1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 4: Three Manifolds</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap4" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap3.html">[Previous Chapter]</a> <a href="chap5.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap4_mj.html">[MathJax on]</a></p>
<p><a id="X7BFA4D1587D8DF49" name="X7BFA4D1587D8DF49"></a></p>
<div class="ChapSects"><a href="chap4.html#X7BFA4D1587D8DF49">4 <span class="Heading">Three Manifolds</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X82D1348C79238C2D">4.1 <span class="Heading">Dehn Surgery</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X848EDEE882B36F6C">4.2 <span class="Heading">Connected Sums</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X78AE684C7DBD7C70">4.3 <span class="Heading">Dijkgraaf-Witten Invariant</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X80B6849C835B7F19">4.4 <span class="Heading">Cohomology rings</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7F56BB4C801AB894">4.5 <span class="Heading">Linking Form</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X850C76697A6A1654">4.6 <span class="Heading">Determining the homeomorphism type of a lens space</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7EC6B008878CC77E">4.7 <span class="Heading">Surgeries on distinct knots can yield homeomorphic manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7B425A3280A2AF07">4.8 <span class="Heading">Finite fundamental groups of <span class="SimpleMath">3</span>-manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X78912D227D753167">4.9 <span class="Heading">Poincare's cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X8761051F84C6CEC2">4.10 <span class="Heading">There are at least 25 distinct cube manifolds</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X7D50795883E534A3">4.10-1 <span class="Heading">Face pairings for 25 distinct cube manifolds</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap4.html#X837811BB8181666E">4.10-2 <span class="Heading">Platonic cube manifolds</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X8084A36082B26D86">4.11 <span class="Heading">There are at most 41 distinct cube manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7B63C22C80E53758">4.12 <span class="Heading">There are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are euclidean</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X796BF3817BD7F57D">4.13 <span class="Heading">Cube manifolds with boundary</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7EC4359B7DF208B0">4.14 <span class="Heading">Octahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X85FFF9B97B7AD818">4.15 <span class="Heading">Dodecahedral manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X78B75E2E79FBCC54">4.16 <span class="Heading">Prism manifolds</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap4.html#X7F31DFDA846E8E75">4.17 <span class="Heading">Bipyramid manifolds</span></a>
</span>
</div>
</div>
<h3>4 <span class="Heading">Three Manifolds</span></h3>
<p><a id="X82D1348C79238C2D" name="X82D1348C79238C2D"></a></p>
<h4>4.1 <span class="Heading">Dehn Surgery</span></h4>
<p>The following example constructs, as a regular CW-complex, a closed orientable 3-manifold <span class="SimpleMath">W</span> obtained from the 3-sphere by drilling out a tubular neighbourhood of a trefoil knot and then gluing a solid torus to the boundary of the cavity via a homeomorphism corresponding to a Dehn surgery coefficient <span class="SimpleMath">p/q=17/16</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ap:=ArcPresentation(PureCubicalKnot(3,1));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=17;;q:=16;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=ThreeManifoldViaDehnSurgery(ap,p,q);</span>
Regular CW-complex of dimension 3
</pre></div>
<p>The next commands show that this <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span> has integral homology</p>
<p><span class="SimpleMath">H_0(W, Z)= Z</span>, <span class="SimpleMath">H_1(W, Z)= Z_16</span>, <span class="SimpleMath">H_2(W, Z)=0</span>, <span class="SimpleMath">H_3(W, Z)= Z</span></p>
<p>and that the fundamental group <span class="SimpleMath">π_1(W)</span> is non-abelian.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,0);Homology(W,1);Homology(W,2);Homology(W,3);</span>
[ 0 ]
[ 16 ]
[ ]
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalGroup(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=LowIndexSubgroupsFpGroup(F,10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(L,AbelianInvariants);</span>
[ [ 16 ], [ 3, 8 ], [ 3, 4 ], [ 2, 3 ], [ 16, 43 ], [ 8, 43, 43 ] ]
</pre></div>
<p>The following famous result of Lickorish and (independently) Wallace shows that Dehn surgery on knots leads to an interesting range of spaces.</p>
<p><strong class="button">Theorem:</strong> <em> Every closed, orientable, connected <span class="SimpleMath">3</span>-manifold can be obtained by surgery on a link in <span class="SimpleMath">S^3</span>. (Moreover, one can always perform the surgery with surgery coefficients <span class="SimpleMath">± 1</span> and with each individual component of the link unknotted.) </em></p>
<p><a id="X848EDEE882B36F6C" name="X848EDEE882B36F6C"></a></p>
<h4>4.2 <span class="Heading">Connected Sums</span></h4>
<p>The following example constructs the connected sum <span class="SimpleMath">W=A#B</span> of two <span class="SimpleMath">3</span>-manifolds, where <span class="SimpleMath">A</span> is obtained from a <span class="SimpleMath">5/1</span> Dehn surgery on the complement of the first prime knot on 11 crossings and <span class="SimpleMath">B</span> is obtained by a <span class="SimpleMath">5/1</span> Dehn surgery on the complement of the second prime knot on 11 crossings. The homology groups</p>
<p><span class="SimpleMath">H_1(W, Z) = Z_2⊕ Z_594</span>, <span class="SimpleMath">H_2(W, Z) = 0</span>, <span class="SimpleMath">H_3(W, Z) = Z</span></p>
<p>are computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ap1:=ArcPresentation(PureCubicalKnot(11,1));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=ThreeManifoldViaDehnSurgery(ap1,5,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ap2:=ArcPresentation(PureCubicalKnot(11,2));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=ThreeManifoldViaDehnSurgery(ap2,5,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=ConnectedSum(A,B); #W:=ConnectedSum(A,B,-1) would yield A#-B where -B has the opposite orientation</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,1);</span>
[ 2, 594 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,2);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,3);</span>
[ 0 ]
</pre></div>
<p><a id="X78AE684C7DBD7C70" name="X78AE684C7DBD7C70"></a></p>
<h4>4.3 <span class="Heading">Dijkgraaf-Witten Invariant</span></h4>
<p>Given a closed connected orientable <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span>, a finite group <span class="SimpleMath">G</span> and a 3-cocycle <span class="SimpleMath">α∈ H^3(BG,U(1))</span> Dijkgraaf and Witten define the complex number</p>
<p>$$ Z^{G,\alpha}(W) = \frac{1}{|G|}\sum_{\gamma\in {\rm Hom}(\pi_1W, G)} \langle \gamma^\ast[\alpha], [M]\rangle \ \in\ \mathbb C\ $$ where <span class="SimpleMath">γ</span> ranges over all group homomorphisms <span class="SimpleMath">γ: π_1W → G</span>. This complex number is an invariant of the homotopy type of <span class="SimpleMath">W</span> and is useful for distinguishing between certain homotopically distinct <span class="SimpleMath">3</span>-manifolds.</p>
<p>A homology version of the Dijkgraaf-Witten invariant can be defined as the set of homology homomorphisms $$D_G(W) =\{ \gamma_\ast\colon H_3(W,\mathbb Z) \longrightarrow H_3(BG,\mathbb Z) \}_{\gamma\in {\rm Hom}(\pi_1W, G)}.$$ Since <span class="SimpleMath">H_3(W, Z)≅ Z</span> we represent <span class="SimpleMath">D_G(W)</span> by the set <span class="SimpleMath">D_G(W)={ γ_∗(1) }_γ∈ Hom(π_1W, G)</span> where <span class="SimpleMath">1</span> denotes one of the two possible generators of <span class="SimpleMath">H_3(W, Z)</span>.</p>
<p>For any coprime integers <span class="SimpleMath">p,q≥ 1</span> the <em>lens space</em> <span class="SimpleMath">L(p,q)</span> is obtained from the 3-sphere by drilling out a tubular neighbourhood of the trivial knot and then gluing a solid torus to the boundary of the cavity via a homeomorphism corresponding to a Dehn surgery coefficient <span class="SimpleMath">p/q</span>. Lens spaces have cyclic fundamental group <span class="SimpleMath">π_1(L(p,q))=C_p</span> and homology <span class="SimpleMath">H_1(L(p,q), Z)≅ Z_p</span>, <span class="SimpleMath">H_2(L(p,q), Z)≅ 0</span>, <span class="SimpleMath">H_3(L(p,q), Z)≅ Z</span>. It was proved by J.H.C. Whitehead that two lens spaces <span class="SimpleMath">L(p,q)</span> and <span class="SimpleMath">L(p',q')</span> are homotopy equivalent if and only if <span class="SimpleMath">p=p'</span> and <span class="SimpleMath">qq'≡ ± n^2 mod p</span> for some integer <span class="SimpleMath">n</span>.</p>
