1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 7: Cohomology of groups (and Lie Algebras)</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap7" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap6.html">[Previous Chapter]</a> <a href="chap8.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap7_mj.html">[MathJax on]</a></p>
<p><a id="X787E37187B7308C9" name="X787E37187B7308C9"></a></p>
<div class="ChapSects"><a href="chap7.html#X787E37187B7308C9">7 <span class="Heading">Cohomology of groups (and Lie Algebras)</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X807B265978F90E01">7.1 <span class="Heading">Finite groups </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X80A721AC7A8D30A3">7.1-1 <span class="Heading">Naive homology computation for a very small group</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X838CEA3F850DFC82">7.1-2 <span class="Heading">A more efficient homology computation</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X842E93467AD09EC1">7.1-3 <span class="Heading">Computation of an induced homology homomorphism</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X8754D2937E6FD7CE">7.1-4 <span class="Heading">Some other finite group homology computations</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X8463EF6A821FFB69">7.2 <span class="Heading">Nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X82E8FAC67BC16C01">7.3 <span class="Heading">Crystallographic and Almost Crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7AFFB32587D047FE">7.4 <span class="Heading">Arithmetic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X800CB6257DC8FB3A">7.5 <span class="Heading">Artin groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7BAFCA3680E478AE">7.6 <span class="Heading">Graphs of groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7CE849E58706796C">7.7 <span class="Heading">Lie algebra homology and free nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7C3DEDD57BB4D537">7.8 <span class="Heading">Cohomology with coefficients in a module</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7E573EA582CCEF2E">7.9 <span class="Heading">Cohomology as a functor of the first variable</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X796731727A7EBE59">7.10 <span class="Heading">Cohomology as a functor of the second variable and the long exact coefficient sequence</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X80F6FD3E7C7E4E8D">7.11 <span class="Heading">Transfer Homomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X79B1406C803FF178">7.12 <span class="Heading">Cohomology rings of finite fundamental groups of 3-manifolds
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X833A19F0791C3B06">7.13 <span class="Heading">Explicit cocycles </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X7C5233E27D2D603E">7.14 <span class="Heading">Quillen's complex and the <span class="SimpleMath">p</span>-part of homology </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X865CC8E0794C0E61">7.15 <span class="Heading">Homology of a Lie algebra</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap7.html#X86B4EE4783A244F7">7.16 <span class="Heading">Covers of Lie algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap7.html#X7DFF32A67FF39C82">7.16-1 <span class="Heading">Computing a cover</span></a>
</span>
</div></div>
</div>
<h3>7 <span class="Heading">Cohomology of groups (and Lie Algebras)</span></h3>
<p><a id="X807B265978F90E01" name="X807B265978F90E01"></a></p>
<h4>7.1 <span class="Heading">Finite groups </span></h4>
<p><a id="X80A721AC7A8D30A3" name="X80A721AC7A8D30A3"></a></p>
<h5>7.1-1 <span class="Heading">Naive homology computation for a very small group</span></h5>
<p>It is possible to compute the low degree (co)homology of a finite group or monoid of small order directly from the bar resolution. The following commands take this approach to computing the fifth integral homology</p>
<p><span class="SimpleMath">H_5(Q_4, Z) = Z_2⊕ Z_2</span></p>
<p>of the quaternion group <span class="SimpleMath">G=Q_4</span> of order <span class="SimpleMath">8</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Q:=QuaternionGroup(8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=BarComplexOfMonoid(Q,6);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ContractedComplex(B);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,5);</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..6],B!.dimension);</span>
[ 1, 7, 49, 343, 2401, 16807, 117649 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..6],C!.dimension);</span>
[ 1, 2, 2, 1, 2, 4, 102945 ]
</pre></div>
<p>However, this approach is of limited applicability since the bar resolution involves <span class="SimpleMath">|G|^k</span> free generators in degree <span class="SimpleMath">k</span>. A range of techniques, tailored to specific classes of groups, can be used to compute the (co)homology of larger finite groups.</p>
<p>This naive approach does have the merit of being applicable to arbitrary small monoids. The following calculates the homology in degrees <span class="SimpleMath">≤ 7</span> of a monoid of order 8, the monoid being specified by its multiplication table.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">T:=[ [ 1, 1, 1, 4, 4, 4, 4, 1 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1, 1, 4, 4, 4, 4, 2 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 1, 1, 4, 4, 4, 4, 3 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 4, 4, 4, 1, 1, 1, 1, 4 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 4, 4, 4, 1, 1, 1, 1, 5 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 4, 4, 4, 1, 1, 1, 1, 6 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 4, 4, 4, 1, 1, 1, 1, 7 ],</span>
<span class="GAPprompt">></span> <span class="GAPinput"> [ 1, 2, 3, 4, 5, 6, 7, 8 ] ];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=MonoidByMultiplicationTable(T);</span>
<monoid of size 8, with 8 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=BarComplexOfMonoid(M,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ContractedComplex(B);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..7],i->Homology(C,i));</span>
[ [ 0 ], [ 2 ], [ ], [ 2 ], [ ], [ 2 ], [ ], [ 2 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..8],B!.dimension);</span>
[ 1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..8],C!.dimension);</span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 5044201 ]
</pre></div>
<p><a id="X838CEA3F850DFC82" name="X838CEA3F850DFC82"></a></p>
<h5>7.1-2 <span class="Heading">A more efficient homology computation</span></h5>
<p>The following example computes the seventh integral homology</p>
<p><span class="SimpleMath">H_7(M_23, Z) = Z_16⊕ Z_15</span></p>
<p>and fourth integral cohomomogy</p>
<p><span class="SimpleMath">H^4(M_24, Z) = Z_12</span></p>
<p>of the Mathieu groups <span class="SimpleMath">M_23</span> and <span class="SimpleMath">M_24</span>. (Warning: the computation of <span class="SimpleMath">H_7(M_23, Z)</span> takes a couple of hours to run.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(MathieuGroup(23),7);</span>
[ 16, 3, 5 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupCohomology(MathieuGroup(24),4);</span>
[ 4, 3 ]
</pre></div>
<p><a id="X842E93467AD09EC1" name="X842E93467AD09EC1"></a></p>
<h5>7.1-3 <span class="Heading">Computation of an induced homology homomorphism</span></h5>
<p>The following example computes the cokernel</p>
<p><span class="SimpleMath">coker( H_3(A_7, Z) → H_3(S_10, Z)) ≅ Z_2⊕ Z_2</span></p>
<p>of the degree-3 integral homomogy homomorphism induced by the canonical inclusion <span class="SimpleMath">A_7 → S_10</span> of the alternating group on <span class="SimpleMath">7</span> letters into the symmetric group on <span class="SimpleMath">10</span> letters. The analogous cokernel with <span class="SimpleMath">Z_2</span> homology coefficients is also computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">H:=AlternatingGroup(7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=GroupHomomorphismByFunction(H,G,x->x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=GroupHomology(f,3);</span>
MappingByFunction( Pcp-group with orders [ 4, 3 ], Pcp-group with orders
[ 2, 2, 4, 3 ], function( x ) ... end )
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(Range(F)/Image(F));</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Fmod2:=GroupHomology(f,3,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(Range(Fmod2)/Image(Fmod2));</span>
[ 2, 2 ]
</pre></div>
<p><a id="X8754D2937E6FD7CE" name="X8754D2937E6FD7CE"></a></p>
<h5>7.1-4 <span class="Heading">Some other finite group homology computations</span></h5>
<p>The following example computes the third integral homology of the Weyl group <span class="SimpleMath">W=Weyl(E_8)</span>, a group of order <span class="SimpleMath">696729600</span>.</p>
<p><span class="SimpleMath">H_3(Weyl(E_8), Z) = Z_2 ⊕ Z_2 ⊕ Z_12</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=SimpleLieAlgebra("E",8,Rationals);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=WeylGroup(RootSystem(L));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(W);</span>
696729600
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(W,3);</span>
[ 2, 2, 4, 3 ]
</pre></div>
<p>The preceding calculation could be achieved more quickly by noting that <span class="SimpleMath">W=Weyl(E_8)</span> is a Coxeter group, and by using the associated Coxeter polytope. The following example uses this approach to compute the fourth integral homology of <span class="SimpleMath">W</span>. It begins by displaying the Coxeter diagram of <span class="SimpleMath">W</span>, and then computes</p>
