File: chap13.html

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (1363 lines) | stat: -rw-r--r-- 100,463 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 13: Congruence Subgroups, Cuspidal Cohomology  and Hecke Operators</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap13"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap12.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap14.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap13_mj.html">[MathJax on]</a></p>
<p><a id="X86D5DB887ACB1661" name="X86D5DB887ACB1661"></a></p>
<div class="ChapSects"><a href="chap13.html#X86D5DB887ACB1661">13 <span class="Heading">Congruence Subgroups, Cuspidal Cohomology  and Hecke Operators</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X79A1974B7B4987DE">13.1 <span class="Heading">Eichler-Shimura isomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X7BFA2C91868255D9">13.2 <span class="Heading">Generators for <span class="SimpleMath">SL_2( Z)</span> and the cubic tree</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X7D1A56967A073A8B">13.3 <span class="Heading">One-dimensional fundamental domains and  
generators for congruence subgroups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X818BFA9A826C0DB3">13.4 <span class="Heading">Cohomology of congruence subgroups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap13.html#X7F55F8EA82FE9122">13.4-1 <span class="Heading">Cohomology with rational coefficients</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X84D30F1580CD42D1">13.5 <span class="Heading">Cuspidal cohomology</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X80861D3F87C29C43">13.6 <span class="Heading">Hecke operators on forms of weight 2</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X831BB0897B988DA3">13.7 <span class="Heading">Hecke operators on forms of weight <span class="SimpleMath">≥ 2</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X84CC51EE8525E0D9">13.8 <span class="Heading">Reconstructing modular forms from cohomology computations</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X8180E53C834301EF">13.9 <span class="Heading">The Picard group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X858B1B5D8506FE81">13.10 <span class="Heading">Bianchi groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X851390E07C3B3BB1">13.11 <span class="Heading">(Co)homology of Bianchi groups and <span class="SimpleMath">SL_2(cal O_-d)</span></span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X86A6858884B9C05B">13.12 <span class="Heading">Some other infinite matrix groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X7EF5D97281EB66DA">13.13 <span class="Heading">Ideals and finite quotient groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X7D1F72287F14C5E1">13.14 <span class="Heading">Congruence subgroups for ideals</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap13.html#X85E912617AFE03F4">13.15 <span class="Heading">First homology</span></a>
</span>
</div>
</div>

<h3>13 <span class="Heading">Congruence Subgroups, Cuspidal Cohomology  and Hecke Operators</span></h3>

<p>In this chapter we explain how HAP can be used to make computions about modular forms associated to congruence subgroups <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SL_2( Z)</span>. Also, in Subsection 10.8 onwards, we demonstrate cohomology computations for the <em>Picard group</em> <span class="SimpleMath">SL_2( Z[i])</span>, some <em>Bianchi groups</em> <span class="SimpleMath">PSL_2(cal O_-d)</span> where <span class="SimpleMath">cal O_d</span> is the ring of integers of <span class="SimpleMath">Q(sqrt-d)</span> for square free positive integer <span class="SimpleMath">d</span>, and some other groups of the form <span class="SimpleMath">SL_m(cal O)</span>, <span class="SimpleMath">GL_m(cal O)</span>, <span class="SimpleMath">PSL_m(cal O)</span>, <span class="SimpleMath">PGL_m(cal O)</span>, for <span class="SimpleMath">m=2,3,4</span> and certain <span class="SimpleMath">cal O= Z, cal O_-d</span>.</p>

<p><a id="X79A1974B7B4987DE" name="X79A1974B7B4987DE"></a></p>

<h4>13.1 <span class="Heading">Eichler-Shimura isomorphism</span></h4>

<p>We begin by recalling the Eichler-Shimura isomorphism <a href="chapBib.html#biBeichler">[Eic57]</a><a href="chapBib.html#biBshimura">[Shi59]</a></p>

<p class="pcenter"> S_k(\Gamma) \oplus \overline{S_k(\Gamma)} \oplus E_k(\Gamma) \cong_{\sf Hecke} H^1(\Gamma,P_{\mathbb C}(k-2))</p>

<p>which relates the cohomology of groups to the theory of modular forms associated to a finite index subgroup <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SL_2( Z)</span>. In subsequent sections we explain how to compute with the right-hand side of the isomorphism. But first, for completeness, let us define the terms on the left-hand side.</p>

<p>Let <span class="SimpleMath">N</span> be a positive integer. A subgroup <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SL_2( Z)</span> is said to be a <em>congruence subgroup</em> of level <span class="SimpleMath">N</span> if it contains the kernel of the canonical homomorphism <span class="SimpleMath">π_N: SL_2( Z) → SL_2( Z/N Z)</span>. So any congruence subgroup is of finite index in <span class="SimpleMath">SL_2( Z)</span>, but the converse is not true.</p>

<p>One congruence subgroup of particular interest is the group <span class="SimpleMath">Γ_1(N)=ker(π_N)</span>, known as the <em>principal congruence subgroup</em> of level <span class="SimpleMath">N</span>. Another congruence subgroup of particular interest is the group <span class="SimpleMath">Γ_0(N)</span> of those matrices that project to upper triangular matrices in <span class="SimpleMath">SL_2( Z/N Z)</span>.</p>

<p>A <em>modular form</em> of weight <span class="SimpleMath">k</span> for a congruence subgroup <span class="SimpleMath">Γ</span> is a complex valued function on the upper-half plane, <span class="SimpleMath">f: frakh}={z∈ C : Re(z)&gt;0} → C</span>, satisfying:</p>


<ul>
<li><p><span class="SimpleMath">displaystyle f(fracaz+bcz+d) = (cz+d)^k f(z)</span> for <span class="SimpleMath">(beginarraylla&amp;b c &amp;d endarray) ∈ Γ</span>,</p>

</li>
<li><p><span class="SimpleMath">f</span> is `holomorphic' on the <em>extended upper-half plane</em> <span class="SimpleMath">frakh^∗ = frakh ∪ Q ∪ {∞}</span> obtained from the upper-half plane by `adjoining a point at each cusp'.</p>

</li>
</ul>
<p>The collection of all weight <span class="SimpleMath">k</span> modular forms for <span class="SimpleMath">Γ</span> form a vector space <span class="SimpleMath">M_k(Γ)</span> over <span class="SimpleMath">C</span>.</p>

<p>A modular form <span class="SimpleMath">f</span> is said to be a <em>cusp form</em> if <span class="SimpleMath">f(∞)=0</span>. The collection of all weight <span class="SimpleMath">k</span> cusp forms for <span class="SimpleMath">Γ</span> form a vector subspace <span class="SimpleMath">S_k(Γ)</span>. There is a decomposition</p>

<p class="pcenter">M_k(\Gamma) \cong S_k(\Gamma) \oplus E_k(\Gamma)</p>

<p>involving a summand <span class="SimpleMath">E_k(Γ)</span> known as the <em>Eisenstein space</em>. See <a href="chapBib.html#biBstein">[Ste07]</a> for further introductory details on modular forms.</p>

<p>The Eichler-Shimura isomorphism is more than an isomorphism of vector spaces. It is an isomorphism of Hecke modules: both sides admit notions of <em>Hecke operators</em>, and the isomorphism preserves these operators. The bar on the left-hand side of the isomorphism denotes complex conjugation, or <em>anti-holomorphic</em> forms. See <a href="chapBib.html#biBwieser">[Wie78]</a> for a full account of the isomorphism.</p>

<p>On the right-hand side of the isomorphism, the <span class="SimpleMath">ZΓ</span>-module <span class="SimpleMath">P_ C(k-2)⊂ C[x,y]</span> denotes the space of homogeneous degree <span class="SimpleMath">k-2</span> polynomials with action of <span class="SimpleMath">Γ</span> given by</p>

<p class="pcenter">\left(\begin{array}{ll}a&amp;b\\ c &amp;d \end{array}\right)\cdot p(x,y) = p(dx-by,-cx+ay)\ .</p>

<p>In particular <span class="SimpleMath">P_ C(0)= C</span> is the trivial module. Below we shall compute with the integral analogue <span class="SimpleMath">P_ Z(k-2) ⊂ Z[x,y]</span>.</p>

<p>In the following sections we explain how to use the right-hand side of the Eichler-Shimura isomorphism to compute eigenvalues of the Hecke operators restricted to the subspace <span class="SimpleMath">S_k(Γ)</span> of cusp forms.</p>

<p><a id="X7BFA2C91868255D9" name="X7BFA2C91868255D9"></a></p>

<h4>13.2 <span class="Heading">Generators for <span class="SimpleMath">SL_2( Z)</span> and the cubic tree</span></h4>

<p>The matrices <span class="SimpleMath">S=(beginarrayrr0&amp;-1 1 &amp;0 endarray)</span> and <span class="SimpleMath">T=(beginarrayrr1&amp;1 0 &amp;1 endarray)</span> generate <span class="SimpleMath">SL_2( Z)</span> and it is not difficult to devise an algorithm for expressing an arbitrary integer matrix <span class="SimpleMath">A</span> of determinant <span class="SimpleMath">1</span> as a word in <span class="SimpleMath">S</span>, <span class="SimpleMath">T</span> and their inverses. The following illustrates such an algorithm.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=[[4,9],[7,16]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">word:=AsWordInSL2Z(A);</span>
[ [ [ 1, 0 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, -1 ], [ 0, 1 ] ], 
  [ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 0, 1 ], [ -1, 0 ] ], 
  [ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ], [ [ 1, -1 ], [ 0, 1 ] ], 
  [ [ 0, 1 ], [ -1, 0 ] ], [ [ 1, 1 ], [ 0, 1 ] ], [ [ 1, 1 ], [ 0, 1 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Product(word);</span>
[ [ 4, 9 ], [ 7, 16 ] ]

</pre></div>

<p>It is convenient to introduce the matrix <span class="SimpleMath">U=ST = (beginarrayrr0&amp;-1 1 &amp;1 endarray)</span>. The matrices <span class="SimpleMath">S</span> and <span class="SimpleMath">U</span> also generate <span class="SimpleMath">SL_2( Z)</span>. In fact we have a free presentation <span class="SimpleMath">SL_2( Z)= ⟨ S,U | S^4=U^6=1, S^2=U^3 ⟩</span>.</p>

<p>The <em>cubic tree</em> <span class="SimpleMath">cal T</span> is a tree (<em>i.e.</em> a <span class="SimpleMath">1</span>-dimensional contractible regular CW-complex) with countably infinitely many edges in which each vertex has degree <span class="SimpleMath">3</span>. We can realize the cubic tree <span class="SimpleMath">cal T</span> by taking the left cosets of <span class="SimpleMath">cal U=⟨ U⟩</span> in <span class="SimpleMath">SL_2( Z)</span> as vertices, and joining cosets <span class="SimpleMath">xcal U</span> and <span class="SimpleMath">ycal U</span> by an edge if, and only if, <span class="SimpleMath">x^-1y ∈ cal U Scal U</span>. Thus the vertex <span class="SimpleMath">cal U</span> is joined to <span class="SimpleMath">Scal U</span>, <span class="SimpleMath">UScal U</span> and <span class="SimpleMath">U^2Scal U</span>. The vertices of this tree are in one-to-one correspondence with all reduced words in <span class="SimpleMath">S</span>, <span class="SimpleMath">U</span> and <span class="SimpleMath">U^2</span> that, apart from the identity, end in <span class="SimpleMath">S</span>.</p>

