File: chap11_mj.html

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (837 lines) | stat: -rw-r--r-- 50,674 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (HAP commands) - Chapter 11: Resolutions</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap11"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap10_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap12_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap11.html">[MathJax off]</a></p>
<p><a id="X7C0B125E7D5415B4" name="X7C0B125E7D5415B4"></a></p>
<div class="ChapSects"><a href="chap11_mj.html#X7C0B125E7D5415B4">11 <span class="Heading">Resolutions</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X83E8F9DA7CDC0DA7">11.1 <span class="Heading">Resolutions for small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7EEA738385CC3AEA">11.2 <span class="Heading">Resolutions for very small finite groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X86C0983E81F706F5">11.3 <span class="Heading">Resolutions for finite groups acting on orbit polytopes</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X85374EA47E3D97CF">11.4 <span class="Heading">Minimal resolutions for finite <span class="SimpleMath">\(p\)</span>-groups over <span class="SimpleMath">\(\mathbb F_p\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X866C8D91871D1170">11.5 <span class="Heading">Resolutions for abelian groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B332CBE85120B38">11.6 <span class="Heading">Resolutions for nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B03997084E00509">11.7 <span class="Heading">Resolutions for groups with subnormal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X814FFCE080B3A826">11.8 <span class="Heading">Resolutions for groups with normal series</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X81227BF185C417AF">11.9 <span class="Heading">Resolutions for polycyclic (almost) crystallographic groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X814BCDD6837BB9C5">11.10 <span class="Heading">Resolutions for Bieberbach groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X87ADCB7D7FC0B4D3">11.11 <span class="Heading">Resolutions for arbitrary crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7B9B3AF487338A9B">11.12 <span class="Heading">Resolutions for crystallographic groups  admitting cubical fundamental domain</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X78DD8D068349065A">11.13 <span class="Heading">Resolutions for Coxeter groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7C69E7227F919CC9">11.14 <span class="Heading">Resolutions for Artin groups </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X8032647F8734F4EB">11.15 <span class="Heading">Resolutions for <span class="SimpleMath">\(G=SL_2(\mathbb Z[1/m])\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7BE4DE82801CD38E">11.16 <span class="Heading">Resolutions for selected groups 
<span class="SimpleMath">\(G=SL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7D9CCB2C7DAA2310">11.17 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">\(G=PSL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7F699587845E6DB1">11.18 <span class="Heading">Resolutions for a few higher-dimensional arithmetic groups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X7812EB3F7AC45F87">11.19 <span class="Heading">Resolutions for finite-index subgroups
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X84CAAA697FAC8E0D">11.20 <span class="Heading">Simplifying resolutions
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X780C3F038148A1C7">11.21 <span class="Heading">Resolutions for graphs of groups and for groups with aspherical presentations
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap11_mj.html#X85AB973F8566690A">11.22 <span class="Heading">Resolutions for <span class="SimpleMath">\(\mathbb FG\)</span>-modules
</span></a>
</span>
</div>
</div>

<h3>11 <span class="Heading">Resolutions</span></h3>

<p>There is a range of functions in HAP that input a group <span class="SimpleMath">\(G\)</span>, integer <span class="SimpleMath">\(n\)</span>, and attempt to return the first <span class="SimpleMath">\(n\)</span> terms of a free <span class="SimpleMath">\(\mathbb ZG\)</span>-resolution <span class="SimpleMath">\(R_\ast\)</span> of the trivial module <span class="SimpleMath">\(\mathbb Z\)</span>. In some cases an explicit contracting homotopy is provided on the resolution. The function <code class="code">Size(R)</code> returns a list whose <span class="SimpleMath">\(k\)</span>th term is the sum of the lengths of the boundaries of the generators in degree <span class="SimpleMath">\(k\)</span>.</p>

<p><a id="X83E8F9DA7CDC0DA7" name="X83E8F9DA7CDC0DA7"></a></p>

<h4>11.1 <span class="Heading">Resolutions for small finite groups</span></h4>

<p>The following uses discrete Morse theory to construct a resolution.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SymmetricGroup(6);; n:=6;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,n);</span>
Resolution of length 6 in characteristic 0 for Group([ (1,2), (1,2,3,4,5,6) 
 ]) .

