1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 13: Congruence Subgroups, Cuspidal Cohomology and Hecke Operators</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap13" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap12.html">[Previous Chapter]</a> <a href="chap14.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap13_mj.html">[MathJax on]</a></p>
<p><a id="X86D5DB887ACB1661" name="X86D5DB887ACB1661"></a></p>
<div class="ChapSects"><a href="chap13.html#X86D5DB887ACB1661">13 <span class="Heading">Congruence Subgroups, Cuspidal Cohomology and Hecke Operators</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X79A1974B7B4987DE">13.1 <span class="Heading">Eichler-Shimura isomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7BFA2C91868255D9">13.2 <span class="Heading">Generators for <span class="SimpleMath">SL_2( Z)</span> and the cubic tree</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7D1A56967A073A8B">13.3 <span class="Heading">One-dimensional fundamental domains and
generators for congruence subgroups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X818BFA9A826C0DB3">13.4 <span class="Heading">Cohomology of congruence subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap13.html#X7F55F8EA82FE9122">13.4-1 <span class="Heading">Cohomology with rational coefficients</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X84D30F1580CD42D1">13.5 <span class="Heading">Cuspidal cohomology</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X80861D3F87C29C43">13.6 <span class="Heading">Hecke operators on forms of weight 2</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X831BB0897B988DA3">13.7 <span class="Heading">Hecke operators on forms of weight <span class="SimpleMath">≥ 2</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X84CC51EE8525E0D9">13.8 <span class="Heading">Reconstructing modular forms from cohomology computations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X8180E53C834301EF">13.9 <span class="Heading">The Picard group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X858B1B5D8506FE81">13.10 <span class="Heading">Bianchi groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X851390E07C3B3BB1">13.11 <span class="Heading">(Co)homology of Bianchi groups and <span class="SimpleMath">SL_2(cal O_-d)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X86A6858884B9C05B">13.12 <span class="Heading">Some other infinite matrix groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7EF5D97281EB66DA">13.13 <span class="Heading">Ideals and finite quotient groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X7D1F72287F14C5E1">13.14 <span class="Heading">Congruence subgroups for ideals</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap13.html#X85E912617AFE03F4">13.15 <span class="Heading">First homology</span></a>
</span>
</div>
</div>
<h3>13 <span class="Heading">Congruence Subgroups, Cuspidal Cohomology and Hecke Operators</span></h3>
<p>In this chapter we explain how HAP can be used to make computions about modular forms associated to congruence subgroups <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SL_2( Z)</span>. Also, in Subsection 10.8 onwards, we demonstrate cohomology computations for the <em>Picard group</em> <span class="SimpleMath">SL_2( Z[i])</span>, some <em>Bianchi groups</em> <span class="SimpleMath">PSL_2(cal O_-d)</span> where <span class="SimpleMath">cal O_d</span> is the ring of integers of <span class="SimpleMath">Q(sqrt-d)</span> for square free positive integer <span class="SimpleMath">d</span>, and some other groups of the form <span class="SimpleMath">SL_m(cal O)</span>, <span class="SimpleMath">GL_m(cal O)</span>, <span class="SimpleMath">PSL_m(cal O)</span>, <span class="SimpleMath">PGL_m(cal O)</span>, for <span class="SimpleMath">m=2,3,4</span> and certain <span class="SimpleMath">cal O= Z, cal O_-d</span>.</p>
<p><a id="X79A1974B7B4987DE" name="X79A1974B7B4987DE"></a></p>
<h4>13.1 <span class="Heading">Eichler-Shimura isomorphism</span></h4>
<p>We begin by recalling the Eichler-Shimura isomorphism <a href="chapBib.html#biBeichler">[Eic57]</a><a href="chapBib.html#biBshimura">[Shi59]</a></p>
<p class="pcenter"> S_k(\Gamma) \oplus \overline{S_k(\Gamma)} \oplus E_k(\Gamma) \cong_{\sf Hecke} H^1(\Gamma,P_{\mathbb C}(k-2))</p>
<p>which relates the cohomology of groups to the theory of modular forms associated to a finite index subgroup <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SL_2( Z)</span>. In subsequent sections we explain how to compute with the right-hand side of the isomorphism. But first, for completeness, let us define the terms on the left-hand side.</p>
<p>Let <span class="SimpleMath">N</span> be a positive integer. A subgroup <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SL_2( Z)</span> is said to be a <em>congruence subgroup</em> of level <span class="SimpleMath">N</span> if it contains the kernel of the canonical homomorphism <span class="SimpleMath">π_N: SL_2( Z) → SL_2( Z/N Z)</span>. So any congruence subgroup is of finite index in <span class="SimpleMath">SL_2( Z)</span>, but the converse is not true.</p>
<p>One congruence subgroup of particular interest is the group <span class="SimpleMath">Γ_1(N)=ker(π_N)</span>, known as the <em>principal congruence subgroup</em> of level <span class="SimpleMath">N</span>. Another congruence subgroup of particular interest is the group <span class="SimpleMath">Γ_0(N)</span> of those matrices that project to upper triangular matrices in <span class="SimpleMath">SL_2( Z/N Z)</span>.</p>
<p>A <em>modular form</em> of weight <span class="SimpleMath">k</span> for a congruence subgroup <span class="SimpleMath">Γ</span> is a complex valued function on the upper-half plane, <span class="SimpleMath">f: frakh}={z∈ C : Re(z)>0} → C</span>, satisfying:</p>
<ul>
<li><p><span class="SimpleMath">displaystyle f(fracaz+bcz+d) = (cz+d)^k f(z)</span> for <span class="SimpleMath">(beginarraylla&b c &d endarray) ∈ Γ</span>,</p>
</li>
<li><p><span class="SimpleMath">f</span> is `holomorphic' on the <em>extended upper-half plane</em> <span class="SimpleMath">frakh^∗ = frakh ∪ Q ∪ {∞}</span> obtained from the upper-half plane by `adjoining a point at each cusp'.</p>
</li>
</ul>
<p>The collection of all weight <span class="SimpleMath">k</span> modular forms for <span class="SimpleMath">Γ</span> form a vector space <span class="SimpleMath">M_k(Γ)</span> over <span class="SimpleMath">C</span>.</p>
<p>A modular form <span class="SimpleMath">f</span> is said to be a <em>cusp form</em> if <span class="SimpleMath">f(∞)=0</span>. The collection of all weight <span class="SimpleMath">k</span> cusp forms for <span class="SimpleMath">Γ</span> form a vector subspace <span class="SimpleMath">S_k(Γ)</span>. There is a decomposition</p>
<p class="pcenter">M_k(\Gamma) \cong S_k(\Gamma) \oplus E_k(\Gamma)</p>
<p>involving a summand <span class="SimpleMath">E_k(Γ)</span> known as the <em>Eisenstein space</em>. See <a href="chapBib.html#biBstein">[Ste07]</a> for further introductory details on modular forms.</p>
<p>The Eichler-Shimura isomorphism is more than an isomorphism of vector spaces. It is an isomorphism of Hecke modules: both sides admit notions of <em>Hecke operators</em>, and the isomorphism preserves these operators. The bar on the left-hand side of the isomorphism denotes complex conjugation, or <em>anti-holomorphic</em> forms. See <a href="chapBib.html#biBwieser">[Wie78]</a> for a full account of the isomorphism.</p>
<p>On the right-hand side of the isomorphism, the <span class="SimpleMath">ZΓ</span>-module <span class="SimpleMath">P_ C(k-2)⊂ C[x,y]</span> denotes the space of homogeneous degree <span class="SimpleMath">k-2</span> polynomials with action of <span class="SimpleMath">Γ</span> given by</p>
<p class="pcenter">\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot p(x,y) = p(dx-by,-cx+ay)\ .</p>
<p>In particular <span class="SimpleMath">P_ C(0)= C</span> is the trivial module. Below we shall compute with the integral analogue <span class="SimpleMath">P_ Z(k-2) ⊂ Z[x,y]</span>.</p>
<p>In the following sections we explain how to use the right-hand side of the Eichler-Shimura isomorphism to compute eigenvalues of the Hecke operators restricted to the subspace <span class="SimpleMath">S_k(Γ)</span> of cusp forms.</p>
<p><a id="X7BFA2C91868255D9" name="X7BFA2C91868255D9"></a></p>
<h4>13.2 <span class="Heading">Generators for <span class="SimpleMath">SL_2( Z)</span> and the cubic tree</span></h4>
<p>The matrices <span class="SimpleMath">S=(beginarrayrr0&-1 1 &0 endarray)</span> and <span class="SimpleMath">T=(beginarrayrr1&1 0 &1 endarray)</span> generate <span class="SimpleMath">SL_2( Z)</span> and it is not difficult to devise an algorithm for expressing an arbitrary integer matrix <span class="SimpleMath">A</span> of determinant <span class="SimpleMath">1</span> as a word in <span class="SimpleMath">S</span>, <span class="SimpleMath">T</span> and their inverses. The following illustrates such an algorithm.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=[[4,9],[7,16]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">word:=AsWordInSL2Z(A);</span>
[ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, -1 ], [ 0, 1 ] ],
[ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ],
[ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ],
[ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 1, 1 ], [ 0, 1 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Product(word);</span>
[ [ 4, 9 ], [ 7, 16 ] ]
</pre></div>
<p>It is convenient to introduce the matrix <span class="SimpleMath">U=ST = (beginarrayrr0&-1 1 &1 endarray)</span>. The matrices <span class="SimpleMath">S</span> and <span class="SimpleMath">U</span> also generate <span class="SimpleMath">SL_2( Z)</span>. In fact we have a free presentation <span class="SimpleMath">SL_2( Z)= ⟨ S,U | S^4=U^6=1, S^2=U^3 ⟩</span>.</p>
<p>The <em>cubic tree</em> <span class="SimpleMath">cal T</span> is a tree (<em>i.e.</em> a <span class="SimpleMath">1</span>-dimensional contractible regular CW-complex) with countably infinitely many edges in which each vertex has degree <span class="SimpleMath">3</span>. We can realize the cubic tree <span class="SimpleMath">cal T</span> by taking the left cosets of <span class="SimpleMath">cal U=⟨ U⟩</span> in <span class="SimpleMath">SL_2( Z)</span> as vertices, and joining cosets <span class="SimpleMath">xcal U</span> and <span class="SimpleMath">ycal U</span> by an edge if, and only if, <span class="SimpleMath">x^-1y ∈ cal U Scal U</span>. Thus the vertex <span class="SimpleMath">cal U</span> is joined to <span class="SimpleMath">Scal U</span>, <span class="SimpleMath">UScal U</span> and <span class="SimpleMath">U^2Scal U</span>. The vertices of this tree are in one-to-one correspondence with all reduced words in <span class="SimpleMath">S</span>, <span class="SimpleMath">U</span> and <span class="SimpleMath">U^2</span> that, apart from the identity, end in <span class="SimpleMath">S</span>.</p>
