File: chap12_mj.html

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (1054 lines) | stat: -rw-r--r-- 71,703 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
  src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (HAP commands) - Chapter 12: Simplicial groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap12"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap11_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap13_mj.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap12.html">[MathJax off]</a></p>
<p><a id="X7D818E5F80F4CF63" name="X7D818E5F80F4CF63"></a></p>
<div class="ChapSects"><a href="chap12_mj.html#X7D818E5F80F4CF63">12 <span class="Heading">Simplicial groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X808C6B357F8BADC1">12.1 <span class="Heading">Crossed modules</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X795E339978B42775">12.2 <span class="Heading">Eilenberg-MacLane spaces as simplicial groups (not recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7D91E64D7DD7F10F">12.3 <span class="Heading">Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X84ABCA497C577132">12.4 <span class="Heading">Elementary theoretical information on  
<span class="SimpleMath">\(H^\ast(K(\pi,n),\mathbb Z)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7F828D8D8463CC20">12.5 <span class="Heading">The first three non-trivial homotopy groups of spheres</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X81E2F80384ADF8C2">12.6 <span class="Heading">The first two non-trivial homotopy groups of the suspension and double suspension of a <span class="SimpleMath">\(K(G,1)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X83EAC40A8324571F">12.7 <span class="Heading">Postnikov towers and <span class="SimpleMath">\(\pi_5(S^3)\)</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X8227000D83B9A17F">12.8 <span class="Heading">Towards <span class="SimpleMath">\(\pi_4(\Sigma K(G,1))\)</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7F5E6C067B2AE17A">12.9 <span class="Heading">Enumerating homotopy 2-types</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7D99B7AA780D8209">12.10 <span class="Heading">Identifying cat<span class="SimpleMath">\(^1\)</span>-groups of low order</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap12_mj.html#X7F386CF078CB9A20">12.11 <span class="Heading">Identifying crossed modules of low order</span></a>
</span>
</div>
</div>

<h3>12 <span class="Heading">Simplicial groups</span></h3>

<p><a id="X808C6B357F8BADC1" name="X808C6B357F8BADC1"></a></p>

<h4>12.1 <span class="Heading">Crossed modules</span></h4>

<p>A <em>crossed module</em> consists of a homomorphism of groups <span class="SimpleMath">\(\partial\colon M\rightarrow G\)</span> together with an action <span class="SimpleMath">\((g,m)\mapsto\, {^gm}\)</span> of <span class="SimpleMath">\(G\)</span> on <span class="SimpleMath">\(M\)</span> satisfying</p>

<ol>
<li><p><span class="SimpleMath">\(\partial(^gm) = gmg^{-1}\)</span></p>

</li>
<li><p><span class="SimpleMath">\(^{\partial m}m' = mm'm^{-1}\)</span></p>

</li>
</ol>
<p>for <span class="SimpleMath">\(g\in G\)</span>, <span class="SimpleMath">\(m,m'\in M\)</span>.</p>

<p>A crossed module <span class="SimpleMath">\(\partial\colon M\rightarrow G\)</span> is equivalent to a cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\((H,s,t)\)</span> (see <a href="chap6_mj.html#X78040D8580D35D53"><span class="RefLink">6.11</span></a>) where <span class="SimpleMath">\(H=M \rtimes G\)</span>, <span class="SimpleMath">\(s(m,g) = (1,g)\)</span>, <span class="SimpleMath">\(t(m,g)=(1,(\partial m)g)\)</span>. A cat<span class="SimpleMath">\(^1\)</span>-group is, in turn, equivalent to a simplicial group with Moore complex has length <span class="SimpleMath">\(1\)</span>. The simplicial group is constructed by considering the cat<span class="SimpleMath">\(^1\)</span>-group as a category and taking its nerve. Alternatively, the simplicial group can be constructed by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.</p>

<p>The following example concerns the crossed module</p>

<p><span class="SimpleMath">\(\partial\colon G\rightarrow Aut(G), g\mapsto (x\mapsto gxg^{-1})\)</span></p>

<p>associated to the dihedral group <span class="SimpleMath">\(G\)</span> of order <span class="SimpleMath">\(16\)</span>. This crossed module represents, up to homotopy type, a connected space <span class="SimpleMath">\(X\)</span> with <span class="SimpleMath">\(\pi_iX=0\)</span> for <span class="SimpleMath">\(i\ge 3\)</span>, <span class="SimpleMath">\(\pi_2X=Z(G)\)</span>, <span class="SimpleMath">\(\pi_1X = Aut(G)/Inn(G)\)</span>. The space <span class="SimpleMath">\(X\)</span> can be represented, up to homotopy, by a simplicial group. That simplicial group is used in the example to compute</p>

<p><span class="SimpleMath">\(H_1(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2\)</span>,</p>

<p><span class="SimpleMath">\(H_2(X,\mathbb Z)= \mathbb Z_2 \)</span>,</p>

<p><span class="SimpleMath">\(H_3(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\)</span>,</p>

<p><span class="SimpleMath">\(H_4(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\)</span>,</p>

<p><span class="SimpleMath">\(H_5(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2\oplus \mathbb Z_2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(16));</span>
Cat-1-group with underlying group Group( 
[ f1, f2, f3, f4, f5, f6, f7, f8, f9 ] ) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(C);</span>
512
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuasiIsomorph(C);</span>
Cat-1-group with underlying group Group( [ f9, f8, f1, f2*f3, f5 ] ) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(Q);</span>
32

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:=NerveOfCatOneGroup(Q,6);</span>
Simplicial group of length 6

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=ChainComplexOfSimplicialGroup(N);</span>
Chain complex of length 6 in characteristic 0 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(K,1);</span>
[ 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(K,2);</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(K,3);</span>
[ 2, 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(K,4);</span>
[ 2, 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(K,5);</span>
[ 2, 2, 2, 2, 2, 2 ]

</pre></div>

<p><a id="X795E339978B42775" name="X795E339978B42775"></a></p>

<h4>12.2 <span class="Heading">Eilenberg-MacLane spaces as simplicial groups (not recommended)</span></h4>

