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Polymake(F,"VISUAL");</span>
</pre></div>
<p><img src="images/fdspace9-2.png" align="center" width="300" alt="fundamental domain"/> <img src="images/fdspace9-3.png" align="center" width="300" alt="fundamental domain"/></p>
<p><a id="X86881717878ADCD6" name="X86881717878ADCD6"></a></p>
<h4>1.19 <span class="Heading">Orbifolds and classifying spaces</span></h4>
<p>If a discrete group <span class="SimpleMath">G</span> acts on Euclidean space or hyperbolic space with finite stabilizer groups then we say that the quotient space obtained by killing the action of <span class="SimpleMath">G</span> an an <em>orbifold</em>. If the stabilizer groups are all trivial then the quotient is of course a manifold.</p>
<p>An orbifold is represented as a <span class="SimpleMath">G</span>-equivariant regular CW-complex together with the stabilizer group for a representative of each orbit of cells and its subgroup consisting of those group elements that preserve the cell orientation. <strong class="button">HAP</strong> stores orbifolds using the data type of <em>non-free resolution</em> and uses them mainly as a first step in constructing free <span class="SimpleMath">ZG</span>-resolutions of <span class="SimpleMath">Z</span>.</p>
<p>The following commands use an <span class="SimpleMath">8</span>-dimensional equivariant deformation retract of a <span class="SimpleMath">GL_3( Z[ i])</span>-orbifold structure on hyperbolic space to compute <span class="SimpleMath">H_5(GL_3( Z[ i], Z) = Z_2^5⊕ Z_4^2</span>. (The deformation retract is stored in a library and was supplied by Mathieu Dutour Sikiric.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Orbifold:=ContractibleGcomplex("PGL(3,Z[i])");</span>
Non-free resolution in characteristic 0 for matrix group .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(Orbifold,6);</span>
Resolution of length 5 in characteristic 0 for matrix group .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(R),5);</span>
[ 2, 2, 2, 2, 2, 4, 4 ]
</pre></div>
<p>The next example computes an orbifold structure on <span class="SimpleMath">R^4</span>, and then the first <span class="SimpleMath">12</span> degrees of a free resolution/classifying space, for the second <span class="SimpleMath">4</span>-dimensional crystallographic group <span class="SimpleMath">G</span> in the library of crystallographic groups. The resolution is shown to be periodic of period <span class="SimpleMath">2</span> in degrees <span class="SimpleMath">≥ 5</span>. The cohomology is seen to have <span class="SimpleMath">11</span> ring generators in degree <span class="SimpleMath">2</span> and no further ring generators. The cohomology groups are: $$H^n(G,\mathbb Z) =\left( \begin{array}{ll} 0, & {\rm odd~} n\ge 1\\ \mathbb Z_2^5 \oplus \mathbb Z^6, & n=2\\ \mathbb Z_2^{15}\oplus \mathbb Z, & n=4\\ \mathbb Z_2^{16}, & {\rm even~} n \ge 6 .\\ \end{array}\right.$$</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroup(4,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionCubicalCrystGroup(G,12);</span>
Resolution of length 12 in characteristic 0 for <matrix group with
5 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">R!.dimension(5);</span>
16
<span class="GAPprompt">gap></span> <span class="GAPinput">R!.dimension(7);</span>
16
<span class="GAPprompt">gap></span> <span class="GAPinput">List([1..16],k->R!.boundary(5,k)=R!.boundary(7,k));</span>
[ true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true ]
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegers(R);</span>
Cochain complex of length 12 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,0);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,1);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,3);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,4);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,5);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,6);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,7);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,1);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,2);</span>
