1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (HAP commands) - Chapter 12: Simplicial groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap12" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap11_mj.html">[Previous Chapter]</a> <a href="chap13_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap12.html">[MathJax off]</a></p>
<p><a id="X7D818E5F80F4CF63" name="X7D818E5F80F4CF63"></a></p>
<div class="ChapSects"><a href="chap12_mj.html#X7D818E5F80F4CF63">12 <span class="Heading">Simplicial groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X808C6B357F8BADC1">12.1 <span class="Heading">Crossed modules</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X795E339978B42775">12.2 <span class="Heading">Eilenberg-MacLane spaces as simplicial groups (not recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X7D91E64D7DD7F10F">12.3 <span class="Heading">Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X84ABCA497C577132">12.4 <span class="Heading">Elementary theoretical information on
<span class="SimpleMath">\(H^\ast(K(\pi,n),\mathbb Z)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X7F828D8D8463CC20">12.5 <span class="Heading">The first three non-trivial homotopy groups of spheres</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X81E2F80384ADF8C2">12.6 <span class="Heading">The first two non-trivial homotopy groups of the suspension and double suspension of a <span class="SimpleMath">\(K(G,1)\)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X83EAC40A8324571F">12.7 <span class="Heading">Postnikov towers and <span class="SimpleMath">\(\pi_5(S^3)\)</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X8227000D83B9A17F">12.8 <span class="Heading">Towards <span class="SimpleMath">\(\pi_4(\Sigma K(G,1))\)</span> </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X7F5E6C067B2AE17A">12.9 <span class="Heading">Enumerating homotopy 2-types</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X7D99B7AA780D8209">12.10 <span class="Heading">Identifying cat<span class="SimpleMath">\(^1\)</span>-groups of low order</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap12_mj.html#X7F386CF078CB9A20">12.11 <span class="Heading">Identifying crossed modules of low order</span></a>
</span>
</div>
</div>
<h3>12 <span class="Heading">Simplicial groups</span></h3>
<p><a id="X808C6B357F8BADC1" name="X808C6B357F8BADC1"></a></p>
<h4>12.1 <span class="Heading">Crossed modules</span></h4>
<p>A <em>crossed module</em> consists of a homomorphism of groups <span class="SimpleMath">\(\partial\colon M\rightarrow G\)</span> together with an action <span class="SimpleMath">\((g,m)\mapsto\, {^gm}\)</span> of <span class="SimpleMath">\(G\)</span> on <span class="SimpleMath">\(M\)</span> satisfying</p>
<ol>
<li><p><span class="SimpleMath">\(\partial(^gm) = gmg^{-1}\)</span></p>
</li>
<li><p><span class="SimpleMath">\(^{\partial m}m' = mm'm^{-1}\)</span></p>
</li>
</ol>
<p>for <span class="SimpleMath">\(g\in G\)</span>, <span class="SimpleMath">\(m,m'\in M\)</span>.</p>
<p>A crossed module <span class="SimpleMath">\(\partial\colon M\rightarrow G\)</span> is equivalent to a cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\((H,s,t)\)</span> (see <a href="chap6_mj.html#X78040D8580D35D53"><span class="RefLink">6.11</span></a>) where <span class="SimpleMath">\(H=M \rtimes G\)</span>, <span class="SimpleMath">\(s(m,g) = (1,g)\)</span>, <span class="SimpleMath">\(t(m,g)=(1,(\partial m)g)\)</span>. A cat<span class="SimpleMath">\(^1\)</span>-group is, in turn, equivalent to a simplicial group with Moore complex has length <span class="SimpleMath">\(1\)</span>. The simplicial group is constructed by considering the cat<span class="SimpleMath">\(^1\)</span>-group as a category and taking its nerve. Alternatively, the simplicial group can be constructed by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.</p>
<p>The following example concerns the crossed module</p>
<p><span class="SimpleMath">\(\partial\colon G\rightarrow Aut(G), g\mapsto (x\mapsto gxg^{-1})\)</span></p>
<p>associated to the dihedral group <span class="SimpleMath">\(G\)</span> of order <span class="SimpleMath">\(16\)</span>. This crossed module represents, up to homotopy type, a connected space <span class="SimpleMath">\(X\)</span> with <span class="SimpleMath">\(\pi_iX=0\)</span> for <span class="SimpleMath">\(i\ge 3\)</span>, <span class="SimpleMath">\(\pi_2X=Z(G)\)</span>, <span class="SimpleMath">\(\pi_1X = Aut(G)/Inn(G)\)</span>. The space <span class="SimpleMath">\(X\)</span> can be represented, up to homotopy, by a simplicial group. That simplicial group is used in the example to compute</p>
<p><span class="SimpleMath">\(H_1(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2\)</span>,</p>
<p><span class="SimpleMath">\(H_2(X,\mathbb Z)= \mathbb Z_2 \)</span>,</p>
<p><span class="SimpleMath">\(H_3(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\)</span>,</p>
<p><span class="SimpleMath">\(H_4(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\)</span>,</p>
<p><span class="SimpleMath">\(H_5(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2\oplus \mathbb Z_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(16));</span>
Cat-1-group with underlying group Group(
[ f1, f2, f3, f4, f5, f6, f7, f8, f9 ] ) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(C);</span>
512
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuasiIsomorph(C);</span>
Cat-1-group with underlying group Group( [ f9, f8, f1, f2*f3, f5 ] ) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Q);</span>
32
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=NerveOfCatOneGroup(Q,6);</span>
