1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (HAP commands) - Chapter 11: Resolutions</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap11" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap10_mj.html">[Previous Chapter]</a> <a href="chap12_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap11.html">[MathJax off]</a></p>
<p><a id="X7C0B125E7D5415B4" name="X7C0B125E7D5415B4"></a></p>
<div class="ChapSects"><a href="chap11_mj.html#X7C0B125E7D5415B4">11 <span class="Heading">Resolutions</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X83E8F9DA7CDC0DA7">11.1 <span class="Heading">Resolutions for small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7EEA738385CC3AEA">11.2 <span class="Heading">Resolutions for very small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X86C0983E81F706F5">11.3 <span class="Heading">Resolutions for finite groups acting on orbit polytopes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X85374EA47E3D97CF">11.4 <span class="Heading">Minimal resolutions for finite <span class="SimpleMath">\(p\)</span>-groups over <span class="SimpleMath">\(\mathbb F_p\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X866C8D91871D1170">11.5 <span class="Heading">Resolutions for abelian groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7B332CBE85120B38">11.6 <span class="Heading">Resolutions for nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7B03997084E00509">11.7 <span class="Heading">Resolutions for groups with subnormal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X814FFCE080B3A826">11.8 <span class="Heading">Resolutions for groups with normal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X81227BF185C417AF">11.9 <span class="Heading">Resolutions for polycyclic (almost) crystallographic groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X814BCDD6837BB9C5">11.10 <span class="Heading">Resolutions for Bieberbach groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X87ADCB7D7FC0B4D3">11.11 <span class="Heading">Resolutions for arbitrary crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7B9B3AF487338A9B">11.12 <span class="Heading">Resolutions for crystallographic groups admitting cubical fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X78DD8D068349065A">11.13 <span class="Heading">Resolutions for Coxeter groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7C69E7227F919CC9">11.14 <span class="Heading">Resolutions for Artin groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X8032647F8734F4EB">11.15 <span class="Heading">Resolutions for <span class="SimpleMath">\(G=SL_2(\mathbb Z[1/m])\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7BE4DE82801CD38E">11.16 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">\(G=SL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7D9CCB2C7DAA2310">11.17 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">\(G=PSL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7F699587845E6DB1">11.18 <span class="Heading">Resolutions for a few higher-dimensional arithmetic groups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X7812EB3F7AC45F87">11.19 <span class="Heading">Resolutions for finite-index subgroups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X84CAAA697FAC8E0D">11.20 <span class="Heading">Simplifying resolutions
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X780C3F038148A1C7">11.21 <span class="Heading">Resolutions for graphs of groups and for groups with aspherical presentations
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap11_mj.html#X85AB973F8566690A">11.22 <span class="Heading">Resolutions for <span class="SimpleMath">\(\mathbb FG\)</span>-modules
</span></a>
</span>
</div>
</div>
<h3>11 <span class="Heading">Resolutions</span></h3>
<p>There is a range of functions in HAP that input a group <span class="SimpleMath">\(G\)</span>, integer <span class="SimpleMath">\(n\)</span>, and attempt to return the first <span class="SimpleMath">\(n\)</span> terms of a free <span class="SimpleMath">\(\mathbb ZG\)</span>-resolution <span class="SimpleMath">\(R_\ast\)</span> of the trivial module <span class="SimpleMath">\(\mathbb Z\)</span>. In some cases an explicit contracting homotopy is provided on the resolution. The function <code class="code">Size(R)</code> returns a list whose <span class="SimpleMath">\(k\)</span>th term is the sum of the lengths of the boundaries of the generators in degree <span class="SimpleMath">\(k\)</span>.</p>
<p><a id="X83E8F9DA7CDC0DA7" name="X83E8F9DA7CDC0DA7"></a></p>
<h4>11.1 <span class="Heading">Resolutions for small finite groups</span></h4>
<p>The following uses discrete Morse theory to construct a resolution.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(6);; n:=6;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,n);</span>