<p>From our realization of the cubic tree <span class="SimpleMath">cal T</span> we see that <span class="SimpleMath">SL_2( Z)</span> acts on <span class="SimpleMath">cal T</span> in such a way that each vertex is stabilized by a cyclic subgroup conjugate to <span class="SimpleMath">cal U=⟨ U⟩</span> and each edge is stabilized by a cyclic subgroup conjugate to <span class="SimpleMath">cal S =⟨ S ⟩</span>.</p>

<p>In order to store this action of <span class="SimpleMath">SL_2( Z)</span> on the cubic tree <span class="SimpleMath">cal T</span> we just need to record the following finite amount of information.</p>

<p><img src="images/fdsl2.png" align="center" width="350" alt="Information for the cubic tree"/></p>

<p><a id="X7D1A56967A073A8B" name="X7D1A56967A073A8B"></a></p>

<h4>13.3 <span class="Heading">One-dimensional fundamental domains and  
generators for congruence subgroups</span></h4>

<p>The modular group <span class="SimpleMath">cal M=PSL_2( Z)</span> is isomorphic, as an abstract group, to the free product <span class="SimpleMath">Z_2∗ Z_3</span>. By the Kurosh subgroup theorem, any finite index subgroup <span class="SimpleMath">M ⊂ cal M</span> is isomorphic to the free product of finitely many copies of <span class="SimpleMath">Z_2</span>s, <span class="SimpleMath">Z_3</span>s and <span class="SimpleMath">Z</span>s. A subset <span class="SimpleMath">underline x ⊂ M</span> is an <em>independent</em> set of subgroup generators if <span class="SimpleMath">M</span> is the free product of the cyclic subgroups <span class="SimpleMath">&lt;x &gt;</span> as <span class="SimpleMath">x</span> runs over <span class="SimpleMath">underline x</span>. Let us say that a set of elements in <span class="SimpleMath">SL_2( Z)</span> is <em>projectively independent</em> if it maps injectively onto an independent set of subgroup generators <span class="SimpleMath">underline x⊂ cal M</span>. The generating set <span class="SimpleMath">{S,U}</span> for <span class="SimpleMath">SL_2( Z)</span> given in the preceding section is projectively independent.</p>

<p>We are interested in constructing a set of generators for a given congruence subgroup <span class="SimpleMath">Γ</span>. If a small generating set for <span class="SimpleMath">Γ</span> is required then we should aim to construct one which is close to being projectively independent.</p>

<p>It is useful to invoke the following general result which follows from a perturbation result about free <span class="SimpleMath">ZG</span>-resolutons in <a href="chapBib.html#biBellisharrisskoldberg">[EHS06, Theorem 2]</a> and an old observation of John Milnor that a free <span class="SimpleMath">ZG</span>-resolution can be realized as the cellular chain complex of a CW-complex if it can be so realized in low dimensions.</p>

<p><strong class="button">Theorem.</strong> Let <span class="SimpleMath">X</span> be a contractible CW-complex on which a group <span class="SimpleMath">G</span> acts by permuting cells. The cellular chain complex <span class="SimpleMath">C_∗ X</span> is a <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> which typically is not free. Let <span class="SimpleMath">[e^n]</span> denote the orbit of the n-cell <span class="SimpleMath">e^n</span> under the action. Let <span class="SimpleMath">G^e^n ≤ G</span> denote the stabilizer subgroup of <span class="SimpleMath">e^n</span>, in which group elements are not required to stabilize <span class="SimpleMath">e^n</span> point-wise. Let <span class="SimpleMath">Y_e^n</span> denote a contractible CW-complex on which <span class="SimpleMath">G^e^n</span> acts cellularly and freely. Then there exists a contractible CW-complex <span class="SimpleMath">W</span> on which <span class="SimpleMath">G</span> acts cellularly and freely, and in which the orbits of <span class="SimpleMath">n</span>-cells are labelled by <span class="SimpleMath">[e^p]⊗ [f^q]</span> where <span class="SimpleMath">p+q=n</span> and <span class="SimpleMath">[e^p]</span> ranges over the <span class="SimpleMath">G</span>-orbits of <span class="SimpleMath">p</span>-cells in <span class="SimpleMath">X</span>, <span class="SimpleMath">[f^q]</span> ranges over the <span class="SimpleMath">G^e^p</span>-orbits of <span class="SimpleMath">q</span>-cells in <span class="SimpleMath">Y_e^p</span>.</p>

<p>Let <span class="SimpleMath">W</span> be as in the theorem. Then the quotient CW-complex <span class="SimpleMath">B_G=W/G</span> is a classifying space for <span class="SimpleMath">G</span>. Let <span class="SimpleMath">T</span> denote a maximal tree in the <span class="SimpleMath">1</span>-skeleton <span class="SimpleMath">B^1_G</span>. Basic geometric group theory tells us that the <span class="SimpleMath">1</span>-cells in <span class="SimpleMath">B^1_G∖ T</span> correspond to a generating set for <span class="SimpleMath">G</span>.</p>

<p>Suppose we wish to compute a set of generators for a principal congruence subgroup <span class="SimpleMath">Γ=Γ_1(N)</span>. In the above theorem take <span class="SimpleMath">X=cal T</span> to be the cubic tree, and note that <span class="SimpleMath">Γ</span> acts freely on <span class="SimpleMath">cal T</span> and thus that <span class="SimpleMath">W=cal T</span>. To determine the <span class="SimpleMath">1</span>-cells of <span class="SimpleMath">B_Γ∖ T</span> we need to determine a cellular subspace <span class="SimpleMath">D_Γ ⊂ cal T</span> whose images under the action of <span class="SimpleMath">Γ</span> cover <span class="SimpleMath">cal T</span> and are pairwise either disjoint or identical. The subspace <span class="SimpleMath">D_Γ</span> will not be a CW-complex as it won't be closed, but it can be chosen to be connected, and hence contractible. We call <span class="SimpleMath">D_Γ</span> a <em>fundamental region</em> for <span class="SimpleMath">Γ</span>. We denote by <span class="SimpleMath">mathring D_Γ</span> the largest CW-subcomplex of <span class="SimpleMath">D_Γ</span>. The vertices of <span class="SimpleMath">mathring D_Γ</span> are the same as the vertices of <span class="SimpleMath">D_Γ</span>. Thus <span class="SimpleMath">mathring D_Γ</span> is a subtree of the cubic tree with <span class="SimpleMath">|Γ|/6</span> vertices. For each vertex <span class="SimpleMath">v</span> in the tree <span class="SimpleMath">mathring D_Γ</span> define <span class="SimpleMath">η(v)=3 - degree(v)</span>. Then the number of generators for <span class="SimpleMath">Γ</span> will be <span class="SimpleMath">(1/2)∑_v∈ mathring D_Γ η(v)</span>.</p>

<p>The following commands determine projectively independent generators for <span class="SimpleMath">Γ_1(6)</span> and display <span class="SimpleMath">mathring D_Γ_1(6)</span>. The subgroup <span class="SimpleMath">Γ_1(6)</span> is free on <span class="SimpleMath">13</span> generators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_PrincipalCongruenceSubgroup(6);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HAP_SL2TreeDisplay(G);</span>


<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:=GeneratorsOfGroup(G);</span>
[ [ [ -83, -18 ], [ 60, 13 ] ], [ [ -77, -18 ], [ 30, 7 ] ], 
  [ [ -65, -12 ], [ 168, 31 ] ], [ [ -53, -12 ], [ 84, 19 ] ], 
  [ [ -47, -18 ], [ 222, 85 ] ], [ [ -41, -12 ], [ 24, 7 ] ], 
  [ [ -35, -6 ], [ 6, 1 ] ], [ [ -11, -18 ], [ 30, 49 ] ], 
  [ [ -11, -6 ], [ 24, 13 ] ], [ [ -5, -18 ], [ 12, 43 ] ], 
  [ [ -5, -12 ], [ 18, 43 ] ], [ [ -5, -6 ], [ 6, 7 ] ], 
  [ [ 1, 0 ], [ -6, 1 ] ] ]

</pre></div>

<p><img src="images/pctree6.gif" align="center" width="350" alt="Fundamental region in the cubic tree"/></p>

<p>An alternative but very related approach to computing generators of congruence subgroups of <span class="SimpleMath">SL_2( Z)</span> is described in <a href="chapBib.html#biBkulkarni">[Kul91]</a>.</p>

<p>The congruence subgroup <span class="SimpleMath">Γ_0(N)</span> does not act freely on the vertices of <span class="SimpleMath">cal T</span>, and so one needs to incorporate a generator for the cyclic stabilizer group according to the above theorem. Alternatively, we can replace the cubic tree by a six-fold cover <span class="SimpleMath">cal T'</span> on whose vertex set <span class="SimpleMath">Γ_0(N)</span> acts freely. This alternative approach will produce a redundant set of generators. The following commands display <span class="SimpleMath">mathring D_Γ_0(39)</span> for a fundamental region in <span class="SimpleMath">cal T'</span>. They also use the corresponding generating set for <span class="SimpleMath">Γ_0(39)</span>, involving <span class="SimpleMath">18</span> generators, to compute the abelianization <span class="SimpleMath">Γ_0(39)^ab= Z_2 ⊕ Z_3^2 ⊕ Z^9</span>. The abelianization shows that any generating set has at least <span class="SimpleMath">11</span> generators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HAP_SL2TreeDisplay(G);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(GeneratorsOfGroup(G));</span>
18
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(G);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3 ]

</pre></div>

<p><img src="images/g0tree39.gif" align="center" width="350" alt="Fundamental region in the cubic tree"/></p>

<p>Note that to compute <span class="SimpleMath">D_Γ</span> one only needs to be able to test whether a given matrix lies in <span class="SimpleMath">Γ</span> or not. Given an inclusion <span class="SimpleMath">Γ'⊂ Γ</span> of congruence subgroups, it is straightforward to use the trees <span class="SimpleMath">mathring D_Γ'</span> and <span class="SimpleMath">mathring D_Γ</span> to compute a system of coset representative for <span class="SimpleMath">Γ'∖ Γ</span>.</p>

<p><a id="X818BFA9A826C0DB3" name="X818BFA9A826C0DB3"></a></p>

<h4>13.4 <span class="Heading">Cohomology of congruence subgroups</span></h4>

<p>To compute the cohomology <span class="SimpleMath">H^n(Γ,A)</span> of a congruence subgroup <span class="SimpleMath">Γ</span> with coefficients in a <span class="SimpleMath">ZΓ</span>-module <span class="SimpleMath">A</span> we need to construct <span class="SimpleMath">n+1</span> terms of a free <span class="SimpleMath">ZΓ</span>-resolution of <span class="SimpleMath">Z</span>. We can do this by first using perturbation techniques (as described in <a href="chapBib.html#biBbuiellis">[BE14]</a>) to combine the cubic tree with resolutions for the cyclic groups of order <span class="SimpleMath">4</span> and <span class="SimpleMath">6</span> in order to produce a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span> for <span class="SimpleMath">G=SL_2( Z)</span>. This resolution is also a free <span class="SimpleMath">ZΓ</span>-resolution with each term of rank</p>

<p class="pcenter">{\rm rank}_{\mathbb Z\Gamma} R_k = |G:\Gamma|\times {\rm rank}_{\mathbb ZG} R_k\ .</p>

<p>For congruence subgroups of lowish index in <span class="SimpleMath">G</span> this resolution suffices to make computations.</p>

<p>The following commands compute</p>

<p class="pcenter">H^1(\Gamma_0(39),\mathbb Z) = \mathbb Z^9\ .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2Z_alt(2);</span>
Resolution of length 2 in characteristic 0 for SL(2,Integers) .

