File: chap4.html

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (1253 lines) | stat: -rw-r--r-- 87,098 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 4: Three Manifolds</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap4"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap3.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap5.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap4_mj.html">[MathJax on]</a></p>
<p><a id="X7BFA4D1587D8DF49" name="X7BFA4D1587D8DF49"></a></p>
<div class="ChapSects"><a href="chap4.html#X7BFA4D1587D8DF49">4 <span class="Heading">Three Manifolds</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X82D1348C79238C2D">4.1 <span class="Heading">Dehn Surgery</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X848EDEE882B36F6C">4.2 <span class="Heading">Connected Sums</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X78AE684C7DBD7C70">4.3 <span class="Heading">Dijkgraaf-Witten Invariant</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X80B6849C835B7F19">4.4 <span class="Heading">Cohomology rings</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7F56BB4C801AB894">4.5 <span class="Heading">Linking Form</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X850C76697A6A1654">4.6 <span class="Heading">Determining the homeomorphism type of a lens space</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7EC6B008878CC77E">4.7 <span class="Heading">Surgeries on distinct knots can yield homeomorphic manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7B425A3280A2AF07">4.8 <span class="Heading">Finite fundamental groups of <span class="SimpleMath">3</span>-manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X78912D227D753167">4.9 <span class="Heading">Poincare's cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X8761051F84C6CEC2">4.10 <span class="Heading">There are at least 25 distinct cube manifolds</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X7D50795883E534A3">4.10-1 <span class="Heading">Face pairings for 25 distinct cube manifolds</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap4.html#X837811BB8181666E">4.10-2 <span class="Heading">Platonic cube manifolds</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X8084A36082B26D86">4.11 <span class="Heading">There are at most 41 distinct cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7B63C22C80E53758">4.12 <span class="Heading">There are precisely 18 orientable cube manifolds, of which   9 are spherical and 5 are euclidean</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X796BF3817BD7F57D">4.13 <span class="Heading">Cube manifolds with boundary</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7EC4359B7DF208B0">4.14 <span class="Heading">Octahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X85FFF9B97B7AD818">4.15 <span class="Heading">Dodecahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X78B75E2E79FBCC54">4.16 <span class="Heading">Prism manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap4.html#X7F31DFDA846E8E75">4.17 <span class="Heading">Bipyramid manifolds</span></a>
</span>
</div>
</div>

<h3>4 <span class="Heading">Three Manifolds</span></h3>

<p><a id="X82D1348C79238C2D" name="X82D1348C79238C2D"></a></p>

<h4>4.1 <span class="Heading">Dehn Surgery</span></h4>

<p>The following example constructs, as a regular CW-complex, a closed orientable 3-manifold <span class="SimpleMath">W</span> obtained from the 3-sphere by drilling out a tubular neighbourhood of a trefoil knot and then gluing a solid torus to the boundary of the cavity via a homeomorphism corresponding to a Dehn surgery coefficient <span class="SimpleMath">p/q=17/16</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ap:=ArcPresentation(PureCubicalKnot(3,1));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:=17;;q:=16;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">W:=ThreeManifoldViaDehnSurgery(ap,p,q);</span>
Regular CW-complex of dimension 3

</pre></div>

<p>The next commands show that this <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span> has integral homology</p>

<p><span class="SimpleMath">H_0(W, Z)= Z</span>, <span class="SimpleMath">H_1(W, Z)= Z_16</span>, <span class="SimpleMath">H_2(W, Z)=0</span>, <span class="SimpleMath">H_3(W, Z)= Z</span></p>

<p>and that the fundamental group <span class="SimpleMath">π_1(W)</span> is non-abelian.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(W,0);Homology(W,1);Homology(W,2);Homology(W,3);</span>
[ 0 ]
[ 16 ]
[  ]
[ 0 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FundamentalGroup(W);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=LowIndexSubgroupsFpGroup(F,10);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(L,AbelianInvariants);</span>
[ [ 16 ], [ 3, 8 ], [ 3, 4 ], [ 2, 3 ], [ 16, 43 ], [ 8, 43, 43 ] ]

</pre></div>

<p>The following famous result of Lickorish and (independently) Wallace shows that Dehn surgery on knots leads to an interesting range of spaces.</p>

<p><strong class="button">Theorem:</strong> <em> Every closed, orientable, connected <span class="SimpleMath">3</span>-manifold can be obtained by surgery on a link in <span class="SimpleMath">S^3</span>. (Moreover, one can always perform the surgery with surgery coefficients <span class="SimpleMath">± 1</span> and with each individual component of the link unknotted.) </em></p>

<p><a id="X848EDEE882B36F6C" name="X848EDEE882B36F6C"></a></p>

<h4>4.2 <span class="Heading">Connected Sums</span></h4>

<p>The following example constructs the connected sum <span class="SimpleMath">W=A#B</span> of two <span class="SimpleMath">3</span>-manifolds, where <span class="SimpleMath">A</span> is obtained from a <span class="SimpleMath">5/1</span> Dehn surgery on the complement of the first prime knot on 11 crossings and <span class="SimpleMath">B</span> is obtained by a <span class="SimpleMath">5/1</span> Dehn surgery on the complement of the second prime knot on 11 crossings. The homology groups</p>

<p><span class="SimpleMath">H_1(W, Z) = Z_2⊕ Z_594</span>, <span class="SimpleMath">H_2(W, Z) = 0</span>, <span class="SimpleMath">H_3(W, Z) = Z</span></p>

<p>are computed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ap1:=ArcPresentation(PureCubicalKnot(11,1));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=ThreeManifoldViaDehnSurgery(ap1,5,1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ap2:=ArcPresentation(PureCubicalKnot(11,2));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B:=ThreeManifoldViaDehnSurgery(ap2,5,1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">W:=ConnectedSum(A,B); #W:=ConnectedSum(A,B,-1) would yield A#-B where -B has the opposite orientation</span>
Regular CW-complex of dimension 3

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(W,1);</span>
[ 2, 594 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(W,2);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(W,3);</span>
[ 0 ]

</pre></div>

<p><a id="X78AE684C7DBD7C70" name="X78AE684C7DBD7C70"></a></p>

<h4>4.3 <span class="Heading">Dijkgraaf-Witten Invariant</span></h4>

<p>Given a closed connected orientable <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span>, a finite group <span class="SimpleMath">G</span> and a 3-cocycle <span class="SimpleMath">α∈ H^3(BG,U(1))</span> Dijkgraaf and Witten define the complex number</p>

<p>$$ Z^{G,\alpha}(W) = \frac{1}{|G|}\sum_{\gamma\in {\rm Hom}(\pi_1W, G)} \langle \gamma^\ast[\alpha], [M]\rangle \ \in\ \mathbb C\ $$ where <span class="SimpleMath">γ</span> ranges over all group homomorphisms <span class="SimpleMath">γ: π_1W → G</span>. This complex number is an invariant of the homotopy type of <span class="SimpleMath">W</span> and is useful for distinguishing between certain homotopically distinct <span class="SimpleMath">3</span>-manifolds.</p>

<p>A homology version of the Dijkgraaf-Witten invariant can be defined as the set of homology homomorphisms $$D_G(W) =\{ \gamma_\ast\colon H_3(W,\mathbb Z) \longrightarrow H_3(BG,\mathbb Z) \}_{\gamma\in {\rm Hom}(\pi_1W, G)}.$$ Since <span class="SimpleMath">H_3(W, Z)≅ Z</span> we represent <span class="SimpleMath">D_G(W)</span> by the set <span class="SimpleMath">D_G(W)={ γ_∗(1) }_γ∈ Hom(π_1W, G)</span> where <span class="SimpleMath">1</span> denotes one of the two possible generators of <span class="SimpleMath">H_3(W, Z)</span>.</p>

