1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
[1X2 [33X[0;0YCubical complexes & permutahedral complexes[133X[101X
[1X2.1 [33X[0;0YCubical complexes[133X[101X
[33X[0;0YA [13Xfinite simplicial complex[113X can be defined to be a CW-subcomplex of the
canonical regular CW-structure on a simplex [22X∆^n[122X of some dimension [22Xn[122X.
Analogously, a [13Xfinite cubical complex[113X is a CW-subcomplex of the regular
CW-structure on a cube [22X[0,1]^n[122X of some dimension [22Xn[122X. Equivalently, but more
conveniently, we can replace the unit interval [22X[0,1][122X by an interval [22X[0,k][122X
with CW-structure involving [22X2k+1[122X cells, namely one [22X0[122X-cell for each integer
[22X0≤ j≤ k[122X and one [22X1[122X-cell for each open interval [22X(j,j+1)[122X for [22X0≤ j≤ k-1[122X. A
[13Xfinite cuical complex[113X [22XM[122X is a CW-subcompex [22XM⊂ [0,k_1]× [0,k_2]× ⋯ [0,k_n][122X of
a direct product of intervals, the direct product having the usual direct
product CW-structure. The equivalence of these two definitions follows from
the Gray code embedding of a mesh into a hypercube. We say that the cubical
complex has [13Xambient dimension[113X [22Xn[122X. A cubical complex [22XM[122X of ambient dimension [22Xn[122X
is said to be [13Xpure[113X if each cell lies in the boundary of an [22Xn[122X-cell. In other
words, [22XM[122X is pure if it is a union of unit [22Xn[122X-cubes in [22XR^n[122X, each unit cube
having vertices with integer coordinates.[133X
[33X[0;0Y[12XHAP[112X has a datatype for finite cubical complexes, and a slightly different
datatype for pure cubical complexes.[133X
[33X[0;0YThe following example constructs the granny knot (the sum of a trefoil knot
with its reflection) as a [22X3[122X-dimensional pure cubical complex, and then
displays it.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XK:=PureCubicalKnot(3,1);[127X[104X
[4X[28Xprime knot 1 with 3 crossings[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XL:=ReflectedCubicalKnot(K);[127X[104X
[4X[28XReflected( prime knot 1 with 3 crossings )[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XM:=KnotSum(K,L);[127X[104X
[4X[28Xprime knot 1 with 3 crossings + Reflected( prime knot 1 with 3 crossings )[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(M);[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YNext we construct the complement [22XY=D^3∖ mathringM[122X of the interior of the
pure cubical complex [22XM[122X. Here [22XD^3[122X is a rectangular region with [22XM ⊂
mathringD^3[122X. This pure cubical complex [22XY[122X is a union of [22X5891[122X unit [22X3[122X-cubes. We
contract [22XY[122X to get a homotopy equivalent pure cubical complex [22XYY[122X consisting
of the union of just [22X775[122X unit [22X3[122X-cubes. Then we convert [22XYY[122X to a regular
CW-complex [22XW[122X involving [22X11939[122X cells. We contract [22XW[122X to obtain a homotopy
equivalent regular CW-complex [22XWW[122X involving [22X5993[122X cells. Finally we compute
the fundamental group of the complement of the granny knot, and use the
presentation of this group to establish that the Alexander polynomial [22XP(x)[122X
of the granny is[133X
[33X[0;0Y[22XP(x) = x^4-2x^3+3x^2-2x+1 .[122X[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XY:=PureComplexComplement(M);[127X[104X
[4X[28XPure cubical complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(Y);[127X[104X
[4X[28X5891[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XYY:=ZigZagContractedComplex(Y);[127X[104X
[4X[28XPure cubical complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(YY);[127X[104X
[4X[28X775[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XW:=RegularCWComplex(YY);[127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(W);[127X[104X
[4X[28X11939[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XWW:=ContractedComplex(W);[127X[104X
[4X[28XRegular CW-complex of dimension 2[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(WW);[127X[104X
[4X[28X5993[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XG:=FundamentalGroup(WW);[127X[104X
[4X[28X<fp group of size infinity on the generators [ f1, f2, f3 ]>[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XAlexanderPolynomial(G);[127X[104X
[4X[28Xx_1^4-2*x_1^3+3*x_1^2-2*x_1+1[128X[104X
[4X[28X[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X2.2 [33X[0;0YPermutahedral complexes[133X[101X
[33X[0;0YA finite pure cubical complex is a union of finitely many cubes in a
tessellation of [22XR^n[122X by unit cubes. One can also tessellate [22XR^n[122X by
permutahedra, and we define a finite [22Xn[122X-dimensional pure [13Xpermutahedral
complex[113X to be a union of finitely many permutahdra from such a tessellation.