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 10, 58, 186, 452, 906, 1436 ]

</pre></div>

<p><a id="X7EEA738385CC3AEA" name="X7EEA738385CC3AEA"></a></p>

<h4>11.2 <span class="Heading">Resolutions for very small finite groups</span></h4>

<p>The following uses linear algebra over <span class="SimpleMath">\(\mathbb Z\)</span> to construct a resolution.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuaternionGroup(128);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSmallGroup(Q,20);</span>
Resolution of length 20 in characteristic 0 for &lt;pc group of size 128 with 
2 generators&gt; . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128, 4, 42, 8, 128 ]

</pre></div>

<p>The suspicion that this resolution <span class="SimpleMath">\(R_\ast\)</span> is periodic of period <span class="SimpleMath">\(4\)</span> can be confirmed by constructing the chain complex <span class="SimpleMath">\(C_\ast=R_\ast\otimes_{\mathbb Z}\mathbb ZG\)</span> and verifying that boundary matrices repeat with period <span class="SimpleMath">\(4\)</span>.</p>

<p>A second example of a periodic resolution, for the Dihedral group <span class="SimpleMath">\(D_{2k+1}=\langle x, y\ |\ x^2= xy^kx^{-1}y^{-k-1} = 1\rangle\)</span> of order <span class="SimpleMath">\(2k+2\)</span> in the case <span class="SimpleMath">\(k=1\)</span>, is constructed and verified for periodicity in the next example.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FreeGroup(2);;D:=F/[F.1^2,F.1*F.2*F.1^-1*F.2^-2];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSmallGroup(D,15);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 4, 7, 8, 6, 4, 8, 8, 6, 4, 8, 8, 6, 4, 8, 8 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=TensorWithIntegersOverSubgroup(R,Group(One(D)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=4;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=5;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=6;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=7;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=8;;BoundaryMatrix(C,n)=BoundaryMatrix(C,n+4);</span>
true

</pre></div>

<p>This periodic resolution for <span class="SimpleMath">\(D_3\)</span> can be found in a paper by R. Swan <a href="chapBib_mj.html#biBswan2">[Swa60]</a>. The resolution was proved for arbitrary <span class="SimpleMath">\(D_{2k+1}\)</span> by Irina Kholodna <a href="chapBib_mj.html#biBkholodna">[Kho01]</a> (Corollary 5.5) and is the cellular chain complex of the universal cover of a CW-complex <span class="SimpleMath">\(X\)</span> with two cells in dimensions <span class="SimpleMath">\(1, 2 \bmod 4\)</span> and one cell in dimensions <span class="SimpleMath">\(0,3 \bmod 4\)</span>. The <span class="SimpleMath">\(2\)</span>-skelecton is the <span class="SimpleMath">\(2\)</span>-complex for the given presentation of <span class="SimpleMath">\(D_{2k+1}\)</span> and an attaching map for the <span class="SimpleMath">\(3\)</span>-cell is represented as follows.</p>

<p><img src="images/syzygyjsc.jpg" align="center" height="300" alt="homotopical syzygy"/></p>

<p>A slightly different periodic resolution for <span class="SimpleMath">\(D_{2k+1}\)</span> has been obtain more recently by FEA Johnson <a href="chapBib_mj.html#biBjohnson">[Joh16]</a>. Johnson's resolution has two free generators in each degree. Interestingly, running the following code for many values of <span class="SimpleMath">\(k &gt;1\)</span> seems to produce a periodic resolution with two free generators in each degree for most values of <span class="SimpleMath">\(k\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">k:=20;;rels:=[x^2,x*y^k*x^-1*y^(-1-k)];;D:=F/rels;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSmallGroup(D,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..7],R!.dimension);</span>
[ 1, 2, 2, 2, 2, 2, 2, 2 ]

</pre></div>

<p>The performance of the function <code class="code">ResolutionSmallGroup(G,n)</code> is very sensistive to the choice of presentation for the input group <span class="SimpleMath">\(G\)</span>. If <span class="SimpleMath">\(G\)</span> is an fp-group then the defining presentation for <span class="SimpleMath">\(G\)</span> is used. If <span class="SimpleMath">\(G\)</span> is a permutaion group or finite matrix group then <strong class="button">GAP</strong> functions are invoked to find a presentation for <span class="SimpleMath">\(G\)</span>. The following commands use a geometrically derived presentation for <span class="SimpleMath">\(SL(2,5)\)</span> as input in order to obtain the first few terms of a periodic resolution for this group of period <span class="SimpleMath">\(4\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Y:=PoincareDodecahedronCWComplex( </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[1,2,3,4,5],[6,7,8,9,10]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[1,11,16,12,2],[19,9,8,18,14]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[2,12,17,13,3],[20,10,9,19,15]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[3,13,18,14,4],[16,6,10,20,11]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[4,14,19,15,5],[17,7,6,16,12]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[5,15,20,11,1],[18,8,7,17,13]]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=FundamentalGroup(Y);</span>
&lt;fp group on the generators [ f1, f2 ]&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RelatorsOfFpGroup(G);</span>
[ f2^-1*f1^-1*f2*f1^-1*f2^-1*f1, f2^-1*f1*f2^2*f1*f2^-1*f1^-1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(G);</span>
"SL(2,5)"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSmallGroup(G,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..3],R!.dimension);    </span>
[ 1, 2, 2, 1 ]