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,gamma);</span>
Resolution of length 2 in characteristic 0 for 
CongruenceSubgroupGamma0( 39)  .

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(HomToIntegers(S),1);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p>This computation establishes that the space <span class="SimpleMath">M_2(Γ_0(39))</span> of weight <span class="SimpleMath">2</span> modular forms is of dimension <span class="SimpleMath">9</span>.</p>

<p>The following commands show that <span class="SimpleMath">rank_ ZΓ_0(39) R_1 = 112</span> but that it is possible to apply `Tietze like' simplifications to <span class="SimpleMath">R_∗</span> to obtain a free <span class="SimpleMath">ZΓ_0(39)</span>-resolution <span class="SimpleMath">T_∗</span> with <span class="SimpleMath">rank_ ZΓ_0(39) T_1 = 11</span>. It is more efficient to work with <span class="SimpleMath">T_∗</span> when making cohomology computations with coefficients in a module <span class="SimpleMath">A</span> of large rank.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S!.dimension(1);</span>
112
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=TietzeReducedResolution(S);</span>
Resolution of length 2 in characteristic 0 for CongruenceSubgroupGamma0(
39)  . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T!.dimension(1);</span>
11

</pre></div>

<p>The following commands compute</p>

<p class="pcenter">H^1(\Gamma_0(39),P_{\mathbb Z}(8)) = \mathbb Z_3 \oplus \mathbb Z_6
\oplus \mathbb Z_{168} \oplus \mathbb Z^{84}\ ,</p>

<p class="pcenter">H^1(\Gamma_0(39),P_{\mathbb Z}(9)) = \mathbb Z_2 \oplus \mathbb Z_2 .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=HomogeneousPolynomials(gamma,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:=Cohomology(HomToIntegralModule(T,P),1);</span>
[ 3, 6, 168, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(c);</span>
87

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=HomogeneousPolynomials(gamma,9);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:=Cohomology(HomToIntegralModule(T,P),1);</span>
[ 2, 2 ]

</pre></div>

<p>This computation establishes that the space <span class="SimpleMath">M_10(Γ_0(39))</span> of weight <span class="SimpleMath">10</span> modular forms is of dimension <span class="SimpleMath">84</span>, and <span class="SimpleMath">M_11(Γ_0(39))</span> is of dimension <span class="SimpleMath">0</span>. (There are never any modular forms of odd weight, and so <span class="SimpleMath">M_k(Γ)=0</span> for all odd <span class="SimpleMath">k</span> and any congruence subgroup <span class="SimpleMath">Γ</span>.)</p>

<p><a id="X7F55F8EA82FE9122" name="X7F55F8EA82FE9122"></a></p>

<h5>13.4-1 <span class="Heading">Cohomology with rational coefficients</span></h5>

<p>To calculate cohomology <span class="SimpleMath">H^n(Γ,A)</span> with coefficients in a <span class="SimpleMath">QΓ</span>-module <span class="SimpleMath">A</span> it suffices to construct a resolution of <span class="SimpleMath">Z</span> by non-free <span class="SimpleMath">ZΓ</span>-modules where <span class="SimpleMath">Γ</span> acts with finite stabilizer groups on each module in the resolution. Computing over <span class="SimpleMath">Q</span> is computationally less expensive than computing over <span class="SimpleMath">Z</span>. The following commands first compute <span class="SimpleMath">H^1(Γ_0(39), Q) = H_1(Γ_0(39), Q)= Q^9</span>. As a larger example, they then compute <span class="SimpleMath">H^1(Γ_0(2^13-1), Q) = Q^1365</span> where <span class="SimpleMath">Γ_0(2^13-1)</span> has index <span class="SimpleMath">8192</span> in <span class="SimpleMath">SL_2( Z)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,Z)");</span>
Non-free resolution in characteristic 0 for SL(2,Integers) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KK:=NonFreeResolutionFiniteSubgroup(K,gamma);</span>
Non-free resolution in characteristic 0 for &lt;matrix group with 
18 generators&gt; . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=TensorWithRationals(KK);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(C,1);</span>
9

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(2^13-1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexInSL2Z(G);</span>
8192
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">KK:=NonFreeResolutionFiniteSubgroup(K,G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=TensorWithRationals(KK);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(C,1);</span>
1365

</pre></div>

<p><a id="X84D30F1580CD42D1" name="X84D30F1580CD42D1"></a></p>

<h4>13.5 <span class="Heading">Cuspidal cohomology</span></h4>

<p>To define and compute cuspidal cohomology we consider the action of <span class="SimpleMath">SL_2( Z)</span> on the upper-half plane <span class="SimpleMath">frak h</span> given by</p>

<p class="pcenter">\left(\begin{array}{ll}a&amp;b\\ c &amp;d \end{array}\right) z =
\frac{az +b}{cz+d}\ .</p>

<p>A standard 'fundamental domain' for this action is the region</p>

<p class="pcenter">\begin{array}{ll}
 D=&amp;\{z\in {\frak h}\ :\ |z| &gt; 1, |{\rm Re}(z)| &lt; \frac{1}{2}\} \\ 
&amp;
\cup\ \{z\in {\frak h} \ :\ |z| \ge 1, {\rm Re}(z)=-\frac{1}{2}\}\\ 
&amp; \cup\ \{z \in {\frak h}\ :\ |z|=1, -\frac{1}{2} \le {\rm Re}(z) \le 0\}
\end{array}
</p>

<p>illustrated below.</p>

<p><img src="images/filename-1.png" align="center" width="450" alt="Fundamental domain in the upper-half plane"/></p>

<p>The action factors through an action of <span class="SimpleMath">PSL_2( Z) =SL_2( Z)/⟨ (beginarrayrr-1&amp;0 0 &amp;-1 endarray)⟩</span>. The images of <span class="SimpleMath">D</span> under the action of <span class="SimpleMath">PSL_2( Z)</span> cover the upper-half plane, and any two images have at most a single point in common. The possible common points are the bottom left-hand corner point which is stabilized by <span class="SimpleMath">⟨ U⟩</span>, and the bottom middle point which is stabilized by <span class="SimpleMath">⟨ S⟩</span>.</p>

<p>A congruence subgroup <span class="SimpleMath">Γ</span> has a `fundamental domain' <span class="SimpleMath">D_Γ</span> equal to a union of finitely many copies of <span class="SimpleMath">D</span>, one copy for each coset in <span class="SimpleMath">Γ∖ SL_2( Z)</span>. The quotient space <span class="SimpleMath">X=Γ∖ frak h</span> is not compact, and can be compactified in several ways. We are interested in the Borel-Serre compactification. This is a space <span class="SimpleMath">X^BS</span> for which there is an inclusion <span class="SimpleMath">X↪ X^BS</span> and this inclusion is a homotopy equivalence. One defines the <em>boundary</em> <span class="SimpleMath">∂ X^BS = X^BS - X</span> and uses the inclusion <span class="SimpleMath">∂ X^BS ↪ X^BS ≃ X</span> to define the cuspidal cohomology group, over the ground ring <span class="SimpleMath">C</span>, as</p>

<p class="pcenter"> H_{cusp}^n(\Gamma,P_{\mathbb C}(k-2)) = \ker (\ H^n(X,P_{\mathbb C}(k-2)) \rightarrow
H^n(\partial X^{BS},P_{\mathbb C}(k-2)) \ ).</p>

<p>Strictly speaking, this is the definition of <em>interior cohomology</em> <span class="SimpleMath">H_!^n(Γ,P_ C(k-2))</span> which in general contains the cuspidal cohomology as a subgroup. However, for congruence subgroups of <span class="SimpleMath">SL_2( Z)</span> there is equality <span class="SimpleMath">H_!^n(Γ,P_ C(k-2)) = H_cusp^n(Γ,P_ C(k-2))</span>.</p>

<p>Working over <span class="SimpleMath">C</span> has the advantage of avoiding the technical issue that <span class="SimpleMath">Γ</span> does not necessarily act freely on <span class="SimpleMath">frak h</span> since there are points with finite cyclic stabilizer groups in <span class="SimpleMath">SL_2( Z)</span>. But it has the disadvantage of losing information about torsion in cohomology. So HAP confronts the issue by working with a contractible CW-complex <span class="SimpleMath">tilde X^BS</span> on which <span class="SimpleMath">Γ</span> acts freely, and <span class="SimpleMath">Γ</span>-equivariant inclusion <span class="SimpleMath">∂ tilde X^BS ↪ tilde X^BS</span>. The definition of cuspidal cohomology that we use, which coincides with the above definition when working over <span class="SimpleMath">C</span>, is</p>

<p class="pcenter"> H_{cusp}^n(\Gamma,A) = \ker (\ H^n({\rm Hom}_{\, \mathbb  Z\Gamma}(C_\ast(\tilde X^{BS}), A)\,   ) \rightarrow
H^n(\ {\rm Hom}_{\, \mathbb  Z\Gamma}(C_\ast(\tilde \partial X^{BS}), A)\, \ ).</p>

<p>The following data is recorded and, using perturbation theory, is combined with free resolutions for <span class="SimpleMath">C_4</span> and <span class="SimpleMath">C_6</span> to constuct <span class="SimpleMath">tilde X^BS</span>.</p>

<p><img src="images/filename-2.png" align="center" width="450" alt="Borel-Serre compactified fundamental domain in the upper-half plane"/></p>

<p>The following commands calculate</p>

<p class="pcenter">H^1_{cusp}(\Gamma_0(39),\mathbb Z) = \mathbb Z^6\ .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">k:=2;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);</span>
[ g1, g2, g3, g4, g5, g6, g7, g8, g9 ] -&gt; [ g1^-1*g3, g1^-1*g3, g1^-1*g3, 
  g1^-1*g3, g1^-1*g2, g1^-1*g3, g1^-1*g4, g1^-1*g4, g1^-1*g4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(Kernel(c));</span>
[ 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p>From the Eichler-Shimura isomorphism and the already calculated dimension of <span class="SimpleMath">M_2(Γ_0(39))≅ C^9</span>, we deduce from this cuspidal cohomology that the space <span class="SimpleMath">S_2(Γ_0(39))</span> of cuspidal weight <span class="SimpleMath">2</span> forms is of dimension <span class="SimpleMath">3</span>, and the Eisenstein space <span class="SimpleMath">E_2(Γ_0(39))≅ C^3</span> is of dimension <span class="SimpleMath">3</span>.</p>