<p><span class="SimpleMath">H_4(Weyl(E_8), Z) = Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CoxeterDiagramDisplay(D);</span>
</pre></div>
<p><img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">polytope:=CoxeterComplex_alt(D,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(polytope,5);</span>
Resolution of length 5 in characteristic 0 for <matrix group with
8 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithIntegers(R);</span>
Chain complex of length 5 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,4);</span>
[ 2, 2, 2, 2 ]
</pre></div>
<p>The following example computes the sixth mod-<span class="SimpleMath">2</span> homology of the Sylow <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">Syl_2(M_24)</span> of the Mathieu group <span class="SimpleMath">M_24</span>.</p>
<p><span class="SimpleMath">H_6(Syl_2(M_24), Z_2) = Z_2^143</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(SylowSubgroup(MathieuGroup(24),2),6,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]
</pre></div>
<p>The following example computes the sixth mod-<span class="SimpleMath">2</span> homology of the Unitary group <span class="SimpleMath">U_3(4)</span> of order 312000.</p>
<p><span class="SimpleMath">H_6(U_3(4), Z_2) = Z_2^4</span></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=GU(3,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(G);</span>
312000
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(G,6,2);</span>
[ 2, 2, 2, 2 ]
</pre></div>
<p>The following example constructs the Poincare series</p>
<p><span class="SimpleMath">p(x)=frac1-x^3+3*x^2-3*x+1</span></p>
<p>for the cohomology <span class="SimpleMath">H^∗(Syl_2(M_12, F_2)</span>. The coefficient of <span class="SimpleMath">x^n</span> in the expansion of <span class="SimpleMath">p(x)</span> is equal to the dimension of the vector space <span class="SimpleMath">H^n(Syl_2(M_12, F_2)</span>. The computation involves <strong class="button">Singular</strong>'s Groebner basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=PoincareSeriesLHS(G);</span>
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
</pre></div>
<p>The additional following command uses the Poincare series</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">RankHomologyPGroup(G,P,1000);</span>
251000
</pre></div>
<p>to determine that <span class="SimpleMath">H_1000(Syl_2(M_12, Z)</span> is a direct sum of 251000 non-trivial cyclic <span class="SimpleMath">2</span>-groups.</p>
<p>The following example constructs the series</p>
<p><span class="SimpleMath">p(x)=fracx^4-x^3+x^2-x+1x^6-x^5+x^4-2*x^3+x^2-x+1</span></p>
<p>whose coefficient of <span class="SimpleMath">x^n</span> is equal to the dimension of the vector space <span class="SimpleMath">H^n(M_11, F_2)</span> for all <span class="SimpleMath">n</span> in the range <span class="SimpleMath">0≤ n≤ 14</span>. The coefficient is not guaranteed correct for <span class="SimpleMath">n≥ 15</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PoincareSeriesPrimePart(MathieuGroup(11),2,14);</span>
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
</pre></div>
<p><a id="X8463EF6A821FFB69" name="X8463EF6A821FFB69"></a></p>
<h4>7.2 <span class="Heading">Nilpotent groups</span></h4>
<p>The following example computes</p>
<p><span class="SimpleMath">H_4(N, Z) = (Z_3)^4 ⊕ Z^84</span></p>
<p>for the free nilpotent group <span class="SimpleMath">N</span> of class <span class="SimpleMath">2</span> on four generators.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(4);; N:=NilpotentQuotient(F,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(N,4);</span>
[ 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p><a id="X82E8FAC67BC16C01" name="X82E8FAC67BC16C01"></a></p>
<h4>7.3 <span class="Heading">Crystallographic and Almost Crystallographic groups</span></h4>
<p>The following example computes</p>
<p><span class="SimpleMath">H_5(G, Z) = Z_2 ⊕ Z_2</span></p>
<p>for the <span class="SimpleMath">3</span>-dimensional crystallographic space group <span class="SimpleMath">G</span> with Hermann-Mauguin symbol "P62"</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupHomology(SpaceGroupBBNWZ("P62"),5);</span>
[ 2, 2 ]
</pre></div>
<p>The following example computes</p>
<p><span class="SimpleMath">H^5(G, Z)= Z</span></p>
<p>for an almost crystallographic group.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GroupCohomology(G,4);</span>
[ 0 ]
</pre></div>
<p><a id="X7AFFB32587D047FE" name="X7AFFB32587D047FE"></a></p>
<h4>7.4 <span class="Heading">Arithmetic groups</span></h4>
<p>The following example computes</p>
<p><span class="SimpleMath">H_6(SL_2(cal O, Z) = Z_2 ⊕ Z_12</span></p>
<p>for <span class="SimpleMath">cal O</span> the ring of integers of the number field <span class="SimpleMath">Q(sqrt-2)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ContractibleGcomplex("SL(2,O-2)");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=FreeGResolution(C,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(R),6);</span>
[ 2, 12 ]
</pre></div>
<p><a id="X800CB6257DC8FB3A" name="X800CB6257DC8FB3A"></a></p>
<h4>7.5 <span class="Heading">Artin groups</span></h4>
<p>The following example computes</p>
<p><span class="SimpleMath">H_n(G, Z) ={ beginarrayll Z &n=0,1,7,8 Z_2, &n=2,3 Z_2⊕ Z_6, &n=4,6 Z_3 ⊕ Z_6,& n=5 0, &n>8 endarray.</span></p>
<p>for <span class="SimpleMath">G</span> the Artin group of type <span class="SimpleMath">E_8</span>. (Similar commands can be used to compute a resolution and homology of arbitrary Artin monoids and, in thoses cases such as the spherical cases where the <span class="SimpleMath">K(π,1)</span>-conjecture is known to hold, the homology is equal to that of the corresponding Artin group.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CoxeterDiagramDisplay(D);;</span>
</pre></div>
<p><img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionArtinGroup(D,9);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithIntegers(R);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..8],n->Homology(C,n));</span>
[ [ 0 ], [ 0 ], [ 2 ], [ 2 ], [ 2, 6 ], [ 3, 6 ], [ 2, 6 ], [ 0 ], [ 0 ] ]
</pre></div>
<p>The Artin group <span class="SimpleMath">G</span> projects onto the Coxeter group <span class="SimpleMath">W</span> of type <span class="SimpleMath">E_8</span>. The group <span class="SimpleMath">W</span> has a natural representation as a group of <span class="SimpleMath">8× 8</span> integer matrices. This projection gives rise to a representation <span class="SimpleMath">ρ: G→ GL_8( Z)</span>. The following command computes the cohomology group <span class="SimpleMath">H^6(G,ρ) = ( Z_2)^6</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gensG:=GeneratorsOfGroup(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">W:=CoxeterDiagramMatCoxeterGroup(D);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gensW:=GeneratorsOfGroup(W);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rho:=GroupHomomorphismByImages(G,W,gensG,gensW);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegralModule(R,rho);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,6);</span>
[ 2, 2, 2, 2, 2, 2 ]
</pre></div>
<p><a id="X7BAFCA3680E478AE" name="X7BAFCA3680E478AE"></a></p>
<h4>7.6 <span class="Heading">Graphs of groups</span></h4>
<p>The following example computes</p>
<p><span class="SimpleMath">H_5(G, Z) = Z_2⊕ Z_2⊕ Z_2 ⊕ Z_2 ⊕ Z_2</span></p>
<p>for <span class="SimpleMath">G</span> the graph of groups corresponding to the amalgamated product <span class="SimpleMath">G=S_5*_S_3S_4</span> of the symmetric groups <span class="SimpleMath">S_5</span> and <span class="SimpleMath">S_4</span> over the canonical subgroup <span class="SimpleMath">S_3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">S5:=SymmetricGroup(5);SetName(S5,"S5");</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S4:=SymmetricGroup(4);SetName(S4,"S4");</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=SymmetricGroup(3);SetName(A,"S3");</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AS5:=GroupHomomorphismByFunction(A,S5,x->x);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">AS4:=GroupHomomorphismByFunction(A,S4,x->x);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[S5,S4,[AS5,AS4]];</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">GraphOfGroupsDisplay(D);</span>
</pre></div>
<p><img src="images/graphgroups.png" align="center" height="100" alt="graph of groups"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionGraphOfGroups(D,6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(R),5);</span>
[ 2, 2, 2, 2, 2 ]
</pre></div>
<p><a id="X7CE849E58706796C" name="X7CE849E58706796C"></a></p>
<h4>7.7 <span class="Heading">Lie algebra homology and free nilpotent groups</span></h4>
<p>One method of producting a Lie algebra <span class="SimpleMath">L</span> from a group <span class="SimpleMath">G</span> is by forming the direct sum <span class="SimpleMath">L(G) = G/γ_2G ⊕ γ_2G/γ_3G ⊕ γ_3G/γ_4G ⊕ ⋯</span> of the quotients of the lower central series <span class="SimpleMath">γ_1G=G</span>, <span class="SimpleMath">γ_n+1G=[γ_nG,G]</span>. Commutation in <span class="SimpleMath">G</span> induces a Lie bracket <span class="SimpleMath">L(G)× L(G) → L(G)</span>.</p>