<p>The following example concerns the Eilenberg-MacLane space <span class="SimpleMath">\(X=K(\mathbb Z_3,3)\)</span> which is a path-connected space with <span class="SimpleMath">\(\pi_3X=\mathbb Z_3\)</span>, <span class="SimpleMath">\(\pi_iX=0\)</span> for <span class="SimpleMath">\(3\ne i\ge 1\)</span>. This space is represented by a simplicial group, and perturbation techniques are used to compute</p>

<p><span class="SimpleMath">\(H_7(X,\mathbb Z)=\mathbb Z_3 \oplus \mathbb Z_3\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=AbelianGroup([3]);;AbelianInvariants(A);   </span>
[ 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"> K:=EilenbergMacLaneSimplicialGroup(A,3,8);</span>
Simplicial group of length 8

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=ChainComplex(K);</span>
Chain complex of length 8 in characteristic 0 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(C,7);                                          </span>
[ 3, 3 ]

</pre></div>

<p><a id="X7D91E64D7DD7F10F" name="X7D91E64D7DD7F10F"></a></p>

<h4>12.3 <span class="Heading">Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</span></h4>

<p>For integer <span class="SimpleMath">\(n&gt;1\)</span> and abelian group <span class="SimpleMath">\(A\)</span> the Eilenberg-MacLane space <span class="SimpleMath">\(K(A,n)\)</span> is better represented as a simplicial free abelian group. (The reason is that the functorial bar resolution of a group can be replaced in computations by the smaller functorial Chevalley-Eilenberg complex of the group when the group is free abelian, obviating the need for perturbation techniques. When <span class="SimpleMath">\(A\)</span> has torision we can replace it with an inclusion of free abelian groups <span class="SimpleMath">\(A_1 \hookrightarrow A_0\)</span> with <span class="SimpleMath">\(A\cong A_0/A_1\)</span> and again invoke the Chevalley-Eilenberg complex. The current implementation unfortunately handles only free abelian <span class="SimpleMath">\(A\)</span> but the easy extension to non-free <span class="SimpleMath">\(A\)</span> is planned for a future release.)</p>

<p>The following commands compute the integral homology <span class="SimpleMath">\(H_n(K(\mathbb Z,3),\mathbb Z)\)</span> for <span class="SimpleMath">\( 0\le n \le 16\)</span>. (Note that one typically needs fewer than <span class="SimpleMath">\(n\)</span> terms of the Eilenberg-MacLance space to compute its <span class="SimpleMath">\(n\)</span>-th homology -- an error is printed if too few terms of the space are available for a given computation.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=AbelianPcpGroup([0]);; #infinite cyclic group                    </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,14);</span>
Simplicial free abelian group of length 14

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..16] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
Degree 0 integral homology of K is [ 0 ]
Degree 1 integral homology of K is [  ]
Degree 2 integral homology of K is [  ]
Degree 3 integral homology of K is [ 0 ]
Degree 4 integral homology of K is [  ]
Degree 5 integral homology of K is [ 2 ]
Degree 6 integral homology of K is [  ]
Degree 7 integral homology of K is [ 3 ]
Degree 8 integral homology of K is [ 2 ]
Degree 9 integral homology of K is [ 2 ]
Degree 10 integral homology of K is [ 3 ]
Degree 11 integral homology of K is [ 5, 2 ]
Degree 12 integral homology of K is [ 2 ]
Degree 13 integral homology of K is [  ]
Degree 14 integral homology of K is [ 10, 2 ]
Degree 15 integral homology of K is [ 7, 6 ]
Degree 16 integral homology of K is [  ]

</pre></div>

<p>For an <span class="SimpleMath">\(n\)</span>-connected pointed space <span class="SimpleMath">\(X\)</span> the Freudenthal Suspension Theorem states that the map <span class="SimpleMath">\(X \rightarrow \Omega(\Sigma X)\)</span> induces a map <span class="SimpleMath">\(\pi_k(X) \rightarrow \pi_k(\Omega(\Sigma X))\)</span> which is an isomorphism for <span class="SimpleMath">\(k\le 2n\)</span> and epimorphism for <span class="SimpleMath">\(k=2n+1\)</span>. Thus the Eilenberg-MacLane space <span class="SimpleMath">\(K(A,n+1)\)</span> can be constructed from the suspension <span class="SimpleMath">\(\Sigma K(A,n)\)</span> by attaching cells in dimensions <span class="SimpleMath">\(\ge 2n+1\)</span>. In particular, there is an isomorphism <span class="SimpleMath">\( H_{k-1}(K(A,n),\mathbb Z) \rightarrow H_k(K(A,n+1),\mathbb Z)\)</span> for <span class="SimpleMath">\(k\le 2n\)</span> and epimorphism for <span class="SimpleMath">\(k=2n+1\)</span>.</p>

<p>For instance, <span class="SimpleMath">\( H_{k-1}(K(\mathbb Z,3),\mathbb Z) \cong H_k(K(\mathbb Z,4),\mathbb Z) \)</span> for <span class="SimpleMath">\(k\le 6\)</span> and <span class="SimpleMath">\( H_6(K(\mathbb Z,3),\mathbb Z) \twoheadrightarrow H_7(K(\mathbb Z,4),\mathbb Z) \)</span>. This assertion is seen in the following session.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=AbelianPcpGroup([0]);; #infinite cyclic group                    </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,4,11);</span>
Simplicial free abelian group of length 11

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..13] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
Degree 0 integral homology of K is [ 0 ]
Degree 1 integral homology of K is [  ]
Degree 2 integral homology of K is [  ]
Degree 3 integral homology of K is [  ]
Degree 4 integral homology of K is [ 0 ]
Degree 5 integral homology of K is [  ]
Degree 6 integral homology of K is [ 2 ]
Degree 7 integral homology of K is [  ]
Degree 8 integral homology of K is [ 3, 0 ]
Degree 9 integral homology of K is [  ]
Degree 10 integral homology of K is [ 2, 2 ]
Degree 11 integral homology of K is [  ]
Degree 12 integral homology of K is [ 5, 12, 0 ]
Degree 13 integral homology of K is [ 2 ]