Simplicial group of length 6
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ChainComplexOfSimplicialGroup(N);</span>
Chain complex of length 6 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(K,1);</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(K,2);</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(K,3);</span>
[ 2, 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(K,4);</span>
[ 2, 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(K,5);</span>
[ 2, 2, 2, 2, 2, 2 ]
</pre></div>
<p><a id="X795E339978B42775" name="X795E339978B42775"></a></p>
<h4>12.2 <span class="Heading">Eilenberg-MacLane spaces as simplicial groups (not recommended)</span></h4>
<p>The following example concerns the Eilenberg-MacLane space <span class="SimpleMath">\(X=K(\mathbb Z_3,3)\)</span> which is a path-connected space with <span class="SimpleMath">\(\pi_3X=\mathbb Z_3\)</span>, <span class="SimpleMath">\(\pi_iX=0\)</span> for <span class="SimpleMath">\(3\ne i\ge 1\)</span>. This space is represented by a simplicial group, and perturbation techniques are used to compute</p>
<p><span class="SimpleMath">\(H_7(X,\mathbb Z)=\mathbb Z_3 \oplus \mathbb Z_3\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=AbelianGroup([3]);;AbelianInvariants(A); </span>
[ 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput"> K:=EilenbergMacLaneSimplicialGroup(A,3,8);</span>
Simplicial group of length 8
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChainComplex(K);</span>
Chain complex of length 8 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,7); </span>
[ 3, 3 ]
</pre></div>
<p><a id="X7D91E64D7DD7F10F" name="X7D91E64D7DD7F10F"></a></p>
<h4>12.3 <span class="Heading">Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</span></h4>
<p>For integer <span class="SimpleMath">\(n>1\)</span> and abelian group <span class="SimpleMath">\(A\)</span> the Eilenberg-MacLane space <span class="SimpleMath">\(K(A,n)\)</span> is better represented as a simplicial free abelian group. (The reason is that the functorial bar resolution of a group can be replaced in computations by the smaller functorial Chevalley-Eilenberg complex of the group when the group is free abelian, obviating the need for perturbation techniques. When <span class="SimpleMath">\(A\)</span> has torision we can replace it with an inclusion of free abelian groups <span class="SimpleMath">\(A_1 \hookrightarrow A_0\)</span> with <span class="SimpleMath">\(A\cong A_0/A_1\)</span> and again invoke the Chevalley-Eilenberg complex. The current implementation unfortunately handles only free abelian <span class="SimpleMath">\(A\)</span> but the easy extension to non-free <span class="SimpleMath">\(A\)</span> is planned for a future release.)</p>
<p>The following commands compute the integral homology <span class="SimpleMath">\(H_n(K(\mathbb Z,3),\mathbb Z)\)</span> for <span class="SimpleMath">\( 0\le n \le 16\)</span>. (Note that one typically needs fewer than <span class="SimpleMath">\(n\)</span> terms of the Eilenberg-MacLance space to compute its <span class="SimpleMath">\(n\)</span>-th homology -- an error is printed if too few terms of the space are available for a given computation.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=AbelianPcpGroup([0]);; #infinite cyclic group </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,14);</span>
Simplicial free abelian group of length 14
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..16] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
Degree 0 integral homology of K is [ 0 ]
Degree 1 integral homology of K is [ ]
Degree 2 integral homology of K is [ ]
Degree 3 integral homology of K is [ 0 ]
Degree 4 integral homology of K is [ ]
Degree 5 integral homology of K is [ 2 ]
Degree 6 integral homology of K is [ ]
Degree 7 integral homology of K is [ 3 ]
Degree 8 integral homology of K is [ 2 ]
Degree 9 integral homology of K is [ 2 ]
Degree 10 integral homology of K is [ 3 ]
Degree 11 integral homology of K is [ 5, 2 ]
Degree 12 integral homology of K is [ 2 ]
Degree 13 integral homology of K is [ ]
Degree 14 integral homology of K is [ 10, 2 ]
Degree 15 integral homology of K is [ 7, 6 ]
Degree 16 integral homology of K is [ ]
</pre></div>
<p>For an <span class="SimpleMath">\(n\)</span>-connected pointed space <span class="SimpleMath">\(X\)</span> the Freudenthal Suspension Theorem states that the map <span class="SimpleMath">\(X \rightarrow \Omega(\Sigma X)\)</span> induces a map <span class="SimpleMath">\(\pi_k(X) \rightarrow \pi_k(\Omega(\Sigma X))\)</span> which is an isomorphism for <span class="SimpleMath">\(k\le 2n\)</span> and epimorphism for <span class="SimpleMath">\(k=2n+1\)</span>. Thus the Eilenberg-MacLane space <span class="SimpleMath">\(K(A,n+1)\)</span> can be constructed from the suspension <span class="SimpleMath">\(\Sigma K(A,n)\)</span> by attaching cells in dimensions <span class="SimpleMath">\(\ge 2n+1\)</span>. In particular, there is an isomorphism <span class="SimpleMath">\( H_{k-1}(K(A,n),\mathbb Z) \rightarrow H_k(K(A,n+1),\mathbb Z)\)</span> for <span class="SimpleMath">\(k\le 2n\)</span> and epimorphism for <span class="SimpleMath">\(k=2n+1\)</span>.</p>
<p>For instance, <span class="SimpleMath">\( H_{k-1}(K(\mathbb Z,3),\mathbb Z) \cong H_k(K(\mathbb Z,4),\mathbb Z) \)</span> for <span class="SimpleMath">\(k\le 6\)</span> and <span class="SimpleMath">\( H_6(K(\mathbb Z,3),\mathbb Z) \twoheadrightarrow H_7(K(\mathbb Z,4),\mathbb Z) \)</span>. This assertion is seen in the following session.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=AbelianPcpGroup([0]);; #infinite cyclic group </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,4,11);</span>