Resolution of length 6 in characteristic 0 for Group([ (1,2), (1,2,3,4,5,6)
]) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 10, 58, 186, 452, 906, 1436 ]
</pre></div>
<p><a id="X7EEA738385CC3AEA" name="X7EEA738385CC3AEA"></a></p>
<h4>11.2 <span class="Heading">Resolutions for very small finite groups</span></h4>
<p>The following uses linear algebra over <span class="SimpleMath">\(\mathbb Z\)</span> to construct a resolution.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuaternionGroup(128);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSmallGroup(Q,20);</span>
Resolution of length 20 in characteristic 0 for <pc group of size 128 with
2 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128 ]
</pre></div>
<p>The suspicion that this resolution <span class="SimpleMath">\(R_\ast\)</span> is periodic of period <span class="SimpleMath">\(4\)</span> can be confirmed by constructing the chain complex <span class="SimpleMath">\(C_\ast=R_\ast\otimes_{\mathbb Z}\mathbb ZG\)</span> and verifying that boundary matrices repeat with period <span class="SimpleMath">\(4\)</span>.</p>
<p>A second example of a periodic resolution, for the Dihedral group <span class="SimpleMath">\(D_{2k+1}=\langle x, y\ |\ x^2= xy^kx^{-1}y^{-k-1} = 1\rangle\)</span> of order <span class="SimpleMath">\(2k+2\)</span> in the case <span class="SimpleMath">\(k=1\)</span>, is constructed and verified for periodicity in the next example.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(2);;D:=F/[F.1^2,F.1*F.2*F.1^-1*F.2^-2];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSmallGroup(D,15);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 4, 7, 8, 6, 4, 8, 8, 6, 4, 8, 8, 6, 4, 8, 8 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithIntegersOverSubgroup(R,Group(One(D)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=4;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=5;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=6;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=7;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=8;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
</pre></div>
<p>This periodic resolution for <span class="SimpleMath">\(D_3\)</span> can be found in a paper by R. Swan <a href="chapBib_mj.html#biBswan2">[Swa60]</a>. The resolution was proved for arbitrary <span class="SimpleMath">\(D_{2k+1}\)</span> by Irina Kholodna <a href="chapBib_mj.html#biBkholodna">[Kho01]</a> (Corollary 5.5) and is the cellular chain complex of the universal cover of a CW-complex <span class="SimpleMath">\(X\)</span> with two cells in dimensions <span class="SimpleMath">\(1, 2 \bmod 4\)</span> and one cell in dimensions <span class="SimpleMath">\(0,3 \bmod 4\)</span>. The <span class="SimpleMath">\(2\)</span>-skelecton is the <span class="SimpleMath">\(2\)</span>-complex for the given presentation of <span class="SimpleMath">\(D_{2k+1}\)</span> and an attaching map for the <span class="SimpleMath">\(3\)</span>-cell is represented as follows.</p>
<p><img src="images/syzygyjsc.jpg" align="center" height="300" alt="homotopical syzygy"/></p>
<p>A slightly different periodic resolution for <span class="SimpleMath">\(D_{2k+1}\)</span> has been obtain more recently by FEA Johnson <a href="chapBib_mj.html#biBjohnson">[Joh16]</a>. Johnson's resolution has two free generators in each degree. Interestingly, running the following code for many values of <span class="SimpleMath">\(k >1\)</span> seems to produce a periodic resolution with two free generators in each degree for most values of <span class="SimpleMath">\(k\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">k:=20;;rels:=[x^2,x*y^k*x^-1*y^(-1-k)];;D:=F/rels;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSmallGroup(D,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..7],R!.dimension);</span>
[ 1, 2, 2, 2, 2, 2, 2, 2 ]
</pre></div>
<p>The performance of the function <code class="code">ResolutionSmallGroup(G,n)</code> is very sensistive to the choice of presentation for the input group <span class="SimpleMath">\(G\)</span>. If <span class="SimpleMath">\(G\)</span> is an fp-group then the defining presentation for <span class="SimpleMath">\(G\)</span> is used. If <span class="SimpleMath">\(G\)</span> is a permutaion group or finite matrix group then <strong class="button">GAP</strong> functions are invoked to find a presentation for <span class="SimpleMath">\(G\)</span>. The following commands use a geometrically derived presentation for <span class="SimpleMath">\(SL(2,5)\)</span> as input in order to obtain the first few terms of a periodic resolution for this group of period <span class="SimpleMath">\(4\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=PoincareDodecahedronCWComplex( </span>