</pre></div>

<p><a id="X84ABCA497C577132" name="X84ABCA497C577132"></a></p>

<h4>12.4 <span class="Heading">Elementary theoretical information on  
<span class="SimpleMath">\(H^\ast(K(\pi,n),\mathbb Z)\)</span></span></h4>

<p>The cup product is not implemented for the cohomology ring <span class="SimpleMath">\(H^\ast(K(\pi,n),\mathbb Z)\)</span>. Standard theoretical spectral sequence arguments have to be applied to obtain basic information relating to the ring structure. To illustrate this the following commands compute <span class="SimpleMath">\(H^n(K(\mathbb Z,2),\mathbb Z)\)</span> for the first few values of <span class="SimpleMath">\(n\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,2,10);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..10],k-&gt;Cohomology(K,k));</span>
[ [ 0 ], [  ], [ 0 ], [  ], [ 0 ], [  ], [ 0 ], [  ], [ 0 ], [  ], [ 0 ] ]

</pre></div>

<p>There is a fibration sequence <span class="SimpleMath">\(K(\pi,n) \hookrightarrow \ast \twoheadrightarrow K(\pi,n+1)\)</span> in which <span class="SimpleMath">\(\ast\)</span> denotes a contractible space. For <span class="SimpleMath">\(n=1, \pi=\mathbb Z\)</span> the terms of the <span class="SimpleMath">\(E_2\)</span> page of the Serre integral cohomology spectral sequence for this fibration are</p>


<ul>
<li><p><span class="SimpleMath">\(E_2^{pq}= H^p( K(\mathbb Z,2), H^q(K(\mathbb Z,1),\mathbb Z) )\)</span> .</p>

</li>
</ul>
<p>Since <span class="SimpleMath">\(K(\mathbb Z,1)\)</span> can be taken to be the circle <span class="SimpleMath">\(S^1\)</span> we know that it has non-trivial cohomology in degrees <span class="SimpleMath">\(0\)</span> and <span class="SimpleMath">\(1\)</span> only. The first few terms of the <span class="SimpleMath">\(E_2\)</span> page are given in the following table.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E^2\)</span> cohomology page for <span class="SimpleMath">\(K(\mathbb Z,1) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,2)\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(9\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(10\)</span></td>
</tr>
</table><br />
</div>

<p>Let <span class="SimpleMath">\(x\)</span> denote the generator of <span class="SimpleMath">\(H^1(K(\mathbb Z,1),\mathbb Z)\)</span> and <span class="SimpleMath">\(y\)</span> denote the generator of <span class="SimpleMath">\(H^2(K(\mathbb Z,2),\mathbb Z)\)</span>. Since <span class="SimpleMath">\(\ast\)</span> has zero cohomology in degrees <span class="SimpleMath">\(\ge 1\)</span> we see that the differential must restrict to an isomorphism <span class="SimpleMath">\(d_2\colon E_2^{0,1} \rightarrow E_2^{2,0}\)</span> with <span class="SimpleMath">\(d_2(x)=y\)</span>. Then we see that the differential must restrict to an isomorphism <span class="SimpleMath">\(d_2\colon E_2^{2,1} \rightarrow E_2^{4,0}\)</span> defined on the generator <span class="SimpleMath">\(xy\)</span> of <span class="SimpleMath">\(E_2^{2,1}\)</span> by</p>

<p class="center">\[d_2(xy) = d_2(x)y + (-1)^{{\rm deg}(x)}xd_2(y) =y^2\ . \]</p>

<p>Hence <span class="SimpleMath">\(E_2^{4,0} \cong H^4(K(\mathbb Z,2),\mathbb Z)\)</span> is generated by <span class="SimpleMath">\(y^2\)</span>. The argument extends to show that <span class="SimpleMath">\(H^6(K(\mathbb Z,2),\mathbb Z)\)</span> is generated by <span class="SimpleMath">\(y^3\)</span>, <span class="SimpleMath">\(H^8(K(\mathbb Z,2),\mathbb Z)\)</span> is generated by <span class="SimpleMath">\(y^4\)</span>, and so on.</p>

<p>In fact, to obtain a complete description of the ring <span class="SimpleMath">\(H^\ast(K(\mathbb Z,2),\mathbb Z)\)</span> in this fashion there is no benefit to using computer methods at all. We only need to know the cohomology ring <span class="SimpleMath">\(H^\ast(K(\mathbb Z,1),\mathbb Z) =H^\ast(S^1,\mathbb Z)\)</span> and the single cohomology group <span class="SimpleMath">\(H^2(K(\mathbb Z,2),\mathbb Z)\)</span>.</p>

<p>A similar approach can be attempted for <span class="SimpleMath">\(H^\ast(K(\mathbb Z,3),\mathbb Z)\)</span> using the fibration sequence <span class="SimpleMath">\(K(\mathbb Z,2) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,3)\)</span> and, as explained in Chapter 5 of <a href="chapBib_mj.html#biBhatcher">[Hat01]</a>, yields the computation of the group <span class="SimpleMath">\(H^i(K(\mathbb Z,3),\mathbb Z)\)</span> for <span class="SimpleMath">\(4\le i\le 13\)</span>. The method does not directly yield <span class="SimpleMath">\(H^3(K(\mathbb Z,3),\mathbb Z)\)</span> and breaks down in degree <span class="SimpleMath">\(14\)</span> yielding only that <span class="SimpleMath">\(H^{14}(K(\mathbb Z,3),\mathbb Z) = 0 {\rm ~or~} \mathbb Z_3\)</span>. The following commands provide <span class="SimpleMath">\(H^3(K(\mathbb Z,3),\mathbb Z)= \mathbb Z\)</span> and <span class="SimpleMath">\(H^{14}(K(\mathbb Z,3),\mathbb Z) =0\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=AbelianPcpGroup([0]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,15);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(K,3);</span>
[ 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(K,14);</span>
[  ]