<p>The homology <span class="SimpleMath">H_n(L)</span> of a Lie algebra (with trivial coefficients) can be calculated as the homology of the Chevalley-Eilenberg chain complex <span class="SimpleMath">C_∗(L)</span>. This chain complex is implemented in <strong class="button">HAP</strong> in the cases where the underlying additive group of <span class="SimpleMath">L</span> is either finitely generated torsion free or finitely generated of prime exponent <span class="SimpleMath">p</span>. In these two cases the ground ring for the Lie algebra/ Chevalley-Eilenberg complex is taken to be <span class="SimpleMath">Z</span> and <span class="SimpleMath">Z_p</span> respectively.</p>
<p>For example, consider the quotient <span class="SimpleMath">G=F/γ_8F</span> of the free group <span class="SimpleMath">F=F(x,y)</span> on two generators by eighth term of its lower central series. So <span class="SimpleMath">G</span> is the <em>free nilpotent group of class 7 on two generators</em>. The following commands compute <span class="SimpleMath">H_4(L(G)) = Z_2^77 ⊕ Z_6^8 ⊕ Z_12^51 ⊕ Z_132^11 ⊕ Z^2024</span> and show that the fourth homology in this case contains 2-, 3- and 11-torsion. (The commands take an hour or so to complete.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),7));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=LowerCentralSeriesLieAlgebra(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=LieAlgebraHomology(L,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected(h);</span>
[ [ 0, 2024 ], [ 2, 77 ], [ 6, 8 ], [ 12, 51 ], [ 132, 11 ] ]
</pre></div>
<p>For a free nilpotent group <span class="SimpleMath">G</span> the additive homology <span class="SimpleMath">H_n(L(G))</span> of the Lie algebra can be computed more quickly in <strong class="button">HAP</strong> than the integral group homology <span class="SimpleMath">H_n(G, Z)</span>. Clearly there are isomorphisms<span class="SimpleMath">H_1(G) ≅ H_1(L(G)) ≅ G_ab</span> of abelian groups in homological degree <span class="SimpleMath">n=1</span>. Hopf's formula can be used to establish an isomorphism <span class="SimpleMath">H_2(G) ≅ H_2(L(G))</span> also in degree <span class="SimpleMath">n=2</span>. The following two theorems provide further isomorphisms that allow for the homology of a free nilpotent group to be calculated more efficiently as the homology of the associated Lie algebra.</p>
<p><strong class="button">Theorem 1.</strong> <a href="chapBib.html#biBkuzmin">[KS98]</a> <em>Let <span class="SimpleMath">G</span> be a finitely generated free nilpotent group of class 2. Then the integral group homology <span class="SimpleMath">H_n(G, Z)</span> is isomorphic to the integral Lie algebra homology <span class="SimpleMath">H_n(L(G), Z)</span> in each degree <span class="SimpleMath">n≥0</span>.</em></p>
<p><strong class="button">Theorem 2.</strong> <a href="chapBib.html#biBigusa">[IO01]</a> <em>Let <span class="SimpleMath">G</span> be a finitely generated free nilpotent group (of any class). Then the integral group homology <span class="SimpleMath">H_n(G, Z)</span> is isomorphic to the integral Lie algebra homology <span class="SimpleMath">H_n(L(G), Z)</span> in degrees <span class="SimpleMath">n=0, 1, 2, 3</span>.</em></p>
<p>We should remark that experimentation on free nilpotent groups of class <span class="SimpleMath">≥ 4</span> has not yielded a group for which the isomorphism <span class="SimpleMath">H_n(G, Z) ≅ H_n(L(G), G)</span> fails. For instance, the isomorphism holds in degree <span class="SimpleMath">n=4</span> for the free nilpotent group of class 5 on two generators, and for the free nilpotent group of class 2 on four generators:</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),5));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=LowerCentralSeriesLieAlgebra(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( LieAlgebraHomology(L,4) );</span>
[ [ 0, 85 ], [ 7, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( GroupHomology(G,4) );</span>
[ [ 0, 85 ], [ 7, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(4),2));; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=LowerCentralSeriesLieAlgebra(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( LieAlgebraHomology(L,4) );</span>
[ [ 0, 84 ], [ 3, 4 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected( GroupHomology(G,4) );</span>
[ [ 0, 84 ], [ 3, 4 ] ]
</pre></div>
<p><a id="X7C3DEDD57BB4D537" name="X7C3DEDD57BB4D537"></a></p>
<h4>7.8 <span class="Heading">Cohomology with coefficients in a module</span></h4>
<p>There are various ways to represent a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span> with action <span class="SimpleMath">G× A → A, (g,a)↦ α(g,a)</span>.</p>
<p>One possibility is to use the data type of a <em><span class="SimpleMath">G</span>-Outer Group</em> which involves three components: an <span class="SimpleMath">ActedGroup</span> <span class="SimpleMath">A</span>; an <span class="SimpleMath">Acting Group</span> <span class="SimpleMath">G</span>; a <span class="SimpleMath">Mapping</span> <span class="SimpleMath">(g,a)↦ α(g,a)</span>. The following example uses this data type to compute the cohomology <span class="SimpleMath">H^4(G,A) = Z_5 ⊕ Z_10</span> of the symmetric group <span class="SimpleMath">G=S_6</span> with coefficients in the integers <span class="SimpleMath">A= Z</span> where odd permutations act non-trivially on <span class="SimpleMath">A</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=AbelianPcpGroup([0]);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">alpha:=function(g,a); return a^SignPerm(g); end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=GModuleAsGOuterGroup(G,A,alpha);</span>
ZG-module with abelian invariants [ 0 ] and G= SymmetricGroup( [ 1 .. 6 ] )
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToGModule(R,A);</span>
G-cocomplex of length 5 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,4);</span>
[ 2, 2, 5 ]
</pre></div>
<p>If <span class="SimpleMath">A= Z^n</span> and <span class="SimpleMath">G</span> acts as</p>
<p><span class="SimpleMath">G× A → A, (g, v) ↦ ρ(g) v</span></p>
<p>where <span class="SimpleMath">ρ: G→ Gl_n( Z)</span> is a (not necessarily faithful) matrix representation of degree <span class="SimpleMath">n</span> then we can avoid the use of <span class="SimpleMath">G</span>-outer groups and use just the homomorphism <span class="SimpleMath">ρ</span> instead. The following example uses this data type to compute the cohomology</p>
<p><span class="SimpleMath">H^6(G,A) = Z_2</span></p>
<p>and the homology</p>
<p><span class="SimpleMath">H_6(G,A) = 0</span></p>
<p>of the alternating group <span class="SimpleMath">G=A_5</span> with coefficients in <span class="SimpleMath">A= Z^5</span> where elements of <span class="SimpleMath">G</span> act on <span class="SimpleMath">Z^5</span> via an irreducible representation.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=AlternatingGroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rho:=IrreducibleRepresentations(G)[5];</span>
[ (1,2,3,4,5), (3,4,5) ] ->
[
[ [ 0, 0, 1, 0, 0 ], [ -1, -1, 0, 0, 1 ], [ 0, 1, 1, 1, 0 ],
[ 1, 0, -1, 0, -1 ], [ -1, -1, 0, -1, 0 ] ],
[ [ -1, -1, 0, 0, 1 ], [ 1, 0, -1, 0, -1 ], [ 0, 0, 0, 0, 1 ],
[ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ] ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegralModule(R,rho);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,6);</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=TensorWithIntegralModule(R,rho);</span>
Chain complex of length 7 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(D,6);</span>
[ ]
</pre></div>
<p>If <span class="SimpleMath">V=K^d</span> is a vetor space of dimension <span class="SimpleMath">d</span> over the field <span class="SimpleMath">K=GF(p)</span> with <span class="SimpleMath">p</span> a prime and <span class="SimpleMath">G</span> acts on <span class="SimpleMath">V</span> via a homomorphism <span class="SimpleMath">ρ: G→ GL_d(K)</span> then the homology <span class="SimpleMath">H^n(G,V)</span> can again be computed without the use of G-outer groups. As an example, the following commands compute</p>
<p><span class="SimpleMath">H^4(GL(3,2),V) =K^2</span></p>
<p>where <span class="SimpleMath">K=GF(2)</span> and <span class="SimpleMath">GL(3,2)</span> acts with its natural action on <span class="SimpleMath">V=K^3</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=GL(3,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rho:=GroupHomomorphismByFunction(G,G,x->x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToModPModule(R,rho);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Cohomology(C,4);</span>
2
</pre></div>
<p>It can be computationally difficult to compute resolutions for large finite groups. But the <span class="SimpleMath">p</span>-primary part of the homology can be computed using resolutions of Sylow <span class="SimpleMath">p</span>-subgroups. This approach is used in the following example that computes the <span class="SimpleMath">2</span>-primary part</p>
<p><span class="SimpleMath">H_2(G, Z)_(2) = Z_2 ⊕ Z_2⊕ Z_2</span></p>
<p>of the degree 2 integral homology of the Rubik's cube group <span class="SimpleMath">G</span>. This group has order <span class="SimpleMath">43252003274489856000</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:= [</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ( 1, 3, 8, 6)( 2, 5, 7, 4)( 9,33,25,17)(10,34,26,18)(11,35,27,19),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ( 9,11,16,14)(10,13,15,12)( 1,17,41,40)( 4,20,44,37)( 6,22,46,35),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (17,19,24,22)(18,21,23,20)( 6,25,43,16)( 7,28,42,13)( 8,30,41,11),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (25,27,32,30)(26,29,31,28)( 3,38,43,19)( 5,36,45,21)( 8,33,48,24),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (33,35,40,38)(34,37,39,36)( 3, 9,46,32)( 2,12,47,29)( 1,14,48,27),</span>