<span class="GAPprompt">></span> <span class="GAPinput">[[1,2,3,4,5],[6,7,8,9,10]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[1,11,16,12,2],[19,9,8,18,14]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[2,12,17,13,3],[20,10,9,19,15]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[3,13,18,14,4],[16,6,10,20,11]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[4,14,19,15,5],[17,7,6,16,12]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[5,15,20,11,1],[18,8,7,17,13]]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(Y);</span>
<fp group on the generators [ f1, f2 ]>
<span class="GAPprompt">gap></span> <span class="GAPinput">RelatorsOfFpGroup(G);</span>
[ f2^-1*f1^-1*f2*f1^-1*f2^-1*f1, f2^-1*f1*f2^2*f1*f2^-1*f1^-1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(G);</span>
"SL(2,5)"
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSmallGroup(G,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..3],R!.dimension); </span>
[ 1, 2, 2, 1 ]
</pre></div>
<p><a id="X86C0983E81F706F5" name="X86C0983E81F706F5"></a></p>
<h4>11.3 <span class="Heading">Resolutions for finite groups acting on orbit polytopes</span></h4>
<p>The following uses Polymake convex hull computations and homological perturbation theory to construct a resolution.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SignedPermutationGroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(G);</span>
"C2 x ((C2 x C2 x C2 x C2) : S5)"
<span class="GAPprompt">gap></span> <span class="GAPinput">v:=[1,2,3,4,5];; #The resolution depends on the choice of vector.</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=PolytopalComplex(G,[1,2,3,4,5]);</span>
Non-free resolution in characteristic 0 for <matrix group of size 3840 with
9 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(P,6);</span>
Resolution of length 5 in characteristic 0 for <matrix group of size
3840 with 9 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 10, 60, 214, 694, 6247, 273600 ]
</pre></div>
<p>The convex polytope <span class="SimpleMath">\(P_G(v)={\rm Convex~Hull}\{g\cdot v\ |\ g\in G\}\)</span> used in the resolution depends on the choice of vector <span class="SimpleMath">\(v\in \mathbb R^n\)</span>. Two such polytopes for the alternating group <span class="SimpleMath">\(G=A_4\)</span> acting on <span class="SimpleMath">\(\mathbb R^4\)</span> can be visualized as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=AlternatingGroup(4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrbitPolytope(G,[1,2,3,4],["VISUAL"]);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrbitPolytope(G,[1,1,3,4],["VISUAL"]);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P1:=PolytopalComplex(G,[1,2,3,4]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P2:=PolytopalComplex(G,[1,1,3,4]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R1:=FreeGResolution(P1,20);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R2:=FreeGResolution(P2,20);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R1);</span>
[ 6, 11, 32, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093,
1107, 2456, 2344, 6115 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R2);</span>
[ 4, 11, 20, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093,
1107, 2456, 2344, 6115 ]
</pre></div>
<p><img src="images/orb-poly-1.png" align="center" height="300" alt="an orbit polytope"/> <img src="images/orb-poly-2.png" align="center" height="300" alt="an orbit polytope"/></p>
<p><a id="X85374EA47E3D97CF" name="X85374EA47E3D97CF"></a></p>
<h4>11.4 <span class="Heading">Minimal resolutions for finite <span class="SimpleMath">\(p\)</span>-groups over <span class="SimpleMath">\(\mathbb F_p\)</span></span></h4>
<p>The following uses linear algebra to construct a minimal free <span class="SimpleMath">\(\mathbb F_pG\)</span>-resolution of the trivial module <span class="SimpleMath">\(\mathbb F\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionPrimePowerGroup(P,20);</span>
Resolution of length 20 in characteristic 2 for Group(
[ (2,8,4,12)(3,11,7,9), (2,3)(4,7)(6,10)(9,11), (3,7)(6,10)(8,11)(9,12),
(1,10)(3,7)(5,6)(8,12), (2,4)(3,7)(8,12)(9,11), (1,5)(6,10)(8,12)(9,11)
]) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 6, 62, 282, 740, 1810, 3518, 6440, 10600, 17040, 24162, 34774, 49874,
62416, 81780, 106406, 145368, 172282, 208926, 262938, 320558 ]
</pre></div>
<p>The resolution has the minimum number of generators possible in each degree and can be used to guess a formula for the Poincare series</p>
<p><span class="SimpleMath">\(P(x) = \Sigma_{k\ge 0} \dim_{\mathbb F_p}H^k(G,\mathbb F_p)\,x^k\)</span>.</p>
<p>The guess is certainly correct for the coefficients of <span class="SimpleMath">\(x^k\)</span> for <span class="SimpleMath">\(k\le 20\)</span> and can be used to guess the dimension of say <span class="SimpleMath">\(H^{2000}(G,\mathbb F_p)\)</span>.</p>