[ [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,3);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,4);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,5);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,6);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,7);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,8);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,9);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralRingGenerators(R,10);</span>
[ ]
</pre></div>
<p>A group <span class="SimpleMath">G</span> with a finite index torsion free nilpotent subgroup admits a resolution which is periodic in sufficiently high degrees if and only if all of its finite index subgroups admit periodic resolutions. The following commands identify the <span class="SimpleMath">99</span> <span class="SimpleMath">3</span>-dimensional space groups (respectively, the <span class="SimpleMath">1191</span> <span class="SimpleMath">4</span>-dimensional space groups) that admit a resolution which is periodic in degrees <span class="SimpleMath">> 3</span> (respectively, in degrees <span class="SimpleMath">> 4</span>).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L3:=Filtered([1..219],k->IsPeriodicSpaceGroup(SpaceGroup(3,k)));</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 18, 19, 21, 24, 26, 27, 28,
29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 43, 45, 46, 52, 54, 55, 56, 58,
61, 62, 74, 75, 76, 77, 78, 79, 80, 81, 84, 85, 87, 89, 92, 98, 101, 102,
107, 111, 119, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151,
152, 153, 154, 155, 157, 159, 161, 162, 163, 164, 165, 166, 168, 171, 172,
174, 175, 176, 178, 180, 186, 189, 192, 196, 198, 209 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">L4:=Filtered([1..4783],k->IsPeriodicSpaceGroup(SpaceGroup(4,k)));</span>
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 25,
26, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70,
71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91,
93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110,
111, 113, 115, 116, 118, 119, 120, 121, 122, 124, 126, 127, 128, 130, 131,
134, 141, 144, 145, 149, 151, 153, 154, 155, 156, 157, 158, 159, 160, 162,
163, 165, 167, 168, 169, 170, 171, 172, 173, 174, 176, 178, 179, 180, 187,
188, 197, 198, 202, 204, 205, 206, 211, 212, 219, 220, 222, 226, 233, 237,
238, 239, 240, 241, 242, 243, 244, 245, 247, 248, 249, 250, 251, 253, 254,
255, 256, 257, 259, 260, 261, 263, 264, 265, 266, 267, 269, 270, 271, 273,
275, 277, 278, 279, 281, 283, 285, 290, 292, 296, 297, 298, 299, 300, 301,
303, 304, 305, 314, 316, 317, 319, 327, 328, 329, 333, 335, 342, 355, 357,
358, 359, 361, 362, 363, 365, 366, 367, 368, 369, 370, 372, 374, 376, 378,
381, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397,
398, 399, 400, 401, 402, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413,
414, 415, 416, 417, 418, 419, 421, 422, 423, 424, 425, 426, 427, 428, 429,
430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 442, 443, 444, 445,
446, 447, 448, 450, 451, 458, 459, 462, 464, 465, 466, 467, 469, 470, 473,
477, 478, 479, 482, 483, 484, 485, 486, 493, 495, 497, 501, 502, 503, 504,
505, 507, 508, 512, 514, 515, 516, 517, 522, 524, 525, 526, 527, 533, 537,
539, 540, 541, 542, 543, 544, 546, 548, 553, 555, 558, 562, 564, 565, 566,
567, 568, 571, 572, 573, 574, 576, 577, 580, 581, 582, 589, 590, 591, 593,
596, 598, 599, 612, 613, 622, 623, 624, 626, 632, 641, 647, 649, 651, 652,
654, 656, 657, 658, 659, 661, 662, 663, 665, 666, 667, 668, 669, 670, 671,
672, 674, 676, 677, 678, 679, 680, 682, 683, 684, 686, 688, 689, 690, 691,
692, 694, 696, 697, 698, 699, 700, 702, 708, 710, 712, 714, 716, 720, 722,
728, 734, 738, 739, 741, 742, 744, 745, 752, 754, 756, 757, 758, 762, 763,
769, 770, 778, 779, 784, 788, 790, 800, 801, 843, 845, 854, 855, 856, 857,
865, 874, 900, 904, 909, 911, 913, 915, 916, 917, 919, 920, 921, 922, 923,
924, 925, 926, 927, 929, 931, 932, 933, 934, 936, 938, 940, 941, 943, 945,
946, 953, 955, 956, 958, 963, 966, 972, 973, 978, 979, 981, 982, 983, 985,
987, 988, 989, 991, 992, 993, 995, 996, 998, 999, 1000, 1003, 1011, 1022,
1024, 1025, 1026, 1162, 1167, 1236, 1237, 1238, 1239, 1240, 1241, 1242,