Simplicial free abelian group of length 11
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..13] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("Degree ",n," integral homology of K is ",Homology(K,n),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
Degree 0 integral homology of K is [ 0 ]
Degree 1 integral homology of K is [ ]
Degree 2 integral homology of K is [ ]
Degree 3 integral homology of K is [ ]
Degree 4 integral homology of K is [ 0 ]
Degree 5 integral homology of K is [ ]
Degree 6 integral homology of K is [ 2 ]
Degree 7 integral homology of K is [ ]
Degree 8 integral homology of K is [ 3, 0 ]
Degree 9 integral homology of K is [ ]
Degree 10 integral homology of K is [ 2, 2 ]
Degree 11 integral homology of K is [ ]
Degree 12 integral homology of K is [ 5, 12, 0 ]
Degree 13 integral homology of K is [ 2 ]
</pre></div>
<p><a id="X84ABCA497C577132" name="X84ABCA497C577132"></a></p>
<h4>12.4 <span class="Heading">Elementary theoretical information on
<span class="SimpleMath">\(H^\ast(K(\pi,n),\mathbb Z)\)</span></span></h4>
<p>The cup product is not implemented for the cohomology ring <span class="SimpleMath">\(H^\ast(K(\pi,n),\mathbb Z)\)</span>. Standard theoretical spectral sequence arguments have to be applied to obtain basic information relating to the ring structure. To illustrate this the following commands compute <span class="SimpleMath">\(H^n(K(\mathbb Z,2),\mathbb Z)\)</span> for the first few values of <span class="SimpleMath">\(n\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,2,10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..10],k->Cohomology(K,k));</span>
[ [ 0 ], [ ], [ 0 ], [ ], [ 0 ], [ ], [ 0 ], [ ], [ 0 ], [ ], [ 0 ] ]
</pre></div>
<p>There is a fibration sequence <span class="SimpleMath">\(K(\pi,n) \hookrightarrow \ast \twoheadrightarrow K(\pi,n+1)\)</span> in which <span class="SimpleMath">\(\ast\)</span> denotes a contractible space. For <span class="SimpleMath">\(n=1, \pi=\mathbb Z\)</span> the terms of the <span class="SimpleMath">\(E_2\)</span> page of the Serre integral cohomology spectral sequence for this fibration are</p>
<ul>
<li><p><span class="SimpleMath">\(E_2^{pq}= H^p( K(\mathbb Z,2), H^q(K(\mathbb Z,1),\mathbb Z) )\)</span> .</p>
</li>
</ul>
<p>Since <span class="SimpleMath">\(K(\mathbb Z,1)\)</span> can be taken to be the circle <span class="SimpleMath">\(S^1\)</span> we know that it has non-trivial cohomology in degrees <span class="SimpleMath">\(0\)</span> and <span class="SimpleMath">\(1\)</span> only. The first few terms of the <span class="SimpleMath">\(E_2\)</span> page are given in the following table.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E^2\)</span> cohomology page for <span class="SimpleMath">\(K(\mathbb Z,1) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,2)\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(9\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(10\)</span></td>
</tr>
</table><br />
</div>
<p>Let <span class="SimpleMath">\(x\)</span> denote the generator of <span class="SimpleMath">\(H^1(K(\mathbb Z,1),\mathbb Z)\)</span> and <span class="SimpleMath">\(y\)</span> denote the generator of <span class="SimpleMath">\(H^2(K(\mathbb Z,2),\mathbb Z)\)</span>. Since <span class="SimpleMath">\(\ast\)</span> has zero cohomology in degrees <span class="SimpleMath">\(\ge 1\)</span> we see that the differential must restrict to an isomorphism <span class="SimpleMath">\(d_2\colon E_2^{0,1} \rightarrow E_2^{2,0}\)</span> with <span class="SimpleMath">\(d_2(x)=y\)</span>. Then we see that the differential must restrict to an isomorphism <span class="SimpleMath">\(d_2\colon E_2^{2,1} \rightarrow E_2^{4,0}\)</span> defined on the generator <span class="SimpleMath">\(xy\)</span> of <span class="SimpleMath">\(E_2^{2,1}\)</span> by</p>
<p class="center">\[d_2(xy) = d_2(x)y + (-1)^{{\rm deg}(x)}xd_2(y) =y^2\ . \]</p>
<p>Hence <span class="SimpleMath">\(E_2^{4,0} \cong H^4(K(\mathbb Z,2),\mathbb Z)\)</span> is generated by <span class="SimpleMath">\(y^2\)</span>. The argument extends to show that <span class="SimpleMath">\(H^6(K(\mathbb Z,2),\mathbb Z)\)</span> is generated by <span class="SimpleMath">\(y^3\)</span>, <span class="SimpleMath">\(H^8(K(\mathbb Z,2),\mathbb Z)\)</span> is generated by <span class="SimpleMath">\(y^4\)</span>, and so on.</p>
<p>In fact, to obtain a complete description of the ring <span class="SimpleMath">\(H^\ast(K(\mathbb Z,2),\mathbb Z)\)</span> in this fashion there is no benefit to using computer methods at all. We only need to know the cohomology ring <span class="SimpleMath">\(H^\ast(K(\mathbb Z,1),\mathbb Z) =H^\ast(S^1,\mathbb Z)\)</span> and the single cohomology group <span class="SimpleMath">\(H^2(K(\mathbb Z,2),\mathbb Z)\)</span>.</p>
<p>A similar approach can be attempted for <span class="SimpleMath">\(H^\ast(K(\mathbb Z,3),\mathbb Z)\)</span> using the fibration sequence <span class="SimpleMath">\(K(\mathbb Z,2) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,3)\)</span> and, as explained in Chapter 5 of <a href="chapBib_mj.html#biBhatcher">[Hat01]</a>, yields the computation of the group <span class="SimpleMath">\(H^i(K(\mathbb Z,3),\mathbb Z)\)</span> for <span class="SimpleMath">\(4\le i\le 13\)</span>. The method does not directly yield <span class="SimpleMath">\(H^3(K(\mathbb Z,3),\mathbb Z)\)</span> and breaks down in degree <span class="SimpleMath">\(14\)</span> yielding only that <span class="SimpleMath">\(H^{14}(K(\mathbb Z,3),\mathbb Z) = 0 {\rm ~or~} \mathbb Z_3\)</span>. The following commands provide <span class="SimpleMath">\(H^3(K(\mathbb Z,3),\mathbb Z)= \mathbb Z\)</span> and <span class="SimpleMath">\(H^{14}(K(\mathbb Z,3),\mathbb Z) =0\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=AbelianPcpGroup([0]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialFreeAbelianGroup(A,3,15);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(K,3);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(K,14);</span>