<p>Most likely <span class="SimpleMath">\(\dim_{\mathbb F_2}H^{2000}(G,\mathbb F_2) = 2001000\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=PoincareSeries(R,20);</span>
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">ExpansionOfRationalFunction(P,2000)[2000];</span>
2001000
</pre></div>
<p><a id="X866C8D91871D1170" name="X866C8D91871D1170"></a></p>
<h4>11.5 <span class="Heading">Resolutions for abelian groups</span></h4>
<p>The following uses the formula for the tensor product of chain complexes to construct a resolution.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=AbelianPcpGroup([2,4,8,0,0]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(A);</span>
"Z x Z x C8 x C4 x C2"
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionAbelianGroup(A,10);</span>
Resolution of length 10 in characteristic 0 for Pcp-group with orders
[ 2, 4, 8, 0, 0 ] .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 14, 90, 296, 680, 1256, 2024, 2984, 4136, 5480, 7016 ]
</pre></div>
<p><a id="X7B332CBE85120B38" name="X7B332CBE85120B38"></a></p>
<h4>11.6 <span class="Heading">Resolutions for nilpotent groups</span></h4>
<p>The following uses the NQ package to express the free nilpotent group of class <span class="SimpleMath">\(3\)</span> on three generators as a Pcp group <span class="SimpleMath">\(G\)</span>, and then uses homological perturbation on the lower central series to construct a resolution. The resolution is used to exhibit <span class="SimpleMath">\(2\)</span>-torsion in <span class="SimpleMath">\(H_4(G,\mathbb Z)\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(F,3));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionNilpotentGroup(G,5);</span>
Resolution of length 5 in characteristic 0 for Pcp-group with orders
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 28, 377, 2377, 9369, 25850 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(R),4);</span>
[ 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>The following example uses a simplification procedure for resolutions to construct a resolution <span class="SimpleMath">\(S_\ast\)</span> for the free nilpotent group <span class="SimpleMath">\(G\)</span> of class <span class="SimpleMath">\(2\)</span> on <span class="SimpleMath">\(3\)</span> generators that has the minimal possible number of free generators in each degree.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(3),2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionNilpotentGroup(G,10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ContractedComplex(R);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithIntegers(S);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([1..10],i->IsZero(BoundaryMatrix(C,i)));</span>
[ true, true, true, true, true, true, true, true, true, true ]
</pre></div>
<p>The following example uses homological perturbation on the lower central series to construct a resolution for the Sylow <span class="SimpleMath">\(2\)</span>-subgroup <span class="SimpleMath">\(P=Syl_2(M_{12})\)</span> of the Mathieu simple group <span class="SimpleMath">\(M_{12}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=MathieuGroup(12);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(P);</span>
"((C4 x C4) : C2) : C2"
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionNilpotentGroup(P,9);</span>
Resolution of length 9 in characteristic
0 for <permutation group with 279 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 12, 80, 310, 939, 2556, 6768, 19302, 61786, 237068 ]
</pre></div>
<p><a id="X7B03997084E00509" name="X7B03997084E00509"></a></p>
<h4>11.7 <span class="Heading">Resolutions for groups with subnormal series</span></h4>
<p>The following uses homological perturbation on a subnormal series to construct a resolution for the Sylow <span class="SimpleMath">\(2\)</span>-subgroup <span class="SimpleMath">\(P=Syl_2(M_{12})\)</span> of the Mathieu simple group <span class="SimpleMath">\(M_{12}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sn:=ElementaryAbelianSeries(P);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSubnormalSeries(sn,9);</span>
Resolution of length 9 in characteristic
0 for <permutation group with 64 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 12, 78, 288, 812, 1950, 4256, 8837, 18230, 39120 ]
</pre></div>
<p><a id="X814FFCE080B3A826" name="X814FFCE080B3A826"></a></p>
<h4>11.8 <span class="Heading">Resolutions for groups with normal series</span></h4>