<p>From our realization of the cubic tree <span class="SimpleMath">cal T</span> we see that <span class="SimpleMath">SL_2( Z)</span> acts on <span class="SimpleMath">cal T</span> in such a way that each vertex is stabilized by a cyclic subgroup conjugate to <span class="SimpleMath">cal U=⟨ U⟩</span> and each edge is stabilized by a cyclic subgroup conjugate to <span class="SimpleMath">cal S =⟨ S ⟩</span>.</p>
<p>In order to store this action of <span class="SimpleMath">SL_2( Z)</span> on the cubic tree <span class="SimpleMath">cal T</span> we just need to record the following finite amount of information.</p>
<p><img src="images/fdsl2.png" align="center" width="350" alt="Information for the cubic tree"/></p>
<p><a id="X7D1A56967A073A8B" name="X7D1A56967A073A8B"></a></p>
<h4>13.3 <span class="Heading">One-dimensional fundamental domains and
generators for congruence subgroups</span></h4>
<p>The modular group <span class="SimpleMath">cal M=PSL_2( Z)</span> is isomorphic, as an abstract group, to the free product <span class="SimpleMath">Z_2∗ Z_3</span>. By the Kurosh subgroup theorem, any finite index subgroup <span class="SimpleMath">M ⊂ cal M</span> is isomorphic to the free product of finitely many copies of <span class="SimpleMath">Z_2</span>s, <span class="SimpleMath">Z_3</span>s and <span class="SimpleMath">Z</span>s. A subset <span class="SimpleMath">underline x ⊂ M</span> is an <em>independent</em> set of subgroup generators if <span class="SimpleMath">M</span> is the free product of the cyclic subgroups <span class="SimpleMath"><x ></span> as <span class="SimpleMath">x</span> runs over <span class="SimpleMath">underline x</span>. Let us say that a set of elements in <span class="SimpleMath">SL_2( Z)</span> is <em>projectively independent</em> if it maps injectively onto an independent set of subgroup generators <span class="SimpleMath">underline x⊂ cal M</span>. The generating set <span class="SimpleMath">{S,U}</span> for <span class="SimpleMath">SL_2( Z)</span> given in the preceding section is projectively independent.</p>
<p>We are interested in constructing a set of generators for a given congruence subgroup <span class="SimpleMath">Γ</span>. If a small generating set for <span class="SimpleMath">Γ</span> is required then we should aim to construct one which is close to being projectively independent.</p>
<p>It is useful to invoke the following general result which follows from a perturbation result about free <span class="SimpleMath">ZG</span>-resolutons in <a href="chapBib.html#biBellisharrisskoldberg">[EHS06, Theorem 2]</a> and an old observation of John Milnor that a free <span class="SimpleMath">ZG</span>-resolution can be realized as the cellular chain complex of a CW-complex if it can be so realized in low dimensions.</p>
<p><strong class="button">Theorem.</strong> Let <span class="SimpleMath">X</span> be a contractible CW-complex on which a group <span class="SimpleMath">G</span> acts by permuting cells. The cellular chain complex <span class="SimpleMath">C_∗ X</span> is a <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> which typically is not free. Let <span class="SimpleMath">[e^n]</span> denote the orbit of the n-cell <span class="SimpleMath">e^n</span> under the action. Let <span class="SimpleMath">G^e^n ≤ G</span> denote the stabilizer subgroup of <span class="SimpleMath">e^n</span>, in which group elements are not required to stabilize <span class="SimpleMath">e^n</span> point-wise. Let <span class="SimpleMath">Y_e^n</span> denote a contractible CW-complex on which <span class="SimpleMath">G^e^n</span> acts cellularly and freely. Then there exists a contractible CW-complex <span class="SimpleMath">W</span> on which <span class="SimpleMath">G</span> acts cellularly and freely, and in which the orbits of <span class="SimpleMath">n</span>-cells are labelled by <span class="SimpleMath">[e^p]⊗ [f^q]</span> where <span class="SimpleMath">p+q=n</span> and <span class="SimpleMath">[e^p]</span> ranges over the <span class="SimpleMath">G</span>-orbits of <span class="SimpleMath">p</span>-cells in <span class="SimpleMath">X</span>, <span class="SimpleMath">[f^q]</span> ranges over the <span class="SimpleMath">G^e^p</span>-orbits of <span class="SimpleMath">q</span>-cells in <span class="SimpleMath">Y_e^p</span>.</p>
<p>Let <span class="SimpleMath">W</span> be as in the theorem. Then the quotient CW-complex <span class="SimpleMath">B_G=W/G</span> is a classifying space for <span class="SimpleMath">G</span>. Let <span class="SimpleMath">T</span> denote a maximal tree in the <span class="SimpleMath">1</span>-skeleton <span class="SimpleMath">B^1_G</span>. Basic geometric group theory tells us that the <span class="SimpleMath">1</span>-cells in <span class="SimpleMath">B^1_G∖ T</span> correspond to a generating set for <span class="SimpleMath">G</span>.</p>
<p>Suppose we wish to compute a set of generators for a principal congruence subgroup <span class="SimpleMath">Γ=Γ_1(N)</span>. In the above theorem take <span class="SimpleMath">X=cal T</span> to be the cubic tree, and note that <span class="SimpleMath">Γ</span> acts freely on <span class="SimpleMath">cal T</span> and thus that <span class="SimpleMath">W=cal T</span>. To determine the <span class="SimpleMath">1</span>-cells of <span class="SimpleMath">B_Γ∖ T</span> we need to determine a cellular subspace <span class="SimpleMath">D_Γ ⊂ cal T</span> whose images under the action of <span class="SimpleMath">Γ</span> cover <span class="SimpleMath">cal T</span> and are pairwise either disjoint or identical. The subspace <span class="SimpleMath">D_Γ</span> will not be a CW-complex as it won't be closed, but it can be chosen to be connected, and hence contractible. We call <span class="SimpleMath">D_Γ</span> a <em>fundamental region</em> for <span class="SimpleMath">Γ</span>. We denote by <span class="SimpleMath">mathring D_Γ</span> the largest CW-subcomplex of <span class="SimpleMath">D_Γ</span>. The vertices of <span class="SimpleMath">mathring D_Γ</span> are the same as the vertices of <span class="SimpleMath">D_Γ</span>. Thus <span class="SimpleMath">mathring D_Γ</span> is a subtree of the cubic tree with <span class="SimpleMath">|Γ|/6</span> vertices. For each vertex <span class="SimpleMath">v</span> in the tree <span class="SimpleMath">mathring D_Γ</span> define <span class="SimpleMath">η(v)=3 - degree(v)</span>. Then the number of generators for <span class="SimpleMath">Γ</span> will be <span class="SimpleMath">(1/2)∑_v∈ mathring D_Γ η(v)</span>.</p>
<p>The following commands determine projectively independent generators for <span class="SimpleMath">Γ_1(6)</span> and display <span class="SimpleMath">mathring D_Γ_1(6)</span>. The subgroup <span class="SimpleMath">Γ_1(6)</span> is free on <span class="SimpleMath">13</span> generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_PrincipalCongruenceSubgroup(6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">HAP_SL2TreeDisplay(G);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:=GeneratorsOfGroup(G);</span>
[ [ [ -83, -18 ], [ 60, 13 ] ], [ [ -77, -18 ], [ 30, 7 ] ],
[ [ -65, -12 ], [ 168, 31 ] ], [ [ -53, -12 ], [ 84, 19 ] ],
[ [ -47, -18 ], [ 222, 85 ] ], [ [ -41, -12 ], [ 24, 7 ] ],
[ [ -35, -6 ], [ 6, 1 ] ], [ [ -11, -18 ], [ 30, 49 ] ],
[ [ -11, -6 ], [ 24, 13 ] ], [ [ -5, -18 ], [ 12, 43 ] ],
[ [ -5, -12 ], [ 18, 43 ] ], [ [ -5, -6 ], [ 6, 7 ] ],
[ [ 1, 0 ], [ -6, 1 ] ] ]
</pre></div>
<p><img src="images/pctree6.gif" align="center" width="350" alt="Fundamental region in the cubic tree"/></p>
<p>An alternative but very related approach to computing generators of congruence subgroups of <span class="SimpleMath">SL_2( Z)</span> is described in <a href="chapBib.html#biBkulkarni">[Kul91]</a>.</p>
<p>The congruence subgroup <span class="SimpleMath">Γ_0(N)</span> does not act freely on the vertices of <span class="SimpleMath">cal T</span>, and so one needs to incorporate a generator for the cyclic stabilizer group according to the above theorem. Alternatively, we can replace the cubic tree by a six-fold cover <span class="SimpleMath">cal T'</span> on whose vertex set <span class="SimpleMath">Γ_0(N)</span> acts freely. This alternative approach will produce a redundant set of generators. The following commands display <span class="SimpleMath">mathring D_Γ_0(39)</span> for a fundamental region in <span class="SimpleMath">cal T'</span>. They also use the corresponding generating set for <span class="SimpleMath">Γ_0(39)</span>, involving <span class="SimpleMath">18</span> generators, to compute the abelianization <span class="SimpleMath">Γ_0(39)^ab= Z_2 ⊕ Z_3^2 ⊕ Z^9</span>. The abelianization shows that any generating set has at least <span class="SimpleMath">11</span> generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">HAP_SL2TreeDisplay(G);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(GeneratorsOfGroup(G));</span>
18
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(G);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3 ]
</pre></div>
<p><img src="images/g0tree39.gif" align="center" width="350" alt="Fundamental region in the cubic tree"/></p>
<p>Note that to compute <span class="SimpleMath">D_Γ</span> one only needs to be able to test whether a given matrix lies in <span class="SimpleMath">Γ</span> or not. Given an inclusion <span class="SimpleMath">Γ'⊂ Γ</span> of congruence subgroups, it is straightforward to use the trees <span class="SimpleMath">mathring D_Γ'</span> and <span class="SimpleMath">mathring D_Γ</span> to compute a system of coset representative for <span class="SimpleMath">Γ'∖ Γ</span>.</p>
<p><a id="X818BFA9A826C0DB3" name="X818BFA9A826C0DB3"></a></p>
<h4>13.4 <span class="Heading">Cohomology of congruence subgroups</span></h4>
<p>To compute the cohomology <span class="SimpleMath">H^n(Γ,A)</span> of a congruence subgroup <span class="SimpleMath">Γ</span> with coefficients in a <span class="SimpleMath">ZΓ</span>-module <span class="SimpleMath">A</span> we need to construct <span class="SimpleMath">n+1</span> terms of a free <span class="SimpleMath">ZΓ</span>-resolution of <span class="SimpleMath">Z</span>. We can do this by first using perturbation techniques (as described in <a href="chapBib.html#biBbuiellis">[BE14]</a>) to combine the cubic tree with resolutions for the cyclic groups of order <span class="SimpleMath">4</span> and <span class="SimpleMath">6</span> in order to produce a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span> for <span class="SimpleMath">G=SL_2( Z)</span>. This resolution is also a free <span class="SimpleMath">ZΓ</span>-resolution with each term of rank</p>
<p class="pcenter">{\rm rank}_{\mathbb Z\Gamma} R_k = |G:\Gamma|\times {\rm rank}_{\mathbb ZG} R_k\ .</p>
<p>For congruence subgroups of lowish index in <span class="SimpleMath">G</span> this resolution suffices to make computations.</p>
<p>The following commands compute</p>
<p class="pcenter">H^1(\Gamma_0(39),\mathbb Z) = \mathbb Z^9\ .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2Z_alt(2);</span>
Resolution of length 2 in characteristic 0 for SL(2,Integers) .
