1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 10: Chain Complexes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap10" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap9.html">[Previous Chapter]</a> <a href="chap11.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap10_mj.html">[MathJax on]</a></p>
<p><a id="X7A06103979B92808" name="X7A06103979B92808"></a></p>
<div class="ChapSects"><a href="chap10.html#X7A06103979B92808">10 <span class="Heading">Chain Complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X782DE78884DD6992">10.1 <span class="Heading">Chain complex of a simplicial complex and simplicial pair</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X79E7A13E7DE9C412">10.2 <span class="Heading">Chain complex of a cubical complex and cubical pair</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X86C38E87817F2EAD">10.3 <span class="Heading">Chain complex of a regular CW-complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X7F9662EF83A1FA76">10.4 <span class="Heading">Chain Maps of simplicial and regular CW maps</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X8127E17383F45359">10.5 <span class="Heading">Constructions for chain complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X7AAAB26682CD8AC4">10.6 <span class="Heading">Filtered chain complexes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap10.html#X856F202D823280F8">10.7 <span class="Heading">Sparse chain complexes</span></a>
</span>
</div>
</div>
<h3>10 <span class="Heading">Chain Complexes</span></h3>
<p>HAP uses implementations of chain complexes of free <span class="SimpleMath">K</span>-modules for each of the rings <span class="SimpleMath">K = Z</span>, <span class="SimpleMath">K = Q</span>, <span class="SimpleMath">K = F_p</span> with <span class="SimpleMath">p</span> a prime number, <span class="SimpleMath">K = ZG</span>, <span class="SimpleMath">K = F_pG</span> with <span class="SimpleMath">G</span> a group. The implemented chain complexes have the form</p>
<p><span class="SimpleMath">C_n stackreld_n⟶ C_n-1 stackreld_n-1}⟶ ⋯ stackreld_2⟶ C_1 stackreld_1⟶ C_0 stackreld_0⟶ 0 .</span></p>
<p>Such a complex is said to have <em>length</em> <span class="SimpleMath">n</span> and the rank of the free <span class="SimpleMath">K</span>-module <span class="SimpleMath">C_k</span> is referred to as the <em>dimenion</em> of the complex in degree <span class="SimpleMath">k</span>.</p>
<p>For the case <span class="SimpleMath">K = ZG</span> (resp. <span class="SimpleMath">K = F_pG</span>) the main focus is on free chain complexes that are exact at each degree <span class="SimpleMath">k</span>, i.e. <span class="SimpleMath">im(d_k+1)= ker(d_k)</span>, for <span class="SimpleMath">0 < k < n</span> and with <span class="SimpleMath">C_0/ im(d_1) ≅ Z</span> (resp. <span class="SimpleMath">C_0/ im(d_1) ≅ F_p</span>). We refer to such a chain complex as a <em>resolution of length </em> <span class="SimpleMath">n</span> even though <span class="SimpleMath">d_n</span> will typically not be injective. More correct terminology would refer to such a chain complex as the first <span class="SimpleMath">n</span> degrees of a free resolution.</p>
<p>The following sections illustrate some constructions of chain complexes. Constructions for resolutions are described in the next chapter <a href="chap11.html#X7C0B125E7D5415B4"><span class="RefLink">11</span></a>.</p>
<p><a id="X782DE78884DD6992" name="X782DE78884DD6992"></a></p>
<h4>10.1 <span class="Heading">Chain complex of a simplicial complex and simplicial pair</span></h4>
<p>The following example constructs the Quillen simplicial complex <span class="SimpleMath">Q=mathcal A_p(G)</span> for <span class="SimpleMath">p=2</span> and <span class="SimpleMath">G=A_8</span>; this is the order complex of the poset of non-trivial elementary <span class="SimpleMath">2</span>-subgroups of <span class="SimpleMath">G</span>. The chain complex <span class="SimpleMath">C_∗ = C_∗(Q)</span> is then computed and seen to have the same number of free generators as <span class="SimpleMath">Q</span> has simplices. (To ensure indexing of subcomplexes is consistent with that of the large complex it is best to work with vertices represented as integers.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuillenComplex(AlternatingGroup(8),2);</span>
Simplicial complex of dimension 3.