<span class="GAPprompt">></span> <span class="GAPinput"> (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)</span>
<span class="GAPprompt">></span> <span class="GAPinput"> ];; G:=Group(gens);;P:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionNormalSeries(BigStepUCS(P,6),3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,R,TensorWithIntegers,2);</span>
[ 2, 2, 2 ]
</pre></div>
<p>The same approach is used in the following example that computes the <span class="SimpleMath">2</span>-primary part</p>
<p><span class="SimpleMath">H_11(A_7,A)_(2) = Z_2 ⊕ Z_2⊕ Z_4</span></p>
<p>of the degree 11 homology of the alternating group <span class="SimpleMath">A_7</span> of degree <span class="SimpleMath">7</span> with coefficients in the module <span class="SimpleMath">A= Z^7</span> on which <span class="SimpleMath">A_7</span> acts by permuting basis vectors.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=AlternatingGroup(7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rho:=PermToMatrixGroup(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(SylowSubgroup(G,2),12);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=function(X); return TensorWithIntegralModule(X,rho); end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,R,F,11);</span>
[ 2, 2, 4 ]
</pre></div>
<p>Similar commands compute</p>
<p><span class="SimpleMath">H_3(A_10,A)_(2) = Z_4</span></p>
<p>with coefficient module <span class="SimpleMath">A= Z^10</span> on which <span class="SimpleMath">A_10</span> acts by permuting basis vectors.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=AlternatingGroup(10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rho:=PermToMatrixGroup(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(SylowSubgroup(G,2),4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=function(X); return TensorWithIntegralModule(X,rho); end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,R,F,3);</span>
[ 4 ]
</pre></div>
<p>The following commands compute</p>
<p><span class="SimpleMath">H_100(GL(3,2),V)= K^34</span></p>
<p>where <span class="SimpleMath">V</span> is the vector space of dimension <span class="SimpleMath">3</span> over <span class="SimpleMath">K=GF(2)</span> acting via some irreducible representation <span class="SimpleMath">ρ: GL(3,2) → GL(V)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=GL(3,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">rho:=IrreducibleRepresentations(G,GF(2))[3];</span>
CompositionMapping( [ (5,7)(6,8), (2,3,5)(4,7,6) ] ->
[ <an immutable 3x3 matrix over GF2>, <an immutable 3x3 matrix over GF2> ],
<action isomorphism> )
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=function(X); return TensorWithModPModule(X,rho); end;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=ResolutionPrimePowerGroup(SylowSubgroup(G,2),101);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,S,F,100);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2 ]
</pre></div>
<p><a id="X7E573EA582CCEF2E" name="X7E573EA582CCEF2E"></a></p>
<h4>7.9 <span class="Heading">Cohomology as a functor of the first variable</span></h4>
<p>Suppose given a group homomorphism <span class="SimpleMath">f: G_1→ G_2</span> and a <span class="SimpleMath">G_2</span>-module <span class="SimpleMath">A</span>. Then <span class="SimpleMath">A</span> is naturally a <span class="SimpleMath">G_1</span>-module with action via <span class="SimpleMath">f</span>, and there is an induced cohomology homomorphism <span class="SimpleMath">H^n(f,A): H^n(G_2,A) → H^n(G_1,A)</span>.</p>
<p>The following example computes this cohomology homomorphism in degree <span class="SimpleMath">n=6</span> for the inclusion <span class="SimpleMath">f: A_5 → S_5</span> and <span class="SimpleMath">A= Z^5</span> with action that permutes the canonical basis. The final commands determine that the kernel of the homomorphism <span class="SimpleMath">H^6(f,A)</span> is the Klein group of order <span class="SimpleMath">4</span> and that the cokernel is cyclic of order <span class="SimpleMath">6</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G1:=AlternatingGroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G2:=SymmetricGroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=GroupHomomorphismByFunction(G1,G2,x->x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">pi:=PermToMatrixGroup(G2,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R1:=ResolutionFiniteGroup(G1,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R2:=ResolutionFiniteGroup(G2,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=EquivariantChainMap(R1,R2,f);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=HomToIntegralModule(F,pi);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">c:=Cohomology(C,6);</span>
[ g1, g2, g3 ] -> [ id, id, g3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(Kernel(c));</span>
[ 2, 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">AbelianInvariants(Range(c)/Image(c));</span>
[ 2, 3 ]
</pre></div>
<p><a id="X796731727A7EBE59" name="X796731727A7EBE59"></a></p>
<h4>7.10 <span class="Heading">Cohomology as a functor of the second variable and the long exact coefficient sequence</span></h4>
<p>A short exact sequence of <span class="SimpleMath">ZG</span>-modules <span class="SimpleMath">A ↣ B ↠ C</span> induces a long exact sequence of cohomology groups</p>
<p><span class="SimpleMath">→ H^n(G,A) → H^n(G,B) → H^n(G,C) → H^n+1(G,A) →</span> .</p>
<p>Consider the symmetric group <span class="SimpleMath">G=S_4</span> and the sequence <span class="SimpleMath">Z_4 ↣ Z_8 ↠ Z_2</span> of trivial <span class="SimpleMath">ZG</span>-modules. The following commands compute the induced cohomology homomorphism</p>
<p><span class="SimpleMath">f: H^3(S_4, Z_4) → H^3(S_4, Z_8)</span></p>
<p>and determine that the image of this induced homomorphism has order <span class="SimpleMath">8</span> and that its kernel has order <span class="SimpleMath">2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=(1,2,3,4,5,6,7,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">a:=Group(x^2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">b:=Group(x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ahomb:=GroupHomomorphismByFunction(a,b,y->y);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=TrivialGModuleAsGOuterGroup(G,a);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=TrivialGModuleAsGOuterGroup(G,b);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi:=GOuterGroupHomomorphism();;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi!.Source:=A;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi!.Target:=B;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">phi!.Mapping:=ahomb;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Hphi:=CohomologyHomomorphism(phi,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(ImageOfGOuterGroupHomomorphism(Hphi));</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(KernelOfGOuterGroupHomomorphism(Hphi));</span>
2
</pre></div>
<p>The following commands then compute the homomorphism</p>
<p><span class="SimpleMath">H^3(S_4, Z_8) → H^3(S_4, Z_2)</span></p>
<p>induced by <span class="SimpleMath">Z_4 ↣ Z_8 ↠ Z_2</span>, and determine that the kernel of this homomorphsim has order <span class="SimpleMath">8</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">bhomc:=NaturalHomomorphismByNormalSubgroup(b,a);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=TrivialGModuleAsGOuterGroup(G,b);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TrivialGModuleAsGOuterGroup(G,Image(bhomc));</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi:=GOuterGroupHomomorphism();</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi!.Source:=B;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi!.Target:=C;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">psi!.Mapping:=bhomc;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Hpsi:=CohomologyHomomorphism(psi,3);</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(KernelOfGOuterGroupHomomorphism(Hpsi));</span>
8
</pre></div>
<p>The following commands then compute the connecting homomorphism</p>
<p><span class="SimpleMath">H^2(S_4, Z_2) → H^3(S_4, Z_4)</span></p>
<p>and determine that the image of this homomorphism has order <span class="SimpleMath">2</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">delta:=ConnectingCohomologyHomomorphism(psi,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Size(ImageOfGOuterGroupHomomorphism(delta));</span>
</pre></div>
<p>Note that the various orders are consistent with exactness of the sequence</p>
<p><span class="SimpleMath">H^2(S_4, Z_2) → H^3(S_4, Z_4) → H^3(S_4, Z_8) → H^3(S_4, Z_2)</span> .</p>
<p><a id="X80F6FD3E7C7E4E8D" name="X80F6FD3E7C7E4E8D"></a></p>
<h4>7.11 <span class="Heading">Transfer Homomorphism</span></h4>
<p>Consider the action of the symmetric group <span class="SimpleMath">G=S_5</span> on <span class="SimpleMath">A= Z^5</span> which permutes the canonical basis. The action restricts to the sylow <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">P=Syl_2(G)</span>. The following commands compute the cohomology transfer homomorphism <span class="SimpleMath">t^4: H^4(P,A) → H^4(S_5,A)</span> and determine its kernel and image. The integral homology transfer <span class="SimpleMath">t_4: H_4(S_5, Z) → H_5(P, Z)</span> is also computed.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">P:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=PermToMatrixGroup(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tr:=TransferCochainMap(R,P,A);</span>
Cochain Map between complexes of length 5 .