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,gamma);</span>
Resolution of length 2 in characteristic 0 for
CongruenceSubgroupGamma0( 39) .
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(HomToIntegers(S),1);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>This computation establishes that the space <span class="SimpleMath">M_2(Γ_0(39))</span> of weight <span class="SimpleMath">2</span> modular forms is of dimension <span class="SimpleMath">9</span>.</p>
<p>The following commands show that <span class="SimpleMath">rank_ ZΓ_0(39) R_1 = 112</span> but that it is possible to apply `Tietze like' simplifications to <span class="SimpleMath">R_∗</span> to obtain a free <span class="SimpleMath">ZΓ_0(39)</span>-resolution <span class="SimpleMath">T_∗</span> with <span class="SimpleMath">rank_ ZΓ_0(39) T_1 = 11</span>. It is more efficient to work with <span class="SimpleMath">T_∗</span> when making cohomology computations with coefficients in a module <span class="SimpleMath">A</span> of large rank.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S!.dimension(1);</span>
112
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=TietzeReducedResolution(S);</span>
Resolution of length 2 in characteristic 0 for CongruenceSubgroupGamma0(
39) .
<span class="GAPprompt">gap></span> <span class="GAPinput">T!.dimension(1);</span>
11
</pre></div>
<p>The following commands compute</p>
<p class="pcenter">H^1(\Gamma_0(39),P_{\mathbb Z}(8)) = \mathbb Z_3 \oplus \mathbb Z_6
\oplus \mathbb Z_{168} \oplus \mathbb Z^{84}\ ,</p>
<p class="pcenter">H^1(\Gamma_0(39),P_{\mathbb Z}(9)) = \mathbb Z_2 \oplus \mathbb Z_2 .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=HomogeneousPolynomials(gamma,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:=Cohomology(HomToIntegralModule(T,P),1);</span>
[ 3, 6, 168, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(c);</span>
87
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=HomogeneousPolynomials(gamma,9);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:=Cohomology(HomToIntegralModule(T,P),1);</span>
[ 2, 2 ]
</pre></div>
<p>This computation establishes that the space <span class="SimpleMath">M_10(Γ_0(39))</span> of weight <span class="SimpleMath">10</span> modular forms is of dimension <span class="SimpleMath">84</span>, and <span class="SimpleMath">M_11(Γ_0(39))</span> is of dimension <span class="SimpleMath">0</span>. (There are never any modular forms of odd weight, and so <span class="SimpleMath">M_k(Γ)=0</span> for all odd <span class="SimpleMath">k</span> and any congruence subgroup <span class="SimpleMath">Γ</span>.)</p>
<p><a id="X7F55F8EA82FE9122" name="X7F55F8EA82FE9122"></a></p>
<h5>13.4-1 <span class="Heading">Cohomology with rational coefficients</span></h5>
<p>To calculate cohomology <span class="SimpleMath">H^n(Γ,A)</span> with coefficients in a <span class="SimpleMath">QΓ</span>-module <span class="SimpleMath">A</span> it suffices to construct a resolution of <span class="SimpleMath">Z</span> by non-free <span class="SimpleMath">ZΓ</span>-modules where <span class="SimpleMath">Γ</span> acts with finite stabilizer groups on each module in the resolution. Computing over <span class="SimpleMath">Q</span> is computationally less expensive than computing over <span class="SimpleMath">Z</span>. The following commands first compute <span class="SimpleMath">H^1(Γ_0(39), Q) = H_1(Γ_0(39), Q)= Q^9</span>. As a larger example, they then compute <span class="SimpleMath">H^1(Γ_0(2^13-1), Q) = Q^1365</span> where <span class="SimpleMath">Γ_0(2^13-1)</span> has index <span class="SimpleMath">8192</span> in <span class="SimpleMath">SL_2( Z)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,Z)");</span>
Non-free resolution in characteristic 0 for SL(2,Integers) .
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">KK:=NonFreeResolutionFiniteSubgroup(K,gamma);</span>
Non-free resolution in characteristic 0 for <matrix group with
18 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithRationals(KK);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,1);</span>
9
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(2^13-1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IndexInSL2Z(G);</span>
8192
<span class="GAPprompt">gap></span> <span class="GAPinput">KK:=NonFreeResolutionFiniteSubgroup(K,G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithRationals(KK);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,1);</span>
1365
</pre></div>
<p><a id="X84D30F1580CD42D1" name="X84D30F1580CD42D1"></a></p>
<h4>13.5 <span class="Heading">Cuspidal cohomology</span></h4>
<p>To define and compute cuspidal cohomology we consider the action of <span class="SimpleMath">SL_2( Z)</span> on the upper-half plane <span class="SimpleMath">frak h</span> given by</p>
<p class="pcenter">\left(\begin{array}{ll}a&b\\ c &d \end{array}\right) z =
\frac{az +b}{cz+d}\ .</p>
<p>A standard 'fundamental domain' for this action is the region</p>
<p class="pcenter">\begin{array}{ll}
D=&\{z\in {\frak h}\ :\ |z| > 1, |{\rm Re}(z)| < \frac{1}{2}\} \\
&
\cup\ \{z\in {\frak h} \ :\ |z| \ge 1, {\rm Re}(z)=-\frac{1}{2}\}\\
& \cup\ \{z \in {\frak h}\ :\ |z|=1, -\frac{1}{2} \le {\rm Re}(z) \le 0\}
\end{array}
</p>
<p>illustrated below.</p>
<p><img src="images/filename-1.png" align="center" width="450" alt="Fundamental domain in the upper-half plane"/></p>
<p>The action factors through an action of <span class="SimpleMath">PSL_2( Z) =SL_2( Z)/⟨ (beginarrayrr-1&0 0 &-1 endarray)⟩</span>. The images of <span class="SimpleMath">D</span> under the action of <span class="SimpleMath">PSL_2( Z)</span> cover the upper-half plane, and any two images have at most a single point in common. The possible common points are the bottom left-hand corner point which is stabilized by <span class="SimpleMath">⟨ U⟩</span>, and the bottom middle point which is stabilized by <span class="SimpleMath">⟨ S⟩</span>.</p>
<p>A congruence subgroup <span class="SimpleMath">Γ</span> has a `fundamental domain' <span class="SimpleMath">D_Γ</span> equal to a union of finitely many copies of <span class="SimpleMath">D</span>, one copy for each coset in <span class="SimpleMath">Γ∖ SL_2( Z)</span>. The quotient space <span class="SimpleMath">X=Γ∖ frak h</span> is not compact, and can be compactified in several ways. We are interested in the Borel-Serre compactification. This is a space <span class="SimpleMath">X^BS</span> for which there is an inclusion <span class="SimpleMath">X↪ X^BS</span> and this inclusion is a homotopy equivalence. One defines the <em>boundary</em> <span class="SimpleMath">∂ X^BS = X^BS - X</span> and uses the inclusion <span class="SimpleMath">∂ X^BS ↪ X^BS ≃ X</span> to define the cuspidal cohomology group, over the ground ring <span class="SimpleMath">C</span>, as</p>
<p class="pcenter"> H_{cusp}^n(\Gamma,P_{\mathbb C}(k-2)) = \ker (\ H^n(X,P_{\mathbb C}(k-2)) \rightarrow
H^n(\partial X^{BS},P_{\mathbb C}(k-2)) \ ).</p>
<p>Strictly speaking, this is the definition of <em>interior cohomology</em> <span class="SimpleMath">H_!^n(Γ,P_ C(k-2))</span> which in general contains the cuspidal cohomology as a subgroup. However, for congruence subgroups of <span class="SimpleMath">SL_2( Z)</span> there is equality <span class="SimpleMath">H_!^n(Γ,P_ C(k-2)) = H_cusp^n(Γ,P_ C(k-2))</span>.</p>
<p>Working over <span class="SimpleMath">C</span> has the advantage of avoiding the technical issue that <span class="SimpleMath">Γ</span> does not necessarily act freely on <span class="SimpleMath">frak h</span> since there are points with finite cyclic stabilizer groups in <span class="SimpleMath">SL_2( Z)</span>. But it has the disadvantage of losing information about torsion in cohomology. So HAP confronts the issue by working with a contractible CW-complex <span class="SimpleMath">tilde X^BS</span> on which <span class="SimpleMath">Γ</span> acts freely, and <span class="SimpleMath">Γ</span>-equivariant inclusion <span class="SimpleMath">∂ tilde X^BS ↪ tilde X^BS</span>. The definition of cuspidal cohomology that we use, which coincides with the above definition when working over <span class="SimpleMath">C</span>, is</p>
<p class="pcenter"> H_{cusp}^n(\Gamma,A) = \ker (\ H^n({\rm Hom}_{\, \mathbb Z\Gamma}(C_\ast(\tilde X^{BS}), A)\, ) \rightarrow
H^n(\ {\rm Hom}_{\, \mathbb Z\Gamma}(C_\ast(\tilde \partial X^{BS}), A)\, \ ).</p>
<p>The following data is recorded and, using perturbation theory, is combined with free resolutions for <span class="SimpleMath">C_4</span> and <span class="SimpleMath">C_6</span> to constuct <span class="SimpleMath">tilde X^BS</span>.</p>
<p><img src="images/filename-2.png" align="center" width="450" alt="Borel-Serre compactified fundamental domain in the upper-half plane"/></p>
<p>The following commands calculate</p>
<p class="pcenter">H^1_{cusp}(\Gamma_0(39),\mathbb Z) = \mathbb Z^6\ .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">k:=2;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);</span>
[ g1, g2, g3, g4, g5, g6, g7, g8, g9 ] -> [ g1^-1*g3, g1^-1*g3, g1^-1*g3,
g1^-1*g3, g1^-1*g2, g1^-1*g3, g1^-1*g4, g1^-1*g4, g1^-1*g4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(Kernel(c));</span>
[ 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>From the Eichler-Shimura isomorphism and the already calculated dimension of <span class="SimpleMath">M_2(Γ_0(39))≅ C^9</span>, we deduce from this cuspidal cohomology that the space <span class="SimpleMath">S_2(Γ_0(39))</span> of cuspidal weight <span class="SimpleMath">2</span> forms is of dimension <span class="SimpleMath">3</span>, and the Eisenstein space <span class="SimpleMath">E_2(Γ_0(39))≅ C^3</span> is of dimension <span class="SimpleMath">3</span>.</p>
<p>The following commands show that the space <span class="SimpleMath">S_4(Γ_0(39))</span> of cuspidal weight <span class="SimpleMath">4</span> forms is of dimension <span class="SimpleMath">12</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">k:=4;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(Kernel(c));</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p><a id="X80861D3F87C29C43" name="X80861D3F87C29C43"></a></p>
