File: chap7.html

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (1353 lines) | stat: -rw-r--r-- 92,864 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 7: Cohomology of groups (and Lie Algebras)</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap7"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap6.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap8.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap7_mj.html">[MathJax on]</a></p>
<p><a id="X787E37187B7308C9" name="X787E37187B7308C9"></a></p>
<div class="ChapSects"><a href="chap7.html#X787E37187B7308C9">7 <span class="Heading">Cohomology of groups (and Lie Algebras)</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X807B265978F90E01">7.1 <span class="Heading">Finite groups </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X80A721AC7A8D30A3">7.1-1 <span class="Heading">Naive homology computation for a very small group</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X838CEA3F850DFC82">7.1-2 <span class="Heading">A more efficient homology computation</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X842E93467AD09EC1">7.1-3 <span class="Heading">Computation of an induced homology homomorphism</span></a>
</span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X8754D2937E6FD7CE">7.1-4 <span class="Heading">Some other finite group homology computations</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X8463EF6A821FFB69">7.2 <span class="Heading">Nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X82E8FAC67BC16C01">7.3 <span class="Heading">Crystallographic and Almost Crystallographic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7AFFB32587D047FE">7.4 <span class="Heading">Arithmetic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X800CB6257DC8FB3A">7.5 <span class="Heading">Artin groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7BAFCA3680E478AE">7.6 <span class="Heading">Graphs of groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7CE849E58706796C">7.7 <span class="Heading">Lie algebra homology and free nilpotent groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7C3DEDD57BB4D537">7.8 <span class="Heading">Cohomology with coefficients in a module</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7E573EA582CCEF2E">7.9 <span class="Heading">Cohomology as a functor of the first variable</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X796731727A7EBE59">7.10 <span class="Heading">Cohomology as a functor of the second variable and the long exact coefficient sequence</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X80F6FD3E7C7E4E8D">7.11 <span class="Heading">Transfer Homomorphism</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X79B1406C803FF178">7.12 <span class="Heading">Cohomology rings of finite fundamental groups of 3-manifolds
</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X833A19F0791C3B06">7.13 <span class="Heading">Explicit cocycles </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X7C5233E27D2D603E">7.14 <span class="Heading">Quillen's complex and the <span class="SimpleMath">p</span>-part of homology </span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X865CC8E0794C0E61">7.15 <span class="Heading">Homology of a Lie algebra</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap7.html#X86B4EE4783A244F7">7.16 <span class="Heading">Covers of Lie algebras</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap7.html#X7DFF32A67FF39C82">7.16-1 <span class="Heading">Computing a cover</span></a>
</span>
</div></div>
</div>

<h3>7 <span class="Heading">Cohomology of groups (and Lie Algebras)</span></h3>

<p><a id="X807B265978F90E01" name="X807B265978F90E01"></a></p>

<h4>7.1 <span class="Heading">Finite groups </span></h4>

<p><a id="X80A721AC7A8D30A3" name="X80A721AC7A8D30A3"></a></p>

<h5>7.1-1 <span class="Heading">Naive homology computation for a very small group</span></h5>

<p>It is possible to compute the low degree (co)homology of a finite group or monoid of small order directly from the bar resolution. The following commands take this approach to computing the fifth integral homology</p>

<p><span class="SimpleMath">H_5(Q_4, Z) = Z_2⊕ Z_2</span></p>

<p>of the quaternion group <span class="SimpleMath">G=Q_4</span> of order <span class="SimpleMath">8</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Q:=QuaternionGroup(8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B:=BarComplexOfMonoid(Q,6);;                 </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=ContractedComplex(B);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(C,5);</span>
[ 2, 2 ]


<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..6],B!.dimension);</span>
[ 1, 7, 49, 343, 2401, 16807, 117649 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..6],C!.dimension);</span>
[ 1, 2, 2, 1, 2, 4, 102945 ]