<span class="GAPprompt">gap></span> <span class="GAPinput">t4:=Cohomology(tr,4);</span>
[ g1, g2, g3, g4 ] -> [ id, g1, g2, g4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(Kernel(t4));</span>
"C2 x C2"
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(Image(t4));</span>
"C4 x C2"
<span class="GAPprompt">gap></span> <span class="GAPinput">tr:=TransferChainMap(R,P);</span>
Chain Map between complexes of length 5 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(tr,4);</span>
[ g1 ] -> [ g1 ]
</pre></div>
<p><a id="X79B1406C803FF178" name="X79B1406C803FF178"></a></p>
<h4>7.12 <span class="Heading">Cohomology rings of finite fundamental groups of 3-manifolds
</span></h4>
<p>A <em>spherical 3-manifold</em> is a 3-manifold arising as the quotient <span class="SimpleMath">S^3/Γ</span> of the 3-sphere <span class="SimpleMath">S^3</span> by a finite subgroup <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SO(4)</span> acting freely as rotations. The geometrization conjecture, proved by Grigori Perelman, implies that every closed connected 3-manifold with a finite fundamental group is homeomorphic to a spherical 3-manifold.</p>
<p>A spherical 3-manifold <span class="SimpleMath">S^3/Γ</span> has finite fundamental group isomorphic to <span class="SimpleMath">Γ</span>. This fundamental group is one of:</p>
<ul>
<li><p><span class="SimpleMath">Γ=C_m=⟨ x | x^m⟩</span> (<strong class="button">cyclic fundamental group</strong>)</p>
</li>
<li><p><span class="SimpleMath">Γ=C_m× ⟨ x,y | xyx^-1=y^-1, x^2^k=y^n ⟩</span> for integers <span class="SimpleMath">k, m≥ 1, n≥ 2</span> and <span class="SimpleMath">m</span> coprime to <span class="SimpleMath">2n</span> (<strong class="button">prism manifold case</strong>)</p>
</li>
<li><p><span class="SimpleMath">Γ= C_m× ⟨ x,y, z | (xy)^2=x^2=y^2, zxz^-1=y, zyz^-1=xy, z^3^k=1⟩</span> for integers <span class="SimpleMath">k,m≥ 1</span> and <span class="SimpleMath">m</span> coprime to 6 (<strong class="button">tetrahedral case</strong>)</p>
</li>
<li><p><span class="SimpleMath">Γ=C_m×⟨ x,y | (xy)^2=x^3=y^4⟩</span> for <span class="SimpleMath">m≥ 1</span> coprime to 6 (<strong class="button">octahedral case</strong>)</p>
</li>
<li><p><span class="SimpleMath">Γ=C_m× ⟨ x,y | (xy)^2=x^3=y^5⟩</span> for <span class="SimpleMath">m≥ 1</span> coprime to 30 (<strong class="button">icosahedral case</strong>).</p>
</li>
</ul>
<p>This list of cases is taken from the <span class="URL"><a href="https://en.wikipedia.org/wiki/Spherical_3-manifold">Wikipedia pages</a></span>. The group <span class="SimpleMath">Γ</span> has periodic cohomology since it acts on a sphere. The cyclic group has period 2 and in the other four cases it has period 4. (Recall that in general a finite group <span class="SimpleMath">G</span> has <em>periodic cohomology of period <span class="SimpleMath">n</span></em> if there is an element <span class="SimpleMath">u∈ H^n(G, Z)</span> such that the cup product <span class="SimpleMath">- ∪ u: H^k(G, Z) → H^k+n(G, Z)</span> is an isomorphism for all <span class="SimpleMath">k≥ 1</span>. It can be shown that <span class="SimpleMath">G</span> has periodic cohomology of period <span class="SimpleMath">n</span> if and only if <span class="SimpleMath">H^n(G, Z)= Z_|G|</span>.)</p>
<p>The cohomology of the cyclic group is well-known, and the cohomology of a direct product can be obtained from that of the factors using the Kunneth formula.</p>
<p>In the icosahedral case with <span class="SimpleMath">m=1</span> the following commands yield $$H^\ast(\Gamma,\mathbb Z)=Z[t]/(120t=0)$$ with generator <span class="SimpleMath">t</span> of degree 4. The final command demonstrates that a periodic resolution is used in the computation.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(2);;x:=F.1;;y:=F.2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=F/[(x*y)^2*x^-3, x^3*y^-5];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(G);</span>
120
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSmallGroup(G,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=0;;Cohomology(HomToIntegers(R),n);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=1;;Cohomology(HomToIntegers(R),n);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=2;;Cohomology(HomToIntegers(R),n);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=3;;Cohomology(HomToIntegers(R),n);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=4;;Cohomology(HomToIntegers(R),n);</span>
[ 120 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..5],k->R!.dimension(k));</span>
[ 1, 2, 2, 1, 1, 2 ]
</pre></div>
<p>In the octahedral case with <span class="SimpleMath">m=1</span> we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=24t, 2s=0, 48t=0)$$ where <span class="SimpleMath">s</span> has degree 2 and <span class="SimpleMath">t</span> has degree 4, from the following commands.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(2);;x:=F.1;;y:=F.2;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=F/[(x*y)^2*x^-3, x^3*y^-4];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(G);</span>
48
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=0;;Cohomology(HomToIntegers(R),n);</span>
[ 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=1;;Cohomology(HomToIntegers(R),n);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=2;;Cohomology(HomToIntegers(R),n);</span>
[ 2 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=3;;Cohomology(HomToIntegers(R),n);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=4;;Cohomology(HomToIntegers(R),n);</span>
[ 48 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralCupProduct(R,[1],[1],2,2);</span>
[ 24 ]
</pre></div>
<p>In the tetrahedral case with <span class="SimpleMath">m=1</span> we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=16t, 3s=0, 24t=0)$$ where <span class="SimpleMath">s</span> has degree 2 and <span class="SimpleMath">t</span> has degree 4, from the following commands.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=F/[(x*y)^2*x^-2, x^2*y^-2, z*x*z^-1*y^-1, z*y*z^-1*y^-1*x^-1,z^3];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Order(G);</span>
24
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=1;;Cohomology(HomToIntegers(R),n);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=2;;Cohomology(HomToIntegers(R),n);</span>
[ 3 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=3;;Cohomology(HomToIntegers(R),n);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">n:=4;;Cohomology(HomToIntegers(R),n);</span>
[ 24 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IntegralCupProduct(R,[1],[1],2,2);</span>
[ 16 ]
</pre></div>
<p>A theoretical calculation of the integral and mod-p cohomology rings of all of these fundamental groups of spherical 3-manifolds is given in <a href="chapBib.html#biBtomoda">[TZ08]</a>.</p>
<p><a id="X833A19F0791C3B06" name="X833A19F0791C3B06"></a></p>
<h4>7.13 <span class="Heading">Explicit cocycles </span></h4>
<p>Given a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span> and a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span>, one defines an <em><span class="SimpleMath">n</span>-cocycle</em> to be a <span class="SimpleMath">ZG</span>-homomorphism <span class="SimpleMath">f: R_n → A</span> for which the composite homomorphism <span class="SimpleMath">fd_n+1: R_n+1→ A</span> is zero. If <span class="SimpleMath">R_∗</span> happens to be the standard bar resolution (i.e. the cellular chain complex of the nerve of the group <span class="SimpleMath">G</span> considered as a one object category) then the free <span class="SimpleMath">ZG</span>-generators of <span class="SimpleMath">R_n</span> are indexed by <span class="SimpleMath">n</span>-tuples <span class="SimpleMath">(g_1 | g_2 | ... | g_n)</span> of elements <span class="SimpleMath">g_i</span> in <span class="SimpleMath">G</span>. In this case we say that the <span class="SimpleMath">n</span>-cocycle is a <em>standard n-cocycle</em> and we think of it as a set-theoretic function</p>
<p><span class="SimpleMath">f : G × G × ⋯ × G ⟶ A</span></p>
<p>satisfying a certain algebraic cocycle condition. Bearing in mind that a standard <span class="SimpleMath">n</span>-cocycle really just assigns an element <span class="SimpleMath">f(g_1, ... ,g_n) ∈ A</span> to an <span class="SimpleMath">n</span>-simplex in the nerve of <span class="SimpleMath">G</span> , the cocycle condition is a very natural one which states that <em><span class="SimpleMath">f</span> must vanish on the boundary of a certain <span class="SimpleMath">(n+1)</span>-simplex</em>. For <span class="SimpleMath">n=2</span> the condition is that a <span class="SimpleMath">2</span>-cocycle <span class="SimpleMath">f(g_1,g_2)</span> must satisfy</p>
<p><span class="SimpleMath">g.f(h,k) + f(g,hk) = f(gh,k) + f(g,h)</span></p>
<p>for all <span class="SimpleMath">g,h,k ∈ G</span>. This equation is explained by the following picture.</p>
<p><img src="images/cocycle.png" align="center" height="200" alt="2-cocycle equation"/></p>