</pre></div>

<p><a id="X86C0983E81F706F5" name="X86C0983E81F706F5"></a></p>

<h4>11.3 <span class="Heading">Resolutions for finite groups acting on orbit polytopes</span></h4>

<p>The following uses Polymake convex hull computations and homological perturbation theory to construct a resolution.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SignedPermutationGroup(5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(G);</span>
"C2 x ((C2 x C2 x C2 x C2) : S5)"

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">v:=[1,2,3,4,5];;  #The resolution depends on the choice of vector.</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=PolytopalComplex(G,[1,2,3,4,5]);</span>
Non-free resolution in characteristic 0 for &lt;matrix group of size 3840 with 
9 generators&gt; . 
No contracting homotopy available.

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=FreeGResolution(P,6);</span>
Resolution of length 5 in characteristic 0 for &lt;matrix group of size 
3840 with 9 generators&gt; . 
No contracting homotopy available.
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 10, 60, 214, 694, 6247, 273600 ]

</pre></div>

<p>The convex polytope <span class="SimpleMath">\(P_G(v)={\rm Convex~Hull}\{g\cdot v\ |\ g\in G\}\)</span> used in the resolution depends on the choice of vector <span class="SimpleMath">\(v\in \mathbb R^n\)</span>. Two such polytopes for the alternating group <span class="SimpleMath">\(G=A_4\)</span> acting on <span class="SimpleMath">\(\mathbb R^4\)</span> can be visualized as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=AlternatingGroup(4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrbitPolytope(G,[1,2,3,4],["VISUAL"]);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrbitPolytope(G,[1,1,3,4],["VISUAL"]);</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P1:=PolytopalComplex(G,[1,2,3,4]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P2:=PolytopalComplex(G,[1,1,3,4]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R1:=FreeGResolution(P1,20);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=FreeGResolution(P2,20);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R1);</span>
[ 6, 11, 32, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093, 
  1107, 2456, 2344, 6115 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R2);</span>
[ 4, 11, 20, 24, 36, 60, 65, 102, 116, 168, 172, 248, 323, 628, 650, 1093, 
  1107, 2456, 2344, 6115 ]

</pre></div>

<p><img src="images/orb-poly-1.png" align="center" height="300" alt="an orbit polytope"/> <img src="images/orb-poly-2.png" align="center" height="300" alt="an orbit polytope"/></p>

<p><a id="X85374EA47E3D97CF" name="X85374EA47E3D97CF"></a></p>

<h4>11.4 <span class="Heading">Minimal resolutions for finite <span class="SimpleMath">\(p\)</span>-groups over <span class="SimpleMath">\(\mathbb F_p\)</span></span></h4>

<p>The following uses linear algebra to construct a minimal free <span class="SimpleMath">\(\mathbb F_pG\)</span>-resolution of the trivial module <span class="SimpleMath">\(\mathbb F\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionPrimePowerGroup(P,20);</span>
Resolution of length 20 in characteristic 2 for Group(
[ (2,8,4,12)(3,11,7,9), (2,3)(4,7)(6,10)(9,11), (3,7)(6,10)(8,11)(9,12), 
  (1,10)(3,7)(5,6)(8,12), (2,4)(3,7)(8,12)(9,11), (1,5)(6,10)(8,12)(9,11) 
 ]) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 6, 62, 282, 740, 1810, 3518, 6440, 10600, 17040, 24162, 34774, 49874, 
  62416, 81780, 106406, 145368, 172282, 208926, 262938, 320558 ]

</pre></div>

<p>The resolution has the minimum number of generators possible in each degree and can be used to guess a formula for the Poincare series</p>

<p><span class="SimpleMath">\(P(x) = \Sigma_{k\ge 0} \dim_{\mathbb F_p}H^k(G,\mathbb F_p)\,x^k\)</span>.</p>

<p>The guess is certainly correct for the coefficients of <span class="SimpleMath">\(x^k\)</span> for <span class="SimpleMath">\(k\le 20\)</span> and can be used to guess the dimension of say <span class="SimpleMath">\(H^{2000}(G,\mathbb F_p)\)</span>.</p>