</pre></div>

<p>However, this approach is of limited applicability since the bar resolution involves <span class="SimpleMath">|G|^k</span> free generators in degree <span class="SimpleMath">k</span>. A range of techniques, tailored to specific classes of groups, can be used to compute the (co)homology of larger finite groups.</p>

<p>This naive approach does have the merit of being applicable to arbitrary small monoids. The following calculates the homology in degrees <span class="SimpleMath">≤ 7</span> of a monoid of order 8, the monoid being specified by its multiplication table.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">T:=[ [  1,  1,  1,  4,  4,  4,  4,  1 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        [  1,  1,  1,  4,  4,  4,  4,  2 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        [  1,  1,  1,  4,  4,  4,  4,  3 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        [  4,  4,  4,  1,  1,  1,  1,  4 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        [  4,  4,  4,  1,  1,  1,  1,  5 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        [  4,  4,  4,  1,  1,  1,  1,  6 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        [  4,  4,  4,  1,  1,  1,  1,  7 ],</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">        [  1,  2,  3,  4,  5,  6,  7,  8 ] ];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=MonoidByMultiplicationTable(T);</span>
&lt;monoid of size 8, with 8 generators&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B:=BarComplexOfMonoid(M,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=ContractedComplex(B);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..7],i-&gt;Homology(C,i));</span>
[ [ 0 ], [ 2 ], [  ], [ 2 ], [  ], [ 2 ], [  ], [ 2 ] ]


<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..8],B!.dimension);</span>
[ 1, 7, 49, 343, 2401, 16807, 117649, 823543, 5764801 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..8],C!.dimension);</span>
[ 1, 1, 1, 1, 1, 1, 1, 1, 5044201 ]

</pre></div>

<p><a id="X838CEA3F850DFC82" name="X838CEA3F850DFC82"></a></p>

<h5>7.1-2 <span class="Heading">A more efficient homology computation</span></h5>

<p>The following example computes the seventh integral homology</p>

<p><span class="SimpleMath">H_7(M_23, Z) = Z_16⊕ Z_15</span></p>

<p>and fourth integral cohomomogy</p>

<p><span class="SimpleMath">H^4(M_24, Z) = Z_12</span></p>

<p>of the Mathieu groups <span class="SimpleMath">M_23</span> and <span class="SimpleMath">M_24</span>. (Warning: the computation of <span class="SimpleMath">H_7(M_23, Z)</span> takes a couple of hours to run.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(MathieuGroup(23),7);</span>
[ 16, 3, 5 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupCohomology(MathieuGroup(24),4);</span>
[ 4, 3 ]

</pre></div>

<p><a id="X842E93467AD09EC1" name="X842E93467AD09EC1"></a></p>

<h5>7.1-3 <span class="Heading">Computation of an induced homology homomorphism</span></h5>

<p>The following example computes the cokernel</p>

<p><span class="SimpleMath">coker( H_3(A_7, Z) → H_3(S_10, Z)) ≅ Z_2⊕ Z_2</span></p>

<p>of the degree-3 integral homomogy homomorphism induced by the canonical inclusion <span class="SimpleMath">A_7 → S_10</span> of the alternating group on <span class="SimpleMath">7</span> letters into the symmetric group on <span class="SimpleMath">10</span> letters. The analogous cokernel with <span class="SimpleMath">Z_2</span> homology coefficients is also computed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SymmetricGroup(10);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">H:=AlternatingGroup(7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=GroupHomomorphismByFunction(H,G,x-&gt;x);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=GroupHomology(f,3);</span>
MappingByFunction( Pcp-group with orders [ 4, 3 ], Pcp-group with orders 
[ 2, 2, 4, 3 ], function( x ) ... end )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(Range(F)/Image(F));</span>
[ 2, 2 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Fmod2:=GroupHomology(f,3,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(Range(Fmod2)/Image(Fmod2));</span>
[ 2, 2 ]