<p>The following uses homological perturbation on a normal series to construct a resolution for the Sylow <span class="SimpleMath">\(2\)</span>-subgroup <span class="SimpleMath">\(P=Syl_2(M_{12})\)</span> of the Mathieu simple group <span class="SimpleMath">\(M_{12}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P1:=EfficientNormalSubgroups(P)[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P2:=Intersection(DerivedSubgroup(P),P1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P3:=Group(One(P));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionNormalSeries([P,P1,P2,P3],9);</span>
Resolution of length 9 in characteristic
0 for <permutation group with 64 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 10, 60, 200, 532, 1238, 2804, 6338, 15528, 40649 ]
</pre></div>
<p><a id="X81227BF185C417AF" name="X81227BF185C417AF"></a></p>
<h4>11.9 <span class="Heading">Resolutions for polycyclic (almost) crystallographic groups </span></h4>
<p>The following uses the Polycyclic package and homological perturbation to construct a resolution for the crystallographic group <code class="code">G:=SpaceGroup(3,165)</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroup(3,165);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Image(IsomorphismPcpGroup(G));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionAlmostCrystalGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for Pcp-group with orders
[ 3, 2, 0, 0, 0 ] .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 10, 49, 117, 195, 273, 351, 429, 507, 585, 663, 741, 819, 897, 975, 1053,
1131, 1209, 1287, 1365, 1443 ]
</pre></div>
<p>The following constructs a resolution for an almost crystallographic Pcp group <span class="SimpleMath">\(G\)</span>. The final commands establish that <span class="SimpleMath">\(G\)</span> is not isomorphic to a crystallographic group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionAlmostCrystalGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for Pcp-group with orders
[ 4, 0, 0, 0, 0 ] .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 10, 53, 137, 207, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223,
223, 223, 223, 223, 223 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=Kernel(NaturalHomomorphismOnHolonomyGroup(G));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsAbelian(T);</span>
false
</pre></div>
<p><a id="X814BCDD6837BB9C5" name="X814BCDD6837BB9C5"></a></p>
<h4>11.10 <span class="Heading">Resolutions for Bieberbach groups </span></h4>
<p>The following constructs a resolution for the Bieberbach group <code class="code">G=SpaceGroup(3,165)</code> by using convex hull algorithms to construct a Dirichlet domain for its free action on Euclidean space <span class="SimpleMath">\(\mathbb R^3\)</span>. By construction the resolution is trivial in degrees <span class="SimpleMath">\(\ge 3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroup(3,165);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionBieberbachGroup(G);</span>
Resolution of length 4 in characteristic
0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 10, 18, 8, 0 ]
</pre></div>
<p>The fundamental domain constructed for the above resolution can be visualized using the following commands.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalDomainBieberbachGroup(G);</span>
<polymake object>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(F);</span>
</pre></div>
<p><img src="images/3-165-0.png" align="center" height="300" alt="a Dirichlet domain"/></p>
<p>A different fundamental domain and resolution for <span class="SimpleMath">\(G\)</span> can be obtained by changing the choice of vector <span class="SimpleMath">\(v\in \mathbb R^3\)</span> in the definition of the Dirichlet domain</p>
<p><span class="SimpleMath">\(D(v) = \{x\in \mathbb R^3\ | \ ||x-v|| \le ||x-g.v||\ {\rm for~all~} g\in G\}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionBieberbachGroup(G,[1/2,1/2,1/2]);</span>
Resolution of length 4 in characteristic
0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 28, 42, 16, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalDomainBieberbachGroup(G);</span>
<polymake object>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(F);</span>
</pre></div>
<p><img src="images/3-165-1.png" align="center" height="300" alt="a Dirichlet domain"/></p>
<p>A higher dimensional example is handled in the next session. A list of the <span class="SimpleMath">\(62\)</span> <span class="SimpleMath">\(7\)</span>-dimensional Hantze-Wendt Bieberbach groups is loaded and a resolution is computed for the first group in the list.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">file:=HapFile("HW-7dim.txt");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Read(file);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HWO7Gr[1];</span>
<matrix group with 7 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionBieberbachGroup(G);</span>
Resolution of length 8 in characteristic 0 for <matrix group with