<p>Most likely <span class="SimpleMath">\(\dim_{\mathbb F_2}H^{2000}(G,\mathbb F_2) = 2001000\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=PoincareSeries(R,20);</span>
(1)/(-x_1^3+3*x_1^2-3*x_1+1)

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ExpansionOfRationalFunction(P,2000)[2000];</span>
2001000

</pre></div>

<p><a id="X866C8D91871D1170" name="X866C8D91871D1170"></a></p>

<h4>11.5 <span class="Heading">Resolutions for abelian groups</span></h4>

<p>The following uses the formula for the tensor product of chain complexes to construct a resolution.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=AbelianPcpGroup([2,4,8,0,0]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(A);</span>
"Z x Z x C8 x C4 x C2"

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionAbelianGroup(A,10);</span>
Resolution of length 10 in characteristic 0 for Pcp-group with orders 
[ 2, 4, 8, 0, 0 ] . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 14, 90, 296, 680, 1256, 2024, 2984, 4136, 5480, 7016 ]

</pre></div>

<p><a id="X7B332CBE85120B38" name="X7B332CBE85120B38"></a></p>

<h4>11.6 <span class="Heading">Resolutions for nilpotent groups</span></h4>

<p>The following uses the NQ package to express the free nilpotent group of class <span class="SimpleMath">\(3\)</span> on three generators as a Pcp group <span class="SimpleMath">\(G\)</span>, and then uses homological perturbation on the lower central series to construct a resolution. The resolution is used to exhibit <span class="SimpleMath">\(2\)</span>-torsion in <span class="SimpleMath">\(H_4(G,\mathbb Z)\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FreeGroup(3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(F,3));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionNilpotentGroup(G,5);</span>
Resolution of length 5 in characteristic 0 for Pcp-group with orders 
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 28, 377, 2377, 9369, 25850 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(R),4);</span>
[ 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p>The following example uses a simplification procedure for resolutions to construct a resolution <span class="SimpleMath">\(S_\ast\)</span> for the free nilpotent group <span class="SimpleMath">\(G\)</span> of class <span class="SimpleMath">\(2\)</span> on <span class="SimpleMath">\(3\)</span> generators that has the minimal possible number of free generators in each degree.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(3),2));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionNilpotentGroup(G,10);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ContractedComplex(R);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=TensorWithIntegers(S);; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([1..10],i-&gt;IsZero(BoundaryMatrix(C,i)));</span>
[ true, true, true, true, true, true, true, true, true, true ]

</pre></div>

<p>The following example uses homological perturbation on the lower central series to construct a resolution for the Sylow <span class="SimpleMath">\(2\)</span>-subgroup <span class="SimpleMath">\(P=Syl_2(M_{12})\)</span> of the Mathieu simple group <span class="SimpleMath">\(M_{12}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=MathieuGroup(12);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(P);</span>
"((C4 x C4) : C2) : C2"

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionNilpotentGroup(P,9);</span>
Resolution of length 9 in characteristic 
0 for &lt;permutation group with 279 generators&gt; . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 12, 80, 310, 939, 2556, 6768, 19302, 61786, 237068 ]

</pre></div>

<p><a id="X7B03997084E00509" name="X7B03997084E00509"></a></p>

<h4>11.7 <span class="Heading">Resolutions for groups with subnormal series</span></h4>

<p>The following uses homological perturbation on a subnormal series to construct a resolution for the Sylow <span class="SimpleMath">\(2\)</span>-subgroup <span class="SimpleMath">\(P=Syl_2(M_{12})\)</span> of the Mathieu simple group <span class="SimpleMath">\(M_{12}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sn:=ElementaryAbelianSeries(P);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSubnormalSeries(sn,9);</span>
Resolution of length 9 in characteristic 
0 for &lt;permutation group with 64 generators&gt; . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 12, 78, 288, 812, 1950, 4256, 8837, 18230, 39120 ]

</pre></div>

<p><a id="X814FFCE080B3A826" name="X814FFCE080B3A826"></a></p>

<h4>11.8 <span class="Heading">Resolutions for groups with normal series</span></h4>

<p>The following uses homological perturbation on a normal series to construct a resolution for the Sylow <span class="SimpleMath">\(2\)</span>-subgroup <span class="SimpleMath">\(P=Syl_2(M_{12})\)</span> of the Mathieu simple group <span class="SimpleMath">\(M_{12}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P1:=EfficientNormalSubgroups(P)[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P2:=Intersection(DerivedSubgroup(P),P1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P3:=Group(One(P));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionNormalSeries([P,P1,P2,P3],9);</span>
Resolution of length 9 in characteristic 
0 for &lt;permutation group with 64 generators&gt; . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 10, 60, 200, 532, 1238, 2804, 6338, 15528, 40649 ]