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplex(Q);</span>
Chain complex of length 3 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Q);</span>
55015
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(C);</span>
55015
</pre></div>
<p>Next the simplicial complex <span class="SimpleMath">Q</span> is converted to one whose vertices are represented by integers and a contactible subcomplex <span class="SimpleMath">L < Q</span> is computed. The chain complex <span class="SimpleMath">D_∗=C_∗(Q,L)</span> of the simplicial pair <span class="SimpleMath">(Q,L)</span> is constructed and seen to have the correct size.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=IntegerSimplicialComplex(Q);</span>
Simplicial complex of dimension 3.
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=ContractibleSubcomplex(Q);</span>
Simplicial complex of dimension 3.
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=ChainComplexOfPair(Q,L);</span>
Chain complex of length 3 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(D)=Size(Q)-Size(L);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(D);</span>
670
gap>
</pre></div>
<p>The next commands produce a smalled chain complex <span class="SimpleMath">B_∗</span> chain homotopy equivalent to <span class="SimpleMath">D_∗</span> and compute the homology <span class="SimpleMath">H_k(Q, Z) ≅ H_k(B_∗)</span> for <span class="SimpleMath">k=1,2,3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=ContractedComplex(D);</span>
Chain complex of length 3 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(B);</span>
64
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(B,1);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(B,2);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(B,3);</span>
[ ]
</pre></div>
<p><a id="X79E7A13E7DE9C412" name="X79E7A13E7DE9C412"></a></p>
<h4>10.2 <span class="Heading">Chain complex of a cubical complex and cubical pair</span></h4>
<p>The following example reads in the digital image</p>
<p><img src="images/bw_image.bmp" align="center" height="300" alt="a digital image"/></p>
<p>as a <span class="SimpleMath">2</span>-dimensional pure cubical complex <span class="SimpleMath">M</span> and constructs the chain complex <span class="SimpleMath">C_∗=C_∗(M)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ReadImageAsPureCubicalComplex(file,400);</span>
Pure cubical complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplex(K);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(C); </span>
173243
</pre></div>
<p>Next an acyclic pure cubical subcomplex <span class="SimpleMath">L < M</span> is computed and the chain complex <span class="SimpleMath">D_∗=C_∗(M,L)</span> of the pair is constructed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=AcyclicSubcomplexOfPureCubicalComplex(K);</span>
Pure cubical complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=ChainComplexOfPair(K,L);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(D);</span>
618
</pre></div>
<p>Finally the chain complex <span class="SimpleMath">D_∗</span> is simplified to a homotopy equivalent chain complex <span class="SimpleMath">B_∗</span> and the homology <span class="SimpleMath">H_1(M, Z) ≅ H_1(B_∗)</span> is computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=ContractedComplex(D);</span>
Chain complex of length 2 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(B);</span>
20
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(B,1);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p><a id="X86C38E87817F2EAD" name="X86C38E87817F2EAD"></a></p>
<h4>10.3 <span class="Heading">Chain complex of a regular CW-complex</span></h4>
<p>The next example constructs a <span class="SimpleMath">15</span>-dimensional regular CW-complex <span class="SimpleMath">Y</span> that is homotopy equivalent to the <span class="SimpleMath">2</span>-dimensional torus.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Circle:=PureCubicalComplex([[1,1,1,1,1],[1,1,0,1,1],[1,1,1,1,1]]);</span>
Pure cubical complex of dimension 2.
<span class="GAPprompt">gap></span> <span class="GAPinput">Torus:=DirectProductOfPureCubicalComplexes(Circle,Circle);</span>
Pure cubical complex of dimension 4.
<span class="GAPprompt">gap></span> <span class="GAPinput">CTorus:=CechComplexOfPureCubicalComplex(Torus);</span>
Simplicial complex of dimension 15.
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=RegularCWComplex(CTorus);</span>
Regular CW-complex of dimension 15
</pre></div>
<p>Next the cellular chain complex <span class="SimpleMath">C_∗=C_∗(Y)</span> is constructed. Also, a minimally generated chain complex <span class="SimpleMath">D_∗=C_∗(Y')</span> of a non-regular CW-complex <span class="SimpleMath">Y'≃ Y</span> is constructed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplexOfRegularCWComplex(Y);</span>
Chain complex of length 15 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(C);</span>
1172776
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=ChainComplex(Y);</span>
Chain complex of length 15 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(D);</span>
4
</pre></div>
<p><a id="X7F9662EF83A1FA76" name="X7F9662EF83A1FA76"></a></p>
<h4>10.4 <span class="Heading">Chain Maps of simplicial and regular CW maps</span></h4>
<p>The next example realizes the complement of the first prime knot on <span class="SimpleMath">11</span> crossings as a pure permutahedral complex. The complement is converted to a regular CW-complex <span class="SimpleMath">Y</span> and the boundary inclusion <span class="SimpleMath">f: ∂ Y ↪ Y</span> is constructed as a map of regular CW-complexes. Then the induced chain map <span class="SimpleMath">F: C_∗(∂ Y) ↪ C_∗(Y)</span> is constructed. Finally the homology homomorphism <span class="SimpleMath">H_1(F): H_1(C_∗(∂ Y)) → H_1(C_∗(Y))</span> is computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=PurePermutahedralKnot(11,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=PureComplexComplement(K);</span>
Pure permutahedral complex of dimension 3.