<h4>13.6 <span class="Heading">Hecke operators on forms of weight 2</span></h4>
<p>A congruence subgroup <span class="SimpleMath">Γ ≤ SL_2( Z)</span> and element <span class="SimpleMath">g∈ SL_2( Q)</span> determine the subgroup <span class="SimpleMath">Γ' = Γ ∩ gΓ g^-1</span> and homomorphisms</p>
<p class="pcenter"> \Gamma\ \hookleftarrow\ \Gamma'\ \ \stackrel{\gamma \mapsto g^{-1}\gamma g}{\longrightarrow}\ \ g^{-1}\Gamma' g\ \hookrightarrow \Gamma\ . </p>
<p>These homomorphisms give rise to homomorphisms of cohomology groups</p>
<p class="pcenter">H^n(\Gamma,\mathbb Z)\ \ \stackrel{tr}{\leftarrow} \ \ H^n(\Gamma',\mathbb Z) \ \ \stackrel{\alpha}{\leftarrow} \ \ H^n(g^{-1}\Gamma' g,\mathbb Z) \ \ \stackrel{\beta}{\leftarrow} H^n(\Gamma, \mathbb Z) </p>
<p>with <span class="SimpleMath">α</span>, <span class="SimpleMath">β</span> functorial maps, and <span class="SimpleMath">tr</span> the transfer map. We define the composite <span class="SimpleMath">T_g=tr ∘ α ∘ β: H^n(Γ, Z) → H^n(Γ, Z)</span> to be the <em> Hecke component </em> determined by <span class="SimpleMath">g</span>.</p>
<p>For <span class="SimpleMath">Γ=Γ_0(N)</span>, prime integer <span class="SimpleMath">p</span> coprime to <span class="SimpleMath">N</span>, and cohomology degree <span class="SimpleMath">n=1</span> we define the <em>Hecke operator</em> <span class="SimpleMath">T_p =T_g</span> where <span class="SimpleMath">g=(beginarraycc1&00&pendarray)</span>. Further details on this description of Hecke operators can be found in <a href="chapBib.html#biBstein">[Ste07, Appendix by P. Gunnells]</a>.</p>
<p>The following commands compute <span class="SimpleMath">T_2</span> and <span class="SimpleMath">T_5</span> and <span class="SimpleMath">Γ=Γ_0(39)</span>. The commands also compute the eigenvalues of these two Hecke operators. The final command confirms that <span class="SimpleMath">T_2</span> and <span class="SimpleMath">T_5</span> commute. (It is a fact that <span class="SimpleMath">T_pT_q=T_qT_p</span> for all <span class="SimpleMath">p,q</span>.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=2;;k:=2;;T2:=HeckeOperator(gamma,p,k);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(T2);</span>
[ [ -2, -2, 2, 2, 1, 2, 0, 0, 0 ],
[ -2, 0, 1, 2, -2, 2, 2, 2, -2 ],
[ -2, -1, 2, 2, -1, 2, 1, 1, -1 ],
[ -2, -1, 2, 2, 1, 1, 0, 0, 0 ],
[ -1, 0, 0, 2, -3, 2, 3, 3, -3 ],
[ 0, 1, 1, 1, -1, 0, 1, 1, -1 ],
[ -1, 1, 1, -1, 0, 1, 2, -1, 1 ],
[ -1, -1, 0, 2, -3, 2, 1, 4, -1 ],
[ 0, 1, 0, -1, -2, 1, 1, 1, 2 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Eigenvalues(Rationals,T2);</span>
[ 3, 1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=5;;k:=2;;h:=HeckeOperator(gamma,p,k);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(T5);</span>
[ [ -1, -1, 3, 4, 0, 0, 1, 1, -1 ],
[ -5, -1, 5, 4, 0, 0, 3, 3, -3 ],
[ -2, 0, 4, 4, 1, 0, -1, -1, 1 ],
[ -2, 0, 3, 2, -3, 2, 4, 4, -4 ],
[ -4, -2, 4, 4, 3, 0, 1, 1, -1 ],
[ -6, -4, 5, 6, 1, 2, 2, 2, -2 ],
[ 1, 5, 0, -4, -3, 2, 5, -1, 1 ],
[ -2, -2, 2, 4, 0, 0, -2, 4, 2 ],
[ 1, 3, 0, -4, -4, 2, 2, 2, 4 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Eigenvalues(Rationals,T5);</span>
[ 6, 2 ]
gap>T2*T5=T5*T2;
true
</pre></div>
<p><a id="X831BB0897B988DA3" name="X831BB0897B988DA3"></a></p>
<h4>13.7 <span class="Heading">Hecke operators on forms of weight <span class="SimpleMath">≥ 2</span></span></h4>
<p>The above definition of Hecke operator <span class="SimpleMath">T_p</span> for <span class="SimpleMath">Γ=Γ_0(N)</span> extends to a Hecke operator <span class="SimpleMath">T_p: H^1(Γ,P_ Q(k-2) ) → H^1(Γ,P_ Q(k-2) )</span> for <span class="SimpleMath">k≥ 2</span>. We work over the rationals since that is a setting of much interest. The following commands compute the matrix of <span class="SimpleMath">T_2: H^1(Γ,P_ Q(k-2) ) → H^1(Γ,P_ Q(k-2) )</span> for <span class="SimpleMath">Γ=SL_2( Z)</span> and <span class="SimpleMath">k=4</span>;</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">H:=HAP_CongruenceSubgroupGamma0(1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=HeckeOperator(H,2,12);;Display(h);</span>
[ [ 2049, -7560, 0 ],
[ 0, -24, 0 ],
[ 0, 0, -24 ] ]
</pre></div>
<p><a id="X84CC51EE8525E0D9" name="X84CC51EE8525E0D9"></a></p>
<h4>13.8 <span class="Heading">Reconstructing modular forms from cohomology computations</span></h4>
<p>Given a modular form <span class="SimpleMath">f: frak h → C</span> associated to a congruence subgroup <span class="SimpleMath">Γ</span>, and given a compact edge <span class="SimpleMath">e</span> in the tessellation of <span class="SimpleMath">frak h</span> (<em>i.e.</em> an edge in the cubic tree <span class="SimpleMath">cal T</span>) arising from the above fundamental domain for <span class="SimpleMath">SL_2( Z)</span>, we can evaluate</p>
<p class="pcenter">\int_e f(z)\,dz \ .</p>
<p>In this way we obtain a cochain <span class="SimpleMath">f_1: C_1(cal T) → C</span> in <span class="SimpleMath">Hom_ ZΓ(C_1(cal T), C)</span> representing a cohomology class <span class="SimpleMath">c(f) ∈ H^1( Hom_ ZΓ(C_∗(cal T), C) ) = H^1(Γ, C)</span>. The correspondence <span class="SimpleMath">f↦ c(f)</span> underlies the Eichler-Shimura isomorphism. Hecke operators can be used to recover modular forms from cohomology classes.</p>
<p>Let <span class="SimpleMath">Γ=Γ_0(N)</span>. The above defined Hecke operators restrict to operators on cuspidal cohomology. On the left-hand side of the Eichler-Shimura isomorphism Hecke operators restrict to operators <span class="SimpleMath">T_s: S_2(Γ) → S_2(Γ)</span> for <span class="SimpleMath">s≥ 1</span>.</p>
<p>Consider the function <span class="SimpleMath">q=q(z)=e^2π i z</span> which is holomorphic on <span class="SimpleMath">C</span>. For any modular form <span class="SimpleMath">f(z) ∈ M_k(Γ)</span> there are numbers <span class="SimpleMath">a_s</span> such that</p>
<p class="pcenter">f(z) = \sum_{s=0}^\infty a_sq^s </p>
<p>for all <span class="SimpleMath">z∈ frak h</span>. The form <span class="SimpleMath">f</span> is a cusp form if <span class="SimpleMath">a_0=0</span>.</p>
<p>A non-zero cusp form <span class="SimpleMath">f∈ S_2(Γ)</span> is a cusp <em>eigenform</em> if it is simultaneously an eigenvector for the Hecke operators <span class="SimpleMath">T_s</span> for all <span class="SimpleMath">s =1,2,3,⋯</span> coprime to the level <span class="SimpleMath">N</span>. A cusp eigenform is said to be <em>normalized</em> if its coefficient <span class="SimpleMath">a_1=1</span>. It turns out that if <span class="SimpleMath">f</span> is normalized then the coefficient <span class="SimpleMath">a_s</span> is an eigenvalue for <span class="SimpleMath">T_s</span> (see for instance <a href="chapBib.html#biBstein">[Ste07]</a> for details). It can be shown <a href="chapBib.html#biBatkinlehner">[AL70]</a> that <span class="SimpleMath">S_2(Γ_0(N))</span> admits a "basis constructed from eigenforms".</p>
<p>This all implies that, in principle, we can construct an approximation to an explicit basis for the space <span class="SimpleMath">S_2(Γ_0(N))</span> of cusp forms by computing eigenvalues for Hecke operators.</p>
<p>Suppose that we would like a basis for <span class="SimpleMath">S_2(Γ_0(11))</span>. The following commands first show that <span class="SimpleMath">H^1_cusp(Γ_0(11), Z)= Z⊕ Z</span> from which we deduce that <span class="SimpleMath">S_2(Γ_0(11)) = C</span> is <span class="SimpleMath">1</span>-dimensional and thus admits a basis of eigenforms. Then eigenvalues of Hecke operators are calculated to establish that the modular form</p>
<p class="pcenter">f = q -2q^2 -q^3 +2q^4 +q^5 +2q^6 -2q^7 + -2q^9 -2q^{10} + \cdots </p>
<p>constitutes a basis for <span class="SimpleMath">S_2(Γ_0(11))</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(11);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(Kernel(CuspidalCohomologyHomomorphism(gamma,1,2)));</span>
[ 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">T1:=HeckeOperator(gamma,1,2);; Display(T1);</span>
[ [ 1, 0, 0 ],
[ 0, 1, 0 ],
[ 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">T2:=HeckeOperator(gamma,2,2);; Display(T2);</span>
[ [ 3, -4, 4 ],
[ 0, -2, 0 ],
[ 0, 0, -2 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">T3:=HeckeOperator(gamma,3,2);; Display(T3);</span>
[ [ 4, -4, 4 ],
[ 0, -1, 0 ],
[ 0, 0, -1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">T5:=HeckeOperator(gamma,5,2);; Display(T5);</span>
[ [ 6, -4, 4 ],
[ 0, 1, 0 ],
[ 0, 0, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">T7:=HeckeOperator(gamma,7,2);; Display(T7);</span>
[ [ 8, -8, 8 ],
[ 0, -2, 0 ],
[ 0, 0, -2 ] ]
</pre></div>
<p>For a normalized eigenform <span class="SimpleMath">f=1 + ∑_s=2^∞ a_sq^s</span> the coefficients <span class="SimpleMath">a_s</span> with <span class="SimpleMath">s</span> a composite integer can be expressed in terms of the coefficients <span class="SimpleMath">a_p</span> for prime <span class="SimpleMath">p</span>. If <span class="SimpleMath">r,s</span> are coprime then <span class="SimpleMath">T_rs =T_rT_s</span>. If <span class="SimpleMath">p</span> is a prime that is not a divisor of the level <span class="SimpleMath">N</span> of <span class="SimpleMath">Γ</span> then <span class="SimpleMath">a_p^m =a_p^m-1}a_p - p a_p^m-2}.</span> If the prime <span class="SimpleMath">p</span> divides <span class="SimpleMath">N</span> then <span class="SimpleMath">a_p^m = (a_p)^m</span>. It thus suffices to compute the coefficients <span class="SimpleMath">a_p</span> for prime integers <span class="SimpleMath">p</span> only.</p>
<p>The following commands establish that <span class="SimpleMath">S_12(SL_2( Z))</span> has a basis consisting of one cusp eigenform</p>
<p><span class="SimpleMath">q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 - 16744q^7 + 84480q^8 - 113643q^9</span></p>
<p><span class="SimpleMath">- 115920q^10 + 534612q^11 - 370944q^12 - 577738q^13 + 401856q^14 + 1217160q^15 + 987136q^16</span></p>