</pre></div>

<p><a id="X8754D2937E6FD7CE" name="X8754D2937E6FD7CE"></a></p>

<h5>7.1-4 <span class="Heading">Some other finite group homology computations</span></h5>

<p>The following example computes the third integral homology of the Weyl group <span class="SimpleMath">W=Weyl(E_8)</span>, a group of order <span class="SimpleMath">696729600</span>.</p>

<p><span class="SimpleMath">H_3(Weyl(E_8), Z) = Z_2 ⊕ Z_2 ⊕ Z_12</span></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=SimpleLieAlgebra("E",8,Rationals);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">W:=WeylGroup(RootSystem(L));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(W);</span>
696729600
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(W,3);</span>
[ 2, 2, 4, 3 ]

</pre></div>

<p>The preceding calculation could be achieved more quickly by noting that <span class="SimpleMath">W=Weyl(E_8)</span> is a Coxeter group, and by using the associated Coxeter polytope. The following example uses this approach to compute the fourth integral homology of <span class="SimpleMath">W</span>. It begins by displaying the Coxeter diagram of <span class="SimpleMath">W</span>, and then computes</p>

<p><span class="SimpleMath">H_4(Weyl(E_8), Z) = Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoxeterDiagramDisplay(D);</span>

</pre></div>

<p><img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">polytope:=CoxeterComplex_alt(D,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=FreeGResolution(polytope,5);</span>
Resolution of length 5 in characteristic 0 for &lt;matrix group with 
8 generators&gt; . 
No contracting homotopy available. 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=TensorWithIntegers(R);</span>
Chain complex of length 5 in characteristic 0 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(C,4);</span>
[ 2, 2, 2, 2 ]

</pre></div>

<p>The following example computes the sixth mod-<span class="SimpleMath">2</span> homology of the Sylow <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">Syl_2(M_24)</span> of the Mathieu group <span class="SimpleMath">M_24</span>.</p>

<p><span class="SimpleMath">H_6(Syl_2(M_24), Z_2) = Z_2^143</span></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(SylowSubgroup(MathieuGroup(24),2),6,2);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

</pre></div>

<p>The following example computes the sixth mod-<span class="SimpleMath">2</span> homology of the Unitary group <span class="SimpleMath">U_3(4)</span> of order 312000.</p>

<p><span class="SimpleMath">H_6(U_3(4), Z_2) = Z_2^4</span></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=GU(3,4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(G);</span>
312000
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(G,6,2);</span>
[ 2, 2, 2, 2 ]

</pre></div>

<p>The following example constructs the Poincare series</p>

<p><span class="SimpleMath">p(x)=frac1-x^3+3*x^2-3*x+1</span></p>

<p>for the cohomology <span class="SimpleMath">H^∗(Syl_2(M_12, F_2)</span>. The coefficient of <span class="SimpleMath">x^n</span> in the expansion of <span class="SimpleMath">p(x)</span> is equal to the dimension of the vector space <span class="SimpleMath">H^n(Syl_2(M_12, F_2)</span>. The computation involves <strong class="button">Singular</strong>'s Groebner basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=PoincareSeriesLHS(G);</span>
(1)/(-x_1^3+3*x_1^2-3*x_1+1)

</pre></div>

<p>The additional following command uses the Poincare series</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">RankHomologyPGroup(G,P,1000);</span>
251000

</pre></div>

<p>to determine that <span class="SimpleMath">H_1000(Syl_2(M_12, Z)</span> is a direct sum of 251000 non-trivial cyclic <span class="SimpleMath">2</span>-groups.</p>

<p>The following example constructs the series</p>

<p><span class="SimpleMath">p(x)=fracx^4-x^3+x^2-x+1x^6-x^5+x^4-2*x^3+x^2-x+1</span></p>