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=RegularCWComplex(M);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=BoundaryMap(Y);</span>
Map of regular CW-complexes
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=ChainMap(f);</span>
Chain Map between complexes of length 2 .
<span class="GAPprompt">gap></span> <span class="GAPinput">H:=Homology(F,1);</span>
[ g1, g2 ] -> [ g1^-1, g1^-1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Kernel(H);</span>
Pcp-group with orders [ 0 ]
</pre></div>
<p>The command <code class="code">ChainMap(f)</code> can be used to construct the chain map <span class="SimpleMath">C_∗(K) → C_∗(K')</span> induced by a map <span class="SimpleMath">f: K→ K'</span> of simplicial complexes.</p>
<p><a id="X8127E17383F45359" name="X8127E17383F45359"></a></p>
<h4>10.5 <span class="Heading">Constructions for chain complexes</span></h4>
<p>It is straightforward to implement basic constructions on chain complexes. A few constructions are illustrated in the following example.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">res:=ResolutionFiniteGroup(SymmetricGroup(5),5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithIntegers(res);</span>
Chain complex of length 5 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=ContractedComplex(C);#A chain homotopic complex</span>
Chain complex of length 5 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..5],C!.dimension);</span>
[ 1, 4, 10, 20, 35, 56 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..5],D!.dimension);</span>
[ 1, 1, 2, 4, 6, 38 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CxC:=TensorProduct(C,C);</span>
Chain complex of length 10 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">SC:=SuspendedChainComplex(C);</span>
Chain complex of length 6 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">RC:=ReducedSuspendedChainComplex(C);</span>
Chain complex of length 6 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">PC:=PathObjectForChainComplex(C);</span>
Chain complex of length 5 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">dualC:=HomToIntegers(C);</span>
Cochain complex of length 5 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Cxp:=TensorWithIntegersModP(C,5);</span>
Chain complex of length 5 in characteristic 5 .
<span class="GAPprompt">gap></span> <span class="GAPinput">CxQ:=TensorWithRationals(C); #The quirky -1/2 denotes rationals</span>
Chain complex of length 5 in characteristic -1/2 .
</pre></div>
<p><a id="X7AAAB26682CD8AC4" name="X7AAAB26682CD8AC4"></a></p>
<h4>10.6 <span class="Heading">Filtered chain complexes</span></h4>
<p>A sequence of inclusions of chain complexes <span class="SimpleMath">C_0,∗ ≤ C_1,∗ ≤ ⋯ ≤ C_T-1,∗ ≤ C_T,∗</span> in which the preferred basis of <span class="SimpleMath">C_k-1,ℓ</span> is the beginning of the preferred basis of <span class="SimpleMath">C_k,ℓ</span> is referred to as a <em>filtered chain complex</em>. Filtered chain complexes give rise to spectral sequences such as the <em>equivariant spectral sequence</em> of a <span class="SimpleMath">G-CW</span>-complex with subgroup <span class="SimpleMath">H < G</span>. A particular case is the Lyndon-Hochschild-Serre spectral sequence for the homology of a group extension <span class="SimpleMath">N ↣ G ↠ Q</span> with <span class="SimpleMath">E^2_p,q=H_p(Q,H_q(N, Z))</span>.</p>
<p>The following commands construct the filtered chain complex underlying the Lyndon-Hochschild-Serre spectral sequence for the dihedral group <span class="SimpleMath">G=D_32</span> of order 64 and its centre <span class="SimpleMath">N=Z(G)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=DihedralGroup(64);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=Center(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionNormalSeries([G,N],3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=FilteredTensorWithIntegersModP(R,2);</span>
Chain complex of length 3 in characteristic 2 .