<p>For any coprime integers <span class="SimpleMath">p,q≥ 1</span> the <em>lens space</em> <span class="SimpleMath">L(p,q)</span> is obtained from the 3-sphere by drilling out a tubular neighbourhood of the trivial knot and then gluing a solid torus to the boundary of the cavity via a homeomorphism corresponding to a Dehn surgery coefficient <span class="SimpleMath">p/q</span>. Lens spaces have cyclic fundamental group <span class="SimpleMath">π_1(L(p,q))=C_p</span> and homology <span class="SimpleMath">H_1(L(p,q), Z)≅ Z_p</span>, <span class="SimpleMath">H_2(L(p,q), Z)≅ 0</span>, <span class="SimpleMath">H_3(L(p,q), Z)≅ Z</span>. It was proved by J.H.C. Whitehead that two lens spaces <span class="SimpleMath">L(p,q)</span> and <span class="SimpleMath">L(p',q')</span> are homotopy equivalent if and only if <span class="SimpleMath">p=p'</span> and <span class="SimpleMath">qq'≡ ± n^2 mod p</span> for some integer <span class="SimpleMath">n</span>.</p>

<p>The following session constructs the two lens spaces <span class="SimpleMath">L(5,1)</span> and <span class="SimpleMath">L(5,2)</span>. The homology version of the Dijkgraaf-Witten invariant is used with <span class="SimpleMath">G=C_5</span> to demonstrate that the two lens spaces are not homotopy equivalent.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ap:=[[2,1],[2,1]];; #Arc presentation for the trivial knot</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L51:=ThreeManifoldViaDehnSurgery(ap,5,1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=DijkgraafWittenInvariant(L51,CyclicGroup(5));</span>
[ g1^4, g1^4, g1, g1, id ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L52:=ThreeManifoldViaDehnSurgery(ap,5,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=DijkgraafWittenInvariant(L52,CyclicGroup(5));</span>
[ g1^3, g1^3, g1^2, g1^2, id ]

</pre></div>

<p>A theorem of Fermat and Euler states that if a prime <span class="SimpleMath">p</span> is congruent to 3 modulo 4, then for any <span class="SimpleMath">q</span> exactly one of <span class="SimpleMath">± q</span> is a quadratic residue mod p. For all other primes <span class="SimpleMath">p</span> either both or neither of <span class="SimpleMath">± q</span> is a quadratic residue mod <span class="SimpleMath">p</span>. Thus for fixed <span class="SimpleMath">p ≡ 3 mod 4</span> the lens spaces <span class="SimpleMath">L(p,q)</span> form a single homotopy class. There are precisely two homotopy classes of lens spaces for other <span class="SimpleMath">p</span>.</p>

<p>The following commands confirm that <span class="SimpleMath">L(13,1) ≄ L(13,2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DijkgraafWittenInvariant(L13_1,CyclicGroup(13));</span>
[ g1^12, g1^12, g1^10, g1^10, g1^9, g1^9, g1^4, g1^4, g1^3, g1^3, g1, g1, id ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DijkgraafWittenInvariant(L13_2,CyclicGroup(13));</span>
[ g1^11, g1^11, g1^8, g1^8, g1^7, g1^7, g1^6, g1^6, g1^5, g1^5, g1^2, g1^2, 
  id ]

</pre></div>

<p><a id="X80B6849C835B7F19" name="X80B6849C835B7F19"></a></p>

<h4>4.4 <span class="Heading">Cohomology rings</span></h4>

<p>The following commands construct the multiplication table (with respect to some basis) for the cohomology rings <span class="SimpleMath">H^∗(L(13,1), Z_13)</span> and <span class="SimpleMath">H^∗(L(13,2), Z_13)</span>. These rings are isomorphic and so fail to distinguish between the homotopy types of the lens spaces <span class="SimpleMath">L(13,1)</span> and <span class="SimpleMath">L(13,2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L13_1:=BarycentricSubdivision(L13_1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L13_2:=BarycentricSubdivision(L13_2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A13_1:=CohomologyRing(L13_1,13);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A13_2:=CohomologyRing(L13_2,13);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M13_1:=List([1..4],i-&gt;[]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B13_1:=CanonicalBasis(A13_1);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M13_2:=List([1..4],i-&gt;[]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B13_2:=CanonicalBasis(A13_2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..4] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for j in [1..4] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">M13_1[i][j]:=B13_1[i]*B13_1[j];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..4] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for j in [1..4] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">M13_2[i][j]:=B13_2[i]*B13_2[j];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(M13_1);</span>
[ [            v.1,            v.2,            v.3,            v.4 ],
  [            v.2,          0*v.1,  (Z(13)^6)*v.4,          0*v.1 ],
  [            v.3,  (Z(13)^6)*v.4,          0*v.1,          0*v.1 ],
  [            v.4,          0*v.1,          0*v.1,          0*v.1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(M13_2);</span>
[ [          v.1,          v.2,          v.3,          v.4 ],
  [          v.2,        0*v.1,  (Z(13))*v.4,        0*v.1 ],
  [          v.3,  (Z(13))*v.4,        0*v.1,        0*v.1 ],
  [          v.4,        0*v.1,        0*v.1,        0*v.1 ] ]


</pre></div>

<p><a id="X7F56BB4C801AB894" name="X7F56BB4C801AB894"></a></p>

<h4>4.5 <span class="Heading">Linking Form</span></h4>

<p>Given a closed connected <strong class="button">oriented</strong> <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span> let <span class="SimpleMath">τ H_1(W, Z)</span> denote the torsion subgroup of the first integral homology. The <em>linking form</em> is a bilinear mapping</p>

<p><span class="SimpleMath">Lk_W: τ H_1(W, Z) × τ H_1(W, Z) ⟶ Q/ Z</span>.</p>

<p>To construct this form note that we have a Poincare duality isomorphism</p>

<p><span class="SimpleMath">ρ: H^2(W, Z) stackrel≅⟶ H_1(W, Z), z ↦ z∩ [W]</span></p>

<p>involving the cap product with the fundamental class <span class="SimpleMath">[W]∈ H^3(W, Z)</span>. That is, <span class="SimpleMath">[M]</span> is the generator of <span class="SimpleMath">H^3(W, Z)≅ Z</span> determining the orientation. The short exact sequence <span class="SimpleMath">Z ↣ Q ↠ Q/ Z</span> gives rise to a cohomology exact sequence</p>

<p><span class="SimpleMath">→ H^1(W, Q) → H^1(W, Q/ Z) stackrelβ⟶ H^2(W, Z) → H^2(W, Q) →</span></p>

<p>from which we obtain the isomorphism <span class="SimpleMath">β : τ H^1(W, Q/ Z) stackrel≅⟶ τ H^2(W, Z)</span>. The linking form <span class="SimpleMath">Lk_W</span> can be defined as the composite</p>

<p><span class="SimpleMath">Lk_W: τ H_1(W, Z) × τ H_1(W, Z) stackrel1× ρ^-1}⟶ τ H_1(W, Z) × τ H^2(W, Z) stackrel1× β^-1}⟶ τ H_1(W, Z) × τ H^1(W, Q/ Z) stackrelev⟶ Q/ Z</span></p>

<p>where <span class="SimpleMath">ev(x,α)</span> evaluates a <span class="SimpleMath">1</span>-cocycle <span class="SimpleMath">α</span> on a <span class="SimpleMath">1</span>-cycle <span class="SimpleMath">x</span>.</p>