<p>The following commands show that the space <span class="SimpleMath">S_4(Γ_0(39))</span> of cuspidal weight <span class="SimpleMath">4</span> forms is of dimension <span class="SimpleMath">12</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">k:=4;; deg:=1;; c:=CuspidalCohomologyHomomorphism(gamma,deg,k);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(Kernel(c));</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p><a id="X80861D3F87C29C43" name="X80861D3F87C29C43"></a></p>

<h4>13.6 <span class="Heading">Hecke operators on forms of weight 2</span></h4>

<p>A congruence subgroup <span class="SimpleMath">Γ ≤ SL_2( Z)</span> and element <span class="SimpleMath">g∈ SL_2( Q)</span> determine the subgroup <span class="SimpleMath">Γ' = Γ ∩ gΓ g^-1</span> and homomorphisms</p>

<p class="pcenter"> \Gamma\ \hookleftarrow\ \Gamma'\ \ \stackrel{\gamma \mapsto g^{-1}\gamma g}{\longrightarrow}\ \ g^{-1}\Gamma' g\ \hookrightarrow \Gamma\ . </p>

<p>These homomorphisms give rise to homomorphisms of cohomology groups</p>

<p class="pcenter">H^n(\Gamma,\mathbb Z)\ \ \stackrel{tr}{\leftarrow} \ \ H^n(\Gamma',\mathbb Z) \ \ \stackrel{\alpha}{\leftarrow} \ \ H^n(g^{-1}\Gamma' g,\mathbb Z) \ \  \stackrel{\beta}{\leftarrow} H^n(\Gamma, \mathbb Z) </p>

<p>with <span class="SimpleMath">α</span>, <span class="SimpleMath">β</span> functorial maps, and <span class="SimpleMath">tr</span> the transfer map. We define the composite <span class="SimpleMath">T_g=tr ∘ α ∘ β: H^n(Γ, Z) → H^n(Γ, Z)</span> to be the <em> Hecke component </em> determined by <span class="SimpleMath">g</span>.</p>

<p>For <span class="SimpleMath">Γ=Γ_0(N)</span>, prime integer <span class="SimpleMath">p</span> coprime to <span class="SimpleMath">N</span>, and cohomology degree <span class="SimpleMath">n=1</span> we define the <em>Hecke operator</em> <span class="SimpleMath">T_p =T_g</span> where <span class="SimpleMath">g=(beginarraycc1&amp;00&amp;pendarray)</span>. Further details on this description of Hecke operators can be found in <a href="chapBib.html#biBstein">[Ste07, Appendix by P. Gunnells]</a>.</p>

<p>The following commands compute <span class="SimpleMath">T_2</span> and <span class="SimpleMath">T_5</span> and <span class="SimpleMath">Γ=Γ_0(39)</span>. The commands also compute the eigenvalues of these two Hecke operators. The final command confirms that <span class="SimpleMath">T_2</span> and <span class="SimpleMath">T_5</span> commute. (It is a fact that <span class="SimpleMath">T_pT_q=T_qT_p</span> for all <span class="SimpleMath">p,q</span>.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(39);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:=2;;k:=2;;T2:=HeckeOperator(gamma,p,k);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(T2);</span>
[ [  -2,  -2,   2,   2,   1,   2,   0,   0,   0 ],
  [  -2,   0,   1,   2,  -2,   2,   2,   2,  -2 ],
  [  -2,  -1,   2,   2,  -1,   2,   1,   1,  -1 ],
  [  -2,  -1,   2,   2,   1,   1,   0,   0,   0 ],
  [  -1,   0,   0,   2,  -3,   2,   3,   3,  -3 ],
  [   0,   1,   1,   1,  -1,   0,   1,   1,  -1 ],
  [  -1,   1,   1,  -1,   0,   1,   2,  -1,   1 ],
  [  -1,  -1,   0,   2,  -3,   2,   1,   4,  -1 ],
  [   0,   1,   0,  -1,  -2,   1,   1,   1,   2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Eigenvalues(Rationals,T2);</span>
[ 3, 1 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:=5;;k:=2;;h:=HeckeOperator(gamma,p,k);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(T5);</span>
[ [  -1,  -1,   3,   4,   0,   0,   1,   1,  -1 ],
  [  -5,  -1,   5,   4,   0,   0,   3,   3,  -3 ],
  [  -2,   0,   4,   4,   1,   0,  -1,  -1,   1 ],
  [  -2,   0,   3,   2,  -3,   2,   4,   4,  -4 ],
  [  -4,  -2,   4,   4,   3,   0,   1,   1,  -1 ],
  [  -6,  -4,   5,   6,   1,   2,   2,   2,  -2 ],
  [   1,   5,   0,  -4,  -3,   2,   5,  -1,   1 ],
  [  -2,  -2,   2,   4,   0,   0,  -2,   4,   2 ],
  [   1,   3,   0,  -4,  -4,   2,   2,   2,   4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Eigenvalues(Rationals,T5);</span>
[ 6, 2 ]

gap&gt;T2*T5=T5*T2;
true

</pre></div>

<p><a id="X831BB0897B988DA3" name="X831BB0897B988DA3"></a></p>

<h4>13.7 <span class="Heading">Hecke operators on forms of weight <span class="SimpleMath">≥ 2</span></span></h4>

<p>The above definition of Hecke operator <span class="SimpleMath">T_p</span> for <span class="SimpleMath">Γ=Γ_0(N)</span> extends to a Hecke operator <span class="SimpleMath">T_p: H^1(Γ,P_ Q(k-2) ) → H^1(Γ,P_ Q(k-2) )</span> for <span class="SimpleMath">k≥ 2</span>. We work over the rationals since that is a setting of much interest. The following commands compute the matrix of <span class="SimpleMath">T_2: H^1(Γ,P_ Q(k-2) ) → H^1(Γ,P_ Q(k-2) )</span> for <span class="SimpleMath">Γ=SL_2( Z)</span> and <span class="SimpleMath">k=4</span>;</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H:=HAP_CongruenceSubgroupGamma0(1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:=HeckeOperator(H,2,12);;Display(h);</span>
[ [   2049,  -7560,      0 ],
  [      0,    -24,      0 ],
  [      0,      0,    -24 ] ]

</pre></div>

<p><a id="X84CC51EE8525E0D9" name="X84CC51EE8525E0D9"></a></p>

<h4>13.8 <span class="Heading">Reconstructing modular forms from cohomology computations</span></h4>

<p>Given a modular form <span class="SimpleMath">f: frak h → C</span> associated to a congruence subgroup <span class="SimpleMath">Γ</span>, and given a compact edge <span class="SimpleMath">e</span> in the tessellation of <span class="SimpleMath">frak h</span> (<em>i.e.</em> an edge in the cubic tree <span class="SimpleMath">cal T</span>) arising from the above fundamental domain for <span class="SimpleMath">SL_2( Z)</span>, we can evaluate</p>

<p class="pcenter">\int_e f(z)\,dz \ .</p>

<p>In this way we obtain a cochain <span class="SimpleMath">f_1: C_1(cal T) → C</span> in <span class="SimpleMath">Hom_ ZΓ(C_1(cal T), C)</span> representing a cohomology class <span class="SimpleMath">c(f) ∈ H^1( Hom_ ZΓ(C_∗(cal T), C) ) = H^1(Γ, C)</span>. The correspondence <span class="SimpleMath">f↦ c(f)</span> underlies the Eichler-Shimura isomorphism. Hecke operators can be used to recover modular forms from cohomology classes.</p>

<p>Let <span class="SimpleMath">Γ=Γ_0(N)</span>. The above defined Hecke operators restrict to operators on cuspidal cohomology. On the left-hand side of the Eichler-Shimura isomorphism Hecke operators restrict to operators <span class="SimpleMath">T_s: S_2(Γ) → S_2(Γ)</span> for <span class="SimpleMath">s≥ 1</span>.</p>

<p>Consider the function <span class="SimpleMath">q=q(z)=e^2π i z</span> which is holomorphic on <span class="SimpleMath">C</span>. For any modular form <span class="SimpleMath">f(z) ∈ M_k(Γ)</span> there are numbers <span class="SimpleMath">a_s</span> such that</p>

<p class="pcenter">f(z) = \sum_{s=0}^\infty a_sq^s </p>

<p>for all <span class="SimpleMath">z∈ frak h</span>. The form <span class="SimpleMath">f</span> is a cusp form if <span class="SimpleMath">a_0=0</span>.</p>

<p>A non-zero cusp form <span class="SimpleMath">f∈ S_2(Γ)</span> is a cusp <em>eigenform</em> if it is simultaneously an eigenvector for the Hecke operators <span class="SimpleMath">T_s</span> for all <span class="SimpleMath">s =1,2,3,⋯</span> coprime to the level <span class="SimpleMath">N</span>. A cusp eigenform is said to be <em>normalized</em> if its coefficient <span class="SimpleMath">a_1=1</span>. It turns out that if <span class="SimpleMath">f</span> is normalized then the coefficient <span class="SimpleMath">a_s</span> is an eigenvalue for <span class="SimpleMath">T_s</span> (see for instance <a href="chapBib.html#biBstein">[Ste07]</a> for details). It can be shown <a href="chapBib.html#biBatkinlehner">[AL70]</a> that <span class="SimpleMath">S_2(Γ_0(N))</span> admits a "basis constructed from eigenforms".</p>

<p>This all implies that, in principle, we can construct an approximation to an explicit basis for the space <span class="SimpleMath">S_2(Γ_0(N))</span> of cusp forms by computing eigenvalues for Hecke operators.</p>

<p>Suppose that we would like a basis for <span class="SimpleMath">S_2(Γ_0(11))</span>. The following commands first show that <span class="SimpleMath">H^1_cusp(Γ_0(11), Z)= Z⊕ Z</span> from which we deduce that <span class="SimpleMath">S_2(Γ_0(11)) = C</span> is <span class="SimpleMath">1</span>-dimensional and thus admits a basis of eigenforms. Then eigenvalues of Hecke operators are calculated to establish that the modular form</p>

<p class="pcenter">f = q -2q^2 -q^3 +2q^4 +q^5 +2q^6 -2q^7 + -2q^9 -2q^{10} + \cdots </p>

<p>constitutes a basis for <span class="SimpleMath">S_2(Γ_0(11))</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma:=HAP_CongruenceSubgroupGamma0(11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(Kernel(CuspidalCohomologyHomomorphism(gamma,1,2)));</span>
[ 0, 0 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T1:=HeckeOperator(gamma,1,2);; Display(T1);</span>
[ [  1,  0,  0 ],
  [  0,  1,  0 ],
  [  0,  0,  1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T2:=HeckeOperator(gamma,2,2);; Display(T2);</span>
[ [   3,  -4,   4 ],
  [   0,  -2,   0 ],
  [   0,   0,  -2 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T3:=HeckeOperator(gamma,3,2);; Display(T3);</span>
[ [   4,  -4,   4 ],
  [   0,  -1,   0 ],
  [   0,   0,  -1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T5:=HeckeOperator(gamma,5,2);; Display(T5);</span>
[ [   6,  -4,   4 ],
  [   0,   1,   0 ],
  [   0,   0,   1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T7:=HeckeOperator(gamma,7,2);; Display(T7);</span>
[ [   8,  -8,   8 ],
  [   0,  -2,   0 ],
  [   0,   0,  -2 ] ]