</pre></div>
<p>The differentials <span class="SimpleMath">d^r_p,q</span> in a given page <span class="SimpleMath">E^r</span> of the spectral sequence arise from the induced homology homomorphisms <span class="SimpleMath">ι^s,t_ℓ: H_ℓ(C_s,∗) → H_ℓ(C_t,∗)</span> for <span class="SimpleMath">s≤ t</span>. Textbooks traditionally picture the differential in <span class="SimpleMath">E^r</span> as an array of sloping arrows with non-zero groups <span class="SimpleMath">E^r_p,q≠ 0</span> represented by dots. An alternative representation of this information is as a barcode (of the sort used in Topological Data Analysis). The homomorphisms <span class="SimpleMath">ι^∗,∗_2</span> in the example, with coefficients converted to mod <span class="SimpleMath">2</span>, are pictured by the bar code</p>
<p><img src="images/lhsbc.png" align="center" height="150" alt="a bar code for the LHS spectral sequence"/></p>
<p>which was produced by the following commands.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=2;;k:=2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=PersistentHomologyOfFilteredChainComplex(C,k,p);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">BarCodeDisplay(P);</span>
</pre></div>
<p><a id="X856F202D823280F8" name="X856F202D823280F8"></a></p>
<h4>10.7 <span class="Heading">Sparse chain complexes</span></h4>
<p>Boundary homomorphisms in all of the above examples of chain complexes are represented by matrices. In cases where the matrices are large and have many zero entries it is better to use sparse matrices.</p>
<p>The following commands demonstrate the conversion of the matrix</p>
<p><span class="SimpleMath">A=(beginarrayccc 0 &2 &0 -3 &0 & 0 0 & 0 &4 endarray)</span></p>
<p>to sparse form, and vice-versa.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=[[0,2,0],[-3,0,0],[0,0,4]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=SparseMat(A);</span>
Sparse matrix with 3 rows and 3 columns in characteristic 0
<span class="GAPprompt">gap></span> <span class="GAPinput">NamesOfComponents(S);</span>
[ "mat", "characteristic", "rows", "cols" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">S!.mat;</span>
[ [ [ 2, 2 ] ], [ [ 1, -3 ] ], [ [ 3, 4 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=SparseMattoMat(S);</span>
[ [ 0, 2, 0 ], [ -3, 0, 0 ], [ 0, 0, 4 ] ]
</pre></div>
<p>To illustrate the use of sparse chain complexes we consider the data points represented in the following digital image.</p>
<p><img src="images/data500.png" align="center" height="200" alt="data points samples from an annulus"/></p>
<p>The following commands read in this image as a <span class="SimpleMath">2</span>-dimensional pure cubical complex and store the Euclidean coordinates of the black pixels in a list. Then 200 points are selected at random from this list and used to construct a <span class="SimpleMath">200× 200</span> symmetric matrix <span class="SimpleMath">S</span> whose entries are the Euclidean distance between the sample data points.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">file:=HapFile("data500.png");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=ReadImageAsPureCubicalComplex(file,400);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=M!.binaryArray;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">data:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..Length(A)] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for j in [1..Length(A[1])] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">if A[i][j]=1 then Add(data,[i,j]); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sample:=List([1..200],i->Random(data));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=VectorsToSymmetricMatrix(sample,EuclideanApproximatedMetric);;</span>
</pre></div>
<p>The symmetric distance matrix <span class="SimpleMath">S</span> is next converted to a filtered chain complex arising from a filtered simplicial complex (using the standard <em>persistent homology</em> pipeline).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricMatrixToFilteredGraph(S,10,100);; </span>
#Filtration length T=10, distances greater than 100 discarded.
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=SimplicialNerveOfFilteredGraph(G,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=SparseFilteredChainComplexOfFilteredSimplicialComplex(N);;</span>
Filtered sparse chain complex of length 2 in characteristic 0 .
</pre></div>
<p>Next, the induced homology homomorphisms in degrees 1 and 2, with rational coefficients, are computed and displayed a barcodes.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P0:=PersistentHomologyOfFilteredSparseChainComplex(C,0);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P1:=PersistentHomologyOfFilteredSparseChainComplex(C,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">BarCodeCompactDisplay(P0);</span>
</pre></div>
<p><img src="images/barcode0example.png" align="center" height="130" alt="Degree 0 persistent homology barcode"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">BarCodeCompactDisplay(P1);</span>
</pre></div>
<p><img src="images/barcode1example.png" align="center" height="130" alt="Degree 1 persistent homology barcode"/></p>
<p>The barcodes are consistent with the data points having been sampled from a space with the homotopy type of an annulus.</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap9.html">[Previous Chapter]</a> <a href="chap11.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|