<p>The following session constructs the two lens spaces <span class="SimpleMath">L(5,1)</span> and <span class="SimpleMath">L(5,2)</span>. The homology version of the Dijkgraaf-Witten invariant is used with <span class="SimpleMath">G=C_5</span> to demonstrate that the two lens spaces are not homotopy equivalent.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ap:=[[2,1],[2,1]];; #Arc presentation for the trivial knot</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L51:=ThreeManifoldViaDehnSurgery(ap,5,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=DijkgraafWittenInvariant(L51,CyclicGroup(5));</span>
[ g1^4, g1^4, g1, g1, id ]
<span class="GAPprompt">gap></span> <span class="GAPinput">L52:=ThreeManifoldViaDehnSurgery(ap,5,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=DijkgraafWittenInvariant(L52,CyclicGroup(5));</span>
[ g1^3, g1^3, g1^2, g1^2, id ]
</pre></div>
<p>A theorem of Fermat and Euler states that if a prime <span class="SimpleMath">p</span> is congruent to 3 modulo 4, then for any <span class="SimpleMath">q</span> exactly one of <span class="SimpleMath">± q</span> is a quadratic residue mod p. For all other primes <span class="SimpleMath">p</span> either both or neither of <span class="SimpleMath">± q</span> is a quadratic residue mod <span class="SimpleMath">p</span>. Thus for fixed <span class="SimpleMath">p ≡ 3 mod 4</span> the lens spaces <span class="SimpleMath">L(p,q)</span> form a single homotopy class. There are precisely two homotopy classes of lens spaces for other <span class="SimpleMath">p</span>.</p>
<p>The following commands confirm that <span class="SimpleMath">L(13,1) ≄ L(13,2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DijkgraafWittenInvariant(L13_1,CyclicGroup(13));</span>
[ g1^12, g1^12, g1^10, g1^10, g1^9, g1^9, g1^4, g1^4, g1^3, g1^3, g1, g1, id ]
<span class="GAPprompt">gap></span> <span class="GAPinput">L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DijkgraafWittenInvariant(L13_2,CyclicGroup(13));</span>
[ g1^11, g1^11, g1^8, g1^8, g1^7, g1^7, g1^6, g1^6, g1^5, g1^5, g1^2, g1^2,
id ]
</pre></div>
<p><a id="X80B6849C835B7F19" name="X80B6849C835B7F19"></a></p>
<h4>4.4 <span class="Heading">Cohomology rings</span></h4>
<p>The following commands construct the multiplication table (with respect to some basis) for the cohomology rings <span class="SimpleMath">H^∗(L(13,1), Z_13)</span> and <span class="SimpleMath">H^∗(L(13,2), Z_13)</span>. These rings are isomorphic and so fail to distinguish between the homotopy types of the lens spaces <span class="SimpleMath">L(13,1)</span> and <span class="SimpleMath">L(13,2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L13_1:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L13_2:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L13_1:=BarycentricSubdivision(L13_1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L13_2:=BarycentricSubdivision(L13_2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A13_1:=CohomologyRing(L13_1,13);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A13_2:=CohomologyRing(L13_2,13);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M13_1:=List([1..4],i->[]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B13_1:=CanonicalBasis(A13_1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M13_2:=List([1..4],i->[]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B13_2:=CanonicalBasis(A13_2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for j in [1..4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">M13_1[i][j]:=B13_1[i]*B13_1[j];</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for j in [1..4] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">M13_2[i][j]:=B13_2[i]*B13_2[j];</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(M13_1);</span>
[ [ v.1, v.2, v.3, v.4 ],
[ v.2, 0*v.1, (Z(13)^6)*v.4, 0*v.1 ],
[ v.3, (Z(13)^6)*v.4, 0*v.1, 0*v.1 ],
[ v.4, 0*v.1, 0*v.1, 0*v.1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(M13_2);</span>
[ [ v.1, v.2, v.3, v.4 ],
[ v.2, 0*v.1, (Z(13))*v.4, 0*v.1 ],
[ v.3, (Z(13))*v.4, 0*v.1, 0*v.1 ],
[ v.4, 0*v.1, 0*v.1, 0*v.1 ] ]
</pre></div>
<p><a id="X7F56BB4C801AB894" name="X7F56BB4C801AB894"></a></p>
<h4>4.5 <span class="Heading">Linking Form</span></h4>
<p>Given a closed connected <strong class="button">oriented</strong> <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span> let <span class="SimpleMath">τ H_1(W, Z)</span> denote the torsion subgroup of the first integral homology. The <em>linking form</em> is a bilinear mapping</p>
<p><span class="SimpleMath">Lk_W: τ H_1(W, Z) × τ H_1(W, Z) ⟶ Q/ Z</span>.</p>
<p>To construct this form note that we have a Poincare duality isomorphism</p>
<p><span class="SimpleMath">ρ: H^2(W, Z) stackrel≅⟶ H_1(W, Z), z ↦ z∩ [W]</span></p>
<p>involving the cap product with the fundamental class <span class="SimpleMath">[W]∈ H^3(W, Z)</span>. That is, <span class="SimpleMath">[M]</span> is the generator of <span class="SimpleMath">H^3(W, Z)≅ Z</span> determining the orientation. The short exact sequence <span class="SimpleMath">Z ↣ Q ↠ Q/ Z</span> gives rise to a cohomology exact sequence</p>
<p><span class="SimpleMath">→ H^1(W, Q) → H^1(W, Q/ Z) stackrelβ⟶ H^2(W, Z) → H^2(W, Q) →</span></p>
<p>from which we obtain the isomorphism <span class="SimpleMath">β : τ H^1(W, Q/ Z) stackrel≅⟶ τ H^2(W, Z)</span>. The linking form <span class="SimpleMath">Lk_W</span> can be defined as the composite</p>
<p><span class="SimpleMath">Lk_W: τ H_1(W, Z) × τ H_1(W, Z) stackrel1× ρ^-1}⟶ τ H_1(W, Z) × τ H^2(W, Z) stackrel1× β^-1}⟶ τ H_1(W, Z) × τ H^1(W, Q/ Z) stackrelev⟶ Q/ Z</span></p>
<p>where <span class="SimpleMath">ev(x,α)</span> evaluates a <span class="SimpleMath">1</span>-cocycle <span class="SimpleMath">α</span> on a <span class="SimpleMath">1</span>-cycle <span class="SimpleMath">x</span>.</p>
<p>The linking form can be used to define the set</p>
<p><span class="SimpleMath">I^O(W) = {Lk_W(g,g) : g∈ τ H_1(W, Z)}</span></p>
<p>which is an oriented-homotopy invariant of <span class="SimpleMath">W</span>. Letting <span class="SimpleMath">W^+</span> and <span class="SimpleMath">W^-</span> denote the two possible orientations on the manifold, the set</p>
<p><span class="SimpleMath">I(W) ={I^O(W^+), I^O(W^-)}</span></p>
<p>is a homotopy invariant of <span class="SimpleMath">W</span> which in this manual we refer to as the <em>linking form homotopy invariant</em>.</p>
<p>The following commands compute the linking form homotopy invariant for the lens spaces <span class="SimpleMath">L(13,q)</span> with <span class="SimpleMath">1≤ q≤ 12</span>. This invariant distinguishes between the two homotopy types that arise.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LensSpaces:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for q in [1..12] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Add(LensSpaces,ThreeManifoldViaDehnSurgery([[1,2],[1,2]],13,q));</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Display(List(LensSpaces,LinkingFormHomotopyInvariant));;</span>
[ [ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ], [ 0, 2/13,
2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ],
[ [ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ],
[ 0, 2/13, 2/13, 5/13, 5/13, 6/13, 6/13, 7/13, 7/13, 8/13, 8/13, 11/13, 11/13 ] ],
[ [ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ],
[ 0, 1/13, 1/13, 3/13, 3/13, 4/13, 4/13, 9/13, 9/13, 10/13, 10/13, 12/13, 12/13 ] ] ]
</pre></div>
<p><a id="X850C76697A6A1654" name="X850C76697A6A1654"></a></p>
<h4>4.6 <span class="Heading">Determining the homeomorphism type of a lens space</span></h4>
<p>In 1935 K. Reidemeister <a href="chapBib.html#biBreidemeister">[Rei35]</a> classified lens spaces up to orientation preserving PL-homeomorphism. This was generalized by E. Moise <a href="chapBib.html#biBmoise">[Moi52]</a> in 1952 to a classification up to homeomorphism -- his method requred the proof of the Hauptvermutung for <span class="SimpleMath">3</span>-dimensional manifolds. In 1960, following a suggestion of R. Fox, a proof was given by E.J. Brody <a href="chapBib.html#biBbrody">[Bro60]</a> that avoided the need for the Hauptvermutung. Reidemeister's method, using what is know termed <em>Reidermeister torsion</em>, and Brody's method, using tubular neighbourhoods of <span class="SimpleMath">1</span>-cycles, both require identifying a suitable "preferred" generator of <span class="SimpleMath">H_1(L(p,q), Z)</span>. In 2003 J. Przytycki and A. Yasukhara <a href="chapBib.html#biBprzytycki">[PY03]</a> provided an alternative method for classifying lens spaces, which uses the linking form and again requires the identification of a "preferred" generator of <span class="SimpleMath">H_1(L(p,q), Z)</span>.</p>