</pre></div>

<p>For a normalized eigenform <span class="SimpleMath">f=1 + ∑_s=2^∞ a_sq^s</span> the coefficients <span class="SimpleMath">a_s</span> with <span class="SimpleMath">s</span> a composite integer can be expressed in terms of the coefficients <span class="SimpleMath">a_p</span> for prime <span class="SimpleMath">p</span>. If <span class="SimpleMath">r,s</span> are coprime then <span class="SimpleMath">T_rs =T_rT_s</span>. If <span class="SimpleMath">p</span> is a prime that is not a divisor of the level <span class="SimpleMath">N</span> of <span class="SimpleMath">Γ</span> then <span class="SimpleMath">a_p^m =a_p^m-1}a_p - p a_p^m-2}.</span> If the prime <span class="SimpleMath">p</span> divides <span class="SimpleMath">N</span> then <span class="SimpleMath">a_p^m = (a_p)^m</span>. It thus suffices to compute the coefficients <span class="SimpleMath">a_p</span> for prime integers <span class="SimpleMath">p</span> only.</p>

<p>The following commands establish that <span class="SimpleMath">S_12(SL_2( Z))</span> has a basis consisting of one cusp eigenform</p>

<p><span class="SimpleMath">q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 - 16744q^7 + 84480q^8 - 113643q^9</span></p>

<p><span class="SimpleMath">- 115920q^10 + 534612q^11 - 370944q^12 - 577738q^13 + 401856q^14 + 1217160q^15 + 987136q^16</span></p>

<p><span class="SimpleMath">- 6905934q^17 + 2727432q^18 + 10661420q^19 + ...</span></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2Z_alt(2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=HomogeneousPolynomials(G,14);</span>
MappingByFunction( SL(2,Integers), &lt;matrix group with 
2 generators&gt;, function( x ) ... end )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(HomToIntegralModule(R,P),1);</span>
[ 2, 2, 156, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">#Thus the space S_12 of cusp forms is of dimension 1</span>


<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for p in [2,3,5,7,11,13,17,19] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">T:=HeckeOperator(G,p,12);;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("eigenvalues= ",Eigenvalues(Rationals,T), " and eigenvectors = ", Eigenvectors(Rationals,T)," for p= ",p,"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
eigenvalues= [ 2049, -24 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 2
eigenvalues= [ 177148, 252 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 3
eigenvalues= [ 48828126, 4830 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 5
eigenvalues= [ 1977326744, -16744 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 7
eigenvalues= [ 285311670612, 534612 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 11
eigenvalues= [ 1792160394038, -577738 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 13
eigenvalues= [ 34271896307634, -6905934 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 17
eigenvalues= [ 116490258898220, 10661420 ] and eigenvectors = [ [ 1, -2520/691, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] for p= 19

</pre></div>

<p><a id="X8180E53C834301EF" name="X8180E53C834301EF"></a></p>

<h4>13.9 <span class="Heading">The Picard group</span></h4>

<p>Let us now consider the <em>Picard group</em> <span class="SimpleMath">G=SL_2( Z[ i])</span> and its action on <em>upper-half space</em></p>

<p class="pcenter">{\frak h}^3 =\{(z,t) \in \mathbb C\times \mathbb R\ |\ t &gt; 0\} \ . </p>

<p>To describe the action we introduce the symbol <span class="SimpleMath">j</span> satisfying <span class="SimpleMath">j^2=-1</span>, <span class="SimpleMath">ij=-ji</span> and write <span class="SimpleMath">z+tj</span> instead of <span class="SimpleMath">(z,t)</span>. The action is given by</p>

<p class="pcenter">\left(\begin{array}{ll}a&amp;b\\ c &amp;d \end{array}\right)\cdot (z+tj) \ = \ \left(a(z+tj)+b\right)\left(c(z+tj)+d\right)^{-1}\ .</p>

<p>Alternatively, and more explicitly, the action is given by</p>

<p class="pcenter">\left(\begin{array}{ll}a&amp;b\\ c &amp;d \end{array}\right)\cdot (z+tj) \ = \  
\frac{(az+b)\overline{(cz+d) } + a\overline c t^2}{|cz +d|^2 + |c|^2t^2} \ +\ 
\frac{t}{|cz+d|^2+|c|^2t^2}\, j
      \ .</p>

<p>A standard 'fundamental domain' <span class="SimpleMath">D</span> for this action is the following region (with some of the boundary points removed).</p>

<p class="pcenter">
 \{z+tj\in {\frak h}^3\ |\ 0 \le |{\rm Re}(z)| \le \frac{1}{2}, 0\le {\rm Im}(z) \le \frac{1}{2}, z\overline z +t^2 \ge 1\}
</p>

<p><img src="images/picarddomain.png" align="center" width="350" alt="Fundamental domain for the Picard group"/></p>

<p>The four bottom vertices of <span class="SimpleMath">D</span> are <span class="SimpleMath">a = -frac12 +frac12i +fracsqrt2}2j</span>, <span class="SimpleMath">b = -frac12 +fracsqrt3}2j</span>, <span class="SimpleMath">c = frac12 +fracsqrt3}2j</span>, <span class="SimpleMath">d = frac12 +frac12i +fracsqrt2}2j</span>.</p>

<p>The upper-half space <span class="SimpleMath">frak h^3</span> can be retracted onto a <span class="SimpleMath">2</span>-dimensional subspace <span class="SimpleMath">cal T ⊂ frak h^3</span>. The space <span class="SimpleMath">cal T</span> is a contractible <span class="SimpleMath">2</span>-dimensional regular CW-complex, and the action of the Picard group <span class="SimpleMath">G</span> restricts to a cellular action of <span class="SimpleMath">G</span> on <span class="SimpleMath">cal T</span>.</p>

<p>Using perturbation techniques, the <span class="SimpleMath">2</span>-complex <span class="SimpleMath">cal T</span> can be combined with free resolutions for the cell stabilizer groups to contruct a regular CW-complex <span class="SimpleMath">X</span> on which the Picard group <span class="SimpleMath">G</span> acts freely. The following commands compute the first few terms of the free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗ =C_∗ X</span>. Then <span class="SimpleMath">R_∗</span> is used to compute</p>

<p class="pcenter">H^1(G,\mathbb Z) =0\ ,</p>

<p class="pcenter">H^2(G,\mathbb Z) =\mathbb Z_2\oplus \mathbb Z_2\ ,</p>

<p class="pcenter">H^3(G,\mathbb Z) =\mathbb Z_6\ ,</p>

<p class="pcenter">H^4(G,\mathbb Z) =\mathbb Z_4\oplus \mathbb Z_{24}\ ,</p>

<p>and compute a free presentation for <span class="SimpleMath">G</span> involving four generators and seven relators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-1)");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=FreeGResolution(K,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(HomToIntegers(R),1);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(HomToIntegers(R),2);</span>
[ 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(HomToIntegers(R),3);</span>
[ 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(HomToIntegers(R),4);</span>
[ 4, 24 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=PresentationOfResolution(R);</span>
rec( freeGroup := &lt;free group on the generators [ f1, f2, f3, f4 ]&gt;, 
  gens := [ 184, 185, 186, 187 ], 
  relators := [ f1^2*f2^-1*f1^-1*f2^-1, f1*f2*f1*f2^-2, 
      f3*f2^2*f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-2, 
      f1*(f2*f1^-1)^2*f3^-1*f1^2*f2^-1*f3^-1, 
      f4*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1, f1*f4^-1*f1^-2*f4^-1, 
      f3*f2*f1*(f2*f1^-1)^2*f4^-1*f1*f2^-1*f3^-1*f4*f2 ] )

</pre></div>

<p>We can also compute the cohomology of <span class="SimpleMath">G=SL_2( Z[i])</span> with coefficients in a module such as the module <span class="SimpleMath">P_ Z[i](k)</span> of degree <span class="SimpleMath">k</span> homogeneous polynomials with coefficients in <span class="SimpleMath">Z[i]</span> and with the action described above. For instance, the following commands compute</p>

<p class="pcenter">H^1(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^4 \oplus \mathbb Z_4
\oplus \mathbb Z_8 \oplus \mathbb Z_{40} \oplus \mathbb Z_{80}\, ,</p>

<p class="pcenter">H^2(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{24} \oplus \mathbb Z_{520030}\oplus \mathbb Z_{1040060} \oplus  \mathbb Z^2\, ,</p>

<p class="pcenter">H^3(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{22} \oplus \mathbb Z_{4}\oplus (\mathbb Z_{12})^2 \, .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=HomogeneousPolynomials(G,24);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,1);</span>
[ 2, 2, 2, 2, 4, 8, 40, 80 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  520030, 1040060, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12, 12 
 ]

</pre></div>

<p><a id="X858B1B5D8506FE81" name="X858B1B5D8506FE81"></a></p>

<h4>13.10 <span class="Heading">Bianchi groups</span></h4>

<p>The <em>Bianchi groups</em> are the groups <span class="SimpleMath">G=PSL_2(cal O_-d)</span> where <span class="SimpleMath">d</span> is a square free positive integer and <span class="SimpleMath">cal O_-d</span> is the ring of integers of the imaginary quadratic field <span class="SimpleMath">Q(sqrt-d)</span>. More explicitly,</p>

<p class="pcenter">{\cal O}_{-d} = \mathbb Z\left[\sqrt{-d}\right]~~~~~~~~ {\rm if~} d \equiv 1,2 {\rm ~mod~} 4\, ,</p>

<p class="pcenter">{\cal O}_{-d} = \mathbb Z\left[\frac{1+\sqrt{-d}}{2}\right]~~~~~ {\rm if~} d \equiv 3 {\rm ~mod~} 4\, .</p>

<p>These groups act on upper-half space <span class="SimpleMath">frak h^3</span> in the same way as the Picard group. Upper-half space can be tessellated by a 'fundamental domain' for this action. Moreover, as with the Picard group, this tessellation contains a <span class="SimpleMath">2</span>-dimensional cellular subspace <span class="SimpleMath">cal T⊂ frak h^3</span> where <span class="SimpleMath">cal T</span> is a contractible CW-complex on which <span class="SimpleMath">G</span> acts cellularly. It should be mentioned that the fundamental domain and the contractible <span class="SimpleMath">2</span>-complex <span class="SimpleMath">cal T</span> are not uniquely determined by <span class="SimpleMath">G</span>. Various algorithms exist for computing <span class="SimpleMath">cal T</span> and its cell stabilizers. One algorithm due to Swan <a href="chapBib.html#biBswan">[Swa71a]</a> has been implemented by Alexander Rahm <a href="chapBib.html#biBrahmthesis">[Rah10]</a> and the output for various values of <span class="SimpleMath">d</span> are stored in HAP. Another approach is to use Voronoi's theory of perfect forms. This approach has been implemented by Sebastian Schoennenbeck <a href="chapBib.html#biBschoennenbeck">[BCNS15]</a> and, again, its output for various values of <span class="SimpleMath">d</span> are stored in HAP. The following commands combine data from Schoennenbeck's algorithm with free resolutions for cell stabiliers to compute</p>