<p>The definition of a cocycle clearly depends on the choice of <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span>. However, the cohomology group <span class="SimpleMath">H^n(G,A)</span>, which is a group of equivalence classes of <span class="SimpleMath">n</span>-cocycles, is independent of the choice of <span class="SimpleMath">R_∗</span>.</p>
<p>There are some occasions when one needs explicit examples of standard cocycles. For instance:</p>
<ul>
<li><p>Let <span class="SimpleMath">G</span> be a finite group and <span class="SimpleMath">k</span> a field of characteristic <span class="SimpleMath">0</span>. The group algebra <span class="SimpleMath">k(G)</span>, and the algebra <span class="SimpleMath">F(G)</span> of functions <span class="SimpleMath">d_g: G→ k, h→ d_g,h</span>, are both Hopf algebras. The tensor product <span class="SimpleMath">F(G) ⊗ k(G)</span> also admits a Hopf algebra structure known as the quantum double <span class="SimpleMath">D(G)</span>. A twisted quantum double <span class="SimpleMath">D_f(G)</span> was introduced by R. Dijkraaf, V. Pasquier & P. Roche <a href="chapBib.html#biBdpr">[DPR91]</a>. The twisted double is a quasi-Hopf algebra depending on a <span class="SimpleMath">3</span>-cocycle <span class="SimpleMath">f: G× G× G→ k</span>. The multiplication is given by <span class="SimpleMath">(d_g ⊗ x)(d_h ⊗ y) = d_gx,xhβ_g(x,y)(d_g ⊗ xy)</span> where <span class="SimpleMath">β_a</span> is defined by <span class="SimpleMath">β_a(h,g) = f(a,h,g) f(h,h^-1ah,g)^-1 f(h,g,(hg)^-1ahg)</span> . Although the algebraic structure of <span class="SimpleMath">D_f(G)</span> depends very much on the particular <span class="SimpleMath">3</span>-cocycle <span class="SimpleMath">f</span>, representation-theoretic properties of <span class="SimpleMath">D_f(G)</span> depend only on the cohomology class of <span class="SimpleMath">f</span>.</p>
</li>
<li><p>An explicit <span class="SimpleMath">2</span>-cocycle <span class="SimpleMath">f: G× G→ A</span> is needed to construct the multiplication <span class="SimpleMath">(a,g)(a',g') = (a + g⋅ a' + f(g,g'), gg')</span> in the extension a group <span class="SimpleMath">G</span> by a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span> determined by the cohomology class of <span class="SimpleMath">f</span> in <span class="SimpleMath">H^2(G,A)</span>. See <a href="chap6.html#X8333413B838D787D"><span class="RefLink">6.7</span></a>.</p>
</li>
<li><p>In work on coding theory and Hadamard matrices a number of papers have investigated square matrices <span class="SimpleMath">(a_ij)</span> whose entries <span class="SimpleMath">a_ij=f(g_i,g_j)</span> are the values of a <span class="SimpleMath">2</span>-cocycle <span class="SimpleMath">f: G× G → Z_2</span> where <span class="SimpleMath">G</span> is a finite group acting trivially on <span class="SimpleMath">Z_2</span>. See for instance <a href="chapBib.html#biBhoradam">[Hor00]</a> and <a href="chap6.html#X7C60E2B578074532"><span class="RefLink">6.10</span></a>.</p>
</li>
</ul>
<p>Given a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span> (with contracting homotopy) and a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span> one can use HAP commands to compute explicit standard <span class="SimpleMath">n</span>-cocycles <span class="SimpleMath">f: G^n → A</span>. With the twisted quantum double in mind, we illustrate the computation for <span class="SimpleMath">n=3</span>, <span class="SimpleMath">G=S_3</span>, and <span class="SimpleMath">A=U(1)</span> the group of complex numbers of modulus <span class="SimpleMath">1</span> with trivial <span class="SimpleMath">G</span>-action.</p>
<p>We first compute a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span>. The Universal Coefficient Theorem gives an isomorphism <span class="SimpleMath">H_3(G,U(1)) = Hom_ Z(H_3(G, Z), U(1))</span>, The multiplicative group <span class="SimpleMath">U(1)</span> can thus be viewed as <span class="SimpleMath">Z_m</span> where <span class="SimpleMath">m</span> is a multiple of the exponent of <span class="SimpleMath">H_3(G, Z)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">TR:=TensorWithIntegers(R);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TR,3);</span>
[ 6 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">R!.dimension(3);</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">R!.dimension(4);</span>
5
</pre></div>
<p>We thus replace the very infinite group U(1) by the finite cyclic group <span class="SimpleMath">Z_6</span>. Since the resolution <span class="SimpleMath">R_∗</span> has <span class="SimpleMath">4</span> generators in degree <span class="SimpleMath">3</span>, a homomorphism <span class="SimpleMath">f: R^3→ U(1)</span> can be represented by a list <span class="SimpleMath">f=[f_1, f_2, f_3, f_4]</span> with <span class="SimpleMath">f_i</span> the image in <span class="SimpleMath">Z_6</span> of the <span class="SimpleMath">i</span>th generator. The cocycle condition on <span class="SimpleMath">f</span> can be expressed as a matrix equation</p>
<p><span class="SimpleMath">Mf^t = 0 mod 6</span>.</p>
<p>where the matrix <span class="SimpleMath">M</span> is obtained from the following command and <span class="SimpleMath">f^t</span> denotes the transpose.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=CocycleCondition(R,3);;</span>
</pre></div>
<p>A particular cocycle <span class="SimpleMath">f=[f_1, f_2, f_3, f_4]</span> can be obtained by choosing a solution to the equation Mf^t=0.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SolutionsMod2:=NullspaceModQ(TransposedMat(M),2);</span>
[ [ 0, 0, 0, 0 ], [ 0, 0, 1, 1 ], [ 1, 1, 0, 0 ], [ 1, 1, 1, 1 ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">SolutionsMod3:=NullspaceModQ(TransposedMat(M),3);</span>
[ [ 0, 0, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 0, 2 ], [ 0, 0, 1, 0 ],
[ 0, 0, 1, 1 ], [ 0, 0, 1, 2 ], [ 0, 0, 2, 0 ], [ 0, 0, 2, 1 ],
[ 0, 0, 2, 2 ] ]
</pre></div>
<p>A non-standard <span class="SimpleMath">3</span>-cocycle <span class="SimpleMath">f</span> can be converted to a standard one using the command <code class="code">StandardCocycle(R,f,n,q)</code> . This command inputs <span class="SimpleMath">R_∗</span>, integers <span class="SimpleMath">n</span> and <span class="SimpleMath">q</span>, and an <span class="SimpleMath">n</span>-cocycle <span class="SimpleMath">f</span> for the resolution <span class="SimpleMath">R_∗</span>. It returns a standard cocycle <span class="SimpleMath">G^n → Z_q</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=3*SolutionsMod2[3] - SolutionsMod3[5]; #An example solution to Mf=0 mod 6.</span>
[ 3, 3, -1, -1 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Standard_f:=StandardCocycle(R,f,3,6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Random(G); h:=Random(G); k:=Random(G);</span>
(1,2)
(1,3,2)
(1,3)
<span class="GAPprompt">gap></span> <span class="GAPinput">Standard_f(g,h,k);</span>
3
</pre></div>
<p>A function <span class="SimpleMath">f: G× G× G → A</span> is a standard <span class="SimpleMath">3</span>-cocycle if and only if</p>
<p><span class="SimpleMath">g⋅ f(h,k,l) - f(gh,k,l) + f(g,hk,l) - f(g,h,kl) + f(g,h,k) = 0</span></p>
<p>for all <span class="SimpleMath">g,h,k,l ∈ G</span>. In the above example the group <span class="SimpleMath">G=S_3</span> acts trivially on <span class="SimpleMath">A=Z_6</span>. The following commands show that the standard <span class="SimpleMath">3</span>-cocycle produced in the example really does satisfy this <span class="SimpleMath">3</span>-cocycle condition.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">sf:=Standard_f;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Test:=function(g,h,k,l);</span>
<span class="GAPprompt">></span> <span class="GAPinput">return sf(h,k,l) - sf(g*h,k,l) + sf(g,h*k,l) - sf(g,h,k*l) + sf(g,h,k);</span>
<span class="GAPprompt">></span> <span class="GAPinput">end;</span>
function( g, h, k, l ) ... end
<span class="GAPprompt">gap></span> <span class="GAPinput">for g in G do for h in G do for k in G do for l in G do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print(Test(g,h,k,l),",");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;od;od;</span>
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,6,6,0,0,6,
0,0,0,0,0,6,6,6,0,6,0,12,12,6,12,6,0,12,6,0,6,6,0,0,0,0,0,0,0,12,12,6,6,6,0,
6,6,0,6,6,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,
0,6,0,0,6,6,6,0,0,0,0,0,0,0,-6,0,0,-6,0,-6,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,
0,0,0,6,6,6,0,0,0,6,6,6,0,0,0,0,-6,0,6,6,0,0,0,0,0,0,0,12,6,6,0,6,0,0,0,0,12,
6,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,0,0,6,0,0,0,0,0,6,6,
6,0,0,0,6,12,6,6,0,0,0,-6,0,0,6,0,0,0,0,0,0,0,12,12,6,6,6,0,0,0,0,6,6,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,0,6,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,
6,6,0,6,6,0,12,12,6,12,12,0,0,0,0,0,0,0,6,6,0,0,0,0,6,6,6,12,12,0,-6,-6,0,0,
0,0,6,6,0,0,6,0,0,6,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,
0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-6,0,6,0,6,0,6,0,0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,