<p><span class="SimpleMath">- 6905934q^17 + 2727432q^18 + 10661420q^19 + ...</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2Z_alt(2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=HomogeneousPolynomials(G,14);</span>
MappingByFunction( SL(2,Integers), <matrix group with
2 generators>, function( x ) ... end )
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(HomToIntegralModule(R,P),1);</span>
[ 2, 2, 156, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">#Thus the space S_12 of cusp forms is of dimension 1</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for p in [2,3,5,7,11,13,17,19] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">T:=HeckeOperator(G,p,12);;</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("eigenvalues= ",Eigenvalues(Rationals,T), " and eigenvectors = ", Eigenvectors(Rationals,T)," for p= ",p,"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
eigenvalues= [ 2049, -24 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 2
eigenvalues= [ 177148, 252 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 3
eigenvalues= [ 48828126, 4830 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 5
eigenvalues= [ 1977326744, -16744 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 7
eigenvalues= [ 285311670612, 534612 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 11
eigenvalues= [ 1792160394038, -577738 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 13
eigenvalues= [ 34271896307634, -6905934 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 17
eigenvalues= [ 116490258898220, 10661420 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 19
</pre></div>
<p><a id="X8180E53C834301EF" name="X8180E53C834301EF"></a></p>
<h4>13.9 <span class="Heading">The Picard group</span></h4>
<p>Let us now consider the <em>Picard group</em> <span class="SimpleMath">G=SL_2( Z[ i])</span> and its action on <em>upper-half space</em></p>
<p class="pcenter">{\frak h}^3 =\{(z,t) \in \mathbb C\times \mathbb R\ |\ t > 0\} \ . </p>
<p>To describe the action we introduce the symbol <span class="SimpleMath">j</span> satisfying <span class="SimpleMath">j^2=-1</span>, <span class="SimpleMath">ij=-ji</span> and write <span class="SimpleMath">z+tj</span> instead of <span class="SimpleMath">(z,t)</span>. The action is given by</p>
<p class="pcenter">\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \ \left(a(z+tj)+b\right)\left(c(z+tj)+d\right)^{-1}\ .</p>
<p>Alternatively, and more explicitly, the action is given by</p>
<p class="pcenter">\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \
\frac{(az+b)\overline{(cz+d) } + a\overline c t^2}{|cz +d|^2 + |c|^2t^2} \ +\
\frac{t}{|cz+d|^2+|c|^2t^2}\, j
\ .</p>
<p>A standard 'fundamental domain' <span class="SimpleMath">D</span> for this action is the following region (with some of the boundary points removed).</p>
<p class="pcenter">
\{z+tj\in {\frak h}^3\ |\ 0 \le |{\rm Re}(z)| \le \frac{1}{2}, 0\le {\rm Im}(z) \le \frac{1}{2}, z\overline z +t^2 \ge 1\}
</p>
<p><img src="images/picarddomain.png" align="center" width="350" alt="Fundamental domain for the Picard group"/></p>
<p>The four bottom vertices of <span class="SimpleMath">D</span> are <span class="SimpleMath">a = -frac12 +frac12i +fracsqrt2}2j</span>, <span class="SimpleMath">b = -frac12 +fracsqrt3}2j</span>, <span class="SimpleMath">c = frac12 +fracsqrt3}2j</span>, <span class="SimpleMath">d = frac12 +frac12i +fracsqrt2}2j</span>.</p>
<p>The upper-half space <span class="SimpleMath">frak h^3</span> can be retracted onto a <span class="SimpleMath">2</span>-dimensional subspace <span class="SimpleMath">cal T ⊂ frak h^3</span>. The space <span class="SimpleMath">cal T</span> is a contractible <span class="SimpleMath">2</span>-dimensional regular CW-complex, and the action of the Picard group <span class="SimpleMath">G</span> restricts to a cellular action of <span class="SimpleMath">G</span> on <span class="SimpleMath">cal T</span>.</p>
<p>Using perturbation techniques, the <span class="SimpleMath">2</span>-complex <span class="SimpleMath">cal T</span> can be combined with free resolutions for the cell stabilizer groups to contruct a regular CW-complex <span class="SimpleMath">X</span> on which the Picard group <span class="SimpleMath">G</span> acts freely. The following commands compute the first few terms of the free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗ =C_∗ X</span>. Then <span class="SimpleMath">R_∗</span> is used to compute</p>
<p class="pcenter">H^1(G,\mathbb Z) =0\ ,</p>
<p class="pcenter">H^2(G,\mathbb Z) =\mathbb Z_2\oplus \mathbb Z_2\ ,</p>
<p class="pcenter">H^3(G,\mathbb Z) =\mathbb Z_6\ ,</p>
<p class="pcenter">H^4(G,\mathbb Z) =\mathbb Z_4\oplus \mathbb Z_{24}\ ,</p>
<p>and compute a free presentation for <span class="SimpleMath">G</span> involving four generators and seven relators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-1)");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(K,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(HomToIntegers(R),1);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(HomToIntegers(R),2);</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(HomToIntegers(R),3);</span>
[ 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(HomToIntegers(R),4);</span>
[ 4, 24 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=PresentationOfResolution(R);</span>
rec( freeGroup := <free group on the generators [ f1, f2, f3, f4 ]>,
gens := [ 184, 185, 186, 187 ],
relators := [ f1^2*f2^-1*f1^-1*f2^-1, f1*f2*f1*f2^-2,
f3*f2^2*f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-2,
f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-1*f3^-1,
f4*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1, f1*f4^-1*f1^-2*f4^-1,
f3*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1*f3^-1*f4*f2 ] )
</pre></div>
<p>We can also compute the cohomology of <span class="SimpleMath">G=SL_2( Z[i])</span> with coefficients in a module such as the module <span class="SimpleMath">P_ Z[i](k)</span> of degree <span class="SimpleMath">k</span> homogeneous polynomials with coefficients in <span class="SimpleMath">Z[i]</span> and with the action described above. For instance, the following commands compute</p>
<p class="pcenter">H^1(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^4 \oplus \mathbb Z_4
\oplus \mathbb Z_8 \oplus \mathbb Z_{40} \oplus \mathbb Z_{80}\, ,</p>
<p class="pcenter">H^2(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{24} \oplus \mathbb Z_{520030}\oplus \mathbb Z_{1040060} \oplus \mathbb Z^2\, ,</p>
<p class="pcenter">H^3(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{22} \oplus \mathbb Z_{4}\oplus (\mathbb Z_{12})^2 \, .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=HomogeneousPolynomials(G,24);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,1);</span>
[ 2, 2, 2, 2, 4, 8, 40, 80 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
520030, 1040060, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12, 12
]
</pre></div>
<p><a id="X858B1B5D8506FE81" name="X858B1B5D8506FE81"></a></p>
<h4>13.10 <span class="Heading">Bianchi groups</span></h4>
<p>The <em>Bianchi groups</em> are the groups <span class="SimpleMath">G=PSL_2(cal O_-d)</span> where <span class="SimpleMath">d</span> is a square free positive integer and <span class="SimpleMath">cal O_-d</span> is the ring of integers of the imaginary quadratic field <span class="SimpleMath">Q(sqrt-d)</span>. More explicitly,</p>
<p class="pcenter">{\cal O}_{-d} = \mathbb Z\left[\sqrt{-d}\right]~~~~~~~~ {\rm if~} d \equiv 1,2 {\rm ~mod~} 4\, ,</p>
<p class="pcenter">{\cal O}_{-d} = \mathbb Z\left[\frac{1+\sqrt{-d}}{2}\right]~~~~~ {\rm if~} d \equiv 3 {\rm ~mod~} 4\, .</p>
<p>These groups act on upper-half space <span class="SimpleMath">frak h^3</span> in the same way as the Picard group. Upper-half space can be tessellated by a 'fundamental domain' for this action. Moreover, as with the Picard group, this tessellation contains a <span class="SimpleMath">2</span>-dimensional cellular subspace <span class="SimpleMath">cal T⊂ frak h^3</span> where <span class="SimpleMath">cal T</span> is a contractible CW-complex on which <span class="SimpleMath">G</span> acts cellularly. It should be mentioned that the fundamental domain and the contractible <span class="SimpleMath">2</span>-complex <span class="SimpleMath">cal T</span> are not uniquely determined by <span class="SimpleMath">G</span>. Various algorithms exist for computing <span class="SimpleMath">cal T</span> and its cell stabilizers. One algorithm due to Swan <a href="chapBib.html#biBswan">[Swa71a]</a> has been implemented by Alexander Rahm <a href="chapBib.html#biBrahmthesis">[Rah10]</a> and the output for various values of <span class="SimpleMath">d</span> are stored in HAP. Another approach is to use Voronoi's theory of perfect forms. This approach has been implemented by Sebastian Schoennenbeck <a href="chapBib.html#biBschoennenbeck">[BCNS15]</a> and, again, its output for various values of <span class="SimpleMath">d</span> are stored in HAP. The following commands combine data from Schoennenbeck's algorithm with free resolutions for cell stabiliers to compute</p>
<p class="pcenter">H^1(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^4
\oplus \mathbb Z_{12}
\oplus \mathbb Z_{24}
\oplus \mathbb Z_{9240}
\oplus \mathbb Z_{55440}
\oplus \mathbb Z^4\,,
</p>
<p class="pcenter">H^2(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
\begin{array}{l}
(\mathbb Z_2)^{26}
\oplus \mathbb (Z_{6})^8
\oplus \mathbb (Z_{12})^{9}
\oplus \mathbb Z_{24}
\oplus (\mathbb Z_{120})^2
\oplus (\mathbb Z_{840})^3\\
\oplus \mathbb Z_{2520}
\oplus (\mathbb Z_{27720})^2
\oplus (\mathbb Z_{24227280})^2
\oplus (\mathbb Z_{411863760})^2\\
\oplus \mathbb Z_{2454438243748928651877425142836664498129840}\\
\oplus \mathbb Z_{14726629462493571911264550857019986988779040}\\
\oplus \mathbb Z^4\end{array}\ ,
</p>
<p class="pcenter">H^3(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^{23}
\oplus \mathbb Z_{4}
\oplus (\mathbb Z_{12})^2\ .