</pre></div>

<p><a id="X81227BF185C417AF" name="X81227BF185C417AF"></a></p>

<h4>11.9 <span class="Heading">Resolutions for polycyclic (almost) crystallographic groups </span></h4>

<p>The following uses the Polycyclic package and homological perturbation to construct a resolution for the crystallographic group <code class="code">G:=SpaceGroup(3,165)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SpaceGroup(3,165);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Image(IsomorphismPcpGroup(G));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionAlmostCrystalGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for Pcp-group with orders 
[ 3, 2, 0, 0, 0 ] . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 10, 49, 117, 195, 273, 351, 429, 507, 585, 663, 741, 819, 897, 975, 1053, 
  1131, 1209, 1287, 1365, 1443 ]

</pre></div>

<p>The following constructs a resolution for an almost crystallographic Pcp group <span class="SimpleMath">\(G\)</span>. The final commands establish that <span class="SimpleMath">\(G\)</span> is not isomorphic to a crystallographic group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionAlmostCrystalGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for Pcp-group with orders 
[ 4, 0, 0, 0, 0 ] . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 10, 53, 137, 207, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 223, 
  223, 223, 223, 223, 223 ]


<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=Kernel(NaturalHomomorphismOnHolonomyGroup(G));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsAbelian(T);</span>
false

</pre></div>

<p><a id="X814BCDD6837BB9C5" name="X814BCDD6837BB9C5"></a></p>

<h4>11.10 <span class="Heading">Resolutions for Bieberbach groups </span></h4>

<p>The following constructs a resolution for the Bieberbach group <code class="code">G=SpaceGroup(3,165)</code> by using convex hull algorithms to construct a Dirichlet domain for its free action on Euclidean space <span class="SimpleMath">\(\mathbb R^3\)</span>. By construction the resolution is trivial in degrees <span class="SimpleMath">\(\ge 3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SpaceGroup(3,165);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionBieberbachGroup(G);</span>
Resolution of length 4 in characteristic 
0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 10, 18, 8, 0 ]

</pre></div>

<p>The fundamental domain constructed for the above resolution can be visualized using the following commands.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FundamentalDomainBieberbachGroup(G);</span>
&lt;polymake object&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(F);</span>

</pre></div>

<p><img src="images/3-165-0.png" align="center" height="300" alt="a Dirichlet domain"/></p>

<p>A different fundamental domain and resolution for <span class="SimpleMath">\(G\)</span> can be obtained by changing the choice of vector <span class="SimpleMath">\(v\in \mathbb R^3\)</span> in the definition of the Dirichlet domain</p>

<p><span class="SimpleMath">\(D(v) = \{x\in \mathbb R^3\ | \ ||x-v|| \le ||x-g.v||\ {\rm for~all~} g\in G\}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionBieberbachGroup(G,[1/2,1/2,1/2]);</span>
Resolution of length 4 in characteristic 
0 for SpaceGroupOnRightBBNWZ( 3, 6, 1, 1, 4 ) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 28, 42, 16, 0 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FundamentalDomainBieberbachGroup(G);</span>
&lt;polymake object&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(F);</span>

</pre></div>

<p><img src="images/3-165-1.png" align="center" height="300" alt="a Dirichlet domain"/></p>

<p>A higher dimensional example is handled in the next session. A list of the <span class="SimpleMath">\(62\)</span> <span class="SimpleMath">\(7\)</span>-dimensional Hantze-Wendt Bieberbach groups is loaded and a resolution is computed for the first group in the list.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">file:=HapFile("HW-7dim.txt");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Read(file);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HWO7Gr[1];</span>
&lt;matrix group with 7 generators&gt;

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionBieberbachGroup(G);</span>
Resolution of length 8 in characteristic 0 for &lt;matrix group with 
7 generators&gt; . 
No contracting homotopy available.