1243, 1244, 1246, 1248, 1250, 1255, 1264, 1267, 1270, 1273, 1279, 1280,
1281, 1283, 1284, 1289, 1291, 1293, 1294, 1324, 1325, 1326, 1327, 1328,
1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1339, 1340,
1341, 1343, 1345, 1347, 1348, 1349, 1350, 1351, 1352, 1354, 1356, 1357,
1358, 1359, 1361, 1363, 1365, 1367, 1372, 1373, 1374, 1375, 1376, 1377,
1378, 1379, 1380, 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389,
1390, 1393, 1395, 1397, 1399, 1400, 1401, 1404, 1405, 1408, 1410, 1419,
1420, 1421, 1422, 1424, 1425, 1426, 1428, 1429, 1438, 1440, 1441, 1442,
1443, 1444, 1445, 1449, 1450, 1451, 1456, 1457, 1460, 1461, 1462, 1464,
1465, 1470, 1472, 1473, 1477, 1480, 1481, 1487, 1488, 1489, 1493, 1494,
1495, 1501, 1503, 1506, 1509, 1512, 1515, 1518, 1521, 1524, 1527, 1530,
1532, 1533, 1534, 1537, 1538, 1541, 1542, 1544, 1547, 1550, 1552, 1553,
1554, 1558, 1565, 1566, 1568, 1573, 1644, 1648, 1673, 1674, 1700, 1702,
1705, 1713, 1714, 1735, 1738, 1740, 1741, 1742, 1743, 1744, 1745, 1746,
1747, 1748, 1749, 1750, 1751, 1752, 1753, 1754, 1755, 1756, 1757, 1759,
1761, 1762, 1763, 1765, 1767, 1768, 1769, 1770, 1771, 1772, 1773, 1774,
1775, 1778, 1779, 1782, 1783, 1785, 1787, 1788, 1789, 1791, 1793, 1795,
1797, 1798, 1799, 1800, 1801, 1803, 1806, 1807, 1809, 1810, 1811, 1813,
1815, 1821, 1822, 1823, 1828, 1829, 1833, 1837, 1839, 1842, 1845, 1848,
1850, 1851, 1852, 1854, 1856, 1857, 1858, 1859, 1860, 1861, 1863, 1866,
1870, 1873, 1874, 1877, 1880, 1883, 1885, 1886, 1887, 1889, 1892, 1895,
1915, 1918, 1920, 1923, 1925, 1927, 1928, 1930, 1952, 1953, 1954, 1955,
2045, 2047, 2049, 2051, 2053, 2054, 2055, 2056, 2057, 2059, 2067, 2068,
2072, 2075, 2076, 2079, 2084, 2087, 2088, 2092, 2133, 2135, 2136, 2137,
2139, 2140, 2170, 2171, 2196, 2224, 2234, 2236, 2238, 2254, 2355, 2356,
2386, 2387, 2442, 2445, 2448, 2451, 2478, 2484, 2487, 2490, 2493, 2496,
2499, 2502, 2508, 2511, 2514, 2517, 2520, 2523, 2550, 2553, 2559, 2621,
2624, 2648, 2650, 3046, 3047, 3048, 3049, 3050, 3051, 3052, 3053, 3054,
3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063, 3064, 3065, 3066,
3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 3077, 3078,
3079, 3080, 3081, 3082, 3083, 3084, 3085, 3086, 3087, 3089, 3090, 3091,
3094, 3095, 3096, 3099, 3100, 3101, 3104, 3105, 3106, 3109, 3110, 3111,
3112, 3113, 3114, 3115, 3117, 3119, 3120, 3121, 3122, 3123, 3124, 3125,
3127, 3128, 3129, 3130, 3131, 3132, 3133, 3135, 3137, 3139, 3141, 3142,
3143, 3144, 3145, 3149, 3151, 3152, 3153, 3154, 3155, 3157, 3159, 3160,
3161, 3162, 3163, 3169, 3170, 3171, 3172, 3173, 3174, 3175, 3177, 3179,
3180, 3181, 3182, 3183, 3184, 3185, 3187, 3188, 3189, 3190, 3191, 3192,
3193, 3195, 3197, 3199, 3200, 3201, 3204, 3206, 3207, 3208, 3209, 3210,
3212, 3214, 3215, 3216, 3217, 3218, 3226, 3234, 3235, 3236, 3244, 3252,
3253, 3254, 3260, 3268, 3269, 3270, 3278, 3280, 3281, 3282, 3283, 3284,
3285, 3286, 3287, 3288, 3289, 3290, 3291, 3292, 3295, 3296, 3298, 3299,
3302, 3303, 3306, 3308, 3309, 3310, 3311, 3312, 3313, 3314, 3315, 3316,
3317, 3318, 3319, 3320, 3322, 3324, 3326, 3327, 3329, 3330, 3338, 3345,
3346, 3347, 3348, 3350, 3351, 3352, 3354, 3355, 3356, 3359, 3360, 3361,
3362, 3374, 3375, 3383, 3385, 3398, 3399, 3417, 3418, 3419, 3420, 3422,
3424, 3426, 3428, 3446, 3447, 3455, 3457, 3469, 3471, 3521, 3523, 3524,
3525, 3530, 3531, 3534, 3539, 3542, 3545, 3548, 3550, 3551, 3554, 3557,
3579, 3580, 3830, 3831, 3832, 3833, 3835, 3837, 3839, 3849, 3851, 3877,
3938, 3939, 3949, 3951, 3952, 3958, 3960, 3962, 3963, 3964, 3966, 3968,
3972, 3973, 3975, 4006, 4029, 4030, 4033, 4034, 4037, 4038, 4046, 4048,
4050, 4062, 4064, 4067, 4078, 4081, 4089, 4090, 4114, 4138, 4139, 4140,
4141, 4146, 4147, 4148, 4149, 4154, 4155, 4169, 4171, 4175, 4180, 4183,
4188, 4190, 4204, 4205, 4223, 4224, 4225, 4254, 4286, 4289, 4391, 4397,
4496, 4499, 4500, 4501, 4502, 4504, 4508, 4510, 4521, 4525, 4544, 4559,
4560, 4561, 4562, 4579, 4580, 4581, 4583, 4587, 4597, 4598, 4599, 4600,
4651, 4759, 4760, 4761, 4762, 4766 ]
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap0.html">[Previous Chapter]</a> <a href="chap2.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|