[ ]
</pre></div>
<p>However, the implementation of these commands is currently a bit naive, and computationally inefficient, since they do not currently employ any homological perturbation techniques.</p>
<p><a id="X7F828D8D8463CC20" name="X7F828D8D8463CC20"></a></p>
<h4>12.5 <span class="Heading">The first three non-trivial homotopy groups of spheres</span></h4>
<p>The Hurewicz Theorem immediately gives</p>
<p class="center">\[\pi_n(S^n)\cong \mathbb Z ~~~ (n\ge 1)\]</p>
<p>and</p>
<p class="center">\[\pi_k(S^n)=0 ~~~ (k\le n-1).\]</p>
<p>As a CW-complex the Eilenberg-MacLane space <span class="SimpleMath">\(K=K(\mathbb Z,n)\)</span> can be obtained from an <span class="SimpleMath">\(n\)</span>-sphere <span class="SimpleMath">\(S^n=e^0\cup e^n\)</span> by attaching cells in dimensions <span class="SimpleMath">\(\ge n+2\)</span> so as to kill the higher homotopy groups of <span class="SimpleMath">\(S^n\)</span>. From the inclusion <span class="SimpleMath">\(\iota\colon S^n\hookrightarrow K(\mathbb Z,n)\)</span> we can form the mapping cone <span class="SimpleMath">\(X=C(\iota)\)</span>. The long exact homotopy sequence</p>
<p><span class="SimpleMath">\( \cdots \rightarrow \pi_{k+1}K \rightarrow \pi_{k+1}(K,S^n) \rightarrow \pi_{k} S^n \rightarrow \pi_kK \rightarrow \pi_k(K,S^n) \rightarrow \cdots\)</span></p>
<p>implies that <span class="SimpleMath">\(\pi_k(K,S^n)=0\)</span> for <span class="SimpleMath">\(0 \le k\le n+1\)</span> and <span class="SimpleMath">\(\pi_{n+2}(K,S^n)\cong \pi_{n+1}(S^n)\)</span>. The relative Hurewicz Theorem gives an isomorphism <span class="SimpleMath">\(\pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z)\)</span>. The long exact homology sequence</p>
<p><span class="SimpleMath">\( \cdots H_{n+2}(S^n,\mathbb Z) \rightarrow H_{n+2}(K,\mathbb Z) \rightarrow H_{n+2}(K,S^n, \mathbb Z) \rightarrow H_{n+1}(S^n,\mathbb Z) \rightarrow \cdots\)</span></p>
<p>arising from the cofibration <span class="SimpleMath">\(S^n \hookrightarrow K \twoheadrightarrow X\)</span> implies that <span class="SimpleMath">\(\pi_{n+1}(S^n)\cong \pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z) \cong H_{n+2}(K,\mathbb Z)\)</span>. From the <strong class="button">GAP</strong> computations in <a href="chap12_mj.html#X7D91E64D7DD7F10F"><span class="RefLink">12.3</span></a> and the Freudenthal Suspension Theorem we find:</p>
<p class="center">\[ \pi_3S^2 \cong \mathbb Z, ~~~~~~ \pi_{n+1}(S^n)\cong \mathbb Z_2~~~(n\ge 3).\]</p>
<p>The Hopf fibration <span class="SimpleMath">\(S^3\rightarrow S^2\)</span> has fibre <span class="SimpleMath">\(S^1 = K(\mathbb Z,1)\)</span>. It can be constructed by viewing <span class="SimpleMath">\(S^3\)</span> as all pairs <span class="SimpleMath">\((z_1,z_2)\in \mathbb C^2\)</span> with <span class="SimpleMath">\(|z_1|^2+|z_2|^2=1\)</span> and viewing <span class="SimpleMath">\(S^2\)</span> as <span class="SimpleMath">\(\mathbb C\cup \infty\)</span>; the map sends <span class="SimpleMath">\((z_1,z_2)\mapsto z_1/z_2\)</span>. The homotopy exact sequence of the Hopf fibration yields <span class="SimpleMath">\(\pi_k(S^3) \cong \pi_k(S^2)\)</span> for <span class="SimpleMath">\(k\ge 3\)</span>, and in particular</p>
<p class="center">\[\pi_4(S^2) \cong \pi_4(S^3) \cong \mathbb Z_2\ .\]</p>
<p>It will require further techniques (such as the Postnikov tower argument in Section <a href="chap12_mj.html#X83EAC40A8324571F"><span class="RefLink">12.7</span></a> below) to establish that <span class="SimpleMath">\(\pi_5(S^3) \cong \mathbb Z_2\)</span>. Once we have this isomorphism for <span class="SimpleMath">\(\pi_5(S^3)\)</span>, the generalized Hopf fibration <span class="SimpleMath">\(S^3 \hookrightarrow S^7 \twoheadrightarrow S^4\)</span> comes into play. This fibration is contructed as for the classical fibration, but using pairs <span class="SimpleMath">\((z_1,z_2)\)</span> of quaternions rather than pairs of complex numbers. The Hurewicz Theorem gives <span class="SimpleMath">\(\pi_3(S^7)=0\)</span>; the fibre <span class="SimpleMath">\(S^3\)</span> is thus homotopic to a point in <span class="SimpleMath">\(S^7\)</span> and the inclusion of the fibre induces the zero homomorphism <span class="SimpleMath">\(\pi_k(S^3) \stackrel{0}{\longrightarrow} \pi_k(S^7) ~~(k\ge 1)\)</span>. The exact homotopy sequence of the generalized Hopf fibration then gives <span class="SimpleMath">\(\pi_k(S^4)\cong \pi_k(S^7)\oplus \pi_{k-1}(S^3)\)</span>. On taking <span class="SimpleMath">\(k=6\)</span> we obtain <span class="SimpleMath">\(\pi_6(S^4)\cong \pi_5(S^3) \cong \mathbb Z_2\)</span>. Freudenthal suspension then gives</p>
<p class="center">\[\pi_{n+2}(S^n)\cong \mathbb Z_2,~~~(n\ge 2).\]</p>
<p><a id="X81E2F80384ADF8C2" name="X81E2F80384ADF8C2"></a></p>
<h4>12.6 <span class="Heading">The first two non-trivial homotopy groups of the suspension and double suspension of a <span class="SimpleMath">\(K(G,1)\)</span></span></h4>
<p>For any group <span class="SimpleMath">\(G\)</span> we consider the homotopy groups <span class="SimpleMath">\(\pi_n(\Sigma K(G,1))\)</span> of the suspension <span class="SimpleMath">\(\Sigma K(G,1)\)</span> of the Eilenberg-MacLance space <span class="SimpleMath">\(K(G,1)\)</span>. On taking <span class="SimpleMath">\(G=\mathbb Z\)</span>, and observing that <span class="SimpleMath">\(S^2 = \Sigma K(\mathbb Z,1)\)</span>, we specialize to the homotopy groups of the <span class="SimpleMath">\(2\)</span>-sphere <span class="SimpleMath">\(S^2\)</span>.</p>