</p>
<p>Note that the action of <span class="SimpleMath">SL_2(cal O_-d)</span> on <span class="SimpleMath">P_{cal O_-d}(k)</span> induces an action of <span class="SimpleMath">PSL_2(cal O_-d)</span> provided <span class="SimpleMath">k</span> is even.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-6,4);</span>
Resolution of length 4 in characteristic 0 for PSL(2,O-6) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=HomogeneousPolynomials(G,24);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,1);</span>
[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120, 120,
840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760, 411863760,
2454438243748928651877425142836664498129840,
14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12,
12 ]
</pre></div>
<p>We can also consider the coefficient module</p>
<p class="pcenter"> P_{{\cal O}_{-d}}(k,\ell) = P_{{\cal O}_{-d}}(k) \otimes_{{\cal O}_{-d}} \overline{P_{{\cal O}_{-d}}(\ell)} </p>
<p>where the bar denotes a twist in the action obtained from complex conjugation. For an action of the projective linear group we must insist that <span class="SimpleMath">k+ℓ</span> is even. The following commands compute</p>
<p class="pcenter">H^2(PSL_2({\cal O}_{-11}),P_{{\cal O}_{-11}}(5,5)) =
(\mathbb Z_2)^8 \oplus \mathbb Z_{60} \oplus (\mathbb Z_{660})^3 \oplus \mathbb Z^6\,, </p>
<p>a computation which was first made, along with many other cohomology computationsfor Bianchi groups, by Mehmet Haluk Sengun <a href="chapBib.html#biBsengun">[Sen11]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-11,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=HomogeneousPolynomials(R!.group,5,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 60, 660, 660, 660, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p>The function <code class="code">ResolutionPSL2QuadraticIntegers(-d,n)</code> relies on a limited data base produced by the algorithms implemented by Schoennenbeck and Rahm. The function also covers some cases covered by entering a sring "-d+I" as first variable. These cases correspond to projective special groups of module automorphisms of lattices of rank 2 over the integers of the imaginary quadratic number field <span class="SimpleMath">Q(sqrt-d)</span> with non-trivial Steinitz-class. In the case of a larger class group there are cases labelled "-d+I2",...,"-d+Ik" and the Ij together with O-d form a system of representatives of elements of the class group modulo squares and Galois action. For instance, the following commands compute</p>
<p class="pcenter">H_2(PSL({\cal O}_{-21+I2}),\mathbb Z) = \mathbb Z_2\oplus \mathbb Z^6\, .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers("-21+I2",3);</span>
Resolution of length 3 in characteristic 0 for PSL(2,O-21+I2)) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(R),2);</span>
[ 2, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p><a id="X851390E07C3B3BB1" name="X851390E07C3B3BB1"></a></p>
<h4>13.11 <span class="Heading">(Co)homology of Bianchi groups and <span class="SimpleMath">SL_2(cal O_-d)</span></span></h4>
<p>The (co)homology of Bianchi groups has been studied in papers such as <a href="chapBib.html#biBSchwermer">[SV83]</a> <a href="chapBib.html#biBVogtmann">[Vog85]</a> <a href="chapBib.html#biBBerkove00">[Ber00]</a> <a href="chapBib.html#biBBerkove06">[Ber06]</a> <a href="chapBib.html#biBRahm11">[RF13]</a> <a href="chapBib.html#biBRahm13">[Rah13b]</a> <a href="chapBib.html#biBRahm13a">[Rah13a]</a> <a href="chapBib.html#biBRahm20">[BLR20]</a>. Calculations in these papers can often be verified by computer. For instance, the calculation</p>
<p class="pcenter">H_q(PSL_2({\cal O}_{-15}),\mathbb Z) =
\left\{\begin{array}{ll}
\mathbb Z^2 \oplus \mathbb Z_6 & q=1,\\
\mathbb Z \oplus \mathbb Z_6 & q=2,\\
\mathbb Z_6 & q\ge 3\\
\end{array}\right.
</p>
<p>obtained in <a href="chapBib.html#biBRahm11">[RF13]</a> can be verified as follows, once we note that Bianchi groups have virtual cohomological dimension 2 and, if all stabilizer groups are periodic with period dividing m, then the homology has period dividing m in degree <span class="SimpleMath">≥ 3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-15)");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..2] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for k in [1..K!.dimension(n)] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print( CohomologicalPeriod(K!.stabilizer(n,k))," ");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
2 2 2 2 2 2 2 2 2 2 2 2 2 2
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(PK,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
H_0 = [ 0 ]
H_1 = [ 6, 0, 0 ]
H_2 = [ 6, 0 ]
H_3 = [ 6 ]
H_4 = [ 6 ]
</pre></div>
<p>All finite subgroups of <span class="SimpleMath">SL_2(cal O_-d)</span> are periodic. Thus the above example can be adapted from PSL to SL for any square=free <span class="SimpleMath">d≥ 1</span>. For example, the calculation</p>
<p class="pcenter">H^q(SL_2({\cal O}_{-2}),\mathbb Z) =
\left\{\begin{array}{ll}
\mathbb Z & q=1,\\
\mathbb Z_6 & q=2 {\rm \ mod\ } 4,\\
\mathbb Z_2 \oplus \mathbb Z_{12} & q= 3 {\rm \ mod\ } 4\\
\mathbb Z_2 \oplus \mathbb Z_{24} & q= 0 {\rm \ mod\ } 4 (q>0)\\
\mathbb Z_{12} & q= 1 {\rm \ mod\ } 4 (q > 1)\\
\end{array}\right.
</p>
<p>obtained in <a href="chapBib.html#biBSchwermer">[SV83]</a> can be verified as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-2)");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..2] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for k in [1..K!.dimension(n)] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print(CohomologicalPeriod(K!.stabilizer(n,k))," ");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
2 4 2 4 2 2 2 2 2 2 2 2
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(K,11);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..10] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("H^",n," = ", Cohomology(HomToIntegers(R),n),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
H^0 = [ 0 ]
H^1 = [ 0 ]
H^2 = [ 6 ]
H^3 = [ 2, 12 ]
H^4 = [ 2, 24 ]
H^5 = [ 12 ]
H^6 = [ 6 ]
H^7 = [ 2, 12 ]
H^8 = [ 2, 24 ]
H^9 = [ 12 ]
H^10 = [ 6 ]
</pre></div>
<p>A quotient of a periodic group by a central subgroup of order 2 need not be periodic. For this reason the (co)homology of PSL can be a bit more tricky than SL. For example, the calculation</p>
<p class="pcenter">H^q(PSL_2({\cal O}_{-13}),\mathbb Z) =
\left\{\begin{array}{ll}
\mathbb Z^3 \oplus (\mathbb Z_2)^2 & q=1,\\
\mathbb Z^2 \oplus \mathbb Z_4 \oplus (\mathbb Z_3)^2 \oplus \mathbb Z_2 & q=2,\\
(\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2 & q= 3 {\rm \ mod\ } 4\\
(\mathbb Z_2)^q & q= 0 {\rm \ mod\ } 4 (q>0)\\
(\mathbb Z_2)^q & q= 1 {\rm \ mod\ } 4 (q>1)\\
(\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2 & q= 2 {\rm \ mod\ } 4 (q > 2)\\
\end{array}\right.