<p>Przytycki and Yasukhara proved the following.</p>
<p><strong class="button">Theorem.</strong> <em>Let <span class="SimpleMath">ρ: S^ 3 → L(p, q)</span> be the <span class="SimpleMath">p</span>-fold cyclic cover and <span class="SimpleMath">K</span> a knot in <span class="SimpleMath">L(p, q)</span> that represents a generator of <span class="SimpleMath">H_1 (L(p, q), Z)</span>. If <span class="SimpleMath">ρ ^-1 (K)</span> is the trivial knot, then <span class="SimpleMath">Lk_ L(p,q) ([K], [K]) = q/p</span> or <span class="SimpleMath">= overline q/p ∈ Q/ Z</span> where <span class="SimpleMath">qoverline q ≡ 1 mod p</span>. </em></p>
<p>The ingredients of this theorem can be applied in HAP, but at present only to small examples of lens spaces. The obstruction to handling large examples is that the current default method for computing the linking form involves barycentric subdivision to produce a simplicial complex from a regular CW-complex, and then a homotopy equivalence from this typically large simplicial complex to a smaller non-regular CW-complex. However, for homeomorphism invariants that are not homotopy invariants there is a need to avoid homotopy equivalences. In the current version of HAP this means that in order to obtain delicate homeomorphism invariants we have to perform homology computations on typically large simplicial complexes. In a future version of HAP we hope to avoid the obstruction by implementing cup products, cap products and linking forms entirely within the category of regular CW-complexes.</p>
<p>The following commands construct a small lens space <span class="SimpleMath">L=L(p,q)</span> with unknown values of <span class="SimpleMath">p,q</span>. Subsequent commands will determine the homeomorphism type of <span class="SimpleMath">L</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=Random([2,3,5,7,11,13,17]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">q:=Random([1..p-1]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=ThreeManifoldViaDehnSurgery([[1,2],[1,2]],p,q);</span>
Regular CW-complex of dimension 3
</pre></div>
<p>We can readily determine the value of <span class="SimpleMath">p=11</span> by calculating the order of <span class="SimpleMath">π_1(L)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalGroupWithPathReps(L);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(F);</span>
"C11"
</pre></div>
<p>The next commands take the default edge path <span class="SimpleMath">γ: S^1→ L</span> representing a generator of the cyclic group <span class="SimpleMath">π_1(L)</span> and lift it to an edge path <span class="SimpleMath">tildeγ: S^1→ tilde L</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">U:=UniversalCover(L);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=U!.group;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=EquivariantCWComplexToRegularCWMap(U,Group(One(G)));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">U:=Source(p);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma[2]:=F!.loops[1];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma[2]:=List(gamma[2],AbsInt);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma[1]:=List(gamma[2],k->L!.boundaries[2][k]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gamma[1]:=SSortedList(Flat(gamma[1]));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"></span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gammatilde:=[[],[],[],[]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for k in [1..U!.nrCells(0)] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">if p!.mapping(0,k) in gamma[1] then Add(gammatilde[1],k); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for k in [1..U!.nrCells(1)] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">if p!.mapping(1,k) in gamma[2] then Add(gammatilde[2],k); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gammatilde:=CWSubcomplexToRegularCWMap([U,gammatilde]);</span>
Map of regular CW-complexes
</pre></div>
<p>The next commands check that the path <span class="SimpleMath">tildeγ</span> is unknotted in <span class="SimpleMath">tilde L≅ S^3</span> by checking that <span class="SimpleMath">π_1(tilde L∖ image(tildeγ))</span> is infinite cyclic.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=RegularCWComplexComplement(gammatilde);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(C);</span>
<fp group of size infinity on the generators [ f2 ]>
</pre></div>
<p>Since <span class="SimpleMath">tildeγ</span> is unkotted the cycle <span class="SimpleMath">γ</span> represents the preferred generator <span class="SimpleMath">[γ]∈ H_1(L, Z)</span>. The next commands compute <span class="SimpleMath">Lk_L([γ],[γ])= 7/11</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LinkingFormHomeomorphismInvariant(L);</span>
[ 7/11 ]
</pre></div>
<p>The classification of Moise/Brody states that <span class="SimpleMath">L(p,q)≅ L(p,q')</span> if and only if <span class="SimpleMath">qq'≡ ± 1 mod p</span>. Hence the lens space <span class="SimpleMath">L</span> has the homeomorphism type</p>
<p><span class="SimpleMath">L≅ L(11,7) ≅ L(11,8) ≅ L(11,4) ≅ L(11,3)</span>.</p>
<p><a id="X7EC6B008878CC77E" name="X7EC6B008878CC77E"></a></p>
<h4>4.7 <span class="Heading">Surgeries on distinct knots can yield homeomorphic manifolds</span></h4>
<p>The lens space <span class="SimpleMath">L(5,1)</span> is a quotient of the <span class="SimpleMath">3</span>-sphere <span class="SimpleMath">S^3</span> by a certain action of the cyclic group <span class="SimpleMath">C_5</span>. It can be realized by a <span class="SimpleMath">p/q=5/1</span> Dehn filling of the complement of the trivial knot. It can also be realized by Dehn fillings of other knots. To see this, the following commands compute the manifold <span class="SimpleMath">W</span> obtained from a <span class="SimpleMath">p/q=1/5</span> Dehn filling of the complement of the trefoil and show that <span class="SimpleMath">W</span> at least has the same integral homology and same fundamental group as <span class="SimpleMath">L(5,1)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ap:=ArcPresentation(PureCubicalKnot(3,1));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=ThreeManifoldViaDehnSurgery(ap,1,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,1);</span>
[ 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,2);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(W,3);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalGroup(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(F);</span>
"C5"
</pre></div>
<p>The next commands construct the universal cover <span class="SimpleMath">widetilde W</span> and show that it has the same homology as <span class="SimpleMath">S^3</span> and trivivial fundamental group <span class="SimpleMath">π_1(widetilde W)=0</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">U:=UniversalCover(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=U!.group;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Wtilde:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G)));</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Wtilde,1);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Wtilde,2);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(Wtilde,3);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalGroup(Wtilde);</span>
<fp group on the generators [ ]>
</pre></div>
<p>By construction the space <span class="SimpleMath">widetilde W</span> is a manifold. Had we not known how the regular CW-complex <span class="SimpleMath">widetilde W</span> had been constructed then we could prove that it is a closed <span class="SimpleMath">3</span>-manifold by creating its barycentric subdivision <span class="SimpleMath">K=sdwidetilde W</span>, which is homeomorphic to <span class="SimpleMath">widetilde W</span>, and verifying that the link of each vertex in the simplicial complex <span class="SimpleMath">sdwidetilde W</span> is a <span class="SimpleMath">2</span>-sphere. The following command carries out this proof.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(Wtilde);</span>
true
</pre></div>