</pre></div>

<p>However, the implementation of these commands is currently a bit naive, and computationally inefficient, since they do not currently employ any homological perturbation techniques.</p>

<p><a id="X7F828D8D8463CC20" name="X7F828D8D8463CC20"></a></p>

<h4>12.5 <span class="Heading">The first three non-trivial homotopy groups of spheres</span></h4>

<p>The Hurewicz Theorem immediately gives</p>

<p class="center">\[\pi_n(S^n)\cong \mathbb Z ~~~ (n\ge 1)\]</p>

<p>and</p>

<p class="center">\[\pi_k(S^n)=0 ~~~ (k\le n-1).\]</p>

<p>As a CW-complex the Eilenberg-MacLane space <span class="SimpleMath">\(K=K(\mathbb Z,n)\)</span> can be obtained from an <span class="SimpleMath">\(n\)</span>-sphere <span class="SimpleMath">\(S^n=e^0\cup e^n\)</span> by attaching cells in dimensions <span class="SimpleMath">\(\ge n+2\)</span> so as to kill the higher homotopy groups of <span class="SimpleMath">\(S^n\)</span>. From the inclusion <span class="SimpleMath">\(\iota\colon S^n\hookrightarrow K(\mathbb Z,n)\)</span> we can form the mapping cone <span class="SimpleMath">\(X=C(\iota)\)</span>. The long exact homotopy sequence</p>

<p><span class="SimpleMath">\( \cdots \rightarrow \pi_{k+1}K \rightarrow \pi_{k+1}(K,S^n) \rightarrow \pi_{k} S^n \rightarrow \pi_kK \rightarrow \pi_k(K,S^n) \rightarrow \cdots\)</span></p>

<p>implies that <span class="SimpleMath">\(\pi_k(K,S^n)=0\)</span> for <span class="SimpleMath">\(0 \le k\le n+1\)</span> and <span class="SimpleMath">\(\pi_{n+2}(K,S^n)\cong \pi_{n+1}(S^n)\)</span>. The relative Hurewicz Theorem gives an isomorphism <span class="SimpleMath">\(\pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z)\)</span>. The long exact homology sequence</p>

<p><span class="SimpleMath">\( \cdots H_{n+2}(S^n,\mathbb Z) \rightarrow H_{n+2}(K,\mathbb Z) \rightarrow H_{n+2}(K,S^n, \mathbb Z) \rightarrow H_{n+1}(S^n,\mathbb Z) \rightarrow \cdots\)</span></p>

<p>arising from the cofibration <span class="SimpleMath">\(S^n \hookrightarrow K \twoheadrightarrow X\)</span> implies that <span class="SimpleMath">\(\pi_{n+1}(S^n)\cong \pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z) \cong H_{n+2}(K,\mathbb Z)\)</span>. From the <strong class="button">GAP</strong> computations in <a href="chap12_mj.html#X7D91E64D7DD7F10F"><span class="RefLink">12.3</span></a> and the Freudenthal Suspension Theorem we find:</p>

<p class="center">\[ \pi_3S^2 \cong \mathbb Z, ~~~~~~ \pi_{n+1}(S^n)\cong \mathbb Z_2~~~(n\ge 3).\]</p>

<p>The Hopf fibration <span class="SimpleMath">\(S^3\rightarrow S^2\)</span> has fibre <span class="SimpleMath">\(S^1 = K(\mathbb Z,1)\)</span>. It can be constructed by viewing <span class="SimpleMath">\(S^3\)</span> as all pairs <span class="SimpleMath">\((z_1,z_2)\in \mathbb C^2\)</span> with <span class="SimpleMath">\(|z_1|^2+|z_2|^2=1\)</span> and viewing <span class="SimpleMath">\(S^2\)</span> as <span class="SimpleMath">\(\mathbb C\cup \infty\)</span>; the map sends <span class="SimpleMath">\((z_1,z_2)\mapsto z_1/z_2\)</span>. The homotopy exact sequence of the Hopf fibration yields <span class="SimpleMath">\(\pi_k(S^3) \cong \pi_k(S^2)\)</span> for <span class="SimpleMath">\(k\ge 3\)</span>, and in particular</p>

<p class="center">\[\pi_4(S^2) \cong \pi_4(S^3) \cong \mathbb Z_2\ .\]</p>

<p>It will require further techniques (such as the Postnikov tower argument in Section <a href="chap12_mj.html#X83EAC40A8324571F"><span class="RefLink">12.7</span></a> below) to establish that <span class="SimpleMath">\(\pi_5(S^3) \cong \mathbb Z_2\)</span>. Once we have this isomorphism for <span class="SimpleMath">\(\pi_5(S^3)\)</span>, the generalized Hopf fibration <span class="SimpleMath">\(S^3 \hookrightarrow S^7 \twoheadrightarrow S^4\)</span> comes into play. This fibration is contructed as for the classical fibration, but using pairs <span class="SimpleMath">\((z_1,z_2)\)</span> of quaternions rather than pairs of complex numbers. The Hurewicz Theorem gives <span class="SimpleMath">\(\pi_3(S^7)=0\)</span>; the fibre <span class="SimpleMath">\(S^3\)</span> is thus homotopic to a point in <span class="SimpleMath">\(S^7\)</span> and the inclusion of the fibre induces the zero homomorphism <span class="SimpleMath">\(\pi_k(S^3) \stackrel{0}{\longrightarrow} \pi_k(S^7) ~~(k\ge 1)\)</span>. The exact homotopy sequence of the generalized Hopf fibration then gives <span class="SimpleMath">\(\pi_k(S^4)\cong \pi_k(S^7)\oplus \pi_{k-1}(S^3)\)</span>. On taking <span class="SimpleMath">\(k=6\)</span> we obtain <span class="SimpleMath">\(\pi_6(S^4)\cong \pi_5(S^3) \cong \mathbb Z_2\)</span>. Freudenthal suspension then gives</p>