</p>
<p>was obtained in <a href="chapBib.html#biBRahm11">[RF13]</a>. The following commands verify the calculation in the first 34 degrees, but for a proof valid for all degrees one needs to analyse the computation to spot that there is a certain "periodicity of period 2" in the computations for <span class="SimpleMath">q≥ 3</span>. This analysis is done in <a href="chapBib.html#biBRahm11">[RF13]</a>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-13)");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..2] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for k in [1..PK!.dimension(n)] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">S:=SmallGroup(IdGroup(PK!.stabilizer( n, k )));</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print( [n,k]," is periodic ",IsPeriodic(S),"\n ");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
[ 0, 1 ] is periodic true
[ 0, 2 ] is periodic true
[ 0, 3 ] is periodic true
[ 0, 4 ] is periodic true
[ 0, 5 ] is periodic true
[ 0, 6 ] is periodic true
[ 0, 7 ] is periodic false
[ 0, 8 ] is periodic false
[ 1, 1 ] is periodic true
[ 1, 2 ] is periodic true
[ 1, 3 ] is periodic true
[ 1, 4 ] is periodic true
[ 1, 5 ] is periodic true
[ 1, 6 ] is periodic true
[ 1, 7 ] is periodic true
[ 1, 8 ] is periodic true
[ 1, 9 ] is periodic true
[ 1, 10 ] is periodic true
[ 1, 11 ] is periodic true
[ 1, 12 ] is periodic true
[ 1, 13 ] is periodic true
[ 2, 1 ] is periodic true
[ 2, 2 ] is periodic true
[ 2, 3 ] is periodic true
[ 2, 4 ] is periodic true
[ 2, 5 ] is periodic true
[ 2, 6 ] is periodic true
[ 2, 7 ] is periodic true
[ 2, 8 ] is periodic true
[ 2, 9 ] is periodic true
[ 2, 10 ] is periodic true
[ 2, 11 ] is periodic true
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-13,35);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..34] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
H_0 = [ 0 ]
H_1 = [ 2, 2, 0, 0, 0 ]
H_2 = [ 6, 12, 0, 0 ]
H_3 = [ 2, 6, 6 ]
H_4 = [ 2, 2, 2, 2 ]
H_5 = [ 2, 2, 2, 2, 2 ]
H_6 = [ 2, 2, 2, 2, 6, 6 ]
H_7 = [ 2, 2, 2, 2, 2, 6, 6 ]
H_8 = [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_9 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_10 = [ 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_11 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_12 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_13 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_14 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_15 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_16 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_17 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_18 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_19 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_20 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_21 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_22 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_23 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_24 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_25 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_26 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_27 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_28 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_29 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_30 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_31 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_32 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_33 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_34 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
</pre></div>
<p>The Lyndon-Hochschild-Serre spectral sequence <span class="SimpleMath">H_p(G/N,H_q(N,A)) ⇒ H_p+q(G,A)</span> for the groups <span class="SimpleMath">G=SL_2(mathcal O_-d)</span> and <span class="SimpleMath">N≅ C_2</span> the central subgroup with <span class="SimpleMath">G/N≅ PSL_2(mathcal O_-d)</span>, and the trivial module <span class="SimpleMath">A = Z_ℓ</span>, implies that for primes <span class="SimpleMath">ℓ>2</span> we have a natural isomorphism <span class="SimpleMath">H_n(PSL_2(mathcal O_-d), Z_ℓ) ≅ H_n(SL_2(mathcal O_-d), Z_ℓ)</span>. It follows that we have an isomorphism of <span class="SimpleMath">ℓ</span>-primary parts <span class="SimpleMath">H_n(PSL_2(mathcal O_-d), Z)_(ℓ) ≅ H_n(SL_2(mathcal O_-d), Z)_(ℓ)</span>. Since <span class="SimpleMath">H_n(SL_2(mathcal O_-d), Z)_(ℓ)</span> is periodic in degrees <span class="SimpleMath">≥ 3</span> we can recover the <span class="SimpleMath">3</span>-primary part of <span class="SimpleMath">H_n(PSL_2(mathcal O_-13), Z)</span> in all degrees <span class="SimpleMath">q≥1</span> from the following computation by ignoring all <span class="SimpleMath">2</span>-power factors in the output.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-13,13);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [3..12] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("H_",n," at prime p=3 is: ", Filtered(Homology(TensorWithIntegers(R),n), m->IsInt(m/3)),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
H_3 at prime p=3 is: [ 6, 24 ]
H_4 at prime p=3 is: [ ]
H_5 at prime p=3 is: [ ]
H_6 at prime p=3 is: [ 6, 12 ]
H_7 at prime p=3 is: [ 6, 24 ]
H_8 at prime p=3 is: [ ]
H_9 at prime p=3 is: [ ]
H_10 at prime p=3 is: [ 6, 12 ]
H_11 at prime p=3 is: [ 6, 24 ]
H_12 at prime p=3 is: [ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">#Ignore the 2-power factors in the output</span>
</pre></div>
<p>The ring <span class="SimpleMath">mathcal O_-163</span> is an example of a principal ideal domain that is not a Euclidean domain. It seems that no complete calculation of <span class="SimpleMath">H_n(PSL_2(mathcal O_-163), Z)</span> is yet available in the literature. The following comands compute this homology in the first <span class="SimpleMath">31</span> degrees. The computation suggests a general formula in higher degrees. All but two of the stabilizer groups for the action of <span class="SimpleMath">PSL_2(mathcal O_-163)</span> are periodic. The non-periodic group <span class="SimpleMath">A_4</span> occurs twice in degree <span class="SimpleMath">0</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-163,32);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [1..31] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("H_",n,"= ",Homology(TensorWithIntegers(R),n),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
H_1= [ 0, 0, 0, 0, 0, 0, 0 ]
H_2= [ 2, 12, 0, 0, 0, 0, 0, 0 ]
H_3= [ 6 ]
H_4= [ ]
H_5= [ 2, 2, 2 ]
H_6= [ 2, 6 ]
H_7= [ 6 ]
H_8= [ 2, 2, 2, 2 ]
H_9= [ 2, 2, 2 ]
H_10= [ 2, 6 ]
H_11= [ 2, 2, 2, 2, 6 ]
H_12= [ 2, 2, 2, 2 ]
H_13= [ 2, 2, 2 ]
H_14= [ 2, 2, 2, 2, 2, 6 ]
H_15= [ 2, 2, 2, 2, 6 ]
H_16= [ 2, 2, 2, 2 ]
H_17= [ 2, 2, 2, 2, 2, 2, 2 ]
H_18= [ 2, 2, 2, 2, 2, 6 ]
H_19= [ 2, 2, 2, 2, 6 ]
H_20= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_21= [ 2, 2, 2, 2, 2, 2, 2 ]
H_22= [ 2, 2, 2, 2, 2, 6 ]
H_23= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_24= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_25= [ 2, 2, 2, 2, 2, 2, 2 ]
H_26= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_27= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_28= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_29= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_30= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_31= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
</pre></div>
<p><a id="X86A6858884B9C05B" name="X86A6858884B9C05B"></a></p>
<h4>13.12 <span class="Heading">Some other infinite matrix groups</span></h4>
<p>Analogous to the functions for Bianchi groups, HAP has functions</p>
<ul>
<li><p><code class="code">ResolutionSL2QuadraticIntegers(-d,n)</code></p>
</li>
<li><p><code class="code">ResolutionSL2ZInvertedInteger(m,n)</code></p>
</li>
<li><p><code class="code">ResolutionGL2QuadraticIntegers(-d,n)</code></p>
</li>
<li><p><code class="code">ResolutionPGL2QuadraticIntegers(-d,n)</code></p>
</li>
<li><p><code class="code">ResolutionGL3QuadraticIntegers(-d,n)</code></p>
</li>
<li><p><code class="code">ResolutionPGL3QuadraticIntegers(-d,n)</code></p>
</li>
</ul>
<p>for computing free resolutions for certain values of <span class="SimpleMath">SL_2(cal O_-d)</span>, <span class="SimpleMath">SL_2( Z[frac1m])</span>, <span class="SimpleMath">GL_2(cal O_-d)</span> and <span class="SimpleMath">PGL_2(cal O_-d)</span>. Additionally, the function</p>
<ul>
<li><p><code class="code">ResolutionArithmeticGroup("string",n)</code></p>
</li>
</ul>
<p>can be used to compute resolutions for groups whose data (provided by Sebastian Schoennenbeck, Alexander Rahm and Mathieu Dutour) is stored in the directory <code class="code">gap/pkg/Hap/lib/Perturbations/Gcomplexes</code> .</p>
<p>For instance, the following commands compute</p>
<p class="pcenter">H^1(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^4
\oplus \mathbb Z_{12}
\oplus \mathbb Z_{24}
\oplus \mathbb Z_{9240}
\oplus \mathbb Z_{55440}
\oplus \mathbb Z^4\,,
</p>
<p class="pcenter">H^2(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
\begin{array}{l}
(\mathbb Z_2)^{26}
\oplus \mathbb (Z_{6})^7
\oplus \mathbb (Z_{12})^{10}
\oplus \mathbb Z_{24}
\oplus (\mathbb Z_{120})^2
\oplus (\mathbb Z_{840})^3\\
\oplus \mathbb Z_{2520}
\oplus (\mathbb Z_{27720})^2
\oplus (\mathbb Z_{24227280})^2
\oplus (\mathbb Z_{411863760})^2\\
\oplus \mathbb Z_{2454438243748928651877425142836664498129840}\\
\oplus \mathbb Z_{14726629462493571911264550857019986988779040}\\
\oplus \mathbb Z^4\end{array}\ ,
</p>
<p class="pcenter">H^3(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^{58}
\oplus (\mathbb Z_{4})^4
\oplus (\mathbb Z_{12})\ .
</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-6,4);</span>
Resolution of length 4 in characteristic 0 for PSL(2,O-6) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=HomogeneousPolynomials(G,24);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,1);</span>
[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,2);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120,
120, 840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760,
411863760, 2454438243748928651877425142836664498129840,
14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 12, 12 ]
</pre></div>
<p>The following commands construct free resolutions up to degree 5 for the groups <span class="SimpleMath">SL_2( Z[frac12])</span>, <span class="SimpleMath">GL_2(cal O_-2)</span>, <span class="SimpleMath">GL_2(cal O_2)</span>, <span class="SimpleMath">PGL_2(cal O_2)</span>, <span class="SimpleMath">GL_3(cal O_-2)</span>, <span class="SimpleMath">PGL_3(cal O_-2)</span>. The final command constructs a free resolution up to degree 3 for <span class="SimpleMath">PSL_4( Z)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R1:=ResolutionSL2ZInvertedInteger(2,5);</span>
Resolution of length 5 in characteristic 0 for SL(2,Z[1/2]) .
<span class="GAPprompt">gap></span> <span class="GAPinput">R2:=ResolutionGL2QuadraticIntegers(-2,5);</span>
Resolution of length 5 in characteristic 0 for GL(2,O-2) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R3:=ResolutionGL2QuadraticIntegers(2,5);</span>
Resolution of length 5 in characteristic 0 for GL(2,O2) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R4:=ResolutionPGL2QuadraticIntegers(2,5);</span>
Resolution of length 5 in characteristic 0 for PGL(2,O2) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R5:=ResolutionGL3QuadraticIntegers(-2,5);</span>
Resolution of length 5 in characteristic 0 for GL(3,O-2) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R6:=ResolutionPGL3QuadraticIntegers(-2,5);</span>
Resolution of length 5 in characteristic 0 for PGL(3,O-2) .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">R7:=ResolutionArithmeticGroup("PSL(4,Z)",3);</span>
Resolution of length 3 in characteristic 0 for <matrix group with 655 generators> .
No contracting homotopy available.