<p class="pcenter">H^1(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^4
\oplus \mathbb Z_{12}
\oplus \mathbb Z_{24}
\oplus \mathbb Z_{9240}
\oplus \mathbb Z_{55440}
\oplus \mathbb Z^4\,,
</p>

<p class="pcenter">H^2(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
\begin{array}{l}
(\mathbb Z_2)^{26}
\oplus \mathbb (Z_{6})^8
\oplus \mathbb (Z_{12})^{9}
\oplus \mathbb Z_{24}
\oplus (\mathbb Z_{120})^2
\oplus (\mathbb Z_{840})^3\\
\oplus \mathbb Z_{2520}
\oplus (\mathbb Z_{27720})^2
\oplus (\mathbb Z_{24227280})^2
\oplus (\mathbb Z_{411863760})^2\\
\oplus \mathbb Z_{2454438243748928651877425142836664498129840}\\
\oplus \mathbb Z_{14726629462493571911264550857019986988779040}\\
\oplus \mathbb Z^4\end{array}\ ,
</p>

<p class="pcenter">H^3(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^{23}
\oplus \mathbb Z_{4}
\oplus (\mathbb Z_{12})^2\ .
</p>

<p>Note that the action of <span class="SimpleMath">SL_2(cal O_-d)</span> on <span class="SimpleMath">P_{cal O_-d}(k)</span> induces an action of <span class="SimpleMath">PSL_2(cal O_-d)</span> provided <span class="SimpleMath">k</span> is even.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-6,4);</span>
Resolution of length 4 in characteristic 0 for PSL(2,O-6) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=HomogeneousPolynomials(G,24);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,1);</span>
[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120, 120, 
  840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760, 411863760, 
  2454438243748928651877425142836664498129840, 
  14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 12, 
  12 ]

</pre></div>

<p>We can also consider the coefficient module</p>

<p class="pcenter"> P_{{\cal O}_{-d}}(k,\ell) = P_{{\cal O}_{-d}}(k) \otimes_{{\cal O}_{-d}} \overline{P_{{\cal O}_{-d}}(\ell)}   </p>

<p>where the bar denotes a twist in the action obtained from complex conjugation. For an action of the projective linear group we must insist that <span class="SimpleMath">k+ℓ</span> is even. The following commands compute</p>

<p class="pcenter">H^2(PSL_2({\cal O}_{-11}),P_{{\cal O}_{-11}}(5,5)) = 
(\mathbb Z_2)^8 \oplus \mathbb Z_{60} \oplus (\mathbb Z_{660})^3 \oplus \mathbb Z^6\,,      </p>

<p>a computation which was first made, along with many other cohomology computationsfor Bianchi groups, by Mehmet Haluk Sengun <a href="chapBib.html#biBsengun">[Sen11]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-11,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=HomogeneousPolynomials(R!.group,5,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 60, 660, 660, 660, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p>The function <code class="code">ResolutionPSL2QuadraticIntegers(-d,n)</code> relies on a limited data base produced by the algorithms implemented by Schoennenbeck and Rahm. The function also covers some cases covered by entering a sring "-d+I" as first variable. These cases correspond to projective special groups of module automorphisms of lattices of rank 2 over the integers of the imaginary quadratic number field <span class="SimpleMath">Q(sqrt-d)</span> with non-trivial Steinitz-class. In the case of a larger class group there are cases labelled "-d+I2",...,"-d+Ik" and the Ij together with O-d form a system of representatives of elements of the class group modulo squares and Galois action. For instance, the following commands compute</p>

<p class="pcenter">H_2(PSL({\cal O}_{-21+I2}),\mathbb Z) = \mathbb Z_2\oplus  \mathbb Z^6\, .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers("-21+I2",3);</span>
Resolution of length 3 in characteristic 0 for PSL(2,O-21+I2)) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(R),2);</span>
[ 2, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p><a id="X851390E07C3B3BB1" name="X851390E07C3B3BB1"></a></p>

<h4>13.11 <span class="Heading">(Co)homology of Bianchi groups and <span class="SimpleMath">SL_2(cal O_-d)</span></span></h4>

<p>The (co)homology of Bianchi groups has been studied in papers such as <a href="chapBib.html#biBSchwermer">[SV83]</a> <a href="chapBib.html#biBVogtmann">[Vog85]</a> <a href="chapBib.html#biBBerkove00">[Ber00]</a> <a href="chapBib.html#biBBerkove06">[Ber06]</a> <a href="chapBib.html#biBRahm11">[RF13]</a> <a href="chapBib.html#biBRahm13">[Rah13b]</a> <a href="chapBib.html#biBRahm13a">[Rah13a]</a> <a href="chapBib.html#biBRahm20">[BLR20]</a>. Calculations in these papers can often be verified by computer. For instance, the calculation</p>

<p class="pcenter">H_q(PSL_2({\cal O}_{-15}),\mathbb Z) =
	\left\{\begin{array}{ll}
	\mathbb Z^2 \oplus \mathbb Z_6  &amp; q=1,\\
	\mathbb Z \oplus \mathbb Z_6 &amp; q=2,\\
	\mathbb Z_6 &amp; q\ge 3\\
\end{array}\right. 
</p>

<p>obtained in <a href="chapBib.html#biBRahm11">[RF13]</a> can be verified as follows, once we note that Bianchi groups have virtual cohomological dimension 2 and, if all stabilizer groups are periodic with period dividing m, then the homology has period dividing m in degree <span class="SimpleMath">≥ 3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-15)");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..2] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for k in [1..K!.dimension(n)] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print( CohomologicalPeriod(K!.stabilizer(n,k)),"  ");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;</span>
2  2  2  2  2  2  2  2  2  2  2  2  2  2  
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=FreeGResolution(PK,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..4] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
H_0 = [ 0 ]
H_1 = [ 6, 0, 0 ]
H_2 = [ 6, 0 ]
H_3 = [ 6 ]
H_4 = [ 6 ]

</pre></div>

<p>All finite subgroups of <span class="SimpleMath">SL_2(cal O_-d)</span> are periodic. Thus the above example can be adapted from PSL to SL for any square=free <span class="SimpleMath">d≥ 1</span>. For example, the calculation</p>

<p class="pcenter">H^q(SL_2({\cal O}_{-2}),\mathbb Z) =
        \left\{\begin{array}{ll}
        \mathbb Z  &amp; q=1,\\
        \mathbb Z_6 &amp; q=2 {\rm \ mod\ } 4,\\
	\mathbb Z_2 \oplus \mathbb Z_{12} &amp; q= 3 {\rm \ mod\ } 4\\
	\mathbb Z_2 \oplus \mathbb Z_{24} &amp; q= 0 {\rm \ mod\ } 4  (q&gt;0)\\
	\mathbb Z_{12}  &amp; q= 1 {\rm \ mod\ } 4  (q &gt; 1)\\
\end{array}\right.
</p>

<p>obtained in <a href="chapBib.html#biBSchwermer">[SV83]</a> can be verified as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-2)");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..2] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for k in [1..K!.dimension(n)] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print(CohomologicalPeriod(K!.stabilizer(n,k)),"  ");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;</span>
2  4  2  4  2  2  2  2  2  2  2  2  
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=FreeGResolution(K,11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..10] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("H^",n," = ", Cohomology(HomToIntegers(R),n),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
H^0 = [ 0 ]
H^1 = [ 0 ]
H^2 = [ 6 ]
H^3 = [ 2, 12 ]
H^4 = [ 2, 24 ]
H^5 = [ 12 ]
H^6 = [ 6 ]
H^7 = [ 2, 12 ]
H^8 = [ 2, 24 ]
H^9 = [ 12 ]
H^10 = [ 6 ]

</pre></div>

<p>A quotient of a periodic group by a central subgroup of order 2 need not be periodic. For this reason the (co)homology of PSL can be a bit more tricky than SL. For example, the calculation</p>

<p class="pcenter">H^q(PSL_2({\cal O}_{-13}),\mathbb Z) =
        \left\{\begin{array}{ll}
        \mathbb Z^3 \oplus (\mathbb Z_2)^2  &amp; q=1,\\
        \mathbb Z^2 \oplus \mathbb Z_4 \oplus (\mathbb Z_3)^2 \oplus \mathbb Z_2 &amp; q=2,\\
        (\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2 &amp; q= 3 {\rm \ mod\ } 4\\
        (\mathbb Z_2)^q  &amp; q= 0 {\rm \ mod\ } 4  (q&gt;0)\\
                        (\mathbb Z_2)^q  &amp; q= 1 {\rm \ mod\ } 4  (q&gt;1)\\
        (\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2  &amp; q= 2 {\rm \ mod\ } 4  (q &gt; 2)\\
\end{array}\right.
</p>

<p>was obtained in <a href="chapBib.html#biBRahm11">[RF13]</a>. The following commands verify the calculation in the first 34 degrees, but for a proof valid for all degrees one needs to analyse the computation to spot that there is a certain "periodicity of period 2" in the computations for <span class="SimpleMath">q≥ 3</span>. This analysis is done in <a href="chapBib.html#biBRahm11">[RF13]</a>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">K:=ContractibleGcomplex("SL(2,O-13)");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PK:=QuotientOfContractibleGcomplex(K,Group(-One(K!.group)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..2] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for k in [1..PK!.dimension(n)] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">S:=SmallGroup(IdGroup(PK!.stabilizer( n, k )));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print( [n,k]," is periodic ",IsPeriodic(S),"\n  ");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;</span>
[ 0, 1 ] is periodic true
[ 0, 2 ] is periodic true
[ 0, 3 ] is periodic true
[ 0, 4 ] is periodic true
[ 0, 5 ] is periodic true
[ 0, 6 ] is periodic true
[ 0, 7 ] is periodic false
[ 0, 8 ] is periodic false
[ 1, 1 ] is periodic true
[ 1, 2 ] is periodic true
[ 1, 3 ] is periodic true
[ 1, 4 ] is periodic true
[ 1, 5 ] is periodic true
[ 1, 6 ] is periodic true
[ 1, 7 ] is periodic true
[ 1, 8 ] is periodic true
[ 1, 9 ] is periodic true
[ 1, 10 ] is periodic true
[ 1, 11 ] is periodic true
[ 1, 12 ] is periodic true
[ 1, 13 ] is periodic true
[ 2, 1 ] is periodic true
[ 2, 2 ] is periodic true
[ 2, 3 ] is periodic true
[ 2, 4 ] is periodic true
[ 2, 5 ] is periodic true
[ 2, 6 ] is periodic true
[ 2, 7 ] is periodic true
[ 2, 8 ] is periodic true
[ 2, 9 ] is periodic true
[ 2, 10 ] is periodic true
[ 2, 11 ] is periodic true