<p class="center">\[\pi_{n+2}(S^n)\cong \mathbb Z_2,~~~(n\ge 2).\]</p>

<p><a id="X81E2F80384ADF8C2" name="X81E2F80384ADF8C2"></a></p>

<h4>12.6 <span class="Heading">The first two non-trivial homotopy groups of the suspension and double suspension of a <span class="SimpleMath">\(K(G,1)\)</span></span></h4>

<p>For any group <span class="SimpleMath">\(G\)</span> we consider the homotopy groups <span class="SimpleMath">\(\pi_n(\Sigma K(G,1))\)</span> of the suspension <span class="SimpleMath">\(\Sigma K(G,1)\)</span> of the Eilenberg-MacLance space <span class="SimpleMath">\(K(G,1)\)</span>. On taking <span class="SimpleMath">\(G=\mathbb Z\)</span>, and observing that <span class="SimpleMath">\(S^2 = \Sigma K(\mathbb Z,1)\)</span>, we specialize to the homotopy groups of the <span class="SimpleMath">\(2\)</span>-sphere <span class="SimpleMath">\(S^2\)</span>.</p>

<p>By construction,</p>

<p class="center">\[\pi_1(\Sigma K(G,1))=0\ .\]</p>

<p>The Hurewicz Theorem gives</p>

<p class="center">\[\pi_2(\Sigma K(G,1)) \cong G_{ab}\]</p>

<p>via the isomorphisms <span class="SimpleMath">\(\pi_2(\Sigma K(G,1)) \cong H_2(\Sigma K(G,1),\mathbb Z) \cong H_1(K(G,1),\mathbb Z) \cong G_{ab}\)</span>. R. Brown and J.-L. Loday <a href="chapBib_mj.html#biBbrownloday">[BL87]</a> obtained the formulae</p>

<p class="center">\[\pi_3(\Sigma K(G,1)) \cong \ker (G\otimes G \rightarrow G, x\otimes y\mapsto [x,y]) \ ,\]</p>

<p class="center">\[\pi_4(\Sigma^2 K(G,1)) \cong \ker (G\, {\widetilde \otimes}\, G \rightarrow G, x\, {\widetilde \otimes}\, y\mapsto [x,y]) \]</p>

<p>involving the nonabelian tensor square and nonabelian symmetric square of the group <span class="SimpleMath">\(G\)</span>. The following commands use the nonabelian tensor and symmetric product to compute the third and fourth homotopy groups for <span class="SimpleMath">\(G =Syl_2(M_{12})\)</span> the Sylow <span class="SimpleMath">\(2\)</span>-subgroup of the Mathieu group <span class="SimpleMath">\(M_{12}\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ThirdHomotopyGroupOfSuspensionB(G);   </span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
gap&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">FourthHomotopyGroupOfDoubleSuspensionB(G);</span>
[ 2, 2, 2, 2, 2, 2 ]

</pre></div>

<p><a id="X83EAC40A8324571F" name="X83EAC40A8324571F"></a></p>

<h4>12.7 <span class="Heading">Postnikov towers and <span class="SimpleMath">\(\pi_5(S^3)\)</span> </span></h4>

<p>A Postnikov system for the sphere <span class="SimpleMath">\(S^3\)</span> consists of a sequence of fibrations <span class="SimpleMath">\(\cdots X_3\stackrel{p_3}{\rightarrow} X_2\stackrel{p_2}{\rightarrow} X_1\stackrel{p_1}{\rightarrow} \ast\)</span> and a sequence of maps <span class="SimpleMath">\(\phi_n\colon S^3 \rightarrow X_n\)</span> such that</p>


<ul>
<li><p><span class="SimpleMath">\(p_n \circ \phi_n =\phi_{n-1}\)</span></p>

</li>
<li><p>The map <span class="SimpleMath">\(\phi_n\colon S^3 \rightarrow X_n\)</span> induces an isomorphism <span class="SimpleMath">\(\pi_k(S^3)\rightarrow \pi_k(X_n)\)</span> for all <span class="SimpleMath">\(k\le n\)</span></p>

</li>
<li><p><span class="SimpleMath">\(\pi_k(X_n)=0\)</span> for <span class="SimpleMath">\(k &gt; n\)</span></p>

</li>
<li><p>and consequently each fibration <span class="SimpleMath">\(p_n\)</span> has fibre an Eilenberg-MacLane space <span class="SimpleMath">\(K(\pi_n(S^3),n)\)</span>.</p>

</li>
</ul>
<p>The space <span class="SimpleMath">\(X_n\)</span> is obtained from <span class="SimpleMath">\(S^3\)</span> by adding cells in dimensions <span class="SimpleMath">\(\ge n+2\)</span> and thus</p>


<ul>
<li><p><span class="SimpleMath">\(H_k(X_n,\mathbb Z)=H_k(S^3,\mathbb Z)\)</span> for <span class="SimpleMath">\(k\le n+1\)</span>.</p>

</li>
</ul>
<p>So in particular <span class="SimpleMath">\(X_1=X_2=\ast, X_3=K(\mathbb Z,3)\)</span> and we have a fibration sequence <span class="SimpleMath">\(K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow K(\mathbb Z,3)\)</span>. The terms in the <span class="SimpleMath">\(E_2\)</span> page of the Serre integral cohomology spectral sequence of this fibration are</p>


<ul>
<li><p><span class="SimpleMath">\(E_2^{p,q}=H^p(\,K(\mathbb Z,3),\,H_q(K(\mathbb Z_2,4),\mathbb Z)\,)\)</span>.</p>

</li>
</ul>
<p>The first few terms in the <span class="SimpleMath">\(E_2\)</span> page can be computed using the commands of Sections <a href="chap12_mj.html#X795E339978B42775"><span class="RefLink">12.2</span></a> and <a href="chap12_mj.html#X7D91E64D7DD7F10F"><span class="RefLink">12.3</span></a> and recorded as follows.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E_2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow X_3\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_4(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_4(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td>&#160;</td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td>&#160;</td>
<td>&#160;</td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(9\)</span></td>
</tr>
</table><br />
</div>