<p>whose coefficient of <span class="SimpleMath">x^n</span> is equal to the dimension of the vector space <span class="SimpleMath">H^n(M_11, F_2)</span> for all <span class="SimpleMath">n</span> in the range <span class="SimpleMath">0≤ n≤ 14</span>. The coefficient is not guaranteed correct for <span class="SimpleMath">n≥ 15</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PoincareSeriesPrimePart(MathieuGroup(11),2,14);</span>
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)

</pre></div>

<p><a id="X8463EF6A821FFB69" name="X8463EF6A821FFB69"></a></p>

<h4>7.2 <span class="Heading">Nilpotent groups</span></h4>

<p>The following example computes</p>

<p><span class="SimpleMath">H_4(N, Z) = (Z_3)^4 ⊕ Z^84</span></p>

<p>for the free nilpotent group <span class="SimpleMath">N</span> of class <span class="SimpleMath">2</span> on four generators.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FreeGroup(4);; N:=NilpotentQuotient(F,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(N,4);</span>
[ 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

</pre></div>

<p><a id="X82E8FAC67BC16C01" name="X82E8FAC67BC16C01"></a></p>

<h4>7.3 <span class="Heading">Crystallographic and Almost Crystallographic groups</span></h4>

<p>The following example computes</p>

<p><span class="SimpleMath">H_5(G, Z) = Z_2 ⊕ Z_2</span></p>

<p>for the <span class="SimpleMath">3</span>-dimensional crystallographic space group <span class="SimpleMath">G</span> with Hermann-Mauguin symbol "P62"</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupHomology(SpaceGroupBBNWZ("P62"),5);</span>
[ 2, 2 ]

</pre></div>

<p>The following example computes</p>

<p><span class="SimpleMath">H^5(G, Z)= Z</span></p>

<p>for an almost crystallographic group.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=AlmostCrystallographicPcpGroup( 4, 50, [ 1, -4, 1, 2 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GroupCohomology(G,4);</span>
[ 0 ]

</pre></div>

<p><a id="X7AFFB32587D047FE" name="X7AFFB32587D047FE"></a></p>

<h4>7.4 <span class="Heading">Arithmetic groups</span></h4>

<p>The following example computes</p>

<p><span class="SimpleMath">H_6(SL_2(cal O, Z) = Z_2 ⊕ Z_12</span></p>

<p>for <span class="SimpleMath">cal O</span> the ring of integers of the number field <span class="SimpleMath">Q(sqrt-2)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=ContractibleGcomplex("SL(2,O-2)");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=FreeGResolution(C,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(R),6);</span>
[ 2, 12 ]

</pre></div>

<p><a id="X800CB6257DC8FB3A" name="X800CB6257DC8FB3A"></a></p>

<h4>7.5 <span class="Heading">Artin groups</span></h4>

<p>The following example computes</p>

<p><span class="SimpleMath">H_n(G, Z) ={ beginarrayll Z &amp;n=0,1,7,8 Z_2, &amp;n=2,3 Z_2⊕ Z_6, &amp;n=4,6 Z_3 ⊕ Z_6,&amp; n=5 0, &amp;n&gt;8 endarray.</span></p>

<p>for <span class="SimpleMath">G</span> the Artin group of type <span class="SimpleMath">E_8</span>. (Similar commands can be used to compute a resolution and homology of arbitrary Artin monoids and, in thoses cases such as the spherical cases where the <span class="SimpleMath">K(π,1)</span>-conjecture is known to hold, the homology is equal to that of the corresponding Artin group.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=[[1,[2,3]],[2,[3,3]],[3,[4,3],[5,3]],[5,[6,3]],[6,[7,3]],[7,[8,3]]];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CoxeterDiagramDisplay(D);;</span>

</pre></div>

<p><img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionArtinGroup(D,9);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=TensorWithIntegers(R);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..8],n-&gt;Homology(C,n));</span>
[ [ 0 ], [ 0 ], [ 2 ], [ 2 ], [ 2, 6 ], [ 3, 6 ], [ 2, 6 ], [ 0 ], [ 0 ] ]