<p>By construction,</p>
<p class="center">\[\pi_1(\Sigma K(G,1))=0\ .\]</p>
<p>The Hurewicz Theorem gives</p>
<p class="center">\[\pi_2(\Sigma K(G,1)) \cong G_{ab}\]</p>
<p>via the isomorphisms <span class="SimpleMath">\(\pi_2(\Sigma K(G,1)) \cong H_2(\Sigma K(G,1),\mathbb Z) \cong H_1(K(G,1),\mathbb Z) \cong G_{ab}\)</span>. R. Brown and J.-L. Loday <a href="chapBib_mj.html#biBbrownloday">[BL87]</a> obtained the formulae</p>
<p class="center">\[\pi_3(\Sigma K(G,1)) \cong \ker (G\otimes G \rightarrow G, x\otimes y\mapsto [x,y]) \ ,\]</p>
<p class="center">\[\pi_4(\Sigma^2 K(G,1)) \cong \ker (G\, {\widetilde \otimes}\, G \rightarrow G, x\, {\widetilde \otimes}\, y\mapsto [x,y]) \]</p>
<p>involving the nonabelian tensor square and nonabelian symmetric square of the group <span class="SimpleMath">\(G\)</span>. The following commands use the nonabelian tensor and symmetric product to compute the third and fourth homotopy groups for <span class="SimpleMath">\(G =Syl_2(M_{12})\)</span> the Sylow <span class="SimpleMath">\(2\)</span>-subgroup of the Mathieu group <span class="SimpleMath">\(M_{12}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ThirdHomotopyGroupOfSuspensionB(G); </span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
gap>
<span class="GAPprompt">gap></span> <span class="GAPinput">FourthHomotopyGroupOfDoubleSuspensionB(G);</span>
[ 2, 2, 2, 2, 2, 2 ]
</pre></div>
<p><a id="X83EAC40A8324571F" name="X83EAC40A8324571F"></a></p>
<h4>12.7 <span class="Heading">Postnikov towers and <span class="SimpleMath">\(\pi_5(S^3)\)</span> </span></h4>
<p>A Postnikov system for the sphere <span class="SimpleMath">\(S^3\)</span> consists of a sequence of fibrations <span class="SimpleMath">\(\cdots X_3\stackrel{p_3}{\rightarrow} X_2\stackrel{p_2}{\rightarrow} X_1\stackrel{p_1}{\rightarrow} \ast\)</span> and a sequence of maps <span class="SimpleMath">\(\phi_n\colon S^3 \rightarrow X_n\)</span> such that</p>
<ul>
<li><p><span class="SimpleMath">\(p_n \circ \phi_n =\phi_{n-1}\)</span></p>
</li>
<li><p>The map <span class="SimpleMath">\(\phi_n\colon S^3 \rightarrow X_n\)</span> induces an isomorphism <span class="SimpleMath">\(\pi_k(S^3)\rightarrow \pi_k(X_n)\)</span> for all <span class="SimpleMath">\(k\le n\)</span></p>
</li>
<li><p><span class="SimpleMath">\(\pi_k(X_n)=0\)</span> for <span class="SimpleMath">\(k > n\)</span></p>
</li>
<li><p>and consequently each fibration <span class="SimpleMath">\(p_n\)</span> has fibre an Eilenberg-MacLane space <span class="SimpleMath">\(K(\pi_n(S^3),n)\)</span>.</p>
</li>
</ul>
<p>The space <span class="SimpleMath">\(X_n\)</span> is obtained from <span class="SimpleMath">\(S^3\)</span> by adding cells in dimensions <span class="SimpleMath">\(\ge n+2\)</span> and thus</p>
<ul>
<li><p><span class="SimpleMath">\(H_k(X_n,\mathbb Z)=H_k(S^3,\mathbb Z)\)</span> for <span class="SimpleMath">\(k\le n+1\)</span>.</p>
</li>
</ul>
<p>So in particular <span class="SimpleMath">\(X_1=X_2=\ast, X_3=K(\mathbb Z,3)\)</span> and we have a fibration sequence <span class="SimpleMath">\(K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow K(\mathbb Z,3)\)</span>. The terms in the <span class="SimpleMath">\(E_2\)</span> page of the Serre integral cohomology spectral sequence of this fibration are</p>
<ul>
<li><p><span class="SimpleMath">\(E_2^{p,q}=H^p(\,K(\mathbb Z,3),\,H_q(K(\mathbb Z_2,4),\mathbb Z)\,)\)</span>.</p>
</li>
</ul>
<p>The first few terms in the <span class="SimpleMath">\(E_2\)</span> page can be computed using the commands of Sections <a href="chap12_mj.html#X795E339978B42775"><span class="RefLink">12.2</span></a> and <a href="chap12_mj.html#X7D91E64D7DD7F10F"><span class="RefLink">12.3</span></a> and recorded as follows.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E_2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow X_3\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_4(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_4(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td> </td>
<td> </td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
<td> </td>
<td> </td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(8\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(9\)</span></td>
</tr>
</table><br />
</div>
<p>Since we know that <span class="SimpleMath">\(H^5(X_4,\mathbb Z) =0\)</span>, the differentials in the spectral sequence must restrict to an isomorphism <span class="SimpleMath">\(E_2^{0,5}=\pi_4(S^3) \stackrel{\cong}{\longrightarrow} E_2^{6,0}=\mathbb Z_2\)</span>. This provides an alternative derivation of <span class="SimpleMath">\(\pi_4(S^3) \cong \mathbb Z_2\)</span>. We can also immediately deduce that <span class="SimpleMath">\(H^6(X_4,\mathbb Z)=0\)</span>. Let <span class="SimpleMath">\(x\)</span> be the generator of <span class="SimpleMath">\(E_2^{0,5}\)</span> and <span class="SimpleMath">\(y\)</span> the generator of <span class="SimpleMath">\(E_2^{3,0}\)</span>. Then the generator <span class="SimpleMath">\(xy\)</span> of <span class="SimpleMath">\(E_2^{3,5}\)</span> gets mapped to a non-zero element <span class="SimpleMath">\(d_7(xy)=d_7(x)y -xd_7(y)\)</span>. Hence the term <span class="SimpleMath">\(E_2^{0,7}=\mathbb Z_2\)</span> must get mapped to zero in <span class="SimpleMath">\(E_2^{3,5}\)</span>. It follows that <span class="SimpleMath">\(H^7(X_4,\mathbb Z)=\mathbb Z_2\)</span>.</p>