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-13,35);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [0..34] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("H_",n," = ", Homology(TensorWithIntegers(R),n),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
H_0 = [ 0 ]
H_1 = [ 2, 2, 0, 0, 0 ]
H_2 = [ 6, 12, 0, 0 ]
H_3 = [ 2, 6, 6 ]
H_4 = [ 2, 2, 2, 2 ]
H_5 = [ 2, 2, 2, 2, 2 ]
H_6 = [ 2, 2, 2, 2, 6, 6 ]
H_7 = [ 2, 2, 2, 2, 2, 6, 6 ]
H_8 = [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_9 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_10 = [ 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_11 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_12 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_13 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_14 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_15 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_16 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_17 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_18 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_19 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_20 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_21 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_22 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_23 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_24 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_25 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_26 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_27 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_28 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_29 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_30 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_31 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]
H_32 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_33 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_34 = [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 ]

</pre></div>

<p>The Lyndon-Hochschild-Serre spectral sequence <span class="SimpleMath">H_p(G/N,H_q(N,A)) ⇒ H_p+q(G,A)</span> for the groups <span class="SimpleMath">G=SL_2(mathcal O_-d)</span> and <span class="SimpleMath">N≅ C_2</span> the central subgroup with <span class="SimpleMath">G/N≅ PSL_2(mathcal O_-d)</span>, and the trivial module <span class="SimpleMath">A = Z_ℓ</span>, implies that for primes <span class="SimpleMath">ℓ&gt;2</span> we have a natural isomorphism <span class="SimpleMath">H_n(PSL_2(mathcal O_-d), Z_ℓ) ≅ H_n(SL_2(mathcal O_-d), Z_ℓ)</span>. It follows that we have an isomorphism of <span class="SimpleMath">ℓ</span>-primary parts <span class="SimpleMath">H_n(PSL_2(mathcal O_-d), Z)_(ℓ) ≅ H_n(SL_2(mathcal O_-d), Z)_(ℓ)</span>. Since <span class="SimpleMath">H_n(SL_2(mathcal O_-d), Z)_(ℓ)</span> is periodic in degrees <span class="SimpleMath">≥ 3</span> we can recover the <span class="SimpleMath">3</span>-primary part of <span class="SimpleMath">H_n(PSL_2(mathcal O_-13), Z)</span> in all degrees <span class="SimpleMath">q≥1</span> from the following computation by ignoring all <span class="SimpleMath">2</span>-power factors in the output.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-13,13);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [3..12] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("H_",n," at prime p=3 is: ", Filtered(Homology(TensorWithIntegers(R),n), m-&gt;IsInt(m/3)),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
H_3 at prime p=3 is: [ 6, 24 ]
H_4 at prime p=3 is: [  ]
H_5 at prime p=3 is: [  ]
H_6 at prime p=3 is: [ 6, 12 ]
H_7 at prime p=3 is: [ 6, 24 ]
H_8 at prime p=3 is: [  ]
H_9 at prime p=3 is: [  ]
H_10 at prime p=3 is: [ 6, 12 ]
H_11 at prime p=3 is: [ 6, 24 ]
H_12 at prime p=3 is: [  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">#Ignore the 2-power factors in the output</span>

</pre></div>

<p>The ring <span class="SimpleMath">mathcal O_-163</span> is an example of a principal ideal domain that is not a Euclidean domain. It seems that no complete calculation of <span class="SimpleMath">H_n(PSL_2(mathcal O_-163), Z)</span> is yet available in the literature. The following comands compute this homology in the first <span class="SimpleMath">31</span> degrees. The computation suggests a general formula in higher degrees. All but two of the stabilizer groups for the action of <span class="SimpleMath">PSL_2(mathcal O_-163)</span> are periodic. The non-periodic group <span class="SimpleMath">A_4</span> occurs twice in degree <span class="SimpleMath">0</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionPSL2QuadraticIntegers(-163,32);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for n in [1..31] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("H_",n,"= ",Homology(TensorWithIntegers(R),n),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
H_1= [ 0, 0, 0, 0, 0, 0, 0 ]
H_2= [ 2, 12, 0, 0, 0, 0, 0, 0 ]
H_3= [ 6 ]
H_4= [  ]
H_5= [ 2, 2, 2 ]
H_6= [ 2, 6 ]
H_7= [ 6 ]
H_8= [ 2, 2, 2, 2 ]
H_9= [ 2, 2, 2 ]
H_10= [ 2, 6 ]
H_11= [ 2, 2, 2, 2, 6 ]
H_12= [ 2, 2, 2, 2 ]
H_13= [ 2, 2, 2 ]
H_14= [ 2, 2, 2, 2, 2, 6 ]
H_15= [ 2, 2, 2, 2, 6 ]
H_16= [ 2, 2, 2, 2 ]
H_17= [ 2, 2, 2, 2, 2, 2, 2 ]
H_18= [ 2, 2, 2, 2, 2, 6 ]
H_19= [ 2, 2, 2, 2, 6 ]
H_20= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_21= [ 2, 2, 2, 2, 2, 2, 2 ]
H_22= [ 2, 2, 2, 2, 2, 6 ]
H_23= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_24= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_25= [ 2, 2, 2, 2, 2, 2, 2 ]
H_26= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_27= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_28= [ 2, 2, 2, 2, 2, 2, 2, 2 ]
H_29= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
H_30= [ 2, 2, 2, 2, 2, 2, 2, 2, 2, 6 ]
H_31= [ 2, 2, 2, 2, 2, 2, 2, 2, 6 ]

</pre></div>

<p><a id="X86A6858884B9C05B" name="X86A6858884B9C05B"></a></p>

<h4>13.12 <span class="Heading">Some other infinite matrix groups</span></h4>

<p>Analogous to the functions for Bianchi groups, HAP has functions</p>


<ul>
<li><p><code class="code">ResolutionSL2QuadraticIntegers(-d,n)</code></p>

</li>
<li><p><code class="code">ResolutionSL2ZInvertedInteger(m,n)</code></p>

</li>
<li><p><code class="code">ResolutionGL2QuadraticIntegers(-d,n)</code></p>

</li>
<li><p><code class="code">ResolutionPGL2QuadraticIntegers(-d,n)</code></p>

</li>
<li><p><code class="code">ResolutionGL3QuadraticIntegers(-d,n)</code></p>

</li>
<li><p><code class="code">ResolutionPGL3QuadraticIntegers(-d,n)</code></p>

</li>
</ul>
<p>for computing free resolutions for certain values of <span class="SimpleMath">SL_2(cal O_-d)</span>, <span class="SimpleMath">SL_2( Z[frac1m])</span>, <span class="SimpleMath">GL_2(cal O_-d)</span> and <span class="SimpleMath">PGL_2(cal O_-d)</span>. Additionally, the function</p>


<ul>
<li><p><code class="code">ResolutionArithmeticGroup("string",n)</code></p>

</li>
</ul>
<p>can be used to compute resolutions for groups whose data (provided by Sebastian Schoennenbeck, Alexander Rahm and Mathieu Dutour) is stored in the directory <code class="code">gap/pkg/Hap/lib/Perturbations/Gcomplexes</code> .</p>

<p>For instance, the following commands compute</p>

<p class="pcenter">H^1(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^4
\oplus \mathbb Z_{12}
\oplus \mathbb Z_{24}
\oplus \mathbb Z_{9240}
\oplus \mathbb Z_{55440}
\oplus \mathbb Z^4\,,
</p>

<p class="pcenter">H^2(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
\begin{array}{l}
(\mathbb Z_2)^{26}
\oplus \mathbb (Z_{6})^7
\oplus \mathbb (Z_{12})^{10}
\oplus \mathbb Z_{24}
\oplus (\mathbb Z_{120})^2
\oplus (\mathbb Z_{840})^3\\
\oplus \mathbb Z_{2520}
\oplus (\mathbb Z_{27720})^2
\oplus (\mathbb Z_{24227280})^2
\oplus (\mathbb Z_{411863760})^2\\
\oplus \mathbb Z_{2454438243748928651877425142836664498129840}\\
\oplus \mathbb Z_{14726629462493571911264550857019986988779040}\\
\oplus \mathbb Z^4\end{array}\ ,
</p>

<p class="pcenter">H^3(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^{58}
\oplus (\mathbb Z_{4})^4
\oplus (\mathbb Z_{12})\ .
</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-6,4);</span>
Resolution of length 4 in characteristic 0 for PSL(2,O-6) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=HomogeneousPolynomials(G,24);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToIntegralModule(R,M);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,1);</span>
[ 2, 2, 2, 2, 12, 24, 9240, 55440, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,2);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 120, 
  120, 840, 840, 840, 2520, 27720, 27720, 24227280, 24227280, 411863760, 
  411863760, 2454438243748928651877425142836664498129840, 
  14726629462493571911264550857019986988779040, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 12, 12 ]

</pre></div>

<p>The following commands construct free resolutions up to degree 5 for the groups <span class="SimpleMath">SL_2( Z[frac12])</span>, <span class="SimpleMath">GL_2(cal O_-2)</span>, <span class="SimpleMath">GL_2(cal O_2)</span>, <span class="SimpleMath">PGL_2(cal O_2)</span>, <span class="SimpleMath">GL_3(cal O_-2)</span>, <span class="SimpleMath">PGL_3(cal O_-2)</span>. The final command constructs a free resolution up to degree 3 for <span class="SimpleMath">PSL_4( Z)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R1:=ResolutionSL2ZInvertedInteger(2,5);</span>
Resolution of length 5 in characteristic 0 for SL(2,Z[1/2]) . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=ResolutionGL2QuadraticIntegers(-2,5);</span>
Resolution of length 5 in characteristic 0 for GL(2,O-2) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R3:=ResolutionGL2QuadraticIntegers(2,5);</span>
Resolution of length 5 in characteristic 0 for GL(2,O2) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R4:=ResolutionPGL2QuadraticIntegers(2,5);</span>
Resolution of length 5 in characteristic 0 for PGL(2,O2) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R5:=ResolutionGL3QuadraticIntegers(-2,5);</span>
Resolution of length 5 in characteristic 0 for GL(3,O-2) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R6:=ResolutionPGL3QuadraticIntegers(-2,5);</span>
Resolution of length 5 in characteristic 0 for PGL(3,O-2) . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R7:=ResolutionArithmeticGroup("PSL(4,Z)",3);</span>
Resolution of length 3 in characteristic 0 for &lt;matrix group with 655 generators&gt; . 
No contracting homotopy available. 