<p>The linking form can be used to define the set</p>

<p><span class="SimpleMath">I^O(W) = {Lk_W(g,g) : g∈ τ H_1(W, Z)}</span></p>

<p>which is an oriented-homotopy invariant of <span class="SimpleMath">W</span>. Letting <span class="SimpleMath">W^+</span> and <span class="SimpleMath">W^-</span> denote the two possible orientations on the manifold, the set</p>

<p><span class="SimpleMath">I(W) ={I^O(W^+), I^O(W^-)}</span></p>

<p>is a homotopy invariant of <span class="SimpleMath">W</span> which in this manual we refer to as the <em>linking form homotopy invariant</em>.</p>

<p>The following commands compute the linking form homotopy invariant for the lens spaces <span class="SimpleMath">L(13,q)</span> with <span class="SimpleMath">1≤ q≤ 12</span>. This invariant distinguishes between the two homotopy types that arise.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LensSpaces:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for q in [1..12] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Add(LensSpaces,ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,q));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Display(List(LensSpaces,LinkingFormHomotopyInvariant));;</span>
[ [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ], 
      [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ], 

  [ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], [ 0, 2/13, 
          2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ], 

  [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ], 
      [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ], 

  [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ], 
      [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ], 

  [ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], 
      [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ], 

  [ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], 
      [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ], 

  [ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], 
      [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ], 

  [ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], 
      [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ], 

  [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ], 
      [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ], 

  [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ], 
      [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ], 

  [ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], 
      [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ], 

  [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ], 
      [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ] ]

</pre></div>

<p><a id="X850C76697A6A1654" name="X850C76697A6A1654"></a></p>

<h4>4.6 <span class="Heading">Determining the homeomorphism type of a lens space</span></h4>

<p>In 1935 K. Reidemeister <a href="chapBib.html#biBreidemeister">[Rei35]</a> classified lens spaces up to orientation preserving PL-homeomorphism. This was generalized by E. Moise <a href="chapBib.html#biBmoise">[Moi52]</a> in 1952 to a classification up to homeomorphism -- his method requred the proof of the Hauptvermutung for <span class="SimpleMath">3</span>-dimensional manifolds. In 1960, following a suggestion of R. Fox, a proof was given by E.J. Brody <a href="chapBib.html#biBbrody">[Bro60]</a> that avoided the need for the Hauptvermutung. Reidemeister's method, using what is know termed <em>Reidermeister torsion</em>, and Brody's method, using tubular neighbourhoods of <span class="SimpleMath">1</span>-cycles, both require identifying a suitable "preferred" generator of <span class="SimpleMath">H_1(L(p,q), Z)</span>. In 2003 J. Przytycki and A. Yasukhara <a href="chapBib.html#biBprzytycki">[PY03]</a> provided an alternative method for classifying lens spaces, which uses the linking form and again requires the identification of a "preferred" generator of <span class="SimpleMath">H_1(L(p,q), Z)</span>.</p>

<p>Przytycki and Yasukhara proved the following.</p>

<p><strong class="button">Theorem.</strong> <em>Let <span class="SimpleMath">ρ: S^ 3 → L(p, q)</span> be the <span class="SimpleMath">p</span>-fold cyclic cover and <span class="SimpleMath">K</span> a knot in <span class="SimpleMath">L(p, q)</span> that represents a generator of <span class="SimpleMath">H_1 (L(p, q), Z)</span>. If <span class="SimpleMath">ρ ^-1 (K)</span> is the trivial knot, then <span class="SimpleMath">Lk_ L(p,q) ([K], [K]) = q/p</span> or <span class="SimpleMath">= overline q/p ∈ Q/ Z</span> where <span class="SimpleMath">qoverline q ≡ 1 mod p</span>. </em></p>

<p>The ingredients of this theorem can be applied in HAP, but at present only to small examples of lens spaces. The obstruction to handling large examples is that the current default method for computing the linking form involves barycentric subdivision to produce a simplicial complex from a regular CW-complex, and then a homotopy equivalence from this typically large simplicial complex to a smaller non-regular CW-complex. However, for homeomorphism invariants that are not homotopy invariants there is a need to avoid homotopy equivalences. In the current version of HAP this means that in order to obtain delicate homeomorphism invariants we have to perform homology computations on typically large simplicial complexes. In a future version of HAP we hope to avoid the obstruction by implementing cup products, cap products and linking forms entirely within the category of regular CW-complexes.</p>

<p>The following commands construct a small lens space <span class="SimpleMath">L=L(p,q)</span> with unknown values of <span class="SimpleMath">p,q</span>. Subsequent commands will determine the homeomorphism type of <span class="SimpleMath">L</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:=Random([2,3,5,7,11,13,17]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">q:=Random([1..p-1]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],p,q);</span>
Regular CW-complex of dimension 3

</pre></div>

<p>We can readily determine the value of <span class="SimpleMath">p=11</span> by calculating the order of <span class="SimpleMath">π_1(L)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FundamentalGroupWithPathReps(L);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(F);</span>
"C11"

</pre></div>

<p>The next commands take the default edge path <span class="SimpleMath">γ: S^1→ L</span> representing a generator of the cyclic group <span class="SimpleMath">π_1(L)</span> and lift it to an edge path <span class="SimpleMath">tildeγ: S^1→ tilde L</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U:=UniversalCover(L);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=U!.group;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">p:=EquivariantCWComplexToRegularCWMap(U,Group(One(G)));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U:=Source(p);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma[2]:=F!.loops[1];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma[2]:=List(gamma[2],AbsInt);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma[1]:=List(gamma[2],k-&gt;L!.boundaries[2][k]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gamma[1]:=SSortedList(Flat(gamma[1]));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput"></span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gammatilde:=[[],[],[],[]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for k in [1..U!.nrCells(0)] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if p!.mapping(0,k) in gamma[1] then Add(gammatilde[1],k); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for k in [1..U!.nrCells(1)] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if p!.mapping(1,k) in gamma[2] then Add(gammatilde[2],k); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gammatilde:=CWSubcomplexToRegularCWMap([U,gammatilde]);</span>
Map of regular CW-complexes

</pre></div>

<p>The next commands check that the path <span class="SimpleMath">tildeγ</span> is unknotted in <span class="SimpleMath">tilde L≅ S^3</span> by checking that <span class="SimpleMath">π_1(tilde L∖ image(tildeγ))</span> is infinite cyclic.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=RegularCWComplexComplement(gammatilde);</span>
Regular CW-complex of dimension 3

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=FundamentalGroup(C);</span>
&lt;fp group of size infinity on the generators [ f2 ]&gt;

</pre></div>

<p>Since <span class="SimpleMath">tildeγ</span> is unkotted the cycle <span class="SimpleMath">γ</span> represents the preferred generator <span class="SimpleMath">[γ]∈ H_1(L, Z)</span>. The next commands compute <span class="SimpleMath">Lk_L([γ],[γ])= 7/11</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LinkingFormHomeomorphismInvariant(L);</span>
[ 7/11 ]

</pre></div>

<p>The classification of Moise/Brody states that <span class="SimpleMath">L(p,q)≅ L(p,q')</span> if and only if <span class="SimpleMath">qq'≡ ± 1 mod p</span>. Hence the lens space <span class="SimpleMath">L</span> has the homeomorphism type</p>

<p><span class="SimpleMath">L≅ L(11,7) ≅ L(11,8) ≅ L(11,4) ≅ L(11,3)</span>.</p>

<p><a id="X7EC6B008878CC77E" name="X7EC6B008878CC77E"></a></p>

<h4>4.7 <span class="Heading">Surgeries on distinct knots can yield homeomorphic manifolds</span></h4>