<p>Since we know that <span class="SimpleMath">\(H^5(X_4,\mathbb Z) =0\)</span>, the differentials in the spectral sequence must restrict to an isomorphism <span class="SimpleMath">\(E_2^{0,5}=\pi_4(S^3) \stackrel{\cong}{\longrightarrow} E_2^{6,0}=\mathbb Z_2\)</span>. This provides an alternative derivation of <span class="SimpleMath">\(\pi_4(S^3) \cong \mathbb Z_2\)</span>. We can also immediately deduce that <span class="SimpleMath">\(H^6(X_4,\mathbb Z)=0\)</span>. Let <span class="SimpleMath">\(x\)</span> be the generator of <span class="SimpleMath">\(E_2^{0,5}\)</span> and <span class="SimpleMath">\(y\)</span> the generator of <span class="SimpleMath">\(E_2^{3,0}\)</span>. Then the generator <span class="SimpleMath">\(xy\)</span> of <span class="SimpleMath">\(E_2^{3,5}\)</span> gets mapped to a non-zero element <span class="SimpleMath">\(d_7(xy)=d_7(x)y -xd_7(y)\)</span>. Hence the term <span class="SimpleMath">\(E_2^{0,7}=\mathbb Z_2\)</span> must get mapped to zero in <span class="SimpleMath">\(E_2^{3,5}\)</span>. It follows that <span class="SimpleMath">\(H^7(X_4,\mathbb Z)=\mathbb Z_2\)</span>.</p>

<p>The integral cohomology of Eilenberg-MacLane spaces yields the following information on the <span class="SimpleMath">\(E_2\)</span> page <span class="SimpleMath">\(E_2^{p,q}=H_p(\,X_4,\,H^q(K(\pi_5S^3,5),\mathbb Z)\,)\)</span> for the fibration <span class="SimpleMath">\(K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4\)</span>.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E_2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_5(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_5(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(H^7(X_4,\mathbb Z)\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
</tr>
</table><br />
</div>

<p>Since we know that <span class="SimpleMath">\(H^6(X_5,\mathbb Z)=0\)</span>, the differentials in the spectral sequence must restrict to an isomorphism <span class="SimpleMath">\(E_2^{0,6}=\pi_5(S^3) \stackrel{\cong}{\longrightarrow} E_2^{7,0}=H^7(X_4,\mathbb Z)\)</span>. We can conclude the desired result:</p>

<p class="center">\[\pi_5(S^3) = \mathbb Z_2\ .\]</p>

<p><span class="SimpleMath">\(~~~\)</span></p>

<p>Note that the fibration <span class="SimpleMath">\(X_4 \twoheadrightarrow K(\mathbb Z,3)\)</span> is determined by a cohomology class <span class="SimpleMath">\(\kappa \in H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2\)</span>. If <span class="SimpleMath">\(\kappa=0\)</span> then we'd have <span class="SimpleMath">\(X_4 =K(\mathbb Z_2,4)\times K(\mathbb Z,3)\)</span> and, as the following commands show, we'd then have <span class="SimpleMath">\(H_4(X_4,\mathbb Z)=\mathbb Z_2\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialGroup(AbelianPcpGroup([0]),3,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=EilenbergMacLaneSimplicialGroup(CyclicGroup(2),4,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CK:=ChainComplex(K);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CL:=ChainComplex(L);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=TensorProduct(CK,CL);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(T,4);</span>
[ 2 ]

</pre></div>

<p>Since we know that <span class="SimpleMath">\(H_4(X_4,\mathbb Z)=0\)</span> we can conclude that the Postnikov invariant <span class="SimpleMath">\(\kappa\)</span> is the non-zero class in <span class="SimpleMath">\(H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2\)</span>.</p>

<p><a id="X8227000D83B9A17F" name="X8227000D83B9A17F"></a></p>

<h4>12.8 <span class="Heading">Towards <span class="SimpleMath">\(\pi_4(\Sigma K(G,1))\)</span> </span></h4>

<p>Consider the suspension <span class="SimpleMath">\(X=\Sigma K(G,1)\)</span> of a classifying space of a group <span class="SimpleMath">\(G\)</span> once again. This space has a Postnikov system in which <span class="SimpleMath">\(X_1 = \ast\)</span>, <span class="SimpleMath">\(X_2= K(G_{ab},2)\)</span>. We have a fibration sequence <span class="SimpleMath">\(K(\pi_3 X, 3) \hookrightarrow X_3 \twoheadrightarrow K(G_{ab},2)\)</span>. The corresponding integral cohomology Serre spectral sequence has <span class="SimpleMath">\(E_2\)</span> page with terms</p>


<ul>
<li><p><span class="SimpleMath">\(E_2^{p,q}=H^p(\,K(G_{ab},2), H^q(K(\pi_3 X,3)),\mathbb Z)\, )\)</span>.</p>

</li>
</ul>
<p>As an example, for the Alternating group <span class="SimpleMath">\(G=A_4\)</span> of order <span class="SimpleMath">\(12\)</span> the following commands of Section <a href="chap12_mj.html#X81E2F80384ADF8C2"><span class="RefLink">12.6</span></a> compute <span class="SimpleMath">\(G_{ab} = \mathbb Z_3\)</span> and <span class="SimpleMath">\(\pi_3 X = \mathbb Z_6\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(G);</span>
[ 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ThirdHomotopyGroupOfSuspensionB(G);</span>
[ 2, 3 ]

</pre></div>

<p>The first terms of the <span class="SimpleMath">\(E_2\)</span> page can be calculated using the commands of Sections <a href="chap12_mj.html#X795E339978B42775"><span class="RefLink">12.2</span></a> and <a href="chap12_mj.html#X7D91E64D7DD7F10F"><span class="RefLink">12.3</span></a>.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E^2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_3 X,3) \hookrightarrow X_3 \twoheadrightarrow X_2\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2 \)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_9\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
</tr>
</table><br />
</div>