</pre></div>

<p>The Artin group <span class="SimpleMath">G</span> projects onto the Coxeter group <span class="SimpleMath">W</span> of type <span class="SimpleMath">E_8</span>. The group <span class="SimpleMath">W</span> has a natural representation as a group of <span class="SimpleMath">8× 8</span> integer matrices. This projection gives rise to a representation <span class="SimpleMath">ρ: G→ GL_8( Z)</span>. The following command computes the cohomology group <span class="SimpleMath">H^6(G,ρ) = ( Z_2)^6</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=R!.group;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gensG:=GeneratorsOfGroup(G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">W:=CoxeterDiagramMatCoxeterGroup(D);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gensW:=GeneratorsOfGroup(W);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rho:=GroupHomomorphismByImages(G,W,gensG,gensW);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToIntegralModule(R,rho);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,6);</span>
[ 2, 2, 2, 2, 2, 2 ]

</pre></div>

<p><a id="X7BAFCA3680E478AE" name="X7BAFCA3680E478AE"></a></p>

<h4>7.6 <span class="Heading">Graphs of groups</span></h4>

<p>The following example computes</p>

<p><span class="SimpleMath">H_5(G, Z) = Z_2⊕ Z_2⊕ Z_2 ⊕ Z_2 ⊕ Z_2</span></p>

<p>for <span class="SimpleMath">G</span> the graph of groups corresponding to the amalgamated product <span class="SimpleMath">G=S_5*_S_3S_4</span> of the symmetric groups <span class="SimpleMath">S_5</span> and <span class="SimpleMath">S_4</span> over the canonical subgroup <span class="SimpleMath">S_3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S5:=SymmetricGroup(5);SetName(S5,"S5");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S4:=SymmetricGroup(4);SetName(S4,"S4");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=SymmetricGroup(3);SetName(A,"S3");</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AS5:=GroupHomomorphismByFunction(A,S5,x-&gt;x);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AS4:=GroupHomomorphismByFunction(A,S4,x-&gt;x);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=[S5,S4,[AS5,AS4]];</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">GraphOfGroupsDisplay(D);</span>

</pre></div>

<p><img src="images/graphgroups.png" align="center" height="100" alt="graph of groups"/></p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionGraphOfGroups(D,6);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(R),5);</span>
[ 2, 2, 2, 2, 2 ]

</pre></div>

<p><a id="X7CE849E58706796C" name="X7CE849E58706796C"></a></p>

<h4>7.7 <span class="Heading">Lie algebra homology and free nilpotent groups</span></h4>

<p>One method of producting a Lie algebra <span class="SimpleMath">L</span> from a group <span class="SimpleMath">G</span> is by forming the direct sum <span class="SimpleMath">L(G) = G/γ_2G ⊕ γ_2G/γ_3G ⊕ γ_3G/γ_4G ⊕ ⋯</span> of the quotients of the lower central series <span class="SimpleMath">γ_1G=G</span>, <span class="SimpleMath">γ_n+1G=[γ_nG,G]</span>. Commutation in <span class="SimpleMath">G</span> induces a Lie bracket <span class="SimpleMath">L(G)× L(G) → L(G)</span>.</p>

<p>The homology <span class="SimpleMath">H_n(L)</span> of a Lie algebra (with trivial coefficients) can be calculated as the homology of the Chevalley-Eilenberg chain complex <span class="SimpleMath">C_∗(L)</span>. This chain complex is implemented in <strong class="button">HAP</strong> in the cases where the underlying additive group of <span class="SimpleMath">L</span> is either finitely generated torsion free or finitely generated of prime exponent <span class="SimpleMath">p</span>. In these two cases the ground ring for the Lie algebra/ Chevalley-Eilenberg complex is taken to be <span class="SimpleMath">Z</span> and <span class="SimpleMath">Z_p</span> respectively.</p>