<p>The lens space <span class="SimpleMath">L(5,1)</span> is a quotient of the <span class="SimpleMath">3</span>-sphere <span class="SimpleMath">S^3</span> by a certain action of the cyclic group <span class="SimpleMath">C_5</span>. It can be realized by a <span class="SimpleMath">p/q=5/1</span> Dehn filling of the complement of the trivial knot. It can also be realized by Dehn fillings of other knots. To see this, the following commands compute the manifold <span class="SimpleMath">W</span> obtained from a <span class="SimpleMath">p/q=1/5</span> Dehn filling of the complement of the trefoil and show that <span class="SimpleMath">W</span> at least has the same integral homology and same fundamental group as <span class="SimpleMath">L(5,1)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ap:=ArcPresentation(PureCubicalKnot(3,1));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">W:=ThreeManifoldViaDehnSurgery(ap,1,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(W,1);</span>
[ 5 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(W,2);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(W,3);</span>
[ 0 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FundamentalGroup(W);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(F);</span>
"C5"


</pre></div>

<p>The next commands construct the universal cover <span class="SimpleMath">widetilde W</span> and show that it has the same homology as <span class="SimpleMath">S^3</span> and trivivial fundamental group <span class="SimpleMath">π_1(widetilde W)=0</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">U:=UniversalCover(W);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=U!.group;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Wtilde:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G)));</span>
Regular CW-complex of dimension 3

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(Wtilde,1);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(Wtilde,2);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(Wtilde,3);</span>
[ 0 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FundamentalGroup(Wtilde);</span>
&lt;fp group on the generators [  ]&gt;

</pre></div>

<p>By construction the space <span class="SimpleMath">widetilde W</span> is a manifold. Had we not known how the regular CW-complex <span class="SimpleMath">widetilde W</span> had been constructed then we could prove that it is a closed <span class="SimpleMath">3</span>-manifold by creating its barycentric subdivision <span class="SimpleMath">K=sdwidetilde W</span>, which is homeomorphic to <span class="SimpleMath">widetilde W</span>, and verifying that the link of each vertex in the simplicial complex <span class="SimpleMath">sdwidetilde W</span> is a <span class="SimpleMath">2</span>-sphere. The following command carries out this proof.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(Wtilde);</span>

true

</pre></div>

<p>The Poincare conjecture (now proven) implies that <span class="SimpleMath">widetilde W</span> is homeomorphic to <span class="SimpleMath">S^3</span>. Hence <span class="SimpleMath">W=S^3/C_5</span> is a quotient of the <span class="SimpleMath">3</span>-sphere by an action of <span class="SimpleMath">C_5</span> and is hence a lens space <span class="SimpleMath">L(5,q)</span> for some <span class="SimpleMath">q</span>.</p>

<p>The next commands determine that <span class="SimpleMath">W</span> is homeomorphic to <span class="SimpleMath">L(5,4)≅ L(5,1)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Lk:=LinkingFormHomeomorphismInvariant(W);</span>
[ 0, 4/5 ]

</pre></div>

<p>Moser <a href="chapBib.html#biBlmoser">[Mos71]</a> gives a precise decription of the lens spaces arising from surgery on the trefoil knot and more generally from surgery on torus knots. Greene <a href="chapBib.html#biBgreene">[Gre13]</a> determines the lens spaces that arise by integer Dehn surgery along a knot in the three-sphere</p>

<p><a id="X7B425A3280A2AF07" name="X7B425A3280A2AF07"></a></p>

<h4>4.8 <span class="Heading">Finite fundamental groups of <span class="SimpleMath">3</span>-manifolds</span></h4>

<p>Lens spaces are examples of <span class="SimpleMath">3</span>-manifolds with finite fundamental groups. The complete list of finite groups <span class="SimpleMath">G</span> arising as fundamental groups of closed connected <span class="SimpleMath">3</span>-manifolds is recalled in <a href="chap7.html#X79B1406C803FF178"><span class="RefLink">7.12</span></a> where one method for computing their cohomology rings is presented. Their cohomology could also be computed from explicit <span class="SimpleMath">3</span>-manifolds <span class="SimpleMath">W</span> with <span class="SimpleMath">π_1W=G</span>. For instance, the following commands realize a closed connected <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span> with <span class="SimpleMath">π_1W = C_11× SL_2( Z_5)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ap:=ArcPresentation(PureCubicalKnot(3,1));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">W:=ThreeManifoldViaDehnSurgery(ap,1,11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FundamentalGroup(W);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(F);</span>
1320
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(F);</span>
[ 11 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(F);</span>
"C11 x SL(2,5)"

</pre></div>

<p>Hence the group <span class="SimpleMath">G=C_11× SL_2( Z_5)</span> of order <span class="SimpleMath">1320</span> acts freely on the <span class="SimpleMath">3</span>-sphere <span class="SimpleMath">widetilde W</span>. It thus has periodic cohomology with</p>

<p class="pcenter">
H_n(G,\mathbb Z) = \left\{ \begin{array}{ll}
\mathbb Z_{11} &amp; n\equiv 1  \bmod 4  \\
0  &amp; n\equiv 2 \bmod 4 \\
\mathbb Z_{1320} &amp; n \equiv 3\bmod 4\\
\mathbb 0 &amp; n\equiv 0  \bmod 4   \\
\end{array}\right.
</p>

<p>for <span class="SimpleMath">n &gt; 0</span>.</p>

<p><a id="X78912D227D753167" name="X78912D227D753167"></a></p>

<h4>4.9 <span class="Heading">Poincare's cube manifolds</span></h4>

<p>In his seminal paper on "Analysis situs", published in 1895, Poincare constructed a series of closed 3-manifolds which played an important role in the development of his theory. A good account of these manifolds is given in the online <span class="URL"><a href="http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds">Manifold Atlas Project (MAP)</a></span>. Most of his examples are constructed by identifications on the faces of a (solid) cube. The function <code class="code">PoincareCubeCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a cube by identifying the six faces pairwise; the vertices and faces of the cube are numbered as follows</p>

<p><img src="images/pcube.png" align="center" height="200" alt="cube"/></p>

<p>and barycentric subdivision is used to ensure that the quotient is represented as a regular CW-complex.</p>

<p>Examples 3 and 4 from Poincare's paper, described in the following figures taken from <span class="URL"><a href="http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds">MAP</a></span>,</p>

<p><img src="images/Poincares_cube_manifolds3.png" align="center" width="250" alt="cube manifold"/> <img src="images/Poincares_cube_manifolds5.png" align="center" width="250" alt="cube manifold"/></p>

<p>are constructed in the following example. Both are checked to be orientable manifolds, and are shown to have different homology. (Note that the second example in Poincare's paper is not a manifold -- the links of some of its vertices are not homeomorphic to a 2-sphere.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=1;;C:=2;;D:=3;;B:=4;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Ap:=5;;Cp:=6;;Dp:=7;;Bp:=8;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=[[A,B,Bp,Ap],[Cp,C,D,Dp]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:=[[A,C,Cp,Ap],[D,Dp,Bp,B]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Ex3:=PoincareCubeCWComplex(L,M,N);</span>
Regular CW-complex of dimension 3

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(Ex3);</span>

true

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=[[A,B,Bp,Ap],[C,D,Dp,Cp]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:=[[A,C,Cp,Ap],[B,D,Dp,Bp]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Ex4:=PoincareCubeCWComplex(L,M,N);</span>
Regular CW-complex of dimension 3

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(Ex4);</span>
true

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..3],k-&gt;Homology(Ex3,k));</span>
[ [ 0 ], [ 2, 2 ], [  ], [ 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..3],k-&gt;Homology(Ex4,k));</span>
[ [ 0 ], [ 2, 0 ], [ 0 ], [ 0 ] ]