<p>We know that <span class="SimpleMath">\(H^1(X_3,\mathbb Z)=0\)</span>, <span class="SimpleMath">\(H^2(X_3,\mathbb Z)=H^1(G,\mathbb Z) =0\)</span>, <span class="SimpleMath">\(H^3(X_3,\mathbb Z)=H^2(G,\mathbb Z) =\mathbb Z_3\)</span>, and that <span class="SimpleMath">\(H^4(X_3,\mathbb Z)\)</span> is a subgroup of <span class="SimpleMath">\(H^3(G,\mathbb Z) = \mathbb Z_2\)</span>. It follows that the differential induces a surjection <span class="SimpleMath">\(E_2^{0,4}=\mathbb Z_6 \twoheadrightarrow E_2^{5,0}=\mathbb Z_3\)</span>. Consequently <span class="SimpleMath">\(H^4(X_3,\mathbb Z)=\mathbb Z_2\)</span> and <span class="SimpleMath">\(H^5(X_3,\mathbb Z)=0\)</span> and <span class="SimpleMath">\(H^6(X_3,\mathbb Z)=\mathbb Z_2\)</span>.</p>

<p>The <span class="SimpleMath">\(E_2\)</span> page for the fibration <span class="SimpleMath">\(K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3\)</span> contains the following terms.</p>

<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E^2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_4 X\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
</tr>
</table><br />
</div>

<p>We know that <span class="SimpleMath">\(H^5(X_4,\mathbb Z)\)</span> is a subgroup of <span class="SimpleMath">\(H^4(G,\mathbb Z)=\mathbb Z_6\)</span>, and hence that there is a homomorphisms <span class="SimpleMath">\(\pi_4X \rightarrow \mathbb Z_2\)</span> whose kernel is a subgroup of <span class="SimpleMath">\(\mathbb Z_6\)</span>. If follows that <span class="SimpleMath">\(|\pi_4 X|\le 12\)</span>.</p>

<p><a id="X7F5E6C067B2AE17A" name="X7F5E6C067B2AE17A"></a></p>

<h4>12.9 <span class="Heading">Enumerating homotopy 2-types</span></h4>

<p>A <em>2-type</em> is a CW-complex <span class="SimpleMath">\(X\)</span> whose homotopy groups are trivial in dimensions <span class="SimpleMath">\(n=0 \)</span> and <span class="SimpleMath">\(n&gt;2\)</span>. As explained in <a href="chap6_mj.html#X78040D8580D35D53"><span class="RefLink">6.11</span></a> the homotopy type of such a space can be captured algebraically by a cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(G\)</span>. Let <span class="SimpleMath">\(X\)</span>, <span class="SimpleMath">\(Y\)</span> be <span class="SimpleMath">\(2\)</span>-tytpes represented by cat<span class="SimpleMath">\(^1\)</span>-groups <span class="SimpleMath">\(G\)</span>, <span class="SimpleMath">\(H\)</span>. If <span class="SimpleMath">\(X\)</span> and <span class="SimpleMath">\(Y\)</span> are homotopy equivalent then there exists a sequence of morphisms of cat<span class="SimpleMath">\(^1\)</span>-groups</p>

<p class="center">\[G \rightarrow K_1 \rightarrow K_2 \leftarrow K_3 \rightarrow \cdots \rightarrow K_n  \leftarrow H\]</p>

<p>in which each morphism induces isomorphisms of homotopy groups. When such a sequence exists we say that <span class="SimpleMath">\(G\)</span> is <em>quasi-isomorphic</em> to <span class="SimpleMath">\(H\)</span>. We have the following result.</p>

<p><strong class="button">Theorem.</strong> The <span class="SimpleMath">\(2\)</span>-types <span class="SimpleMath">\(X\)</span> and <span class="SimpleMath">\(Y\)</span> are homotopy equivalent if and only if the associated cat<span class="SimpleMath">\(^1\)</span>-groups <span class="SimpleMath">\(G\)</span> and <span class="SimpleMath">\(H\)</span> are quasi-isomorphic.</p>

<p>The following commands produce a list <span class="SimpleMath">\(L\)</span> of all of the <span class="SimpleMath">\(62\)</span> non-isomorphic cat<span class="SimpleMath">\(^1\)</span>-groups whose underlying group has order <span class="SimpleMath">\(16\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for G in AllSmallGroups(16) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Append(L,CatOneGroupsByGroup(G));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(L);</span>
62

</pre></div>

<p>The next commands use the first and second homotopy groups to prove that the list <span class="SimpleMath">\(L\)</span> contains at least <span class="SimpleMath">\(37\)</span> distinct quasi-isomorphism types.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Invariants:=function(G)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">local inv;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">inv:=[];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">inv[1]:=IdGroup(HomotopyGroup(G,1));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">inv[2]:=IdGroup(HomotopyGroup(G,2));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">return inv;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=Classify(L,Invariants);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(C);</span>

</pre></div>

<p>The following additional commands use second and third integral homology in conjunction with the first two homotopy groups to prove that the list <span class="SimpleMath">\(L\)</span> contains <strong class="button">at least</strong> <span class="SimpleMath">\(49\)</span> distinct quasi-isomorphism types.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Invariants2:=function(G)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">local inv;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">inv:=[];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">inv[1]:=Homology(G,2);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">inv[2]:=Homology(G,3);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">return inv;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RefineClassification(C,Invariants2);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(C);</span>
49

</pre></div>

<p>The following commands show that the above list <span class="SimpleMath">\(L\)</span> contains <strong class="button">at most</strong> <span class="SimpleMath">\(51\)</span> distinct quasi-isomorphism types.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=List(L,QuasiIsomorph);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=[];;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for q in Q do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">bool:=true;;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for m in M do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if not IsomorphismCatOneGroups(m,q)=fail then bool:=false; break; fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if bool then Add(M,q); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(M);</span>
51

</pre></div>

<p><a id="X7D99B7AA780D8209" name="X7D99B7AA780D8209"></a></p>

<h4>12.10 <span class="Heading">Identifying cat<span class="SimpleMath">\(^1\)</span>-groups of low order</span></h4>