<p>The Poincare conjecture (now proven) implies that <span class="SimpleMath">widetilde W</span> is homeomorphic to <span class="SimpleMath">S^3</span>. Hence <span class="SimpleMath">W=S^3/C_5</span> is a quotient of the <span class="SimpleMath">3</span>-sphere by an action of <span class="SimpleMath">C_5</span> and is hence a lens space <span class="SimpleMath">L(5,q)</span> for some <span class="SimpleMath">q</span>.</p>
<p>The next commands determine that <span class="SimpleMath">W</span> is homeomorphic to <span class="SimpleMath">L(5,4)≅ L(5,1)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Lk:=LinkingFormHomeomorphismInvariant(W);</span>
[ 0, 4/5 ]
</pre></div>
<p>Moser <a href="chapBib.html#biBlmoser">[Mos71]</a> gives a precise decription of the lens spaces arising from surgery on the trefoil knot and more generally from surgery on torus knots. Greene <a href="chapBib.html#biBgreene">[Gre13]</a> determines the lens spaces that arise by integer Dehn surgery along a knot in the three-sphere</p>
<p><a id="X7B425A3280A2AF07" name="X7B425A3280A2AF07"></a></p>
<h4>4.8 <span class="Heading">Finite fundamental groups of <span class="SimpleMath">3</span>-manifolds</span></h4>
<p>Lens spaces are examples of <span class="SimpleMath">3</span>-manifolds with finite fundamental groups. The complete list of finite groups <span class="SimpleMath">G</span> arising as fundamental groups of closed connected <span class="SimpleMath">3</span>-manifolds is recalled in <a href="chap7.html#X79B1406C803FF178"><span class="RefLink">7.12</span></a> where one method for computing their cohomology rings is presented. Their cohomology could also be computed from explicit <span class="SimpleMath">3</span>-manifolds <span class="SimpleMath">W</span> with <span class="SimpleMath">π_1W=G</span>. For instance, the following commands realize a closed connected <span class="SimpleMath">3</span>-manifold <span class="SimpleMath">W</span> with <span class="SimpleMath">π_1W = C_11× SL_2( Z_5)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">ap:=ArcPresentation(PureCubicalKnot(3,1));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=ThreeManifoldViaDehnSurgery(ap,1,11);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FundamentalGroup(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(F);</span>
1320
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(F);</span>
[ 11 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(F);</span>
"C11 x SL(2,5)"
</pre></div>
<p>Hence the group <span class="SimpleMath">G=C_11× SL_2( Z_5)</span> of order <span class="SimpleMath">1320</span> acts freely on the <span class="SimpleMath">3</span>-sphere <span class="SimpleMath">widetilde W</span>. It thus has periodic cohomology with</p>
<p class="pcenter">
H_n(G,\mathbb Z) = \left\{ \begin{array}{ll}
\mathbb Z_{11} & n\equiv 1 \bmod 4 \\
0 & n\equiv 2 \bmod 4 \\
\mathbb Z_{1320} & n \equiv 3\bmod 4\\
\mathbb 0 & n\equiv 0 \bmod 4 \\
\end{array}\right.
</p>
<p>for <span class="SimpleMath">n > 0</span>.</p>
<p><a id="X78912D227D753167" name="X78912D227D753167"></a></p>
<h4>4.9 <span class="Heading">Poincare's cube manifolds</span></h4>
<p>In his seminal paper on "Analysis situs", published in 1895, Poincare constructed a series of closed 3-manifolds which played an important role in the development of his theory. A good account of these manifolds is given in the online <span class="URL"><a href="http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds">Manifold Atlas Project (MAP)</a></span>. Most of his examples are constructed by identifications on the faces of a (solid) cube. The function <code class="code">PoincareCubeCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a cube by identifying the six faces pairwise; the vertices and faces of the cube are numbered as follows</p>
<p><img src="images/pcube.png" align="center" height="200" alt="cube"/></p>
<p>and barycentric subdivision is used to ensure that the quotient is represented as a regular CW-complex.</p>
<p>Examples 3 and 4 from Poincare's paper, described in the following figures taken from <span class="URL"><a href="http://www.map.mpim-bonn.mpg.de/Poincar%C3%A9%27s_cube_manifolds">MAP</a></span>,</p>
<p><img src="images/Poincares_cube_manifolds3.png" align="center" width="250" alt="cube manifold"/> <img src="images/Poincares_cube_manifolds5.png" align="center" width="250" alt="cube manifold"/></p>
<p>are constructed in the following example. Both are checked to be orientable manifolds, and are shown to have different homology. (Note that the second example in Poincare's paper is not a manifold -- the links of some of its vertices are not homeomorphic to a 2-sphere.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=1;;C:=2;;D:=3;;B:=4;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Ap:=5;;Cp:=6;;Dp:=7;;Bp:=8;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=[[A,B,Bp,Ap],[Cp,C,D,Dp]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=[[A,C,Cp,Ap],[D,Dp,Bp,B]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Ex3:=PoincareCubeCWComplex(L,M,N);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(Ex3);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=[[A,B,D,C],[Bp,Dp,Cp,Ap]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=[[A,B,Bp,Ap],[C,D,Dp,Cp]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=[[A,C,Cp,Ap],[B,D,Dp,Bp]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Ex4:=PoincareCubeCWComplex(L,M,N);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(Ex4);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..3],k->Homology(Ex3,k));</span>
[ [ 0 ], [ 2, 2 ], [ ], [ 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..3],k->Homology(Ex4,k));</span>
[ [ 0 ], [ 2, 0 ], [ 0 ], [ 0 ] ]
</pre></div>
<p><a id="X8761051F84C6CEC2" name="X8761051F84C6CEC2"></a></p>
<h4>4.10 <span class="Heading">There are at least 25 distinct cube manifolds</span></h4>
<p>The function <code class="code">PoincareCubeCWComplex(A,G)</code> can also be applied to two inputs where <span class="SimpleMath">A</span> is a pairing of the six faces such as <span class="SimpleMath">A=[[1,2],[3,4],[5,6]]</span> and <span class="SimpleMath">G</span> is a list of three elements of the dihedral group of order <span class="SimpleMath">8</span> such as <span class="SimpleMath">G=[(2,4),(2,4),(2,4)*(1,3)]</span>. The dihedral elements specify how each pair of faces are glued together. With these inputs it is easy to iterate over all possible values of <span class="SimpleMath">A</span> and <span class="SimpleMath">G</span> in order to construct all possible closed 3-manifolds arising from the pairwise identification of faces of a cube. We call such a manifold a <em><strong class="button">cube manifold</strong></em>. Distinct values of <span class="SimpleMath">A</span> and <span class="SimpleMath">G</span> can of course yield homeomorphic spaces. To ensure that each possible cube manifold is constructed, at least once, up to homeomorphism it suffices to consider</p>
<p><span class="SimpleMath">A=[ [1,2], [3,4], [5,6] ]</span>, <span class="SimpleMath">A=[ [1,2], [3,5], [4,6] ]</span>, <span class="SimpleMath">A=[ [1,4], [2,6], [3,5] ]</span></p>
<p>and all <span class="SimpleMath">G</span> in <span class="SimpleMath">D_8× D_8× D_8</span>.</p>
<p>The following commands iterate through these <span class="SimpleMath">3×8^3 = 1536</span> pairs <span class="SimpleMath">(A,G)</span> and show that in precisely 163 cases (just over 10% of cases) the quotient CW-complex is a closed 3-manifold.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A1:= [ [1,2], [3,4], [5,6] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A2:=[ [1,2], [3,5], [4,6] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A3:=[ [1,4], [2,6], [3,5] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D8:=DihedralGroup(IsPermGroup,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Manifolds:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for A in [A1,A2,A3] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for x in D8 do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for y in D8 do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for z in D8 do</span>
<span class="GAPprompt">></span> <span class="GAPinput">G:=[x,y,z];</span>
<span class="GAPprompt">></span> <span class="GAPinput">F:=PoincareCubeCWComplex(A,G);</span>
<span class="GAPprompt">></span> <span class="GAPinput">b:=IsClosedManifold(F);</span>
<span class="GAPprompt">></span> <span class="GAPinput">if b=true then Add(Manifolds,F); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;od;od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(Manifolds);</span>
163
</pre></div>