</pre></div>

<p><a id="X8761051F84C6CEC2" name="X8761051F84C6CEC2"></a></p>

<h4>4.10 <span class="Heading">There are at least 25 distinct cube manifolds</span></h4>

<p>The function <code class="code">PoincareCubeCWComplex(A,G)</code> can also be applied to two inputs where <span class="SimpleMath">A</span> is a pairing of the six faces such as <span class="SimpleMath">A=[[1,2],[3,4],[5,6]]</span> and <span class="SimpleMath">G</span> is a list of three elements of the dihedral group of order <span class="SimpleMath">8</span> such as <span class="SimpleMath">G=[(2,4),(2,4),(2,4)*(1,3)]</span>. The dihedral elements specify how each pair of faces are glued together. With these inputs it is easy to iterate over all possible values of <span class="SimpleMath">A</span> and <span class="SimpleMath">G</span> in order to construct all possible closed 3-manifolds arising from the pairwise identification of faces of a cube. We call such a manifold a <em><strong class="button">cube manifold</strong></em>. Distinct values of <span class="SimpleMath">A</span> and <span class="SimpleMath">G</span> can of course yield homeomorphic spaces. To ensure that each possible cube manifold is constructed, at least once, up to homeomorphism it suffices to consider</p>

<p><span class="SimpleMath">A=[ [1,2], [3,4], [5,6] ]</span>, <span class="SimpleMath">A=[ [1,2], [3,5], [4,6] ]</span>, <span class="SimpleMath">A=[ [1,4], [2,6], [3,5] ]</span></p>

<p>and all <span class="SimpleMath">G</span> in <span class="SimpleMath">D_8× D_8× D_8</span>.</p>

<p>The following commands iterate through these <span class="SimpleMath">3×8^3 = 1536</span> pairs <span class="SimpleMath">(A,G)</span> and show that in precisely 163 cases (just over 10% of cases) the quotient CW-complex is a closed 3-manifold.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A1:= [ [1,2], [3,4], [5,6] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A2:=[ [1,2], [3,5], [4,6] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A3:=[ [1,4], [2,6], [3,5] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D8:=DihedralGroup(IsPermGroup,8);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Manifolds:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for A in [A1,A2,A3] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for x in D8 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for y in D8 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for z in D8 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">G:=[x,y,z];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">F:=PoincareCubeCWComplex(A,G);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">b:=IsClosedManifold(F);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if b=true then Add(Manifolds,F); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;od;od;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(Manifolds);</span>
163

</pre></div>

<p>The following additional commands use integral homology and low index subgroups of fundamental groups to establish that the 163 cube manifolds represent at least 25 distinct homotopy equivalence classes of manifolds. One homotopy class is represented by up to 40 of the manifolds, and at least four of the homotopy classes are each represented by a single manifold..</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invariant1:=function(m);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">return List([1..3],k-&gt;Homology(m,k));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=Classify(Manifolds,invariant1);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">invariant2:=function(m)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">local L;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">L:=FundamentalGroup(m);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if GeneratorsOfGroup(L)= [] then return [];fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">L:=LowIndexSubgroupsFpGroup(L,5);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">L:=List(L,AbelianInvariants);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">L:=SortedList(L);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">return L;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=RefineClassification(C,invariant2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D,Size);</span>
[ 40, 2, 10, 15, 8, 6, 2, 6, 2, 5, 7, 1, 4, 11, 7, 7, 10, 4, 4, 2, 1, 3, 1, 
  1, 4 ]

</pre></div>

<p>The next commands construct a list of 18 orientable cube manifolds and a list of 7 non-orientable cube manifolds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Manifolds:=List(D,x-&gt;x[1]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">OrientableManifolds:=Filtered(Manifolds,m-&gt;Homology(m,3)=[0]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NonOrientableManifolds:=Filtered(Manifolds,m-&gt;Homology(m,3)=[]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(OrientableManifolds);</span>
18
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(NonOrientableManifolds);</span>
7

</pre></div>

<p>The next commands show that the 7 non-orientable cube manifolds all have infinite fundamental groups.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(NonOrientableManifolds,m-&gt;IsFinite(FundamentalGroup(m)));</span>
[ false, false, false, false, false, false, false ]

</pre></div>

<p>The final commands show that (at least) 9 of the orientable manifolds have finite fundamental groups and list the isomorphism types of these finite groups. Note that it is now known that any closed 3-manifold with finite fundamental group is spherical (i.e. is a quotient of the 3-sphere). Spherical manifolds with cyclic fundamental group are, by definition, lens spaces.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m-&gt;</span>
          IsFinite(FundamentalGroup(m)));
[ true, true, true, true, true, true, true, true, true ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m-&gt;</span>
          StructureDescription(FundamentalGroup(m)));
[ "Q8", "C2", "C4", "C3 : C4", "C12", "C8", "C14", "C6", "1" ]


</pre></div>

<p><a id="X7D50795883E534A3" name="X7D50795883E534A3"></a></p>

<h5>4.10-1 <span class="Heading">Face pairings for 25 distinct cube manifolds</span></h5>

<p>The following are the face pairings of 25 non-homeomorphic cube manifolds, with vertices of the cube numbered as describe above.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for i in [1..25] do                                              </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">p:=Manifolds[i]!.cubeFacePairings;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("Manifold ",i," has face pairings:\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print(p[1],"\n",p[2],"\n",p[3],"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("Fundamental group is:  ");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if i in [ 1, 9, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25 ] then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print(StructureDescription(FundamentalGroup(Manifolds[i])),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">else Print("infinite non-cyclic\n"); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if Homology(Manifolds[i],3)=[0] then Print("Orientable, ");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">else Print("Non orientable, "); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print(ManifoldType(Manifolds[i]),"\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for x in Manifolds[i]!.edgeDegrees do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print(x[2]," edges of \"degree\" ",x[1],",  ");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print("\n\n");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>

Manifold 1 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 7, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 3, 2, 6, 7 ] ]
Fundamental group is:  Z x C2
Non orientable, other
4 edges of "degree" 2,  4 edges of "degree" 4,  

Manifold 2 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 4, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, other
2 edges of "degree" 1,  2 edges of "degree" 3,  2 edges of "degree" 8,  

Manifold 3 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 4 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 7, 3, 2 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 5 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 6, 5, 8, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 6, 7, 3 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 6 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 7 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, other
2 edges of "degree" 1,  2 edges of "degree" 3,  2 edges of "degree" 8,  

Manifold 8 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, other
4 edges of "degree" 2,  2 edges of "degree" 8,  

Manifold 9 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 5, 6, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 2, 3, 7 ] ]
Fundamental group is:  Q8
Orientable, spherical
8 edges of "degree" 3,  

Manifold 10 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, other
4 edges of "degree" 2,  4 edges of "degree" 4,  

Manifold 11 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 3, 7, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 12 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  Z x Z x Z
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 13 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 14 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  C2
Orientable, spherical
12 edges of "degree" 2,  

Manifold 15 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  Z
Non orientable, other
4 edges of "degree" 1,  2 edges of "degree" 2,  2 edges of "degree" 8,  

Manifold 16 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  Z
Orientable, other
4 edges of "degree" 1,  2 edges of "degree" 2,  2 edges of "degree" 8,  

Manifold 17 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is:  C4
Orientable, spherical
2 edges of "degree" 1,  2 edges of "degree" 3,  2 edges of "degree" 8,  

Manifold 18 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 6, 2, 3, 7 ] ]
Fundamental group is:  C3 : C4
Orientable, spherical
2 edges of "degree" 2,  4 edges of "degree" 5,  