7 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 284, 1512, 3780, 4480, 2520, 840, 84, 0 ]
</pre></div>
<p>The homological perturbation techniques needed to extend this method to crystallographic groups acting non-freely on <span class="SimpleMath">\(\mathbb R^n\)</span> has not yet been implemenyed. This is on the TO-DO list.</p>
<p><a id="X87ADCB7D7FC0B4D3" name="X87ADCB7D7FC0B4D3"></a></p>
<h4>11.11 <span class="Heading">Resolutions for arbitrary crystallographic groups</span></h4>
<p>An implementation of the above method for Bieberbach groups is also available for arbitrary crystallographic groups. The following example constructs a resolution for the group <code class="code">G:=SpaceGroupIT(3,227)</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroupIT(3,227);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSpaceGroup(G,11);</span>
Resolution of length 11 in characteristic 0 for <matrix group with
8 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 38, 246, 456, 644, 980, 1427, 2141, 2957, 3993, 4911, 6179 ]
</pre></div>
<p><a id="X7B9B3AF487338A9B" name="X7B9B3AF487338A9B"></a></p>
<h4>11.12 <span class="Heading">Resolutions for crystallographic groups admitting cubical fundamental domain</span></h4>
<p>The following uses subdivision techniques to construct a resolution for the Bieberbach group <code class="code">G:=SpaceGroup(4,122)</code>. The resolution is endowed with a contracting homotopy.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroup(4,122);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionCubicalCrystGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for <matrix group with
6 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 8, 24, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>Subdivision and homological perturbation are used to construct the following resolution (with contracting homotopy) for a crystallographic group with non-free action.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroup(4,1100);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionCubicalCrystGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for <matrix group with
8 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 40, 215, 522, 738, 962, 1198, 1466, 1734, 2034, 2334, 2666, 2998, 3362,
3726, 4122, 4518, 4946, 5374, 5834, 6294 ]
</pre></div>
<p><a id="X78DD8D068349065A" name="X78DD8D068349065A"></a></p>
<h4>11.13 <span class="Heading">Resolutions for Coxeter groups </span></h4>
<p>The following session constructs the Coxeter diagram for the Coxeter group <span class="SimpleMath">\(B=B_7\)</span> of order <span class="SimpleMath">\(645120\)</span>. A resolution for <span class="SimpleMath">\(G\)</span> is then computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,3]],[5,[6,3]],[6,[7,4]]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CoxeterDiagramDisplay(D);;</span>
</pre></div>
<p><img src="images/coxeter-diagram-b7.png" align="center" height="150" alt="a Dirichlet domain"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionCoxeterGroup(D,5);</span>
Resolution of length 5 in characteristic
0 for <permutation group of size 645120 with 7 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 14, 112, 492, 1604, 5048 ]
</pre></div>
<p>The routine extension of this method to infinite Coxeter groups is on the TO-DO list.</p>
<p><a id="X7C69E7227F919CC9" name="X7C69E7227F919CC9"></a></p>
<h4>11.14 <span class="Heading">Resolutions for Artin groups </span></h4>
<p>The following session constructs a resolution for the infinite Artin group <span class="SimpleMath">\(G\)</span> associated to the Coxeter group <span class="SimpleMath">\(B_7\)</span>. Exactness of the resolution depends on the solution to the <span class="SimpleMath">\(K(\pi,1)\)</span> Conjecture for Artin groups of spherical type.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionArtinGroup(D,8);</span>
Resolution of length 8 in characteristic 0 for <fp group on the generators
[ f1, f2, f3, f4, f5, f6, f7 ]> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 14, 98, 310, 610, 918, 1326, 2186, 0 ]
</pre></div>
<p><a id="X8032647F8734F4EB" name="X8032647F8734F4EB"></a></p>
<h4>11.15 <span class="Heading">Resolutions for <span class="SimpleMath">\(G=SL_2(\mathbb Z[1/m])\)</span></span></h4>
<p>The following uses homological perturbation to construct a resolution for <span class="SimpleMath">\(G=SL_2(\mathbb Z[1/6])\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2Z(6,10);</span>
Resolution of length 10 in characteristic 0 for SL(2,Z[1/6]) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 44, 679, 6910, 21304, 24362, 48506, 43846, 90928, 86039, 196210 ]
</pre></div>
<p><a id="X7BE4DE82801CD38E" name="X7BE4DE82801CD38E"></a></p>