<p>The following additional commands use integral homology and low index subgroups of fundamental groups to establish that the 163 cube manifolds represent at least 25 distinct homotopy equivalence classes of manifolds. One homotopy class is represented by up to 40 of the manifolds, and at least four of the homotopy classes are each represented by a single manifold..</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">invariant1:=function(m);</span>
<span class="GAPprompt">></span> <span class="GAPinput">return List([1..3],k->Homology(m,k));</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=Classify(Manifolds,invariant1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">invariant2:=function(m)</span>
<span class="GAPprompt">></span> <span class="GAPinput">local L;</span>
<span class="GAPprompt">></span> <span class="GAPinput">L:=FundamentalGroup(m);</span>
<span class="GAPprompt">></span> <span class="GAPinput">if GeneratorsOfGroup(L)= [] then return [];fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">L:=LowIndexSubgroupsFpGroup(L,5);</span>
<span class="GAPprompt">></span> <span class="GAPinput">L:=List(L,AbelianInvariants);</span>
<span class="GAPprompt">></span> <span class="GAPinput">L:=SortedList(L);</span>
<span class="GAPprompt">></span> <span class="GAPinput">return L;</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=RefineClassification(C,invariant2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D,Size);</span>
[ 40, 2, 10, 15, 8, 6, 2, 6, 2, 5, 7, 1, 4, 11, 7, 7, 10, 4, 4, 2, 1, 3, 1,
1, 4 ]
</pre></div>
<p>The next commands construct a list of 18 orientable cube manifolds and a list of 7 non-orientable cube manifolds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Manifolds:=List(D,x->x[1]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">OrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[0]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NonOrientableManifolds:=Filtered(Manifolds,m->Homology(m,3)=[]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(OrientableManifolds);</span>
18
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(NonOrientableManifolds);</span>
7
</pre></div>
<p>The next commands show that the 7 non-orientable cube manifolds all have infinite fundamental groups.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(NonOrientableManifolds,m->IsFinite(FundamentalGroup(m)));</span>
[ false, false, false, false, false, false, false ]
</pre></div>
<p>The final commands show that (at least) 9 of the orientable manifolds have finite fundamental groups and list the isomorphism types of these finite groups. Note that it is now known that any closed 3-manifold with finite fundamental group is spherical (i.e. is a quotient of the 3-sphere). Spherical manifolds with cyclic fundamental group are, by definition, lens spaces.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m-></span>
IsFinite(FundamentalGroup(m)));
[ true, true, true, true, true, true, true, true, true ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(OrientableManifolds{[4,8,10,11,12,13,15,16,18]},m-></span>
StructureDescription(FundamentalGroup(m)));
[ "Q8", "C2", "C4", "C3 : C4", "C12", "C8", "C14", "C6", "1" ]
</pre></div>
<p><a id="X7D50795883E534A3" name="X7D50795883E534A3"></a></p>
<h5>4.10-1 <span class="Heading">Face pairings for 25 distinct cube manifolds</span></h5>
<p>The following are the face pairings of 25 non-homeomorphic cube manifolds, with vertices of the cube numbered as describe above.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">for i in [1..25] do </span>
<span class="GAPprompt">></span> <span class="GAPinput">p:=Manifolds[i]!.cubeFacePairings;</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("Manifold ",i," has face pairings:\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print(p[1],"\n",p[2],"\n",p[3],"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("Fundamental group is: ");</span>
<span class="GAPprompt">></span> <span class="GAPinput">if i in [ 1, 9, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25 ] then</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print(StructureDescription(FundamentalGroup(Manifolds[i])),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">else Print("infinite non-cyclic\n"); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">if Homology(Manifolds[i],3)=[0] then Print("Orientable, ");</span>
<span class="GAPprompt">></span> <span class="GAPinput">else Print("Non orientable, "); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print(ManifoldType(Manifolds[i]),"\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">for x in Manifolds[i]!.edgeDegrees do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print(x[2]," edges of \"degree\" ",x[1],", ");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print("\n\n");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
Manifold 1 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 7, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 3, 2, 6, 7 ] ]
Fundamental group is: Z x C2
Non orientable, other
4 edges of "degree" 2, 4 edges of "degree" 4,
Manifold 2 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 4, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, other
2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,
Manifold 3 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 4 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 7, 3, 2 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 5 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 6, 5, 8, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 6, 7, 3 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 6 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 7 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, other
2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,
Manifold 8 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, other
4 edges of "degree" 2, 2 edges of "degree" 8,
Manifold 9 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 5, 6, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 2, 3, 7 ] ]
Fundamental group is: Q8
Orientable, spherical
8 edges of "degree" 3,
Manifold 10 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, other
4 edges of "degree" 2, 4 edges of "degree" 4,
Manifold 11 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 3, 7, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,
Manifold 12 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: Z x Z x Z
Orientable, euclidean
6 edges of "degree" 4,
Manifold 13 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 14 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: C2
Orientable, spherical
12 edges of "degree" 2,
Manifold 15 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: Z
Non orientable, other
4 edges of "degree" 1, 2 edges of "degree" 2, 2 edges of "degree" 8,
Manifold 16 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is: Z
Orientable, other
4 edges of "degree" 1, 2 edges of "degree" 2, 2 edges of "degree" 8,
Manifold 17 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is: C4
Orientable, spherical
2 edges of "degree" 1, 2 edges of "degree" 3, 2 edges of "degree" 8,
Manifold 18 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 6, 2, 3, 7 ] ]
Fundamental group is: C3 : C4
Orientable, spherical
2 edges of "degree" 2, 4 edges of "degree" 5,
Manifold 19 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is: C12
Orientable, spherical
2 edges of "degree" 2, 2 edges of "degree" 3, 2 edges of "degree" 7,
Manifold 20 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is: C8
Orientable, spherical
8 edges of "degree" 3,
Manifold 21 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 22 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
Fundamental group is: C14
Orientable, spherical
2 edges of "degree" 2, 4 edges of "degree" 5,
Manifold 23 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
Fundamental group is: C6
Orientable, spherical
6 edges of "degree" 2, 2 edges of "degree" 6,
Manifold 24 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 5, 6 ] ]
[ [ 3, 7, 8, 4 ], [ 2, 3, 7, 6 ] ]
[ [ 1, 2, 3, 4 ], [ 4, 1, 5, 8 ] ]
Fundamental group is: infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,
Manifold 25 has face pairings:
[ [ 1, 5, 6, 2 ], [ 6, 7, 8, 5 ] ]
[ [ 3, 7, 8, 4 ], [ 3, 7, 6, 2 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
Fundamental group is: 1
Orientable, spherical
4 edges of "degree" 1, 4 edges of "degree" 5,
</pre></div>
<p><a id="X837811BB8181666E" name="X837811BB8181666E"></a></p>
<h5>4.10-2 <span class="Heading">Platonic cube manifolds</span></h5>