<p>For example, consider the quotient <span class="SimpleMath">G=F/γ_8F</span> of the free group <span class="SimpleMath">F=F(x,y)</span> on two generators by eighth term of its lower central series. So <span class="SimpleMath">G</span> is the <em>free nilpotent group of class 7 on two generators</em>. The following commands compute <span class="SimpleMath">H_4(L(G)) = Z_2^77 ⊕ Z_6^8 ⊕ Z_12^51 ⊕ Z_132^11 ⊕ Z^2024</span> and show that the fourth homology in this case contains 2-, 3- and 11-torsion. (The commands take an hour or so to complete.)</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),7));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=LowerCentralSeriesLieAlgebra(G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">h:=LieAlgebraHomology(L,4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected(h);</span>
[ [ 0, 2024 ], [ 2, 77 ], [ 6, 8 ], [ 12, 51 ], [ 132, 11 ] ]

</pre></div>

<p>For a free nilpotent group <span class="SimpleMath">G</span> the additive homology <span class="SimpleMath">H_n(L(G))</span> of the Lie algebra can be computed more quickly in <strong class="button">HAP</strong> than the integral group homology <span class="SimpleMath">H_n(G, Z)</span>. Clearly there are isomorphisms<span class="SimpleMath">H_1(G) ≅ H_1(L(G)) ≅ G_ab</span> of abelian groups in homological degree <span class="SimpleMath">n=1</span>. Hopf's formula can be used to establish an isomorphism <span class="SimpleMath">H_2(G) ≅ H_2(L(G))</span> also in degree <span class="SimpleMath">n=2</span>. The following two theorems provide further isomorphisms that allow for the homology of a free nilpotent group to be calculated more efficiently as the homology of the associated Lie algebra.</p>

<p><strong class="button">Theorem 1.</strong> <a href="chapBib.html#biBkuzmin">[KS98]</a> <em>Let <span class="SimpleMath">G</span> be a finitely generated free nilpotent group of class 2. Then the integral group homology <span class="SimpleMath">H_n(G, Z)</span> is isomorphic to the integral Lie algebra homology <span class="SimpleMath">H_n(L(G), Z)</span> in each degree <span class="SimpleMath">n≥0</span>.</em></p>

<p><strong class="button">Theorem 2.</strong> <a href="chapBib.html#biBigusa">[IO01]</a> <em>Let <span class="SimpleMath">G</span> be a finitely generated free nilpotent group (of any class). Then the integral group homology <span class="SimpleMath">H_n(G, Z)</span> is isomorphic to the integral Lie algebra homology <span class="SimpleMath">H_n(L(G), Z)</span> in degrees <span class="SimpleMath">n=0, 1, 2, 3</span>.</em></p>

<p>We should remark that experimentation on free nilpotent groups of class <span class="SimpleMath">≥ 4</span> has not yielded a group for which the isomorphism <span class="SimpleMath">H_n(G, Z) ≅ H_n(L(G), G)</span> fails. For instance, the isomorphism holds in degree <span class="SimpleMath">n=4</span> for the free nilpotent group of class 5 on two generators, and for the free nilpotent group of class 2 on four generators:</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(2),5));;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=LowerCentralSeriesLieAlgebra(G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( LieAlgebraHomology(L,4) );</span>
[ [ 0, 85 ], [ 7, 1 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( GroupHomology(G,4) );</span>
[ [ 0, 85 ], [ 7, 1 ] ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=Image(NqEpimorphismNilpotentQuotient(FreeGroup(4),2));;  </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=LowerCentralSeriesLieAlgebra(G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( LieAlgebraHomology(L,4) );</span>
[ [ 0, 84 ], [ 3, 4 ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected( GroupHomology(G,4) );</span>
[ [ 0, 84 ], [ 3, 4 ] ]

</pre></div>

<p><a id="X7C3DEDD57BB4D537" name="X7C3DEDD57BB4D537"></a></p>

<h4>7.8 <span class="Heading">Cohomology with coefficients in a module</span></h4>