Manifold 19 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is:  C12
Orientable, spherical
2 edges of "degree" 2,  2 edges of "degree" 3,  2 edges of "degree" 7,  

Manifold 20 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is:  C8
Orientable, spherical
8 edges of "degree" 3,  

Manifold 21 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 22 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
Fundamental group is:  C14
Orientable, spherical
2 edges of "degree" 2,  4 edges of "degree" 5,  

Manifold 23 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
Fundamental group is:  C6
Orientable, spherical
6 edges of "degree" 2,  2 edges of "degree" 6,  

Manifold 24 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 5, 6 ] ]
[ [ 3, 7, 8, 4 ], [ 2, 3, 7, 6 ] ]
[ [ 1, 2, 3, 4 ], [ 4, 1, 5, 8 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 25 has face pairings:
[ [ 1, 5, 6, 2 ], [ 6, 7, 8, 5 ] ]
[ [ 3, 7, 8, 4 ], [ 3, 7, 6, 2 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
Fundamental group is:  1
Orientable, spherical
4 edges of "degree" 1,  4 edges of "degree" 5,

</pre></div>

<p><a id="X837811BB8181666E" name="X837811BB8181666E"></a></p>

<h5>4.10-2 <span class="Heading">Platonic cube manifolds</span></h5>

<p>A <em>platonic solid</em> is a convex, regular polyhedron in <span class="SimpleMath">3</span>-dimensional euclidean <span class="SimpleMath">E^3</span> or spherical <span class="SimpleMath">S^3</span> or hyperbolic space <span class="SimpleMath">H^3</span>. Being <em>regular</em> means that all edges are congruent, all faces are congruent, all angles between adjacent edges in a face are congruent, all dihedral angles between adjacent faces are congruent. A platonic cube in euclidean space has six congruent square faces with diherdral angle <span class="SimpleMath">π/2</span>. A platonic cube in spherical space has dihedral angles <span class="SimpleMath">2π/3</span>. A platonic cube in hyperbolic space has dihedral angles <span class="SimpleMath">2π/5</span>. This can alternatively be expressed by saying that in a tessellation of <span class="SimpleMath">E^3</span> by platonic cubes each edge is adjacent to 4 square faces. In a tessellation of <span class="SimpleMath">S^3</span> by platonic cubes each edge is adjacent to 3 square faces. In a tessellation of <span class="SimpleMath">H^3</span> by platonic cubes each edge is adjacent to 5 five square faces.</p>

<p>Any cube manifold <span class="SimpleMath">M</span> induces a cubical CW-decomposition of its universal cover <span class="SimpleMath">widetilde M</span>. We say that <span class="SimpleMath">M</span> is a <em>platonic cube manifold</em> if every edge in <span class="SimpleMath">widetilde M</span> is adjacent to 4 faces in the euclidean case <span class="SimpleMath">widetilde M= E^3</span>, is adjacent to 3 faces in the spherical case <span class="SimpleMath">widetilde M= S^3</span>, is adjacent to 5 faces in the hyperbolic case <span class="SimpleMath">widetilde M= H^3</span>.</p>

<p>In the above list of 25 cube manifolds we see that the euclidean manifolds 3, 4, 5, 6, 11 are platonic and that the spherical manifolds 9, 20 are platonic.</p>

<p><a id="X8084A36082B26D86" name="X8084A36082B26D86"></a></p>

<h4>4.11 <span class="Heading">There are at most 41 distinct cube manifolds</span></h4>

<p>Using the <span class="URL"><a href="https://simpcomp-team.github.io/simpcomp/README.html">Simpcomp</a></span> package for GAP we can show that many of the 163 cube manifolds constructed above are homeomorphic. We do this by showing that barycentric subdivisions of many of the manifolds are combinatorially the same.</p>

<p>The following commands establish homeomorphisms (simplicial complex isomorphisms) between manifolds in each equivalence class D[i] above for <span class="SimpleMath">1 ≤ i≤ 25</span>, and then discard all but one manifold in each homeomorphism class. We are left with 59 cube manifolds, some of which may be homeomorphic, representing at least 25 distinct homeomorphism classes. The 59 manifolds are stored in the list DD of length 25 each of whose terms is a list of cube manifolds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">LoadPackage("Simpcomp");;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv3:=function(m)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">local K;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">K:=BarycentricSubdivision(m);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">K:=MaximalSimplicesOfSimplicialComplex(K);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">K:=SC(K);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if not SCIsStronglyConnected(K) then Print("WARNING!\n"); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">return SCExportIsoSig( K );</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;</span>
function( m ) ... end

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for x in D do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Add(DD,List(y,z-&gt;z[1]));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(DD,Size);</span>
[ 9, 1, 3, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 7, 4, 4, 3, 1, 1, 1, 1, 3, 1, 1, 3 ]

</pre></div>

<p>The function <code class="code">PoincareCubeCWCompex()</code> applies cell simplifications in its construction of the quotient of a CW-complex. A variant <code class="code">PoincareCubeCWCompexNS()</code> performs no cell simplifications and thus returns a bigger cell complex which we can attempt to use to establish further homeomorphisms. This is done in the following session and succeeds in showing that there are at most 51 distinct homeomorphism types of cube manifolds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD:=List(DD,x-&gt;List(x,y-&gt;PoincareCubeCWComplexNS(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for x in DD do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Add(D,List(y,z-&gt;z[1]));</span>
&gt;od;;

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D,Size);</span>
[ 8, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]

</pre></div>

<p>Making further modifications to the cell structures of the manifolds that leave their homeomorphism types unchanged can help to identify further simplicial isomorphisms between barycentric subdivisions. For instance, the following commands succeed in establishing that there are at most 45 distinct homeomorphism types of cube manifolds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for x in D do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if Length(x)&gt;1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Add(DD, List(x,y-&gt;BarycentricallySimplifiedComplex(y)));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">else Add(DD,x);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=[];;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for x in DD do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Add(D,List(y,z-&gt;z[1]));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D,Size);</span>
[ 7, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD:=List(D,x-&gt;List(x,y-&gt;PoincareCubeCWComplexNS(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D1:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for x in DD do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if Length(x)&gt;1 then</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Add(D1, List(x,y-&gt;BarycentricallySimplifiedComplex(RegularCWComplex(BarycentricSubdivision(y)))));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">else Add(D1,x);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for x in D1 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Add(DD,List(y,z-&gt;z[1]));</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Print(List(DD,Size),"\n");</span>
[ 6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]

</pre></div>

<p>The two manifolds in DD[14] have fundamental group <span class="SimpleMath">C_2</span> and are thus lens spaces. There is only one homeomorphism class of such lens spaces and so these two manifolds are homeomorphic. The three manifolds in DD[17] are lens spaces with fundamental group <span class="SimpleMath">C_4</span>. Again, there is only one homeomorphism class of such lens spaces and so these three manifolds are homeomorphic. The two manifolds in DD[25] have trivial fundamental group and are hence both homeomorphic to the 3-sphere. These observations mean that there are at most 41 closed manifolds arising from a cube by identifying the cube's faces pairwise.</p>

<p>These observations can be incorporated into our list DD of equivalence classes of manifolds as follows.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD[14]:=DD[14]{[1]};;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD[17]:=DD[17]{[1]};;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DD[25]:=DD[25]{[1]};;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(DD,Size);</span>
[ 6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

</pre></div>

<p><a id="X7B63C22C80E53758" name="X7B63C22C80E53758"></a></p>

<h4>4.12 <span class="Heading">There are precisely 18 orientable cube manifolds, of which   9 are spherical and 5 are euclidean</span></h4>