0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,
0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,-6,0,0,0,-6,0,0,-6,0,-6,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,
0,0,0,0,6,6,0,-6,0,0,-6,0,0,12,6,0,-6,-6,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,12,0,6,0,0,6,0,0,0,6,0,0,0,0,0,0,
0,6,12,0,0,0,0,0,0,0,6,6,0,-6,-6,0,0,0,0,0,0,0,0,6,0,0,6,0,6,6,0,0,0,0,0,0,0,
6,0,0,0,6,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,
0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,6,0,6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,
6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,
</pre></div>
<p><a id="X7C5233E27D2D603E" name="X7C5233E27D2D603E"></a></p>
<h4>7.14 <span class="Heading">Quillen's complex and the <span class="SimpleMath">p</span>-part of homology </span></h4>
<p>Let <span class="SimpleMath">G</span> be a finite group with order divisible by prime <span class="SimpleMath">p</span>. Let <span class="SimpleMath">mathcal A=mathcal A_p(G)</span> denote Quillen's simplicial complex arising as the order complex of the poset of non-trivial elementary abelian <span class="SimpleMath">p</span>-subgroups of <span class="SimpleMath">G</span>. The group <span class="SimpleMath">G</span> acts on <span class="SimpleMath">mathcal A</span>. Denote the orbit of a <span class="SimpleMath">k</span>-simplex <span class="SimpleMath">e^k</span> by <span class="SimpleMath">[e^k]</span>, and the stabilizer of <span class="SimpleMath">e^k</span> by <span class="SimpleMath">Stab(e^k) ≤ G</span>. For a finite abelian group <span class="SimpleMath">H</span> let <span class="SimpleMath">H_p</span> denote the Sylow <span class="SimpleMath">p</span>-subgroup or the "<span class="SimpleMath">p</span>-part". In Theorem 3.3 of <a href="chapBib.html#biBWebb">[Web87]</a> P.J. Webb proved the following.</p>
<p><strong class="button">Theorem.</strong><a href="chapBib.html#biBWebb">[Web87]</a> For any <span class="SimpleMath">G</span>-module <span class="SimpleMath">M</span> there is a (non natural) isomomorphism</p>
<p><span class="SimpleMath">H_n(G,M)_p ⊕ ⨁_[e^k] : k~ odd~H_n(Stab(e^k),M)_p ≅ ⨁_[e^k] : k~ even~H_n(Stab(e^k),M)_p</span></p>
<p>for <span class="SimpleMath">n≥ 1</span>. The isomorphism can also be expressed as</p>
<p><span class="SimpleMath">H_n(G,M)_p ≅ ⨁_[e^k] : k~ even~H_n(Stab(e^k),M)_p - ⨁_[e^k] : k~ odd~H_n(Stab(e^k),M)_p</span></p>
<p>where terms can often be cancelled.</p>
<p>Thus the additive structure of the <span class="SimpleMath">p</span>-part of the homology of <span class="SimpleMath">G</span> is determined by that of the stabilizer groups. The result also holds with homology replaced by cohomology.</p>
<p><strong class="button">Illustration 1</strong></p>
<p>As an illustration of the theorem, the following commands calculate</p>
<p><span class="SimpleMath">H_n(SL_3( Z_2), Z) ≅ H_n(S_4, Z)_2 ⊕ H_n(S_4, Z)_2 ⊖ H_n(D_8, Z)_2 ⊕ H_n(S_3, Z)_3 ⊕ H_n(C_7 : C_3, Z)_7</span></p>
<p>where <span class="SimpleMath">n≥ 1</span>, <span class="SimpleMath">S_k</span> denotes the symmetric group on <span class="SimpleMath">n</span> letters, <span class="SimpleMath">D_8</span> the dihedral group of order <span class="SimpleMath">8</span> and <span class="SimpleMath">C_7 : C_3</span> a nonabelian semi-direct product of cyclic groups. Furthermore, for <span class="SimpleMath">n≥ 1</span></p>
<p><span class="SimpleMath">H_n(C_7 : C_3, Z)_7 ={beginarrayll Z_7, n ≡ 5 mod 6 0, otherwise endarray.</span></p>
<p>and</p>
<p><span class="SimpleMath">H_n(S_3, Z)_3 ={beginarrayll Z_3, n ≡ 3 mod 4 0, n ~otherwise . endarray.</span></p>
<p>Formulas for <span class="SimpleMath">H_n(S_4, Z)</span> and <span class="SimpleMath">H_n(D_8, Z)</span> can be found in the literature. Alternatively, they can be computed using <strong class="button">GAP</strong> for a given value of <span class="SimpleMath">n</span>. For <span class="SimpleMath">n=27</span> we find</p>
<p><span class="SimpleMath">H_27(S_4, Z)_2 ⊕ H_27(S_4, Z)_2 ⊖ H_27(D_8, Z)_2 ≅ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_4</span></p>
<p>and</p>
<p><span class="SimpleMath">H_27(SL_3( Z_2), Z) ≅ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_4 ⊕ Z_3</span> .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SL(3,2);;Factors(Order(G));</span>
[ 2, 2, 2, 3, 7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">D2:=HomologicalGroupDecomposition(G,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D3:=HomologicalGroupDecomposition(G,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D7:=HomologicalGroupDecomposition(G,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D2[1],StructureDescription);</span>
[ "S4", "S4" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D2[2],StructureDescription);</span>
[ "D8" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D3[1],StructureDescription);</span>
[ "S3" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D3[2],StructureDescription);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D7[1],StructureDescription);</span>
[ "C7 : C3" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D7[2],StructureDescription);</span>
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalPeriod(D7[1][1]);</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">List([1..6],n->GroupHomology(D7[1][1],n));</span>
[ [ 3 ], [ ], [ 3 ], [ ], [ 3, 7 ], [ ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalPeriod(D3[1][1]);</span>
4
<span class="GAPprompt">gap></span> <span class="GAPinput">List([1..4],n->GroupHomology(D3[1][1],n));</span>
[ [ 2 ], [ ], [ 6 ], [ ] ]
<span class="GAPprompt">gap></span> <span class="GAPinput">R_S4:=ResolutionFiniteGroup(Group([(1,2),(2,3),(3,4)]),28);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R_D8:=ResolutionFiniteGroup(Group([(1,2),(1,3)(2,4)]),28);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(R_S4),27);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 12 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(TensorWithIntegers(R_D8),27);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ]
</pre></div>
<p><strong class="button">Illustration 2</strong></p>
<p>As a further illustration of the theorem, the following commands calculate</p>
<p><span class="SimpleMath">H_n(M_12,M)_3 ≅ ⨁_1≤ i≤ 3H_n(Stab_i,M)_3 - ⨁_4≤ i≤ 5H_n(Stab_i,M)_3</span></p>
<p>for the Mathieu simple group <span class="SimpleMath">M_12</span> of order <span class="SimpleMath">95040</span>, where</p>
<p><span class="SimpleMath">Stab_1≅ Stab_3=(((C_3 × C_3) : Q_8) : C_3) : C_2</span></p>
<p><span class="SimpleMath">Stab_2=A_4 × S_3</span></p>
<p><span class="SimpleMath">Stab_4=C_3 × S_3</span></p>
<p><span class="SimpleMath">Stab_5=((C_3 × C_3) : C_3) : (C_2 × C_2)</span> .</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=MathieuGroup(12);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[1],StructureDescription);</span>
[ "(((C3 x C3) : Q8) : C3) : C2", "A4 x S3", "(((C3 x C3) : Q8) : C3) : C2" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[2],StructureDescription);</span>
[ "C3 x S3", "((C3 x C3) : C3) : (C2 x C2)" ]
</pre></div>
<p><strong class="button">Illustration 3</strong></p>
<p>As a third illustration, the following commands show that <span class="SimpleMath">H_n(M_23,M)_p</span> is periodic for primes <span class="SimpleMath">p=5, 7, 11, 23</span> of periods dividing <span class="SimpleMath">8, 6, 10, 22</span> respectively.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=MathieuGroup(23);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Factors(Order(G));</span>
[ 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 7, 11, 23 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sd:=StructureDescription;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C15 : C4" ]
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
8
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,7);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C2 x (C7 : C3)" ]
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
6
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,11);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C11 : C5" ]
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
10
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,23);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C23 : C11" ]
[ ]
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
22
</pre></div>
<p>The order <span class="SimpleMath">|M_23|=10200960</span> is divisible by primes <span class="SimpleMath">p=2, 3, 5, 7, 11, 23</span>. For <span class="SimpleMath">p=3</span> the following commands establish that the Poincare series</p>