<p>A <em>platonic solid</em> is a convex, regular polyhedron in <span class="SimpleMath">3</span>-dimensional euclidean <span class="SimpleMath">E^3</span> or spherical <span class="SimpleMath">S^3</span> or hyperbolic space <span class="SimpleMath">H^3</span>. Being <em>regular</em> means that all edges are congruent, all faces are congruent, all angles between adjacent edges in a face are congruent, all dihedral angles between adjacent faces are congruent. A platonic cube in euclidean space has six congruent square faces with diherdral angle <span class="SimpleMath">π/2</span>. A platonic cube in spherical space has dihedral angles <span class="SimpleMath">2π/3</span>. A platonic cube in hyperbolic space has dihedral angles <span class="SimpleMath">2π/5</span>. This can alternatively be expressed by saying that in a tessellation of <span class="SimpleMath">E^3</span> by platonic cubes each edge is adjacent to 4 square faces. In a tessellation of <span class="SimpleMath">S^3</span> by platonic cubes each edge is adjacent to 3 square faces. In a tessellation of <span class="SimpleMath">H^3</span> by platonic cubes each edge is adjacent to 5 five square faces.</p>
<p>Any cube manifold <span class="SimpleMath">M</span> induces a cubical CW-decomposition of its universal cover <span class="SimpleMath">widetilde M</span>. We say that <span class="SimpleMath">M</span> is a <em>platonic cube manifold</em> if every edge in <span class="SimpleMath">widetilde M</span> is adjacent to 4 faces in the euclidean case <span class="SimpleMath">widetilde M= E^3</span>, is adjacent to 3 faces in the spherical case <span class="SimpleMath">widetilde M= S^3</span>, is adjacent to 5 faces in the hyperbolic case <span class="SimpleMath">widetilde M= H^3</span>.</p>
<p>In the above list of 25 cube manifolds we see that the euclidean manifolds 3, 4, 5, 6, 11 are platonic and that the spherical manifolds 9, 20 are platonic.</p>
<p><a id="X8084A36082B26D86" name="X8084A36082B26D86"></a></p>
<h4>4.11 <span class="Heading">There are at most 41 distinct cube manifolds</span></h4>
<p>Using the <span class="URL"><a href="https://simpcomp-team.github.io/simpcomp/README.html">Simpcomp</a></span> package for GAP we can show that many of the 163 cube manifolds constructed above are homeomorphic. We do this by showing that barycentric subdivisions of many of the manifolds are combinatorially the same.</p>
<p>The following commands establish homeomorphisms (simplicial complex isomorphisms) between manifolds in each equivalence class D[i] above for <span class="SimpleMath">1 ≤ i≤ 25</span>, and then discard all but one manifold in each homeomorphism class. We are left with 59 cube manifolds, some of which may be homeomorphic, representing at least 25 distinct homeomorphism classes. The 59 manifolds are stored in the list DD of length 25 each of whose terms is a list of cube manifolds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">LoadPackage("Simpcomp");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">inv3:=function(m)</span>
<span class="GAPprompt">></span> <span class="GAPinput">local K;</span>
<span class="GAPprompt">></span> <span class="GAPinput">K:=BarycentricSubdivision(m);</span>
<span class="GAPprompt">></span> <span class="GAPinput">K:=MaximalSimplicesOfSimplicialComplex(K);</span>
<span class="GAPprompt">></span> <span class="GAPinput">K:=SC(K);</span>
<span class="GAPprompt">></span> <span class="GAPinput">if not SCIsStronglyConnected(K) then Print("WARNING!\n"); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">return SCExportIsoSig( K );</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;</span>
function( m ) ... end
<span class="GAPprompt">gap></span> <span class="GAPinput">DD:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in D do</span>
<span class="GAPprompt">></span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">></span> <span class="GAPinput">Add(DD,List(y,z->z[1]));</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(DD,Size);</span>
[ 9, 1, 3, 3, 3, 1, 1, 1, 1, 1, 2, 1, 2, 7, 4, 4, 3, 1, 1, 1, 1, 3, 1, 1, 3 ]
</pre></div>
<p>The function <code class="code">PoincareCubeCWCompex()</code> applies cell simplifications in its construction of the quotient of a CW-complex. A variant <code class="code">PoincareCubeCWCompexNS()</code> performs no cell simplifications and thus returns a bigger cell complex which we can attempt to use to establish further homeomorphisms. This is done in the following session and succeeds in showing that there are at most 51 distinct homeomorphism types of cube manifolds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">DD:=List(DD,x->List(x,y->PoincareCubeCWComplexNS(</span>
<span class="GAPprompt">></span> <span class="GAPinput">y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in DD do</span>
<span class="GAPprompt">></span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">></span> <span class="GAPinput">Add(D,List(y,z->z[1]));</span>
>od;;
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D,Size);</span>
[ 8, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]
</pre></div>
<p>Making further modifications to the cell structures of the manifolds that leave their homeomorphism types unchanged can help to identify further simplicial isomorphisms between barycentric subdivisions. For instance, the following commands succeed in establishing that there are at most 45 distinct homeomorphism types of cube manifolds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">DD:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in D do</span>
<span class="GAPprompt">></span> <span class="GAPinput">if Length(x)>1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput">Add(DD, List(x,y->BarycentricallySimplifiedComplex(y)));</span>
<span class="GAPprompt">></span> <span class="GAPinput">else Add(DD,x);</span>
<span class="GAPprompt">></span> <span class="GAPinput">fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in DD do</span>
<span class="GAPprompt">></span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">></span> <span class="GAPinput">Add(D,List(y,z->z[1]));</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D,Size);</span>
[ 7, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">DD:=List(D,x->List(x,y->PoincareCubeCWComplexNS(</span>
<span class="GAPprompt">></span> <span class="GAPinput">y!.cubeFacePairings[1],y!.cubeFacePairings[2],y!.cubeFacePairings[3])));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D1:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in DD do</span>
<span class="GAPprompt">></span> <span class="GAPinput">if Length(x)>1 then</span>
<span class="GAPprompt">></span> <span class="GAPinput">Add(D1, List(x,y->BarycentricallySimplifiedComplex(RegularCWComplex(BarycentricSubdivision(y)))));</span>
<span class="GAPprompt">></span> <span class="GAPinput">else Add(D1,x);</span>
<span class="GAPprompt">></span> <span class="GAPinput">fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DD:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for x in D1 do</span>
<span class="GAPprompt">></span> <span class="GAPinput">y:=Classify(x,inv3);</span>
<span class="GAPprompt">></span> <span class="GAPinput">Add(DD,List(y,z->z[1]));</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Print(List(DD,Size),"\n");</span>
[ 6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2 ]
</pre></div>
<p>The two manifolds in DD[14] have fundamental group <span class="SimpleMath">C_2</span> and are thus lens spaces. There is only one homeomorphism class of such lens spaces and so these two manifolds are homeomorphic. The three manifolds in DD[17] are lens spaces with fundamental group <span class="SimpleMath">C_4</span>. Again, there is only one homeomorphism class of such lens spaces and so these three manifolds are homeomorphic. The two manifolds in DD[25] have trivial fundamental group and are hence both homeomorphic to the 3-sphere. These observations mean that there are at most 41 closed manifolds arising from a cube by identifying the cube's faces pairwise.</p>
<p>These observations can be incorporated into our list DD of equivalence classes of manifolds as follows.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">DD[14]:=DD[14]{[1]};;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DD[17]:=DD[17]{[1]};;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">DD[25]:=DD[25]{[1]};;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(DD,Size);</span>
[ 6, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
</pre></div>
<p><a id="X7B63C22C80E53758" name="X7B63C22C80E53758"></a></p>
<h4>4.12 <span class="Heading">There are precisely 18 orientable cube manifolds, of which 9 are spherical and 5 are euclidean</span></h4>
<p>The following commands show that there are at least 18 and at most 21 orientable cube manifolds.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">DDorient:=Filtered(DD,x->Homology(x[1],3)=[0]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(DDorient,Size);</span>