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 284, 1512, 3780, 4480, 2520, 840, 84, 0 ]

</pre></div>

<p>The homological perturbation techniques needed to extend this method to crystallographic groups acting non-freely on <span class="SimpleMath">\(\mathbb R^n\)</span> has not yet been implemenyed. This is on the TO-DO list.</p>

<p><a id="X87ADCB7D7FC0B4D3" name="X87ADCB7D7FC0B4D3"></a></p>

<h4>11.11 <span class="Heading">Resolutions for arbitrary crystallographic groups</span></h4>

<p>An implementation of the above method for Bieberbach groups is also available for arbitrary crystallographic groups. The following example constructs a resolution for the group <code class="code">G:=SpaceGroupIT(3,227)</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SpaceGroupIT(3,227);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSpaceGroup(G,11);</span>
Resolution of length 11 in characteristic 0 for &lt;matrix group with 
8 generators&gt; . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 38, 246, 456, 644, 980, 1427, 2141, 2957, 3993, 4911, 6179 ]

</pre></div>

<p><a id="X7B9B3AF487338A9B" name="X7B9B3AF487338A9B"></a></p>

<h4>11.12 <span class="Heading">Resolutions for crystallographic groups  admitting cubical fundamental domain</span></h4>

<p>The following uses subdivision techniques to construct a resolution for the Bieberbach group <code class="code">G:=SpaceGroup(4,122)</code>. The resolution is endowed with a contracting homotopy.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SpaceGroup(4,122);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionCubicalCrystGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for &lt;matrix group with 
6 generators&gt; . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 8, 24, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p>Subdivision and homological perturbation are used to construct the following resolution (with contracting homotopy) for a crystallographic group with non-free action.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SpaceGroup(4,1100);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionCubicalCrystGroup(G,20);</span>
Resolution of length 20 in characteristic 0 for &lt;matrix group with 
8 generators&gt; . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 40, 215, 522, 738, 962, 1198, 1466, 1734, 2034, 2334, 2666, 2998, 3362, 
  3726, 4122, 4518, 4946, 5374, 5834, 6294 ]

</pre></div>

<p><a id="X78DD8D068349065A" name="X78DD8D068349065A"></a></p>

<h4>11.13 <span class="Heading">Resolutions for Coxeter groups </span></h4>

<p>The following session constructs the Coxeter diagram for the Coxeter group <span class="SimpleMath">\(B=B_7\)</span> of order <span class="SimpleMath">\(645120\)</span>. A resolution for <span class="SimpleMath">\(G\)</span> is then computed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,3]],[5,[6,3]],[6,[7,4]]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoxeterDiagramDisplay(D);;</span>

</pre></div>

<p><img src="images/coxeter-diagram-b7.png" align="center" height="150" alt="a Dirichlet domain"/></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionCoxeterGroup(D,5);</span>
Resolution of length 5 in characteristic 
0 for &lt;permutation group of size 645120 with 7 generators&gt; . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 14, 112, 492, 1604, 5048 ]

</pre></div>

<p>The routine extension of this method to infinite Coxeter groups is on the TO-DO list.</p>

<p><a id="X7C69E7227F919CC9" name="X7C69E7227F919CC9"></a></p>

<h4>11.14 <span class="Heading">Resolutions for Artin groups </span></h4>

<p>The following session constructs a resolution for the infinite Artin group <span class="SimpleMath">\(G\)</span> associated to the Coxeter group <span class="SimpleMath">\(B_7\)</span>. Exactness of the resolution depends on the solution to the <span class="SimpleMath">\(K(\pi,1)\)</span> Conjecture for Artin groups of spherical type.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionArtinGroup(D,8);</span>
Resolution of length 8 in characteristic 0 for &lt;fp group on the generators 
[ f1, f2, f3, f4, f5, f6, f7 ]&gt; . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 14, 98, 310, 610, 918, 1326, 2186, 0 ]

</pre></div>

<p><a id="X8032647F8734F4EB" name="X8032647F8734F4EB"></a></p>

<h4>11.15 <span class="Heading">Resolutions for <span class="SimpleMath">\(G=SL_2(\mathbb Z[1/m])\)</span></span></h4>

<p>The following uses homological perturbation to construct a resolution for <span class="SimpleMath">\(G=SL_2(\mathbb Z[1/6])\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2Z(6,10);</span>
Resolution of length 10 in characteristic 0 for SL(2,Z[1/6]) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 44, 679, 6910, 21304, 24362, 48506, 43846, 90928, 86039, 196210 ]

</pre></div>

<p><a id="X7BE4DE82801CD38E" name="X7BE4DE82801CD38E"></a></p>

<h4>11.16 <span class="Heading">Resolutions for selected groups 
<span class="SimpleMath">\(G=SL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></h4>