<p>The integral cohomology of Eilenberg-MacLane spaces yields the following information on the <span class="SimpleMath">\(E_2\)</span> page <span class="SimpleMath">\(E_2^{p,q}=H_p(\,X_4,\,H^q(K(\pi_5S^3,5),\mathbb Z)\,)\)</span> for the fibration <span class="SimpleMath">\(K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4\)</span>.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E_2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_5(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_5(S^3)\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(H^7(X_4,\mathbb Z)\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
</tr>
</table><br />
</div>
<p>Since we know that <span class="SimpleMath">\(H^6(X_5,\mathbb Z)=0\)</span>, the differentials in the spectral sequence must restrict to an isomorphism <span class="SimpleMath">\(E_2^{0,6}=\pi_5(S^3) \stackrel{\cong}{\longrightarrow} E_2^{7,0}=H^7(X_4,\mathbb Z)\)</span>. We can conclude the desired result:</p>
<p class="center">\[\pi_5(S^3) = \mathbb Z_2\ .\]</p>
<p><span class="SimpleMath">\(~~~\)</span></p>
<p>Note that the fibration <span class="SimpleMath">\(X_4 \twoheadrightarrow K(\mathbb Z,3)\)</span> is determined by a cohomology class <span class="SimpleMath">\(\kappa \in H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2\)</span>. If <span class="SimpleMath">\(\kappa=0\)</span> then we'd have <span class="SimpleMath">\(X_4 =K(\mathbb Z_2,4)\times K(\mathbb Z,3)\)</span> and, as the following commands show, we'd then have <span class="SimpleMath">\(H_4(X_4,\mathbb Z)=\mathbb Z_2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=EilenbergMacLaneSimplicialGroup(AbelianPcpGroup([0]),3,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=EilenbergMacLaneSimplicialGroup(CyclicGroup(2),4,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CK:=ChainComplex(K);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CL:=ChainComplex(L);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=TensorProduct(CK,CL);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(T,4);</span>
[ 2 ]
</pre></div>
<p>Since we know that <span class="SimpleMath">\(H_4(X_4,\mathbb Z)=0\)</span> we can conclude that the Postnikov invariant <span class="SimpleMath">\(\kappa\)</span> is the non-zero class in <span class="SimpleMath">\(H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2\)</span>.</p>
<p><a id="X8227000D83B9A17F" name="X8227000D83B9A17F"></a></p>
<h4>12.8 <span class="Heading">Towards <span class="SimpleMath">\(\pi_4(\Sigma K(G,1))\)</span> </span></h4>
<p>Consider the suspension <span class="SimpleMath">\(X=\Sigma K(G,1)\)</span> of a classifying space of a group <span class="SimpleMath">\(G\)</span> once again. This space has a Postnikov system in which <span class="SimpleMath">\(X_1 = \ast\)</span>, <span class="SimpleMath">\(X_2= K(G_{ab},2)\)</span>. We have a fibration sequence <span class="SimpleMath">\(K(\pi_3 X, 3) \hookrightarrow X_3 \twoheadrightarrow K(G_{ab},2)\)</span>. The corresponding integral cohomology Serre spectral sequence has <span class="SimpleMath">\(E_2\)</span> page with terms</p>
<ul>
<li><p><span class="SimpleMath">\(E_2^{p,q}=H^p(\,K(G_{ab},2), H^q(K(\pi_3 X,3)),\mathbb Z)\, )\)</span>.</p>
</li>
</ul>
<p>As an example, for the Alternating group <span class="SimpleMath">\(G=A_4\)</span> of order <span class="SimpleMath">\(12\)</span> the following commands of Section <a href="chap12_mj.html#X81E2F80384ADF8C2"><span class="RefLink">12.6</span></a> compute <span class="SimpleMath">\(G_{ab} = \mathbb Z_3\)</span> and <span class="SimpleMath">\(\pi_3 X = \mathbb Z_6\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(G);</span>
[ 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">ThirdHomotopyGroupOfSuspensionB(G);</span>
[ 2, 3 ]
</pre></div>
<p>The first terms of the <span class="SimpleMath">\(E_2\)</span> page can be calculated using the commands of Sections <a href="chap12_mj.html#X795E339978B42775"><span class="RefLink">12.2</span></a> and <a href="chap12_mj.html#X7D91E64D7DD7F10F"><span class="RefLink">12.3</span></a>.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E^2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_3 X,3) \hookrightarrow X_3 \twoheadrightarrow X_2\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2 \)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_9\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(7\)</span></td>
</tr>
</table><br />
</div>
<p>We know that <span class="SimpleMath">\(H^1(X_3,\mathbb Z)=0\)</span>, <span class="SimpleMath">\(H^2(X_3,\mathbb Z)=H^1(G,\mathbb Z) =0\)</span>, <span class="SimpleMath">\(H^3(X_3,\mathbb Z)=H^2(G,\mathbb Z) =\mathbb Z_3\)</span>, and that <span class="SimpleMath">\(H^4(X_3,\mathbb Z)\)</span> is a subgroup of <span class="SimpleMath">\(H^3(G,\mathbb Z) = \mathbb Z_2\)</span>. It follows that the differential induces a surjection <span class="SimpleMath">\(E_2^{0,4}=\mathbb Z_6 \twoheadrightarrow E_2^{5,0}=\mathbb Z_3\)</span>. Consequently <span class="SimpleMath">\(H^4(X_3,\mathbb Z)=\mathbb Z_2\)</span> and <span class="SimpleMath">\(H^5(X_3,\mathbb Z)=0\)</span> and <span class="SimpleMath">\(H^6(X_3,\mathbb Z)=\mathbb Z_2\)</span>.</p>
<p>The <span class="SimpleMath">\(E_2\)</span> page for the fibration <span class="SimpleMath">\(K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3\)</span> contains the following terms.</p>
<div class="pcenter"><table class="GAPDocTable">
<caption class="GAPDocTable"><b>Table: </b><span class="SimpleMath">\(E^2\)</span> cohomology page for <span class="SimpleMath">\(K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3\)</span></caption>