<p>The following commands show that there are at least 18 and at most 21 orientable cube manifolds.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">DDorient:=Filtered(DD,x-&gt;Homology(x[1],3)=[0]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(DDorient,Size);</span>
[ 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

</pre></div>

<p>The next commands show that the fundamental groups of the two manifolds in DDorient[7] are isomorphic to <span class="SimpleMath">Z × Z : Z</span>, and that the fundamental groups of the three manifolds in DDorient[9] are isomorphic to <span class="SimpleMath">Z</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g1:=FundamentalGroup(DDorient[7][1]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g2:=FundamentalGroup(DDorient[7][2]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RelatorsOfFpGroup(g1);</span>
[ f1^-1*f2*f1*f2^-1, f3^-1*f1*f3*f1, f3^-1*f2^-1*f3*f2^-1 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RelatorsOfFpGroup(g2);</span>
[ f1*f2*f1^-1*f2^-1, f1^-1*f3*f1^-1*f3^-1, f3*f2*f3^-1*f2 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h1:=FundamentalGroup(DDorient[9][1]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h2:=FundamentalGroup(DDorient[9][2]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h3:=FundamentalGroup(DDorient[9][3]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(h1);</span>
"Z"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(h2);</span>
"Z"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(h3);</span>
"Z"

</pre></div>

<p>Since neither <span class="SimpleMath">Z× Z : Z</span> nor <span class="SimpleMath">Z</span> is a free product of two non-trivial groups we conclude that the manifolds in DDorient[7] and DDorient[9] are prime. Since oriented prime 3-manifolds are determined up to homeomorphism by their fundamental groups we can conclude that there are precisely 18 orientable closed manifolds arising from a cube by identifying the cube's faces pairwise.</p>

<p>A compact 3-manifold <span class="SimpleMath">M</span> is <em>spherical</em> if it is of the form <span class="SimpleMath">M=S^3/Γ</span> where <span class="SimpleMath">Γ</span> is a finite group acting freely as rotations on <span class="SimpleMath">S^3</span>. The fundamental group of <span class="SimpleMath">M</span> is then the finite group <span class="SimpleMath">Γ</span>. Perelmen showed that a compact 3-manifold is spherical if and only if its fundamental group is finite.</p>

<p>A compact 3-manifold is <em>euclidean</em> if it is of the form <span class="SimpleMath">M= R^3/Γ</span> where <span class="SimpleMath">Γ</span> is a group of affine transformations acting freely on <span class="SimpleMath">R^3</span>. The fundamental group is then <span class="SimpleMath">Γ</span> and is called a <em>Bieberbach group</em> of dimension 3. It can be shown that a group <span class="SimpleMath">Γ</span> is isomorphic to a Bieberbach group of dimension <span class="SimpleMath">n</span> if and only if there is a short exact sequence <span class="SimpleMath">Z^n ↣ Γ ↠ P</span> with <span class="SimpleMath">P</span> a finite group.</p>

<p>The following command establishes that there are precisely 9 orientable spherical manifolds and 5 closed orientable euclidean manifolds arising from pairwise identifications of the faces of the cube.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(OrientableManifolds,ManifoldType);</span>
[ "euclidean", "other", "other", "spherical", "other", "euclidean", 
  "euclidean", "spherical", "other", "spherical", "spherical", "spherical", 
  "spherical", "euclidean", "spherical", "spherical", "euclidean", "spherical" ]

</pre></div>

<p><a id="X796BF3817BD7F57D" name="X796BF3817BD7F57D"></a></p>

<h4>4.13 <span class="Heading">Cube manifolds with boundary</span></h4>

<p>If a space <span class="SimpleMath">Y</span> obtained from identifying faces of the cube fails to be a manifold then it fails because one or more vertices of <span class="SimpleMath">Y</span> fail to have a spherical link. By using barycentric subdivision if necessary, we can ensure that the stars of any two non-manifold vertices of <span class="SimpleMath">Y</span> have trivial intersection. Removing the stars of the non-manifold vertices from <span class="SimpleMath">Y</span> yields a 3-manifold with boundary <span class="SimpleMath">hat Y</span>.</p>

<p>The following commands show that there are 367 combinatorially different regular CW-complexes <span class="SimpleMath">Y</span> that arise by identifying faces of a cube in pairs and which fail to be manifolds. The commands also show that these spaces give rise to at least 180 non-homeomorphic manifolds <span class="SimpleMath">hat Y</span> with boundary.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A1:= [ [1,2], [3,4], [5,6] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A2:=[ [1,2], [3,5], [4,6] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A3:=[ [1,4], [2,6], [3,5] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D8:=DihedralGroup(IsPermGroup,8);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">NonManifolds:=[];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for A in [A1,A2,A3] do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for x in D8 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for y in D8 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">for z in D8 do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">G:=[x,y,z];</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">F:=PoincareCubeCWComplex(A,G);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">b:=IsClosedManifold(F);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">if b=false then Add(NonManifolds,F); fi;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;od;od;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=Classify(NonManifolds,inv3); #See above for inv3</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=List(D,x-&gt;x[1]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(D);</span>
367

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=List(D,ThreeManifoldWithBoundary);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=Classify(M,invariant1);; #See above for invariant1       </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(C,Size);</span>
[ 33, 13, 3, 18, 21, 7, 6, 13, 51, 2, 1, 15, 11, 11, 1, 35, 2, 2, 6, 15, 
  17, 2, 3, 2, 14, 17, 3, 1, 25, 8, 4, 1, 4 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">inv5:=function(m)                       </span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">local B;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">B:=BoundaryOfPureRegularCWComplex(m);;</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">return invariant1(B);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CC:=RefineClassification(C,inv5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(CC,Size);</span>
[ 25, 5, 3, 5, 4, 4, 2, 1, 11, 3, 4, 7, 3, 6, 4, 1, 5, 1, 1, 5, 1, 13, 4, 
  6, 40, 1, 2, 1, 11, 4, 5, 3, 1, 2, 7, 4, 1, 14, 11, 10, 2, 2, 6, 9, 3, 3, 
  2, 15, 2, 3, 2, 14, 17, 2, 1, 1, 4, 7, 14, 8, 3, 1, 1, 4 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CC:=RefineClassification(CC,invariant2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(CC,Size);                              </span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
  1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 1, 4, 2, 3, 2, 3, 
  4, 3, 2, 1, 1, 3, 2, 4, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 13, 3, 1, 4, 2, 1, 
  2, 2, 3, 3, 3, 4, 4, 2, 4, 4, 4, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
  1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
  1, 1, 1, 1, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 3, 3, 2, 2, 1, 1, 2, 1, 1, 2, 
  1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 5, 2, 3, 2, 14, 17, 1, 1, 1, 
  1, 4, 5, 2, 9, 1, 4, 7, 1, 3, 1, 1, 4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Length(CC);</span>
180

</pre></div>

<p><a id="X7EC4359B7DF208B0" name="X7EC4359B7DF208B0"></a></p>

<h4>4.14 <span class="Heading">Octahedral manifolds</span></h4>

<p>The above construction of 3-manifolds as quotients of a cube can be extended to other polytopes. A polytope of particular interest, and one that appears several times in the classic book on Three-Manifolds by William Thurston <a href="chapBib.html#biBthurston">[Thu02]</a>, is the octahedron. The function <code class="code">PoincareOctahahedronCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from an octahedron by identifying the eight faces pairwise; the vertices and faces of the octahedron are numbered as follows.</p>

<p><img src="images/octahedron.png" align="center" height="350" alt="octahedron"/></p>