There are two features of pure permutahedral complexes that are particularly
useful in some situations:[133X
[30X [33X[0;6YPure permutahedral complexes are topological manifolds with boundary.[133X
[30X [33X[0;6YThe method used for finding a smaller pure cubical complex [22XM'[122X homotopy
equivalent to a given pure cubical complex [22XM[122X retains the homeomorphism
type, and not just the homotopy type, of the space [22XM[122X.[133X
[33X[0;0Y[12XExample 1[112X[133X
[33X[0;0YTo illustrate these features the following example begins by reading in a
protein backbone from the online Protein Database ([7Xhttps://www.rcsb.org/[107X),
and storing it as a pure cubical complex [22XK[122X. The ends of the protein have
been joined, and the homology [22XH_i(K, Z)= Z[122X, [22Xi=0,1[122X is seen to be that of a
circle. We can thus regard the protein as a knot [22XK⊂ R^3[122X. The protein is
visualized as a pure permutahedral complex.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xfile:=HapFile("data1V2X.pdb");;[127X[104X
[4X[25Xgap>[125X [27XK:=ReadPDBfileAsPurePermutahedralComplex("file");[127X[104X
[4X[28XPure permutahedral complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XHomology(K,0);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(K,1);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[28X[128X[104X
[4X[28XDisplay(K);[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YAn alternative method for seeing that the pure permutahedral complex [22XK[122X has
the homotopy type of a circle is to note that it is covered by open
permutahedra (small open neighbourhoods of the closed [22X3[122X-dimensional
permutahedral titles) and to form the nerve [22XN=Nerve(mathcal U)[122X of this open
covering [22Xmathcal U[122X. The nerve [22XN[122X has the same homotopy type as [22XK[122X. The
following commands establish that [22XN[122X is a [22X1[122X-dimensional simplicial complex
and display [22XN[122X as a circular graph.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XN:=Nerve(K);[127X[104X
[4X[28XSimplicial complex of dimension 1.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(GraphOfSimplicialComplex(N));[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe boundary of the pure permutahedral complex [22XK[122X is a [22X2[122X-dimensional
CW-complex [22XB[122X homeomorphic to a torus. We next use the advantageous features
of pure permutahedral complexes to compute the homomorphism[133X
[33X[0;0Y[22Xϕ: π_1(B) → π_1( R^3∖ mathringK), a ↦ yx^-3y^2x^-2yxy^-1, b↦
yx^-1y^-1x^2y^-1[122X[133X
[33X[0;0Ywhere[133X
[33X[0;0Y[22Xπ_1(B)=< a,b : aba^-1b^-1=1>[122X,[133X
[33X[0;0Y[22Xπ_1( R^3∖ mathringK) ≅ < x,y : y^2x^-2yxy^-1=1, yx^-2y^-1x(xy^-1)^2=1>[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XY:=PureComplexComplement(K);[127X[104X
[4X[28XPure permutahedral complex of dimension 3.[128X[104X
[4X[25Xgap>[125X [27XSize(Y);[127X[104X
[4X[28X418922[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XYY:=ZigZagContractedComplex(Y);[127X[104X
[4X[28XPure permutahedral complex of dimension 3.[128X[104X
[4X[25Xgap>[125X [27XSize(YY);[127X[104X
[4X[28X3438[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XW:=RegularCWComplex(YY);[127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xf:=BoundaryMap(W);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCriticalCells(Source(f));[127X[104X
[4X[28X[ [ 2, 1 ], [ 2, 261 ], [ 1, 1043 ], [ 1, 1626 ], [ 0, 2892 ], [ 0, 24715 ] ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XF:=FundamentalGroup(f,2892);[127X[104X
[4X[28X[ f1, f2 ] -> [ f2*f1^-3*f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-1*f2^-1*f1^2*f2^-1 ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XG:=Target(F);[127X[104X
[4X[28X<fp group on the generators [ f1, f2 ]>[128X[104X
[4X[25Xgap>[125X [27XRelatorsOfFpGroup(G);[127X[104X
[4X[28X[ f2^2*f1^-2*f2*f1*f2^-1, f2*f1^-2*f2^-1*f1*(f1*f2^-1)^2 ][128X[104X
[4X[28X[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0Y[12XExample 2[112X[133X
[33X[0;0YThe next example of commands begins by readng two synthetic knots from a CSV