[ 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
</pre></div>
<p>The next commands show that the fundamental groups of the two manifolds in DDorient[7] are isomorphic to <span class="SimpleMath">Z × Z : Z</span>, and that the fundamental groups of the three manifolds in DDorient[9] are isomorphic to <span class="SimpleMath">Z</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">g1:=FundamentalGroup(DDorient[7][1]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g2:=FundamentalGroup(DDorient[7][2]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RelatorsOfFpGroup(g1);</span>
[ f1^-1*f2*f1*f2^-1, f3^-1*f1*f3*f1, f3^-1*f2^-1*f3*f2^-1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">RelatorsOfFpGroup(g2);</span>
[ f1*f2*f1^-1*f2^-1, f1^-1*f3*f1^-1*f3^-1, f3*f2*f3^-1*f2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">h1:=FundamentalGroup(DDorient[9][1]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h2:=FundamentalGroup(DDorient[9][2]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h3:=FundamentalGroup(DDorient[9][3]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(h1);</span>
"Z"
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(h2);</span>
"Z"
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(h3);</span>
"Z"
</pre></div>
<p>Since neither <span class="SimpleMath">Z× Z : Z</span> nor <span class="SimpleMath">Z</span> is a free product of two non-trivial groups we conclude that the manifolds in DDorient[7] and DDorient[9] are prime. Since oriented prime 3-manifolds are determined up to homeomorphism by their fundamental groups we can conclude that there are precisely 18 orientable closed manifolds arising from a cube by identifying the cube's faces pairwise.</p>
<p>A compact 3-manifold <span class="SimpleMath">M</span> is <em>spherical</em> if it is of the form <span class="SimpleMath">M=S^3/Γ</span> where <span class="SimpleMath">Γ</span> is a finite group acting freely as rotations on <span class="SimpleMath">S^3</span>. The fundamental group of <span class="SimpleMath">M</span> is then the finite group <span class="SimpleMath">Γ</span>. Perelmen showed that a compact 3-manifold is spherical if and only if its fundamental group is finite.</p>
<p>A compact 3-manifold is <em>euclidean</em> if it is of the form <span class="SimpleMath">M= R^3/Γ</span> where <span class="SimpleMath">Γ</span> is a group of affine transformations acting freely on <span class="SimpleMath">R^3</span>. The fundamental group is then <span class="SimpleMath">Γ</span> and is called a <em>Bieberbach group</em> of dimension 3. It can be shown that a group <span class="SimpleMath">Γ</span> is isomorphic to a Bieberbach group of dimension <span class="SimpleMath">n</span> if and only if there is a short exact sequence <span class="SimpleMath">Z^n ↣ Γ ↠ P</span> with <span class="SimpleMath">P</span> a finite group.</p>
<p>The following command establishes that there are precisely 9 orientable spherical manifolds and 5 closed orientable euclidean manifolds arising from pairwise identifications of the faces of the cube.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(OrientableManifolds,ManifoldType);</span>
[ "euclidean", "other", "other", "spherical", "other", "euclidean",
"euclidean", "spherical", "other", "spherical", "spherical", "spherical",
"spherical", "euclidean", "spherical", "spherical", "euclidean", "spherical" ]
</pre></div>
<p><a id="X796BF3817BD7F57D" name="X796BF3817BD7F57D"></a></p>
<h4>4.13 <span class="Heading">Cube manifolds with boundary</span></h4>
<p>If a space <span class="SimpleMath">Y</span> obtained from identifying faces of the cube fails to be a manifold then it fails because one or more vertices of <span class="SimpleMath">Y</span> fail to have a spherical link. By using barycentric subdivision if necessary, we can ensure that the stars of any two non-manifold vertices of <span class="SimpleMath">Y</span> have trivial intersection. Removing the stars of the non-manifold vertices from <span class="SimpleMath">Y</span> yields a 3-manifold with boundary <span class="SimpleMath">hat Y</span>.</p>
<p>The following commands show that there are 367 combinatorially different regular CW-complexes <span class="SimpleMath">Y</span> that arise by identifying faces of a cube in pairs and which fail to be manifolds. The commands also show that these spaces give rise to at least 180 non-homeomorphic manifolds <span class="SimpleMath">hat Y</span> with boundary.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A1:= [ [1,2], [3,4], [5,6] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A2:=[ [1,2], [3,5], [4,6] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A3:=[ [1,4], [2,6], [3,5] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D8:=DihedralGroup(IsPermGroup,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">NonManifolds:=[];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for A in [A1,A2,A3] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for x in D8 do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for y in D8 do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for z in D8 do</span>
<span class="GAPprompt">></span> <span class="GAPinput">G:=[x,y,z];</span>
<span class="GAPprompt">></span> <span class="GAPinput">F:=PoincareCubeCWComplex(A,G);</span>
<span class="GAPprompt">></span> <span class="GAPinput">b:=IsClosedManifold(F);</span>
<span class="GAPprompt">></span> <span class="GAPinput">if b=false then Add(NonManifolds,F); fi;</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;od;od;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=Classify(NonManifolds,inv3); #See above for inv3</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=List(D,x->x[1]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(D);</span>
367
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=List(D,ThreeManifoldWithBoundary);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=Classify(M,invariant1);; #See above for invariant1 </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(C,Size);</span>
[ 33, 13, 3, 18, 21, 7, 6, 13, 51, 2, 1, 15, 11, 11, 1, 35, 2, 2, 6, 15,
17, 2, 3, 2, 14, 17, 3, 1, 25, 8, 4, 1, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">inv5:=function(m) </span>
<span class="GAPprompt">></span> <span class="GAPinput">local B;</span>
<span class="GAPprompt">></span> <span class="GAPinput">B:=BoundaryOfPureRegularCWComplex(m);;</span>
<span class="GAPprompt">></span> <span class="GAPinput">return invariant1(B);</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CC:=RefineClassification(C,inv5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(CC,Size);</span>
[ 25, 5, 3, 5, 4, 4, 2, 1, 11, 3, 4, 7, 3, 6, 4, 1, 5, 1, 1, 5, 1, 13, 4,
6, 40, 1, 2, 1, 11, 4, 5, 3, 1, 2, 7, 4, 1, 14, 11, 10, 2, 2, 6, 9, 3, 3,
2, 15, 2, 3, 2, 14, 17, 2, 1, 1, 4, 7, 14, 8, 3, 1, 1, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CC:=RefineClassification(CC,invariant2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(CC,Size); </span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 1, 4, 2, 3, 2, 3,
4, 3, 2, 1, 1, 3, 2, 4, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 13, 3, 1, 4, 2, 1,
2, 2, 3, 3, 3, 4, 4, 2, 4, 4, 4, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 2, 3, 4, 3, 1, 2, 3, 2, 3, 4, 3, 3, 2, 2, 1, 1, 2, 1, 1, 2,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 10, 5, 2, 3, 2, 14, 17, 1, 1, 1,
1, 4, 5, 2, 9, 1, 4, 7, 1, 3, 1, 1, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Length(CC);</span>
180
</pre></div>
<p><a id="X7EC4359B7DF208B0" name="X7EC4359B7DF208B0"></a></p>
<h4>4.14 <span class="Heading">Octahedral manifolds</span></h4>
<p>The above construction of 3-manifolds as quotients of a cube can be extended to other polytopes. A polytope of particular interest, and one that appears several times in the classic book on Three-Manifolds by William Thurston <a href="chapBib.html#biBthurston">[Thu02]</a>, is the octahedron. The function <code class="code">PoincareOctahahedronCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from an octahedron by identifying the eight faces pairwise; the vertices and faces of the octahedron are numbered as follows.</p>
<p><img src="images/octahedron.png" align="center" height="350" alt="octahedron"/></p>