<p>The following uses finite "Voronoi complexes" and homological perturbation to construct a resolution for <span class="SimpleMath">\(G=SL_2({\mathcal O}(\mathbb Q(\sqrt{-5}))\)</span>. The finite complexes were contributed independently by A. Rahm, M. Dutour-Scikiric and S. Schoenenbeck and are stored in the folder <code class="code">~pkg/Hap1.v/lib/Perturbations/Gcomplexes</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-5,10);</span>
Resolution of length 10 in characteristic 0 for matrix group . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 22, 114, 120, 200, 146, 156, 136, 254, 168, 170 ]

</pre></div>

<p><a id="X7D9CCB2C7DAA2310" name="X7D9CCB2C7DAA2310"></a></p>

<h4>11.17 <span class="Heading">Resolutions for selected groups
<span class="SimpleMath">\(G=PSL_2( {\mathcal O}(\mathbb Q(\sqrt{d}) )\)</span></span></h4>

<p>The following uses finite "Voronoi complexes" and homological perturbation to construct a resolution for <span class="SimpleMath">\(G=PSL_2({\mathcal O}(\mathbb Q(\sqrt{-11}))\)</span>. The finite complexes were contributed independently by A. Rahm, M. Dutour-Scikiric and S. Schoenenbeck and are stored in the folder <code class="code">~pkg/Hap1.v/lib/Perturbations/Gcomplexes</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-11,10);</span>
Resolution of length 10 in characteristic 0 for PSL(2,O-11) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 12, 59, 89, 107, 125, 230, 208, 270, 326, 515 ]

</pre></div>

<p><a id="X7F699587845E6DB1" name="X7F699587845E6DB1"></a></p>

<h4>11.18 <span class="Heading">Resolutions for a few higher-dimensional arithmetic groups
</span></h4>

<p>The following uses finite "Voronoi complexes" and homological perturbation to construct a resolution for <span class="SimpleMath">\(G=PSL_4(\mathbb Z)\)</span>. The finite complexes were contributed by M. Dutour-Scikiric and are stored in the folder <code class="code">~pkg/Hap1.v/lib/Perturbations/Gcomplexes</code>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> V:=ContractibleGcomplex("PSL(4,Z)_d");</span>
Non-free resolution in characteristic 0 for matrix group . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=FreeGResolution(V,5);</span>
Resolution of length 5 in characteristic 0 for matrix group . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 18, 210, 1444, 26813 ]

</pre></div>

<p><a id="X7812EB3F7AC45F87" name="X7812EB3F7AC45F87"></a></p>

<h4>11.19 <span class="Heading">Resolutions for finite-index subgroups
</span></h4>

<p>The next commands first construct the congruence subgroup <span class="SimpleMath">\(\Gamma_0(I)\)</span> of index <span class="SimpleMath">\(144\)</span> in <span class="SimpleMath">\(SL_2({\cal O}\mathbb Q(\sqrt{-2}))\)</span> for the ideal <span class="SimpleMath">\(I\)</span> in <span class="SimpleMath">\({\cal O}\mathbb Q(\sqrt{-2})\)</span> generated by <span class="SimpleMath">\(4+5\sqrt{-2}\)</span>. The commands then compute a resolution for the congruence subgroup <span class="SimpleMath">\(G=\Gamma_0(I) \le SL_2({\cal O}\mathbb Q(\sqrt{-2}))\)</span></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);</span>
&lt;[group of 2x2 matrices in characteristic 0&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexInSL2O(G);</span>
144
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-2,4,true);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,G);</span>
Resolution of length 4 in characteristic 0 for &lt;matrix group with 
290 generators&gt; . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
[ 1152, 8496, 30960, 59616 ]

</pre></div>

<p><a id="X84CAAA697FAC8E0D" name="X84CAAA697FAC8E0D"></a></p>

<h4>11.20 <span class="Heading">Simplifying resolutions
</span></h4>

<p>The next commands construct a resolution <span class="SimpleMath">\(R_\ast\)</span> for the symmetric group <span class="SimpleMath">\(S_5\)</span> and convert it to a resolution <span class="SimpleMath">\(S_\ast\)</span> for the finite index subgroup <span class="SimpleMath">\(A_4 &lt; S_5\)</span>. An heuristic algorithm is applied to <span class="SimpleMath">\(S_\ast\)</span> in the hope of obtaining a smaller resolution <span class="SimpleMath">\(T_\ast\)</span> for the alternating group <span class="SimpleMath">\(A_4\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(SymmetricGroup(5),5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,AlternatingGroup(4));</span>
Resolution of length 5 in characteristic 0 for Alt( [ 1 .. 4 ] ) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(S);</span>
[ 80, 380, 1000, 2040, 3400 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=SimplifiedComplex(S);</span>
Resolution of length 5 in characteristic 0 for Alt( [ 1 .. 4 ] ) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(T);</span>
[ 4, 34, 22, 19, 196 ]