<h4>11.16 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">\(G=SL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></h4>
<p>The following uses finite "Voronoi complexes" and homological perturbation to construct a resolution for <span class="SimpleMath">\(G=SL_2({\mathcal O}(\mathbb Q(\sqrt{-5}))\)</span>. The finite complexes were contributed independently by A. Rahm, M. Dutour-Scikiric and S. Schoenenbeck and are stored in the folder <code class="code">~pkg/Hap1.v/lib/Perturbations/Gcomplexes</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-5,10);</span>
Resolution of length 10 in characteristic 0 for matrix group .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 22, 114, 120, 200, 146, 156, 136, 254, 168, 170 ]
</pre></div>
<p><a id="X7D9CCB2C7DAA2310" name="X7D9CCB2C7DAA2310"></a></p>
<h4>11.17 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">\(G=PSL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></h4>
<p>The following uses finite "Voronoi complexes" and homological perturbation to construct a resolution for <span class="SimpleMath">\(G=PSL_2({\mathcal O}(\mathbb Q(\sqrt{-11}))\)</span>. The finite complexes were contributed independently by A. Rahm, M. Dutour-Scikiric and S. Schoenenbeck and are stored in the folder <code class="code">~pkg/Hap1.v/lib/Perturbations/Gcomplexes</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-11,10);</span>
Resolution of length 10 in characteristic 0 for PSL(2,O-11) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 12, 59, 89, 107, 125, 230, 208, 270, 326, 515 ]
</pre></div>
<p><a id="X7F699587845E6DB1" name="X7F699587845E6DB1"></a></p>
<h4>11.18 <span class="Heading">Resolutions for a few higher-dimensional arithmetic groups
</span></h4>
<p>The following uses finite "Voronoi complexes" and homological perturbation to construct a resolution for <span class="SimpleMath">\(G=PSL_4(\mathbb Z)\)</span>. The finite complexes were contributed by M. Dutour-Scikiric and are stored in the folder <code class="code">~pkg/Hap1.v/lib/Perturbations/Gcomplexes</code>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput"> V:=ContractibleGcomplex("PSL(4,Z)_d");</span>
Non-free resolution in characteristic 0 for matrix group .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(V,5);</span>
Resolution of length 5 in characteristic 0 for matrix group .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 18, 210, 1444, 26813 ]
</pre></div>
<p><a id="X7812EB3F7AC45F87" name="X7812EB3F7AC45F87"></a></p>
<h4>11.19 <span class="Heading">Resolutions for finite-index subgroups
</span></h4>
<p>The next commands first construct the congruence subgroup <span class="SimpleMath">\(\Gamma_0(I)\)</span> of index <span class="SimpleMath">\(144\)</span> in <span class="SimpleMath">\(SL_2({\cal O}\mathbb Q(\sqrt{-2}))\)</span> for the ideal <span class="SimpleMath">\(I\)</span> in <span class="SimpleMath">\({\cal O}\mathbb Q(\sqrt{-2})\)</span> generated by <span class="SimpleMath">\(4+5\sqrt{-2}\)</span>. The commands then compute a resolution for the congruence subgroup <span class="SimpleMath">\(G=\Gamma_0(I) \le SL_2({\cal O}\mathbb Q(\sqrt{-2}))\)</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);</span>
<[group of 2x2 matrices in characteristic 0>
<span class="GAPprompt">gap></span> <span class="GAPinput"></span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IndexInSL2O(G);</span>
144
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-2,4,true);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,G);</span>
Resolution of length 4 in characteristic 0 for <matrix group with
290 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(S);</span>
[ 1152, 8496, 30960, 59616 ]
</pre></div>
<p><a id="X84CAAA697FAC8E0D" name="X84CAAA697FAC8E0D"></a></p>
<h4>11.20 <span class="Heading">Simplifying resolutions
</span></h4>
<p>The next commands construct a resolution <span class="SimpleMath">\(R_\ast\)</span> for the symmetric group <span class="SimpleMath">\(S_5\)</span> and convert it to a resolution <span class="SimpleMath">\(S_\ast\)</span> for the finite index subgroup <span class="SimpleMath">\(A_4 < S_5\)</span>. An heuristic algorithm is applied to <span class="SimpleMath">\(S_\ast\)</span> in the hope of obtaining a smaller resolution <span class="SimpleMath">\(T_\ast\)</span> for the alternating group <span class="SimpleMath">\(A_4\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(SymmetricGroup(5),5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,AlternatingGroup(4));</span>
Resolution of length 5 in characteristic 0 for Alt( [ 1 .. 4 ] ) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(S);</span>
[ 80, 380, 1000, 2040, 3400 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=SimplifiedComplex(S);</span>