<p>The following commands construct a spherical 3-manifold Y with fundamental group equal to the binary tetrahedral group <span class="SimpleMath">G</span>. The commands then use the universal cover of this manifold to construct the first four terms of a free periodic <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> of period <span class="SimpleMath">4</span>. The resolution has one free generator in dimensions <span class="SimpleMath">4n</span> and <span class="SimpleMath">4n+3</span> for <span class="SimpleMath">n≥ 0</span>. It has two free generators in dimensions <span class="SimpleMath">4n+1</span> and <span class="SimpleMath">4n+2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=[ [ 1, 4, 5 ], [ 2, 6, 3 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=[ [ 3, 4, 5 ], [ 6, 1, 2 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=[ [ 2, 3, 5 ], [ 6, 4, 1 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=[ [ 1, 2, 5 ], [ 6, 3, 4 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=PoincareOctahedronCWComplex(L,M,N,P);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(Y);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(Y);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(G);</span>
"SL(2,3)"
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ChainComplexOfUniversalCover(Y);</span>
Equivariant chain complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..3],R!.dimension);</span>
[ 1, 2, 2, 1 ]
</pre></div>
<p><a id="X85FFF9B97B7AD818" name="X85FFF9B97B7AD818"></a></p>
<h4>4.15 <span class="Heading">Dodecahedral manifolds</span></h4>
<p>Another polytope of interest, and one that can be used to construct the Poincare homology sphere, is the dodecahedron. The function <code class="code">PoincareDodecahedronCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a dodecahedron by identifying the <span class="SimpleMath">12</span> pentagonal faces pairwise; the vertices of the prism are numbered as follows.</p>
<p><img src="images/dodecahedron.png" align="center" height="250" alt="dodecahedron"/></p>
<p>The following commands construct the Poincare homology <span class="SimpleMath">3</span>-sphere (with fundamental group equal to the binary icosahedral group of order 120).</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=PoincareDodecahedronCWComplex(</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[1,2,3,4,5],[6,7,8,9,10]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[1,11,16,12,2],[19,9,8,18,14]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[2,12,17,13,3],[20,10,9,19,15]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[3,13,18,14,4],[16,6,10,20,11]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[4,14,19,15,5],[17,7,6,16,12]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[5,15,20,11,1],[18,8,7,17,13]]);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(Y);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..3],n->Homology(Y,n));</span>
[ [ 0 ], [ ], [ ], [ 0 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(FundamentalGroup(Y));</span>
"SL(2,5)"
</pre></div>
<p>The following commands construct Seifert-Weber space, a rational homology sphere.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=PoincareDodecahedronCWComplex(</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[1,2,3,4,5],[7,8,9,10,6]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[1,11,16,12,2],[9,8,18,14,19]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[2,12,17,13,3],[10,9,19,15,20]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[3,13,18,14,4],[6,10,20,11,16]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[4,14,19,15,5],[7,6,16,12,17]],</span>
<span class="GAPprompt">></span> <span class="GAPinput">[[5,15,20,11,1],[8,7,17,13,18]]);</span>
Regular CW-complex of dimension 3
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(W);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..3],n->Homology(W,n));</span>
[ [ 0 ], [ 5, 5, 5 ], [ ], [ 0 ] ]
</pre></div>
<p><a id="X78B75E2E79FBCC54" name="X78B75E2E79FBCC54"></a></p>
<h4>4.16 <span class="Heading">Prism manifolds</span></h4>
<p>Another polytope of interest is the prism constructed as the direct product <span class="SimpleMath">D_n× [0,1]</span> of an n-gonal disk <span class="SimpleMath">D_n</span> with the unit interval. The function <code class="code">PoincarePrismCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a prism with even <span class="SimpleMath">n≥ 4</span> by identifying the <span class="SimpleMath">n+2</span> faces pairwise; the vertices of the prism are numbered as follows.</p>
<p><img src="images/prismnam.png" align="center" height="150" alt="prism"/></p>
<p>The case <span class="SimpleMath">n=4</span> is that of a cube. The following commands construct a manifold <span class="SimpleMath">Y</span> arising from a hexagonal prism (<span class="SimpleMath">n=6</span>) with fundamental group <span class="SimpleMath">π_1Y=C_5× Q_32</span> equal to the direct product of the cyclic group of order <span class="SimpleMath">5</span> and the quaternion group of order <span class="SimpleMath">32</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=[[1,2,3,4,5,6],[11,12,7,8,9,10]];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=[[1,7,8,2],[4,5,11,10]];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=[[2,8,9,3],[6,1,7,12]];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=[[3,9,10,4],[6,12,11,5]];; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=PoincarePrismCWComplex(L,M,N,P);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(Y);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=FundamentalGroup(Y);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(G);</span>
"C5 x Q32"
</pre></div>
<p>An exhaustive search through all manifolds constructed from a hexagonal prism by identify faces pairwise shows that the finite groups arising as fundamental groups are precisely: <span class="SimpleMath">Q_8</span>, <span class="SimpleMath">Q_16</span>, <span class="SimpleMath">C_4</span>, <span class="SimpleMath">C_3 : C_4</span>, <span class="SimpleMath">C_5 : C_4</span>, <span class="SimpleMath">C_8</span>, <span class="SimpleMath">C_16</span>, <span class="SimpleMath">C_12</span>, <span class="SimpleMath">C_20</span>, <span class="SimpleMath">C_2</span>, <span class="SimpleMath">C_6</span>, <span class="SimpleMath">C_3 × Q_8</span>, <span class="SimpleMath">C_3 × Q_16</span>, <span class="SimpleMath">C_5 × Q_32</span>. Each of these finite groups <span class="SimpleMath">G=π_1Y</span> is either cyclic (in which case the corresponding manifold is a lens space) or else has the propert that <span class="SimpleMath">G/Z(G)</span> is dihedral (in which case the corresponding manifold is called a <em>prism manifold</em>). The majority of the manifolds arising from a hexagonal prism have infinite fundamental group.</p>
<p>Infinite families of spherical <span class="SimpleMath">3</span>-maniolds can be constructed from the infinite family of prisms. For instance, a prism manifold which we denote by <span class="SimpleMath">P_r</span> can be obtained from a prism <span class="SimpleMath">D_2r× [0,1]</span> by identifying the left and right side under a twist of <span class="SimpleMath">π/r</span>, and identifying opposite square faces under a twist of <span class="SimpleMath">π/2</span>. Its fundamental group <span class="SimpleMath">π_1P_r</span> is the binary dihedral group of order <span class="SimpleMath">4r</span>. The following commands construct <span class="SimpleMath">P_r</span> for <span class="SimpleMath">r=3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=[[1,2,3,4,5,6],[8,9,10,11,12,7]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=[[1,7,8,2],[11,10,4,5]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">N:=[[2,8,9,3],[12,11,5,6]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=[[3,9,10,4],[7,12,6,1]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Y:=PoincarePrismCWComplex(L,M,N,P);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsClosedManifold(Y);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(FundamentalGroup(Y));</span>
"C3 : C4"
</pre></div>
<p><a id="X7F31DFDA846E8E75" name="X7F31DFDA846E8E75"></a></p>
<h4>4.17 <span class="Heading">Bipyramid manifolds</span></h4>
<p>Yet another polytope of interest is the bipyramid constructed as the suspension of an n-gonal disk <span class="SimpleMath">D_n</span>. The function <code class="code">PoincareBipyramidCWComplex()</code> can be used to construct any 3-dimensional CW-complex arising from a bipyramid with <span class="SimpleMath">n≥ 3</span> by identifying the <span class="SimpleMath">2n</span> faces pairwise; the vertices of the prism are numbered as follows.</p>
<p><img src="images/bipyramid.png" align="center" height="150" alt="bipyramid"/></p>
<p>For <span class="SimpleMath">n=4</span> the bipyramid is the octahedron.</p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap3.html">[Previous Chapter]</a> <a href="chap5.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|