</pre></div>

<p><a id="X7EF5D97281EB66DA" name="X7EF5D97281EB66DA"></a></p>

<h4>13.13 <span class="Heading">Ideals and finite quotient groups</span></h4>

<p>The following commands first construct the number field <span class="SimpleMath">Q(sqrt-7)</span>, its ring of integers <span class="SimpleMath">cal O_-7=cal O( Q(sqrt-7))</span>, and the principal ideal <span class="SimpleMath">I=⟨ 5 + 2sqrt-7⟩ ◃ cal O( Q(sqrt-7))</span> of norm <span class="SimpleMath">cal N(I)=53</span>. The ring <span class="SimpleMath">I</span> is prime since its norm is a prime number. The primality of <span class="SimpleMath">I</span> is also demonstrated by observing that the quotient ring <span class="SimpleMath">R=cal O_-7/I</span> is an integral domain and hence isomorphic to the unique finite field of order <span class="SimpleMath">53</span>, <span class="SimpleMath">R≅ Z/53 Z</span> . (In a ring of quadratic integers <em>prime ideal</em> is the same as <em>maximal ideal</em>).</p>

<p>The finite group <span class="SimpleMath">G=SL_2(cal O_-7/I)</span> is then constructed and confirmed to be isomorphic to <span class="SimpleMath">SL_2( Z/53 Z)</span>. The group <span class="SimpleMath">G</span> is shown to admit a periodic <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> of period dividing <span class="SimpleMath">52</span>.</p>

<p>Finally the integral homology</p>

<p class="pcenter">H_n(G,\mathbb Z) = \left\{\begin{array}{ll}
0 &amp; n\ne 3,7, {\rm~for~} 0\le n \le 8,\\
\mathbb Z_{2808} &amp; n=3,7,
\end{array}\right.</p>

<p>is computed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-7);</span>
Q(Sqrt(-7))

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);</span>
O(Q(Sqrt(-7)))

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,5+2*Sqrt(-7));</span>
ideal of norm 53 in O(Q(Sqrt(-7)))

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=OQ mod I;</span>
ring mod ideal of norm 53

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsIntegralRing(R);</span>
true

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:=GeneratorsOfGroup( SL2QuadraticIntegers(-7) );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Group(gens*One(R));;G:=Image(IsomorphismPermGroup(G));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(G);</span>
"SL(2,53)"

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPeriodic(G);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CohomologicalPeriod(G);</span>
52

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,1);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,2);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,3);</span>
[ 8, 27, 13 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,4);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,5);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,6);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,7);</span>
[ 8, 27, 13 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,8);</span>
[  ]

</pre></div>

<p>The following commands show that the rational prime <span class="SimpleMath">7</span> is not prime in <span class="SimpleMath">cal O_-5=cal O( Q(sqrt-5))</span>. Moreover, <span class="SimpleMath">7</span> totally splits in <span class="SimpleMath">cal O_-5</span> since the final command shows that only the rational primes <span class="SimpleMath">2</span> and <span class="SimpleMath">5</span> ramify in <span class="SimpleMath">cal O_-5</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPrime(I);</span>
false

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Factors(Discriminant(OQ));</span>
[ -2, 2, 5 ]

</pre></div>

<p>For <span class="SimpleMath">d &lt; 0</span> the rings <span class="SimpleMath">cal O_d=cal O( Q(sqrtd))</span> are unique factorization domains for precisely</p>

<p class="pcenter"> d = -1, -2, -3, -7, -11, -19, -43, -67, -163.</p>

<p>This result was conjectured by Gauss, and essentially proved by Kurt Heegner, and then later proved by Harold Stark.</p>

<p>The following commands construct the classic example of a prime ideal <span class="SimpleMath">I</span> that is not principal. They then illustrate reduction modulo <span class="SimpleMath">I</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,[2,1+Sqrt(-5)]);</span>
ideal of norm 2 in O(Q(Sqrt(-5)))

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">6 mod I;</span>
0

</pre></div>

<p><a id="X7D1F72287F14C5E1" name="X7D1F72287F14C5E1"></a></p>

<h4>13.14 <span class="Heading">Congruence subgroups for ideals</span></h4>

<p>Given a ring of integers <span class="SimpleMath">cal O</span> and ideal <span class="SimpleMath">I ◃ cal O</span> there is a canonical homomorphism <span class="SimpleMath">π_I: SL_2(cal O) → SL_2(cal O/I)</span>. A subgroup <span class="SimpleMath">Γ ≤ SL_2(cal O)</span> is said to be a <em>congruence subgroup</em> if it contains <span class="SimpleMath">ker π_I</span>. Thus congruence subgroups are of finite index. Generalizing the definition in <a href="chap13.html#X79A1974B7B4987DE"><span class="RefLink">13.1</span></a> above, we define the <em>principal congruence subgroup</em> <span class="SimpleMath">Γ_1(I)=ker π_I</span>, and the congruence subgroup <span class="SimpleMath">Γ_0(I)</span> consisting of preimages of the upper triangular matrices in <span class="SimpleMath">SL_2(cal O/I)</span>.</p>

<p>The following commands construct <span class="SimpleMath">Γ=Γ_0(I)</span> for the ideal <span class="SimpleMath">I◃ cal O Q(sqrt-5)</span> generated by <span class="SimpleMath">12</span> and <span class="SimpleMath">36sqrt-5</span>. The group <span class="SimpleMath">Γ</span> has index <span class="SimpleMath">385</span> in <span class="SimpleMath">SL_2(cal O Q(sqrt-5))</span>. The final command displays a tree in a Cayley graph for <span class="SimpleMath">SL_2(cal O Q(sqrt-5))</span> whose nodes represent a transversal for <span class="SimpleMath">Γ</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,[36*Sqrt(-5), 12]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);</span>
CongruenceSubgroupGamma0(ideal of norm 144 in O(Q(Sqrt(-5)))) 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexInSL2O(G);</span>
385
 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">HAP_SL2TreeDisplay(G);</span>

</pre></div>

<p><img src="images/treesqrt5.gif" align="center" width="350" alt="Information for the cubic tree"/></p>

<p>The next commands first construct the congruence subgroup <span class="SimpleMath">Γ_0(I)</span> of index <span class="SimpleMath">144</span> in <span class="SimpleMath">SL_2(cal O Q(sqrt-2))</span> for the ideal <span class="SimpleMath">I</span> in <span class="SimpleMath">cal O Q(sqrt-2)</span> generated by <span class="SimpleMath">4+5sqrt-2</span>. The commands then compute</p>

<p class="pcenter">H_1(\Gamma_0(I),\mathbb Z) = \mathbb Z_3 \oplus \mathbb Z_6 \oplus \mathbb Z_{30} \oplus \mathbb Z^8\, ,</p>

<p class="pcenter">H_2(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \oplus \mathbb Z^7\, ,</p>

<p class="pcenter">H_3(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \, .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,4+5*Sqrt(-2));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);</span>
CongruenceSubgroupGamma0(ideal of norm 66 in O(Q(Sqrt(-2)))) 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IndexInSL2O(G);</span>
144

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSL2QuadraticIntegers(-2,4,true);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ResolutionFiniteSubgroup(R,G);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(S),1);</span>
[ 3, 6, 30, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(S),2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(S),3);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

</pre></div>

<p><a id="X85E912617AFE03F4" name="X85E912617AFE03F4"></a></p>

<h4>13.15 <span class="Heading">First homology</span></h4>

<p>The isomorphism <span class="SimpleMath">H_1(G, Z) ≅ G_ab</span> allows for the computation of first integral homology using computational methods for finitely presented groups. Such methods underly the following computation of</p>

<p class="pcenter">H_1( \Gamma_0(I),\mathbb Z) \cong \mathbb Z_2 \oplus  \cdots \oplus
\mathbb Z_{4078793513671}</p>

<p>where <span class="SimpleMath">I</span> is the prime ideal in the Gaussian integers generated by <span class="SimpleMath">41+56sqrt-1</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,41+56*Sqrt(-1));</span>
ideal of norm 4817 in O(GaussianRationals)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(G);</span>
[ 2, 2, 4, 5, 7, 16, 29, 43, 157, 179, 1877, 7741, 22037, 292306033, 
  4078793513671 ]

</pre></div>

<p>We write <span class="SimpleMath">G^ab_tors</span> to denote the maximal finite summand of the first homology group of <span class="SimpleMath">G</span> and refer to this as the <em>torsion subgroup</em>. Nicholas Bergeron and Akshay Venkatesh <a href="chapBib.html#biBbergeron">[Ber16]</a> have conjectured relationships between the torsion in congruence subgroups <span class="SimpleMath">Γ</span> and the volume of their quotient manifold <span class="SimpleMath">frak h^3/Γ</span>. For instance, for the Gaussian integers they conjecture</p>

<p class="pcenter"> \frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)} \rightarrow \frac{\lambda}{18\pi},\ \lambda =L(2,\chi_{\mathbb Q(\sqrt{-1})}) = 1 -\frac{1}{9} + \frac{1}{25} - \frac{1}{49}  + \cdots</p>

<p>as the norm of the prime ideal <span class="SimpleMath">I</span> tends to <span class="SimpleMath">∞</span>. The following approximates <span class="SimpleMath">λ/18π = 0.0161957</span> and <span class="SimpleMath">fraclog |Γ_0(I)_tors^ab|{ Norm(I) = 0.0210325</span> for the above example.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Lfunction(Q,2)/(18*3.142);</span>
0.0161957

Loge10:=0.434294481903;; #Log_10(e)
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">1.0*Log(Product(AbelianInvariants(G)),10)/(Loge*Norm(I));</span>
0.0210325

</pre></div>

<p>The link with volume is given by the Humbert volume formula</p>

<p class="pcenter">   
{\rm Vol} ( {\frak h}^3 / PSL_2( {\cal O}_{d} ) )
 = \frac{|D|^{3/2}}{24} \zeta_{ \mathbb Q( \sqrt{d} ) }(2)/\zeta_{\mathbb Q}(2)                           </p>

<p>valid for square-free <span class="SimpleMath">d&lt;0</span>, where <span class="SimpleMath">D</span> is the discriminant of <span class="SimpleMath">Q(sqrtd)</span>. The volume of a finite index subgroup <span class="SimpleMath">Γ</span> is obtained by multiplying the right-hand side by the index <span class="SimpleMath">|PSL_2(cal O_d): Γ|</span>.</p>

<p>The following commands produce a graph of <span class="SimpleMath">fraclog |Γ_0(I)_tors^ab|{ Norm(I)</span> against <span class="SimpleMath">Norm(I)</span> for prime ideals <span class="SimpleMath">I</span> of norm <span class="SimpleMath">49 ≤ Norm(I) ≤ 4357</span> (where one ideal for each norm is taken).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuadraticNumberField(-1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OQ:=RingOfIntegers(Q);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:=QuadraticIntegersByNorm(OQ,20000);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">#########################################</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">fn:=function(x);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">if IsRat(x) then return x; fi;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">return x!.rational+x!.irrational*Sqrt(-1);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">end;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">#########################################</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NN:=List(N,fn);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=Filtered(NN,x-&gt;IsPrime(QuadraticIdeal(OQ,x)));</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PP:=Classify(P,x-&gt;Norm(Q,x));</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PP:=List(PP,x-&gt;x[1]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PP:=Filtered(PP,x-&gt;not x=0);</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Loge:=0.434294481903;; ###Log_10(e)</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">#########################################</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ffn:=function(x)</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">local I, G, A, S, F;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">I:=QuadraticIdeal(OQ,x);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=HAP_CongruenceSubgroupGamma0(I);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=AbelianInvariants(G);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=Filtered(A,x-&gt;not x=0);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">return [Norm(Q,x),1.0*Log(Product(Filtered(AbelianInvariants(G),i-&gt;not i=0)),10)/(Loge*Norm(I))];</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">end;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">#########################################</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=List(PP{[9..267]},ffn);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ScatterPlot(S);</span>

</pre></div>

<p><img src="images/primesTorsion.png" align="center" width="1200" alt="graph of torsion versus norm"/></p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap12.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap14.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>