<p>Let us define the <em>order</em> of a cat<span class="SimpleMath">\(^1\)</span>-group to be the order of its underlying group. The function <code class="code">IdQuasiCatOneGroup(C)</code> inputs a cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(C\)</span> of "low order" and returns an integer pair <span class="SimpleMath">\([n,k]\)</span> that uniquely idenifies the quasi-isomorphism type of <span class="SimpleMath">\(C\)</span>. The integer <span class="SimpleMath">\(n\)</span> is the order of a smallest cat<span class="SimpleMath">\(^1\)</span>-group quasi-isomorphic to <span class="SimpleMath">\(C\)</span>. The integer <span class="SimpleMath">\(k\)</span> identifies a particular cat<span class="SimpleMath">\(^1\)</span>-group of order <span class="SimpleMath">\(n\)</span>.</p>

<p>The following commands use this function to show that there are precisely <span class="SimpleMath">\(49\)</span> distinct quasi-isomorphism types of cat<span class="SimpleMath">\(^1\)</span>-groups of order <span class="SimpleMath">\(16\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for G in AllSmallGroups(16) do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Append(L,CatOneGroupsByGroup(G));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=List(L,IdQuasiCatOneGroup);</span>
[ [ 16, 1 ], [ 16, 2 ], [ 16, 3 ], [ 16, 4 ], [ 16, 5 ], [ 4, 4 ], [ 1, 1 ], 
  [ 16, 6 ], [ 16, 7 ], [ 16, 8 ], [ 16, 9 ], [ 16, 10 ], [ 16, 11 ], 
  [ 16, 9 ], [ 16, 12 ], [ 16, 13 ], [ 16, 14 ], [ 16, 15 ], [ 4, 1 ], 
  [ 4, 2 ], [ 16, 16 ], [ 16, 17 ], [ 16, 18 ], [ 16, 19 ], [ 16, 20 ], 
  [ 16, 21 ], [ 16, 22 ], [ 16, 23 ], [ 16, 24 ], [ 16, 25 ], [ 16, 26 ], 
  [ 16, 27 ], [ 16, 28 ], [ 4, 3 ], [ 4, 1 ], [ 4, 4 ], [ 4, 4 ], [ 4, 2 ], 
  [ 4, 5 ], [ 16, 29 ], [ 16, 30 ], [ 16, 31 ], [ 16, 32 ], [ 16, 33 ], 
  [ 16, 34 ], [ 4, 3 ], [ 4, 4 ], [ 4, 4 ], [ 16, 35 ], [ 16, 36 ], [ 4, 3 ], 
  [ 16, 37 ], [ 16, 38 ], [ 16, 39 ], [ 16, 40 ], [ 16, 41 ], [ 16, 42 ], 
  [ 16, 43 ], [ 4, 3 ], [ 4, 4 ], [ 1, 1 ], [ 4, 5 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(SSortedList(M));</span>
49

</pre></div>

<p>The next example first identifies the order and the identity number of the cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(C\)</span> corresponding to the crossed module (see <a href="chap12_mj.html#X808C6B357F8BADC1"><span class="RefLink">12.1</span></a>)</p>

<p class="center">\[\iota\colon G \longrightarrow Aut(G), g \mapsto (x\mapsto gxg^{-1})\]</p>

<p>for the dihedral group <span class="SimpleMath">\(G\)</span> of order <span class="SimpleMath">\(10\)</span>. It then realizes a smallest possible cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(D\)</span> of this quasi-isomorphism type.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(10));</span>
Cat-1-group with underlying group Group( [ f1, f2, f3, f4, f5 ] ) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(C);</span>
200
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdCatOneGroup(C);</span>
[ 200, 42, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdQuasiCatOneGroup(C);</span>
[ 2, 1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=SmallCatOneGroup(2,1);</span>
Cat-1-group with underlying group Group( [ f1 ] ) . 

</pre></div>

<p><a id="X7F386CF078CB9A20" name="X7F386CF078CB9A20"></a></p>

<h4>12.11 <span class="Heading">Identifying crossed modules of low order</span></h4>

<p>The following commands construct the crossed module <span class="SimpleMath">\(\partial \colon G\otimes G \rightarrow G\)</span> involving the nonabelian tensor square of the dihedral group $G$ of order <span class="SimpleMath">\(10\)</span>, identify it as being number <span class="SimpleMath">\(71\)</span> in the list of crossed modules of order <span class="SimpleMath">\(100\)</span>, create a quasi-isomorphic crossed module of order <span class="SimpleMath">\(4\)</span>, and finally construct the corresponding cat<span class="SimpleMath">\(^1\)</span>-group of order <span class="SimpleMath">\(100\)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=DihedralGroup(10);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=NonabelianTensorSquareAsCrossedModule(G);</span>
Crossed module with group homomorphism GroupHomomorphismByImages( Group( 
[ f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1 ] ), Group( [ f1, f2 ] ), 
[ f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1 ], [ &lt;identity&gt; of ..., f2^3 ] )

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IdCrossedModule(T);</span>
[ 100, 71 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuasiIsomorph(T);</span>
Crossed module with group homomorphism Pcgs([ f2 ]) -&gt; [ &lt;identity&gt; of ... ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(Q);</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=CatOneGroupByCrossedModule(T);</span>
Cat-1-group with underlying group Group( [ F1, F2, F1 ] ) . 

</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0_mj.html">[Top of Book]</a>&nbsp;  <a href="chap0_mj.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap11_mj.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap13_mj.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a>  <a href="chap1_mj.html">1</a>  <a href="chap2_mj.html">2</a>  <a href="chap3_mj.html">3</a>  <a href="chap4_mj.html">4</a>  <a href="chap5_mj.html">5</a>  <a href="chap6_mj.html">6</a>  <a href="chap7_mj.html">7</a>  <a href="chap8_mj.html">8</a>  <a href="chap9_mj.html">9</a>  <a href="chap10_mj.html">10</a>  <a href="chap11_mj.html">11</a>  <a href="chap12_mj.html">12</a>  <a href="chap13_mj.html">13</a>  <a href="chap14_mj.html">14</a>  <a href="chap15_mj.html">15</a>  <a href="chap16_mj.html">16</a>  <a href="chapBib_mj.html">Bib</a>  <a href="chapInd_mj.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>