<p>The following commands construct a spherical 3-manifold Y with fundamental group equal to the binary tetrahedral group <span class="SimpleMath">G</span>. The commands then use the universal cover of this manifold to construct the first four terms of a free periodic <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> of period <span class="SimpleMath">4</span>. The resolution has one free generator in dimensions <span class="SimpleMath">4n</span> and <span class="SimpleMath">4n+3</span> for <span class="SimpleMath">n≥ 0</span>. It has two free generators in dimensions <span class="SimpleMath">4n+1</span> and <span class="SimpleMath">4n+2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[ [ 1, 4, 5 ], [ 2, 6, 3 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=[ [ 3, 4, 5 ], [ 6, 1, 2 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:=[ [ 2, 3, 5 ], [ 6, 4, 1 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=[ [ 1, 2, 5 ], [ 6, 3, 4 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Y:=PoincareOctahedronCWComplex(L,M,N,P);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(Y);</span>
true

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=FundamentalGroup(Y);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(G);</span>
"SL(2,3)"

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ChainComplexOfUniversalCover(Y);</span>
Equivariant chain complex of dimension 3

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..3],R!.dimension);</span>
[ 1, 2, 2, 1 ]

</pre></div>

<p><a id="X85FFF9B97B7AD818" name="X85FFF9B97B7AD818"></a></p>

<h4>4.15 <span class="Heading">Dodecahedral manifolds</span></h4>

<p>Another polytope of interest, and one that can be used to construct the Poincare homology sphere, is the dodecahedron. The function <code class="code">PoincareDodecahedronCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a dodecahedron by identifying the <span class="SimpleMath">12</span> pentagonal faces pairwise; the vertices of the prism are numbered as follows.</p>

<p><img src="images/dodecahedron.png" align="center" height="250" alt="dodecahedron"/></p>

<p>The following commands construct the Poincare homology <span class="SimpleMath">3</span>-sphere (with fundamental group equal to the binary icosahedral group of order 120).</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Y:=PoincareDodecahedronCWComplex(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[1,2,3,4,5],[6,7,8,9,10]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[1,11,16,12,2],[19,9,8,18,14]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[2,12,17,13,3],[20,10,9,19,15]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[3,13,18,14,4],[16,6,10,20,11]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[4,14,19,15,5],[17,7,6,16,12]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[5,15,20,11,1],[18,8,7,17,13]]);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(Y);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..3],n-&gt;Homology(Y,n));</span>
[ [ 0 ], [  ], [  ], [ 0 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(FundamentalGroup(Y));</span>
"SL(2,5)"

</pre></div>

<p>The following commands construct Seifert-Weber space, a rational homology sphere.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">W:=PoincareDodecahedronCWComplex(</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[1,2,3,4,5],[7,8,9,10,6]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[1,11,16,12,2],[9,8,18,14,19]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[2,12,17,13,3],[10,9,19,15,20]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[3,13,18,14,4],[6,10,20,11,16]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[4,14,19,15,5],[7,6,16,12,17]],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">[[5,15,20,11,1],[8,7,17,13,18]]);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(W);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..3],n-&gt;Homology(W,n));</span>
[ [ 0 ], [ 5, 5, 5 ], [  ], [ 0 ] ]

</pre></div>

<p><a id="X78B75E2E79FBCC54" name="X78B75E2E79FBCC54"></a></p>

<h4>4.16 <span class="Heading">Prism manifolds</span></h4>

<p>Another polytope of interest is the prism constructed as the direct product <span class="SimpleMath">D_n× [0,1]</span> of an n-gonal disk <span class="SimpleMath">D_n</span> with the unit interval. The function <code class="code">PoincarePrismCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a prism with even <span class="SimpleMath">n≥ 4</span> by identifying the <span class="SimpleMath">n+2</span> faces pairwise; the vertices of the prism are numbered as follows.</p>

<p><img src="images/prismnam.png" align="center" height="150" alt="prism"/></p>

<p>The case <span class="SimpleMath">n=4</span> is that of a cube. The following commands construct a manifold <span class="SimpleMath">Y</span> arising from a hexagonal prism (<span class="SimpleMath">n=6</span>) with fundamental group <span class="SimpleMath">π_1Y=C_5× Q_32</span> equal to the direct product of the cyclic group of order <span class="SimpleMath">5</span> and the quaternion group of order <span class="SimpleMath">32</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[[1,2,3,4,5,6],[11,12,7,8,9,10]];;                 </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=[[1,7,8,2],[4,5,11,10]];;             </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:=[[2,8,9,3],[6,1,7,12]];;             </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=[[3,9,10,4],[6,12,11,5]];;             </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Y:=PoincarePrismCWComplex(L,M,N,P);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(Y);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=FundamentalGroup(Y);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(G);</span>
"C5 x Q32"

</pre></div>

<p>An exhaustive search through all manifolds constructed from a hexagonal prism by identify faces pairwise shows that the finite groups arising as fundamental groups are precisely: <span class="SimpleMath">Q_8</span>, <span class="SimpleMath">Q_16</span>, <span class="SimpleMath">C_4</span>, <span class="SimpleMath">C_3 : C_4</span>, <span class="SimpleMath">C_5 : C_4</span>, <span class="SimpleMath">C_8</span>, <span class="SimpleMath">C_16</span>, <span class="SimpleMath">C_12</span>, <span class="SimpleMath">C_20</span>, <span class="SimpleMath">C_2</span>, <span class="SimpleMath">C_6</span>, <span class="SimpleMath">C_3 × Q_8</span>, <span class="SimpleMath">C_3 × Q_16</span>, <span class="SimpleMath">C_5 × Q_32</span>. Each of these finite groups <span class="SimpleMath">G=π_1Y</span> is either cyclic (in which case the corresponding manifold is a lens space) or else has the propert that <span class="SimpleMath">G/Z(G)</span> is dihedral (in which case the corresponding manifold is called a <em>prism manifold</em>). The majority of the manifolds arising from a hexagonal prism have infinite fundamental group.</p>

<p>Infinite families of spherical <span class="SimpleMath">3</span>-maniolds can be constructed from the infinite family of prisms. For instance, a prism manifold which we denote by <span class="SimpleMath">P_r</span> can be obtained from a prism <span class="SimpleMath">D_2r× [0,1]</span> by identifying the left and right side under a twist of <span class="SimpleMath">π/r</span>, and identifying opposite square faces under a twist of <span class="SimpleMath">π/2</span>. Its fundamental group <span class="SimpleMath">π_1P_r</span> is the binary dihedral group of order <span class="SimpleMath">4r</span>. The following commands construct <span class="SimpleMath">P_r</span> for <span class="SimpleMath">r=3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=[[1,2,3,4,5,6],[8,9,10,11,12,7]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=[[1,7,8,2],[11,10,4,5]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">N:=[[2,8,9,3],[12,11,5,6]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=[[3,9,10,4],[7,12,6,1]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Y:=PoincarePrismCWComplex(L,M,N,P);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsClosedManifold(Y);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(FundamentalGroup(Y));</span>
"C3 : C4"

</pre></div>

<p><a id="X7F31DFDA846E8E75" name="X7F31DFDA846E8E75"></a></p>

<h4>4.17 <span class="Heading">Bipyramid manifolds</span></h4>

<p>Yet another polytope of interest is the bipyramid constructed as the suspension of an n-gonal disk <span class="SimpleMath">D_n</span>. The function <code class="code">PoincareBipyramidCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a bipyramid with <span class="SimpleMath">n≥ 3</span> by identifying the <span class="SimpleMath">2n</span> faces pairwise; the vertices of the prism are numbered as follows.</p>

<p><img src="images/bipyramid.png" align="center" height="150" alt="bipyramid"/></p>

<p>For <span class="SimpleMath">n=4</span> the bipyramid is the octahedron.</p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap3.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap5.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>