<tr>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\pi_4 X\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(\mathbb Z_2\)</span></td>
</tr>
<tr>
<td class="tdleft"><span class="SimpleMath">\(q/p\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(0\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(1\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(2\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(3\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(4\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(5\)</span></td>
<td class="tdleft"><span class="SimpleMath">\(6\)</span></td>
</tr>
</table><br />
</div>
<p>We know that <span class="SimpleMath">\(H^5(X_4,\mathbb Z)\)</span> is a subgroup of <span class="SimpleMath">\(H^4(G,\mathbb Z)=\mathbb Z_6\)</span>, and hence that there is a homomorphisms <span class="SimpleMath">\(\pi_4X \rightarrow \mathbb Z_2\)</span> whose kernel is a subgroup of <span class="SimpleMath">\(\mathbb Z_6\)</span>. If follows that <span class="SimpleMath">\(|\pi_4 X|\le 12\)</span>.</p>
<p><a id="X7F5E6C067B2AE17A" name="X7F5E6C067B2AE17A"></a></p>
<h4>12.9 <span class="Heading">Enumerating homotopy 2-types</span></h4>
<p>A <em>2-type</em> is a CW-complex <span class="SimpleMath">\(X\)</span> whose homotopy groups are trivial in dimensions <span class="SimpleMath">\(n=0 \)</span> and <span class="SimpleMath">\(n>2\)</span>. As explained in <a href="chap6_mj.html#X78040D8580D35D53"><span class="RefLink">6.11</span></a> the homotopy type of such a space can be captured algebraically by a cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(G\)</span>. Let <span class="SimpleMath">\(X\)</span>, <span class="SimpleMath">\(Y\)</span> be <span class="SimpleMath">\(2\)</span>-tytpes represented by cat<span class="SimpleMath">\(^1\)</span>-groups <span class="SimpleMath">\(G\)</span>, <span class="SimpleMath">\(H\)</span>. If <span class="SimpleMath">\(X\)</span> and <span class="SimpleMath">\(Y\)</span> are homotopy equivalent then there exists a sequence of morphisms of cat<span class="SimpleMath">\(^1\)</span>-groups</p>
<p class="center">\[G \rightarrow K_1 \rightarrow K_2 \leftarrow K_3 \rightarrow \cdots \rightarrow K_n \leftarrow H\]</p>
<p>in which each morphism induces isomorphisms of homotopy groups. When such a sequence exists we say that <span class="SimpleMath">\(G\)</span> is <em>quasi-isomorphic</em> to <span class="SimpleMath">\(H\)</span>. We have the following result.</p>
<p><strong class="button">Theorem.</strong> The <span class="SimpleMath">\(2\)</span>-types <span class="SimpleMath">\(X\)</span> and <span class="SimpleMath">\(Y\)</span> are homotopy equivalent if and only if the associated cat<span class="SimpleMath">\(^1\)</span>-groups <span class="SimpleMath">\(G\)</span> and <span class="SimpleMath">\(H\)</span> are quasi-isomorphic.</p>
<p>The following commands produce a list <span class="SimpleMath">\(L\)</span> of all of the <span class="SimpleMath">\(62\)</span> non-isomorphic cat<span class="SimpleMath">\(^1\)</span>-groups whose underlying group has order <span class="SimpleMath">\(16\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for G in AllSmallGroups(16) do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Append(L,CatOneGroupsByGroup(G));</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(L);</span>
62
</pre></div>
<p>The next commands use the first and second homotopy groups to prove that the list <span class="SimpleMath">\(L\)</span> contains at least <span class="SimpleMath">\(37\)</span> distinct quasi-isomorphism types.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Invariants:=function(G)</span>
<span class="GAPprompt">></span> <span class="GAPinput">local inv;</span>
<span class="GAPprompt">></span> <span class="GAPinput">inv:=[];</span>
<span class="GAPprompt">></span> <span class="GAPinput">inv[1]:=IdGroup(HomotopyGroup(G,1));</span>
<span class="GAPprompt">></span> <span class="GAPinput">inv[2]:=IdGroup(HomotopyGroup(G,2));</span>
<span class="GAPprompt">></span> <span class="GAPinput">return inv;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=Classify(L,Invariants);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(C);</span>
</pre></div>
<p>The following additional commands use second and third integral homology in conjunction with the first two homotopy groups to prove that the list <span class="SimpleMath">\(L\)</span> contains <strong class="button">at least</strong> <span class="SimpleMath">\(49\)</span> distinct quasi-isomorphism types.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Invariants2:=function(G)</span>
<span class="GAPprompt">></span> <span class="GAPinput">local inv;</span>
<span class="GAPprompt">></span> <span class="GAPinput">inv:=[];</span>
<span class="GAPprompt">></span> <span class="GAPinput">inv[1]:=Homology(G,2);</span>
<span class="GAPprompt">></span> <span class="GAPinput">inv[2]:=Homology(G,3);</span>
<span class="GAPprompt">></span> <span class="GAPinput">return inv;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=RefineClassification(C,Invariants2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(C);</span>
49
</pre></div>
<p>The following commands show that the above list <span class="SimpleMath">\(L\)</span> contains <strong class="button">at most</strong> <span class="SimpleMath">\(51\)</span> distinct quasi-isomorphism types.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=List(L,QuasiIsomorph);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for q in Q do</span>
<span class="GAPprompt">></span> <span class="GAPinput">bool:=true;;</span>