</pre></div>

<p><a id="X780C3F038148A1C7" name="X780C3F038148A1C7"></a></p>

<h4>11.21 <span class="Heading">Resolutions for graphs of groups and for groups with aspherical presentations
</span></h4>

<p>The following example constructs a resolution for a finitely presented group whose presentation is known to have the property that its associated <span class="SimpleMath">\(2\)</span>-complex is aspherical.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rels:=[x*y*x*(y*x*y)^-1, y*z*y*(z*y*z)^-1, z*x*z*(x*z*x)^-1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=F/rels;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionAsphericalPresentation(G,10);</span>
Resolution of length 10 in characteristic 0 for &lt;fp group on the generators 
[ f1, f2, f3 ]&gt; . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 6, 18, 0, 0, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p>The following commands create a resolution for a graph of groups corresponding to the amalgamated product <span class="SimpleMath">\(G=H\ast_AK\)</span> where <span class="SimpleMath">\(H=S_5\)</span> is the symmetric group of degree <span class="SimpleMath">\(5\)</span>, <span class="SimpleMath">\(K=S_4\)</span> is the symmetric group of degree <span class="SimpleMath">\(4\)</span> and the common subgroup is <span class="SimpleMath">\(A=S_3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S5:=SymmetricGroup(5);SetName(S5,"S5");;</span>
Sym( [ 1 .. 5 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S4:=SymmetricGroup(4);SetName(S4,"S4");;</span>
Sym( [ 1 .. 4 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=SymmetricGroup(3);SetName(A,"S3");;</span>
Sym( [ 1 .. 3 ] )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AS5:=GroupHomomorphismByFunction(A,S5,x-&gt;x);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AS4:=GroupHomomorphismByFunction(A,S4,x-&gt;x);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=[S5,S4,[AS5,AS4]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GraphOfGroupsDisplay(D);;</span>

</pre></div>

<p><img src="images/graphOFgroups.gif" align="center" height="100" alt="graph of groups"/></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionGraphOfGroups(D,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(R);</span>
[ 16, 68, 162, 302, 480, 627, 869, 1290 ]

</pre></div>

<p><a id="X85AB973F8566690A" name="X85AB973F8566690A"></a></p>

<h4>11.22 <span class="Heading">Resolutions for <span class="SimpleMath">\(\mathbb FG\)</span>-modules
</span></h4>

<p>Let <span class="SimpleMath">\(\mathbb F=\mathbb F_p\)</span> be the field of <span class="SimpleMath">\(p\)</span> elements and let <span class="SimpleMath">\(M\)</span> be some <span class="SimpleMath">\(\mathbb FG\)</span>-module for <span class="SimpleMath">\(G\)</span> a finite <span class="SimpleMath">\(p\)</span>-group. We might wish to construct a free <span class="SimpleMath">\(\mathbb FG\)</span>-resolution for <span class="SimpleMath">\(M\)</span>. We can handle this by constructing a short exact sequence</p>

<p><span class="SimpleMath">\( DM \rightarrowtail P \twoheadrightarrow M\)</span></p>

<p>in which <span class="SimpleMath">\(P\)</span> is free (or projective). Then any resolution of <span class="SimpleMath">\(DM\)</span> yields a resolution of <span class="SimpleMath">\(M\)</span> and we can represent <span class="SimpleMath">\(DM\)</span> as a submodule of <span class="SimpleMath">\(P\)</span>. We refer to <span class="SimpleMath">\(DM\)</span> as the <em>desuspension</em> of <span class="SimpleMath">\(M\)</span>. Consider for instance <span class="SimpleMath">\(G=Syl_2(GL(4,2))\)</span> and <span class="SimpleMath">\(\mathbb F=\mathbb F_2\)</span>. The matrix group <span class="SimpleMath">\(G\)</span> acts via matrix multiplication on <span class="SimpleMath">\(M=\mathbb F^4\)</span>. The following example constructs a free <span class="SimpleMath">\(\mathbb FG\)</span>-resolution for <span class="SimpleMath">\(M\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=GL(4,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=GModuleByMats(GeneratorsOfGroup(S),GF(2));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DM:=DesuspensionMtxModule(M);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFpGModule(DM,20);</span>
Resolution of length 20 in characteristic 2 for &lt;matrix group of 
size 64 with 3 generators&gt; .

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..20],R!.dimension);</span>
[ 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 
153, 171, 190, 210, 231, 253 ]

</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap10_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap12_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>