Resolution of length 5 in characteristic 0 for Alt( [ 1 .. 4 ] ) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(T);</span>
[ 4, 34, 22, 19, 196 ]
</pre></div>
<p><a id="X780C3F038148A1C7" name="X780C3F038148A1C7"></a></p>
<h4>11.21 <span class="Heading">Resolutions for graphs of groups and for groups with aspherical presentations
</span></h4>
<p>The following example constructs a resolution for a finitely presented group whose presentation is known to have the property that its associated <span class="SimpleMath">\(2\)</span>-complex is aspherical.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rels:=[x*y*x*(y*x*y)^-1, y*z*y*(z*y*z)^-1, z*x*z*(x*z*x)^-1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=F/rels;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionAsphericalPresentation(G,10);</span>
Resolution of length 10 in characteristic 0 for <fp group on the generators
[ f1, f2, f3 ]> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 6, 18, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>The following commands create a resolution for a graph of groups corresponding to the amalgamated product <span class="SimpleMath">\(G=H\ast_AK\)</span> where <span class="SimpleMath">\(H=S_5\)</span> is the symmetric group of degree <span class="SimpleMath">\(5\)</span>, <span class="SimpleMath">\(K=S_4\)</span> is the symmetric group of degree <span class="SimpleMath">\(4\)</span> and the common subgroup is <span class="SimpleMath">\(A=S_3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S5:=SymmetricGroup(5);SetName(S5,"S5");;</span>
Sym( [ 1 .. 5 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">S4:=SymmetricGroup(4);SetName(S4,"S4");;</span>
Sym( [ 1 .. 4 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=SymmetricGroup(3);SetName(A,"S3");;</span>
Sym( [ 1 .. 3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">AS5:=GroupHomomorphismByFunction(A,S5,x->x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AS4:=GroupHomomorphismByFunction(A,S4,x->x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[S5,S4,[AS5,AS4]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GraphOfGroupsDisplay(D);;</span>
</pre></div>
<p><img src="images/graphOFgroups.gif" align="center" height="100" alt="graph of groups"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionGraphOfGroups(D,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(R);</span>
[ 16, 68, 162, 302, 480, 627, 869, 1290 ]
</pre></div>
<p><a id="X85AB973F8566690A" name="X85AB973F8566690A"></a></p>
<h4>11.22 <span class="Heading">Resolutions for <span class="SimpleMath">\(\mathbb FG\)</span>-modules
</span></h4>
<p>Let <span class="SimpleMath">\(\mathbb F=\mathbb F_p\)</span> be the field of <span class="SimpleMath">\(p\)</span> elements and let <span class="SimpleMath">\(M\)</span> be some <span class="SimpleMath">\(\mathbb FG\)</span>-module for <span class="SimpleMath">\(G\)</span> a finite <span class="SimpleMath">\(p\)</span>-group. We might wish to construct a free <span class="SimpleMath">\(\mathbb FG\)</span>-resolution for <span class="SimpleMath">\(M\)</span>. We can handle this by constructing a short exact sequence</p>
<p><span class="SimpleMath">\( DM \rightarrowtail P \twoheadrightarrow M\)</span></p>
<p>in which <span class="SimpleMath">\(P\)</span> is free (or projective). Then any resolution of <span class="SimpleMath">\(DM\)</span> yields a resolution of <span class="SimpleMath">\(M\)</span> and we can represent <span class="SimpleMath">\(DM\)</span> as a submodule of <span class="SimpleMath">\(P\)</span>. We refer to <span class="SimpleMath">\(DM\)</span> as the <em>desuspension</em> of <span class="SimpleMath">\(M\)</span>. Consider for instance <span class="SimpleMath">\(G=Syl_2(GL(4,2))\)</span> and <span class="SimpleMath">\(\mathbb F=\mathbb F_2\)</span>. The matrix group <span class="SimpleMath">\(G\)</span> acts via matrix multiplication on <span class="SimpleMath">\(M=\mathbb F^4\)</span>. The following example constructs a free <span class="SimpleMath">\(\mathbb FG\)</span>-resolution for <span class="SimpleMath">\(M\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=GL(4,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=GModuleByMats(GeneratorsOfGroup(S),GF(2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DM:=DesuspensionMtxModule(M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFpGModule(DM,20);</span>
Resolution of length 20 in characteristic 2 for <matrix group of
size 64 with 3 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..20],R!.dimension);</span>
[ 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136,
153, 171, 190, 210, 231, 253 ]
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap10_mj.html">[Previous Chapter]</a> <a href="chap12_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|