file (containing the coordinates of the two sequences of vertices) and
producing a pure permutahedral complex model of the two knots. The linking
number of two knots is given by the low-dimension cup product of the
complement of the knots. This linking number is computed to be [22X6[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xfile1:=HapFile("data175_1.csv");;[127X[104X
[4X[25Xgap>[125X [27Xfile2:=HapFile("data175_2.csv");;[127X[104X
[4X[25Xgap>[125X [27XK:=ReadCSVfileAsPureCubicalKnot( [file1, file2]);;[127X[104X
[4X[25Xgap>[125X [27XK:=PurePermutahedralComplex(K!.binaryArray);;[127X[104X
[4X[25Xgap>[125X [27XK:=ThickenedPureComplex(K);;[127X[104X
[4X[25Xgap>[125X [27XK:=ContractedComplex(K);;[127X[104X
[4X[25Xgap>[125X [27X#K is a permutahedral complex model of the two input knots[127X[104X
[4X[25Xgap>[125X [27XDisplay(K);[127X[104X
[4X[28X[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XY:=PureComplexComplement(K);;[127X[104X
[4X[25Xgap>[125X [27XW:=ZigZagContractedComplex(Y,2);;[127X[104X
[4X[25Xgap>[125X [27XW:=RegularCWComplex(W);;[127X[104X
[4X[25Xgap>[125X [27XW:=ContractedComplex(W);;[127X[104X
[4X[25Xgap>[125X [27XG:=FundamentalGroup(W);;[127X[104X
[4X[25Xgap>[125X [27Xcup:=CupProduct(G);;[127X[104X
[4X[25Xgap>[125X [27Xcup([1,0],[0,1]);[127X[104X
[4X[28X[ -6, 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X2.3 [33X[0;0YConstructing pure cubical and permutahedral complexes[133X[101X
[33X[0;0YAn [22Xn[122X-dimensional pure cubical or permutahedral complex can be created from
an [22Xn[122X-dimensional array of 0s and 1s. The following example creates and
displays two [22X3[122X-dimensional complexes.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XA:=[[[0,0,0],[0,0,0],[0,0,0]],[127X[104X
[4X[25X>[125X [27X [[1,1,1],[1,0,1],[1,1,1]],[127X[104X
[4X[25X>[125X [27X [[0,0,0],[0,0,0],[0,0,0]]];;[127X[104X
[4X[25Xgap>[125X [27XM:=PureCubicalComplex(A);[127X[104X
[4X[28XPure cubical complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XP:=PurePermutahedralComplex(A);[127X[104X
[4X[28XPure permutahedral complex of dimension 3.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(M);[127X[104X
[4X[25Xgap>[125X [27XDisplay(P);[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X2.4 [33X[0;0YComputations in dynamical systems[133X[101X
[33X[0;0YPure cubical complexes can be useful for rigourous interval arithmetic
calculations in numerical analysis. They can also be useful for trying to
estimate approximations of certain numerical quantities. To illustrate the
latter we consider the [13XHenon map[113X[133X
[33X[0;0Y[22Xf: R^2 → R^2, ( beginarraycc x y endarray) ↦ ( beginarraycc y+1-ax^2 bx
endarray) .[122X[133X
[33X[0;0YStarting with [22X(x_0,y_0)=(0,0)[122X and iterating [22X(x_n+1,y_n+1) = f(x_n,y_n)[122X with
the parameter values [22Xa=1.4[122X, [22Xb=0.3[122X one obtains a sequence of points which is
known to be dense in the so called [13Xstrange attractor[113X [22Xcal A[122X of the Henon map.
The first [22X10[122X million points in this sequence are plotted in the following
example, with arithmetic performed to 100 decimal places of accuracy. The
sequence is stored as a [22X2[122X-dimensional pure cubical complex where each [22X2[122X-cell
is square of side equal to [22Xϵ =1/500[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XM:=HenonOrbit([0,0],14/10,3/10,10^7,500,100);[127X[104X
[4X[28XPure cubical complex of dimension 2.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(M);[127X[104X
[4X[28X10287[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDisplay(M);[127X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YRepeating the computation but with squares of side [22Xϵ =1/1000[122X[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XM:=HenonOrbit([0,0],14/10,3/10,10^7,1000,100);[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(M);[127X[104X
[4X[28X24949[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0Ywe obtain the heuristic estimate[133X
[33X[0;0Y[22Xδ ≃ frac log 24949- log 10287} log2} = 1.277[122X[133X
[33X[0;0Yfor the box-counting dimension of the attractor [22Xcal A[122X.[133X
|