<p><span class="SimpleMath">(x^16 - 2x^15</span> <span class="SimpleMath">+ 3x^14 - 4x^13</span> <span class="SimpleMath">+ 4x^12 - 4x^11</span> <span class="SimpleMath">+ 4x^10 - 3x^9</span> <span class="SimpleMath">+ 3x^8 - 3x^7 +</span> <span class="SimpleMath">4x^6 - 4x^5</span> <span class="SimpleMath">+ 4x^4 -4x^3</span> <span class="SimpleMath">+ 3x^2 -2x + 1) /</span> <span class="SimpleMath">(x^18 - 2x^17</span> <span class="SimpleMath">+ 3x^16 - 4x^15</span> <span class="SimpleMath">+ 4x^14 -</span> <span class="SimpleMath">4x^13 + 4x^12</span> <span class="SimpleMath">- 4x^11 + 4x^10</span> <span class="SimpleMath">- 4x^9 + 4x^8</span> <span class="SimpleMath">- 4x^7 + 4x^6</span> <span class="SimpleMath">- 4x^5 + 4x^4</span> <span class="SimpleMath">- 4x^3 +</span> <span class="SimpleMath">3x^2 - 2x + 1)</span></p>
<p>describes the dimension of the vector space <span class="SimpleMath">H^n(M_23, Z_3)</span> up to at least degree <span class="SimpleMath">n=40</span>. To prove that it describes the dimension in all degrees one would need to verify "completion criteria".</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=MathieuGroup(23);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,3);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[1],StructureDescription);</span>
[ "(C3 x C3) : QD16", "A5 : S3" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(D[2],StructureDescription);</span>
[ "S3 x S3" ]
<span class="GAPprompt">gap></span> <span class="GAPinput">P1:=PoincareSeriesPrimePart(D[1][1],3,40);</span>
(x_1^16-2*x_1^15+3*x_1^14-4*x_1^13+4*x_1^12-4*x_1^11+4*x_1^10-3*x_1^9+3*x_1^8-3*x_1^7+4*x_1^6-4*x_1^5+\
4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)/(x_1^18-2*x_1^17+3*x_1^16-4*x_1^15+4*x_1^14-4*x_1^13+4*x_1^12-4*x_1^1\
1+4*x_1^10-4*x_1^9+4*x_1^8-4*x_1^7+4*x_1^6-4*x_1^5+4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">P2:=PoincareSeriesPrimePart(D[1][2],3,40);</span>
(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">P3:=PoincareSeriesPrimePart(D[2][1],3,40);</span>
(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)
</pre></div>
<p><a id="X865CC8E0794C0E61" name="X865CC8E0794C0E61"></a></p>
<h4>7.15 <span class="Heading">Homology of a Lie algebra</span></h4>
<p>Let <span class="SimpleMath">A</span> be the Lie algebra constructed from the associative algebra <span class="SimpleMath">M^4× 4( Q)</span> of all <span class="SimpleMath">4× 4</span> rational matrices. Let <span class="SimpleMath">V</span> be its adjoint module (with underlying vector space of dimension <span class="SimpleMath">16</span> and equal to that of <span class="SimpleMath">A</span>). The following commands compute <span class="SimpleMath">H_4(A,V) = Q</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">M:=FullMatrixAlgebra(Rationals,4);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=LieAlgebra(M);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">V:=AdjointModule(A);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChevalleyEilenbergComplex(V,17);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..17],C!.dimension);</span>
[ 16, 256, 1920, 8960, 29120, 69888, 128128, 183040, 205920, 183040, 128128,
69888, 29120, 8960, 1920, 256, 16, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,4);</span>
1
</pre></div>
<p>Note that the eighth term <span class="SimpleMath">C_8(V)</span> in the Chevalley-Eilenberg complex <span class="SimpleMath">C_∗(V)</span> is a vector space of dimension <span class="SimpleMath">205920</span> and so it will take longer to compute the homology in degree <span class="SimpleMath">8</span>.</p>
<p>As a second example, let <span class="SimpleMath">B</span> be the classical Lie ring of type <span class="SimpleMath">B_3</span> over the ring of integers. The following commands compute <span class="SimpleMath">H_3(B, Z)= Z ⊕ Z_2^105</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=SimpleLieAlgebra("B",7,Integers); </span>
<Lie algebra of dimension 105 over Integers>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=ChevalleyEilenbergComplex(A,4,"sparse");</span>
Sparse chain complex of length 4 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=ContractedComplex(C);</span>
Sparse chain complex of length 4 in characteristic 0 .
<span class="GAPprompt">gap></span> <span class="GAPinput">Collected(Homology(D,3));</span>
[ [ 0, 1 ], [ 2, 105 ] ]
</pre></div>
<p><a id="X86B4EE4783A244F7" name="X86B4EE4783A244F7"></a></p>
<h4>7.16 <span class="Heading">Covers of Lie algebras</span></h4>
<p>A short exact sequence of Lie algebras</p>
<p><span class="SimpleMath">M ↣ C ↠ L</span></p>
<p>(over a field <span class="SimpleMath">k</span>) is said to be a <em>stem extension</em> of <span class="SimpleMath">L</span> if <span class="SimpleMath">M</span> lies both in the centre <span class="SimpleMath">Z(C)</span> and in the derived subalgeba <span class="SimpleMath">C^2</span>. If, in addition, the rank of the vector space <span class="SimpleMath">M</span> is equal to the rank of the second Chevalley-Eilenberg homology <span class="SimpleMath">H_2(L,k)</span> then the Lie algebra <span class="SimpleMath">C</span> is said to be a <em>cover</em> of <span class="SimpleMath">L</span>.</p>
<p>Each finite dimensional Lie algebra <span class="SimpleMath">L</span> admits a cover <span class="SimpleMath">C</span>, and this cover can be shown to be unique up to Lie isomorphism.</p>
<p>The cover can be used to determine whether there exists a Lie algebra <span class="SimpleMath">E</span> whose central quotient <span class="SimpleMath">E/Z(E)</span> is isomorphic to <span class="SimpleMath">L</span>. The image in <span class="SimpleMath">L</span> of the centre of <span class="SimpleMath">C</span> is called the <em>Lie Epicentre</em> of <span class="SimpleMath">L</span>, and this image is trivial if and only if such an <span class="SimpleMath">E</span> exists.</p>
<p>The cover can also be used to determine the stem extensions of <span class="SimpleMath">L</span>. It can be shown that each stem extension is a quotient of the cover by an ideal in the Lie multiplier <span class="SimpleMath">H_2(L,k)</span>.</p>
<p><a id="X7DFF32A67FF39C82" name="X7DFF32A67FF39C82"></a></p>
<h5>7.16-1 <span class="Heading">Computing a cover</span></h5>
<p>The following commands compute the cover <span class="SimpleMath">C</span> of the solvable but non-nilpotent 13-dimensional Lie algebra <span class="SimpleMath">L</span> (over <span class="SimpleMath">k= Q</span>) that was introduced by M. Wuestner <a href="chapBib.html#biBWustner">[Wue92]</a>. They also show that: the second homology of <span class="SimpleMath">C</span> is trivial and compute the ranks of the homology groups in other dimensions; the Lie algebra <span class="SimpleMath">L</span> is not isomorphic to any central quotient <span class="SimpleMath">E/Z(E)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">SCTL:=EmptySCTable(13,0,"antisymmetric");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 6, [ 1, 7 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 8, [ 1, 9 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 10, [ 1, 11 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 12, [ 1, 13 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 7, [ -1, 6 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 9, [ -1, 8 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 11, [ -1, 10 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 13, [ -1, 12 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 6, 7, [ 1, 2 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 8, 9, [ 1, 3 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 6, 9, [ -1, 5 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 7, 8, [ 1, 5 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 2, 8, [ 1, 12 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 2, 9, [ 1, 13 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 3, 6, [ 1, 10 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 3, 7, [ 1, 11 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 2, 3, [ 1, 4 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 6, [ -1, 12 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 7, [ -1, 13 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 8, [ -1, 10 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 9, [ -1, 11 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 6, 11, [ -1/2, 4 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 7, 10, [ 1/2, 4 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 8, 13, [ 1/2, 4 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">SetEntrySCTable( SCTL, 9, 12, [ -1/2, 4 ] );;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">L:=LieAlgebraByStructureConstants(Rationals,SCTL);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=Source(LieCoveringHomomorphism(L));</span>
<Lie algebra of dimension 15 over Rationals>
<span class="GAPprompt">gap></span> <span class="GAPinput">Dimension(LieEpiCentre(L));</span>
1
<span class="GAPprompt">gap></span> <span class="GAPinput">ch:=ChevalleyEilenbergComplex(C,17);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List([0..16],n->Homology(ch,n)); </span>
[ 1, 1, 0, 9, 23, 27, 47, 88, 88, 47, 27, 23, 9, 0, 1, 1, 0 ]
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap6.html">[Previous Chapter]</a> <a href="chap8.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chapBib.html">Bib</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|