</pre></div>
<p><a id="X7EF5D97281EB66DA" name="X7EF5D97281EB66DA"></a></p>
<h4>13.13 <span class="Heading">Ideals and finite quotient groups</span></h4>
<p>The following commands first construct the number field <span class="SimpleMath">Q(sqrt-7)</span>, its ring of integers <span class="SimpleMath">cal O_-7=cal O( Q(sqrt-7))</span>, and the principal ideal <span class="SimpleMath">I=⟨ 5 + 2sqrt-7⟩ ◃ cal O( Q(sqrt-7))</span> of norm <span class="SimpleMath">cal N(I)=53</span>. The ring <span class="SimpleMath">I</span> is prime since its norm is a prime number. The primality of <span class="SimpleMath">I</span> is also demonstrated by observing that the quotient ring <span class="SimpleMath">R=cal O_-7/I</span> is an integral domain and hence isomorphic to the unique finite field of order <span class="SimpleMath">53</span>, <span class="SimpleMath">R≅ Z/53 Z</span> . (In a ring of quadratic integers <em>prime ideal</em> is the same as <em>maximal ideal</em>).</p>
<p>The finite group <span class="SimpleMath">G=SL_2(cal O_-7/I)</span> is then constructed and confirmed to be isomorphic to <span class="SimpleMath">SL_2( Z/53 Z)</span>. The group <span class="SimpleMath">G</span> is shown to admit a periodic <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> of period dividing <span class="SimpleMath">52</span>.</p>
<p>Finally the integral homology</p>
<p class="pcenter">H_n(G,\mathbb Z) = \left\{\begin{array}{ll}
0 & n\ne 3,7, {\rm~for~} 0\le n \le 8,\\
\mathbb Z_{2808} & n=3,7,
\end{array}\right.</p>
<p>is computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-7);</span>
Q(Sqrt(-7))
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);</span>
O(Q(Sqrt(-7)))
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,5+2*Sqrt(-7));</span>
ideal of norm 53 in O(Q(Sqrt(-7)))
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=OQ mod I;</span>
ring mod ideal of norm 53
<span class="GAPprompt">gap></span> <span class="GAPinput">IsIntegralRing(R);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:=GeneratorsOfGroup( SL2QuadraticIntegers(-7) );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Group(gens*One(R));;G:=Image(IsomorphismPermGroup(G));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(G);</span>
"SL(2,53)"
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPeriodic(G);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalPeriod(G);</span>
52
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,1);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,2);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,3);</span>
[ 8, 27, 13 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,4);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,5);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,6);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,7);</span>
[ 8, 27, 13 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,8);</span>
[ ]
</pre></div>
<p>The following commands show that the rational prime <span class="SimpleMath">7</span> is not prime in <span class="SimpleMath">cal O_-5=cal O( Q(sqrt-5))</span>. Moreover, <span class="SimpleMath">7</span> totally splits in <span class="SimpleMath">cal O_-5</span> since the final command shows that only the rational primes <span class="SimpleMath">2</span> and <span class="SimpleMath">5</span> ramify in <span class="SimpleMath">cal O_-5</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPrime(I);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors(Discriminant(OQ));</span>
[ -2, 2, 5 ]
</pre></div>
<p>For <span class="SimpleMath">d < 0</span> the rings <span class="SimpleMath">cal O_d=cal O( Q(sqrtd))</span> are unique factorization domains for precisely</p>
<p class="pcenter"> d = -1, -2, -3, -7, -11, -19, -43, -67, -163.</p>
<p>This result was conjectured by Gauss, and essentially proved by Kurt Heegner, and then later proved by Harold Stark.</p>
<p>The following commands construct the classic example of a prime ideal <span class="SimpleMath">I</span> that is not principal. They then illustrate reduction modulo <span class="SimpleMath">I</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,[2,1+Sqrt(-5)]);</span>
ideal of norm 2 in O(Q(Sqrt(-5)))
<span class="GAPprompt">gap></span> <span class="GAPinput">6 mod I;</span>
0
</pre></div>
<p><a id="X7D1F72287F14C5E1" name="X7D1F72287F14C5E1"></a></p>
<h4>13.14 <span class="Heading">Congruence subgroups for ideals</span></h4>
<p>Given a ring of integers <span class="SimpleMath">cal O</span> and ideal <span class="SimpleMath">I ◃ cal O</span> there is a canonical homomorphism <span class="SimpleMath">π_I: SL_2(cal O) → SL_2(cal O/I)</span>. A subgroup <span class="SimpleMath">Γ ≤ SL_2(cal O)</span> is said to be a <em>congruence subgroup</em> if it contains <span class="SimpleMath">ker π_I</span>. Thus congruence subgroups are of finite index. Generalizing the definition in <a href="chap13.html#X79A1974B7B4987DE"><span class="RefLink">13.1</span></a> above, we define the <em>principal congruence subgroup</em> <span class="SimpleMath">Γ_1(I)=ker π_I</span>, and the congruence subgroup <span class="SimpleMath">Γ_0(I)</span> consisting of preimages of the upper triangular matrices in <span class="SimpleMath">SL_2(cal O/I)</span>.</p>
<p>The following commands construct <span class="SimpleMath">Γ=Γ_0(I)</span> for the ideal <span class="SimpleMath">I◃ cal O Q(sqrt-5)</span> generated by <span class="SimpleMath">12</span> and <span class="SimpleMath">36sqrt-5</span>. The group <span class="SimpleMath">Γ</span> has index <span class="SimpleMath">385</span> in <span class="SimpleMath">SL_2(cal O Q(sqrt-5))</span>. The final command displays a tree in a Cayley graph for <span class="SimpleMath">SL_2(cal O Q(sqrt-5))</span> whose nodes represent a transversal for <span class="SimpleMath">Γ</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,[36*Sqrt(-5), 12]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);</span>
CongruenceSubgroupGamma0(ideal of norm 144 in O(Q(Sqrt(-5))))
<span class="GAPprompt">gap></span> <span class="GAPinput">IndexInSL2O(G);</span>
385
<span class="GAPprompt">gap></span> <span class="GAPinput">HAP_SL2TreeDisplay(G);</span>
</pre></div>
<p><img src="images/treesqrt5.gif" align="center" width="350" alt="Information for the cubic tree"/></p>
<p>The next commands first construct the congruence subgroup <span class="SimpleMath">Γ_0(I)</span> of index <span class="SimpleMath">144</span> in <span class="SimpleMath">SL_2(cal O Q(sqrt-2))</span> for the ideal <span class="SimpleMath">I</span> in <span class="SimpleMath">cal O Q(sqrt-2)</span> generated by <span class="SimpleMath">4+5sqrt-2</span>. The commands then compute</p>
<p class="pcenter">H_1(\Gamma_0(I),\mathbb Z) = \mathbb Z_3 \oplus \mathbb Z_6 \oplus \mathbb Z_{30} \oplus \mathbb Z^8\, ,</p>
<p class="pcenter">H_2(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \oplus \mathbb Z^7\, ,</p>
<p class="pcenter">H_3(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \, .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);</span>
CongruenceSubgroupGamma0(ideal of norm 66 in O(Q(Sqrt(-2))))
<span class="GAPprompt">gap></span> <span class="GAPinput">IndexInSL2O(G);</span>
144
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-2,4,true);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(S),1);</span>
[ 3, 6, 30, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(S),2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(S),3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
</pre></div>
<p><a id="X85E912617AFE03F4" name="X85E912617AFE03F4"></a></p>
<h4>13.15 <span class="Heading">First homology</span></h4>
<p>The isomorphism <span class="SimpleMath">H_1(G, Z) ≅ G_ab</span> allows for the computation of first integral homology using computational methods for finitely presented groups. Such methods underly the following computation of</p>
<p class="pcenter">H_1( \Gamma_0(I),\mathbb Z) \cong \mathbb Z_2 \oplus \cdots \oplus
\mathbb Z_{4078793513671}</p>
<p>where <span class="SimpleMath">I</span> is the prime ideal in the Gaussian integers generated by <span class="SimpleMath">41+56sqrt-1</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,41+56*Sqrt(-1));</span>
ideal of norm 4817 in O(GaussianRationals)
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(G);</span>
[ 2, 2, 4, 5, 7, 16, 29, 43, 157, 179, 1877, 7741, 22037, 292306033,
4078793513671 ]
</pre></div>
<p>We write <span class="SimpleMath">G^ab_tors</span> to denote the maximal finite summand of the first homology group of <span class="SimpleMath">G</span> and refer to this as the <em>torsion subgroup</em>. Nicholas Bergeron and Akshay Venkatesh <a href="chapBib.html#biBbergeron">[Ber16]</a> have conjectured relationships between the torsion in congruence subgroups <span class="SimpleMath">Γ</span> and the volume of their quotient manifold <span class="SimpleMath">frak h^3/Γ</span>. For instance, for the Gaussian integers they conjecture</p>
<p class="pcenter"> \frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)} \rightarrow \frac{\lambda}{18\pi},\ \lambda =L(2,\chi_{\mathbb Q(\sqrt{-1})}) = 1 -\frac{1}{9} + \frac{1}{25} - \frac{1}{49} + \cdots</p>
<p>as the norm of the prime ideal <span class="SimpleMath">I</span> tends to <span class="SimpleMath">∞</span>. The following approximates <span class="SimpleMath">λ/18π = 0.0161957</span> and <span class="SimpleMath">fraclog |Γ_0(I)_tors^ab|{ Norm(I) = 0.0210325</span> for the above example.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Lfunction(Q,2)/(18*3.142);</span>
0.0161957
Loge10:=0.434294481903;; #Log_10(e)
<span class="GAPprompt">gap></span> <span class="GAPinput">1.0*Log(Product(AbelianInvariants(G)),10)/(Loge*Norm(I));</span>
0.0210325
</pre></div>
<p>The link with volume is given by the Humbert volume formula</p>
<p class="pcenter">
{\rm Vol} ( {\frak h}^3 / PSL_2( {\cal O}_{d} ) )
= \frac{|D|^{3/2}}{24} \zeta_{ \mathbb Q( \sqrt{d} ) }(2)/\zeta_{\mathbb Q}(2) </p>
<p>valid for square-free <span class="SimpleMath">d<0</span>, where <span class="SimpleMath">D</span> is the discriminant of <span class="SimpleMath">Q(sqrtd)</span>. The volume of a finite index subgroup <span class="SimpleMath">Γ</span> is obtained by multiplying the right-hand side by the index <span class="SimpleMath">|PSL_2(cal O_d): Γ|</span>.</p>
<p>The following commands produce a graph of <span class="SimpleMath">fraclog |Γ_0(I)_tors^ab|{ Norm(I)</span> against <span class="SimpleMath">Norm(I)</span> for prime ideals <span class="SimpleMath">I</span> of norm <span class="SimpleMath">49 ≤ Norm(I) ≤ 4357</span> (where one ideal for each norm is taken).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuadraticNumberField(-1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=QuadraticIntegersByNorm(OQ,20000);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">#########################################</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fn:=function(x);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">if IsRat(x) then return x; fi;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">return x!.rational+x!.irrational*Sqrt(-1);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">end;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">#########################################</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NN:=List(N,fn);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=Filtered(NN,x->IsPrime(QuadraticIdeal(OQ,x)));</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PP:=Classify(P,x->Norm(Q,x));</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PP:=List(PP,x->x[1]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PP:=Filtered(PP,x->not x=0);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Loge:=0.434294481903;; ###Log_10(e)</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">#########################################</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ffn:=function(x)</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">local I, G, A, S, F;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">I:=QuadraticIdeal(OQ,x);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=AbelianInvariants(G);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=Filtered(A,x->not x=0);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">return [Norm(Q,x),1.0*Log(Product(Filtered(AbelianInvariants(G),i->not i=0)),10)/(Loge*Norm(I))];</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">end;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">#########################################</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=List(PP{[9..267]},ffn);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ScatterPlot(S);</span>
</pre></div>
<p><img src="images/primesTorsion.png" align="center" width="1200" alt="graph of torsion versus norm"/></p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap12.html">[Previous Chapter]</a> <a href="chap14.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|