<span class="GAPprompt">></span> <span class="GAPinput">for m in M do</span>
<span class="GAPprompt">></span> <span class="GAPinput">if not IsomorphismCatOneGroups(m,q)=fail then bool:=false; break; fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">></span> <span class="GAPinput">if bool then Add(M,q); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(M);</span>
51
</pre></div>
<p><a id="X7D99B7AA780D8209" name="X7D99B7AA780D8209"></a></p>
<h4>12.10 <span class="Heading">Identifying cat<span class="SimpleMath">\(^1\)</span>-groups of low order</span></h4>
<p>Let us define the <em>order</em> of a cat<span class="SimpleMath">\(^1\)</span>-group to be the order of its underlying group. The function <code class="code">IdQuasiCatOneGroup(C)</code> inputs a cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(C\)</span> of "low order" and returns an integer pair <span class="SimpleMath">\([n,k]\)</span> that uniquely idenifies the quasi-isomorphism type of <span class="SimpleMath">\(C\)</span>. The integer <span class="SimpleMath">\(n\)</span> is the order of a smallest cat<span class="SimpleMath">\(^1\)</span>-group quasi-isomorphic to <span class="SimpleMath">\(C\)</span>. The integer <span class="SimpleMath">\(k\)</span> identifies a particular cat<span class="SimpleMath">\(^1\)</span>-group of order <span class="SimpleMath">\(n\)</span>.</p>
<p>The following commands use this function to show that there are precisely <span class="SimpleMath">\(49\)</span> distinct quasi-isomorphism types of cat<span class="SimpleMath">\(^1\)</span>-groups of order <span class="SimpleMath">\(16\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for G in AllSmallGroups(16) do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Append(L,CatOneGroupsByGroup(G));</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=List(L,IdQuasiCatOneGroup);</span>
[ [ 16, 1 ], [ 16, 2 ], [ 16, 3 ], [ 16, 4 ], [ 16, 5 ], [ 4, 4 ], [ 1, 1 ],
[ 16, 6 ], [ 16, 7 ], [ 16, 8 ], [ 16, 9 ], [ 16, 10 ], [ 16, 11 ],
[ 16, 9 ], [ 16, 12 ], [ 16, 13 ], [ 16, 14 ], [ 16, 15 ], [ 4, 1 ],
[ 4, 2 ], [ 16, 16 ], [ 16, 17 ], [ 16, 18 ], [ 16, 19 ], [ 16, 20 ],
[ 16, 21 ], [ 16, 22 ], [ 16, 23 ], [ 16, 24 ], [ 16, 25 ], [ 16, 26 ],
[ 16, 27 ], [ 16, 28 ], [ 4, 3 ], [ 4, 1 ], [ 4, 4 ], [ 4, 4 ], [ 4, 2 ],
[ 4, 5 ], [ 16, 29 ], [ 16, 30 ], [ 16, 31 ], [ 16, 32 ], [ 16, 33 ],
[ 16, 34 ], [ 4, 3 ], [ 4, 4 ], [ 4, 4 ], [ 16, 35 ], [ 16, 36 ], [ 4, 3 ],
[ 16, 37 ], [ 16, 38 ], [ 16, 39 ], [ 16, 40 ], [ 16, 41 ], [ 16, 42 ],
[ 16, 43 ], [ 4, 3 ], [ 4, 4 ], [ 1, 1 ], [ 4, 5 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(SSortedList(M));</span>
49
</pre></div>
<p>The next example first identifies the order and the identity number of the cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(C\)</span> corresponding to the crossed module (see <a href="chap12_mj.html#X808C6B357F8BADC1"><span class="RefLink">12.1</span></a>)</p>
<p class="center">\[\iota\colon G \longrightarrow Aut(G), g \mapsto (x\mapsto gxg^{-1})\]</p>
<p>for the dihedral group <span class="SimpleMath">\(G\)</span> of order <span class="SimpleMath">\(10\)</span>. It then realizes a smallest possible cat<span class="SimpleMath">\(^1\)</span>-group <span class="SimpleMath">\(D\)</span> of this quasi-isomorphism type.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(10));</span>
Cat-1-group with underlying group Group( [ f1, f2, f3, f4, f5 ] ) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(C);</span>
200
<span class="GAPprompt">gap></span> <span class="GAPinput">IdCatOneGroup(C);</span>
[ 200, 42, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput"></span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IdQuasiCatOneGroup(C);</span>
[ 2, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=SmallCatOneGroup(2,1);</span>
Cat-1-group with underlying group Group( [ f1 ] ) .
</pre></div>
<p><a id="X7F386CF078CB9A20" name="X7F386CF078CB9A20"></a></p>
<h4>12.11 <span class="Heading">Identifying crossed modules of low order</span></h4>
<p>The following commands construct the crossed module <span class="SimpleMath">\(\partial \colon G\otimes G \rightarrow G\)</span> involving the nonabelian tensor square of the dihedral group $G$ of order <span class="SimpleMath">\(10\)</span>, identify it as being number <span class="SimpleMath">\(71\)</span> in the list of crossed modules of order <span class="SimpleMath">\(100\)</span>, create a quasi-isomorphic crossed module of order <span class="SimpleMath">\(4\)</span>, and finally construct the corresponding cat<span class="SimpleMath">\(^1\)</span>-group of order <span class="SimpleMath">\(100\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=DihedralGroup(10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=NonabelianTensorSquareAsCrossedModule(G);</span>
Crossed module with group homomorphism GroupHomomorphismByImages( Group(
[ f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1 ] ), Group( [ f1, f2 ] ),
[ f3*f1*f3^-1*f1^-1, f3*f2*f3^-1*f2^-1 ], [ <identity> of ..., f2^3 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">IdCrossedModule(T);</span>
[ 100, 71 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuasiIsomorph(T);</span>
Crossed module with group homomorphism Pcgs([ f2 ]) -> [ <identity> of ... ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(Q);</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=CatOneGroupByCrossedModule(T);</span>
Cat-1-group with underlying group Group( [ F1, F2, F1 ] ) .
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap11_mj.html">[Previous Chapter]</a> <a href="chap13_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|