<p>There are various ways to represent a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span> with action <span class="SimpleMath">G× A → A, (g,a)↦ α(g,a)</span>.</p>

<p>One possibility is to use the data type of a <em><span class="SimpleMath">G</span>-Outer Group</em> which involves three components: an <span class="SimpleMath">ActedGroup</span> <span class="SimpleMath">A</span>; an <span class="SimpleMath">Acting Group</span> <span class="SimpleMath">G</span>; a <span class="SimpleMath">Mapping</span> <span class="SimpleMath">(g,a)↦ α(g,a)</span>. The following example uses this data type to compute the cohomology <span class="SimpleMath">H^4(G,A) = Z_5 ⊕ Z_10</span> of the symmetric group <span class="SimpleMath">G=S_6</span> with coefficients in the integers <span class="SimpleMath">A= Z</span> where odd permutations act non-trivially on <span class="SimpleMath">A</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SymmetricGroup(6);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=AbelianPcpGroup([0]);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">alpha:=function(g,a); return a^SignPerm(g); end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=GModuleAsGOuterGroup(G,A,alpha);</span>
ZG-module with abelian invariants [ 0 ] and G= SymmetricGroup( [ 1 .. 6 ] )

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToGModule(R,A);</span>
G-cocomplex of length 5 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,4);</span>
[ 2, 2, 5 ]

</pre></div>

<p>If <span class="SimpleMath">A= Z^n</span> and <span class="SimpleMath">G</span> acts as</p>

<p><span class="SimpleMath">G× A → A, (g, v) ↦ ρ(g) v</span></p>

<p>where <span class="SimpleMath">ρ: G→ Gl_n( Z)</span> is a (not necessarily faithful) matrix representation of degree <span class="SimpleMath">n</span> then we can avoid the use of <span class="SimpleMath">G</span>-outer groups and use just the homomorphism <span class="SimpleMath">ρ</span> instead. The following example uses this data type to compute the cohomology</p>

<p><span class="SimpleMath">H^6(G,A) = Z_2</span></p>

<p>and the homology</p>

<p><span class="SimpleMath">H_6(G,A) = 0</span></p>

<p>of the alternating group <span class="SimpleMath">G=A_5</span> with coefficients in <span class="SimpleMath">A= Z^5</span> where elements of <span class="SimpleMath">G</span> act on <span class="SimpleMath">Z^5</span> via an irreducible representation.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=AlternatingGroup(5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rho:=IrreducibleRepresentations(G)[5];</span>
[ (1,2,3,4,5), (3,4,5) ] -&gt; 
[ 
  [ [ 0, 0, 1, 0, 0 ], [ -1, -1, 0, 0, 1 ], [ 0, 1, 1, 1, 0 ], 
      [ 1, 0, -1, 0, -1 ], [ -1, -1, 0, -1, 0 ] ], 
  [ [ -1, -1, 0, 0, 1 ], [ 1, 0, -1, 0, -1 ], [ 0, 0, 0, 0, 1 ], 
      [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ] ] ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToIntegralModule(R,rho);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,6);</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=TensorWithIntegralModule(R,rho);</span>
Chain complex of length 7 in characteristic 0 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(D,6);</span>
[  ]

</pre></div>

<p>If <span class="SimpleMath">V=K^d</span> is a vetor space of dimension <span class="SimpleMath">d</span> over the field <span class="SimpleMath">K=GF(p)</span> with <span class="SimpleMath">p</span> a prime and <span class="SimpleMath">G</span> acts on <span class="SimpleMath">V</span> via a homomorphism <span class="SimpleMath">ρ: G→ GL_d(K)</span> then the homology <span class="SimpleMath">H^n(G,V)</span> can again be computed without the use of G-outer groups. As an example, the following commands compute</p>

<p><span class="SimpleMath">H^4(GL(3,2),V) =K^2</span></p>

<p>where <span class="SimpleMath">K=GF(2)</span> and <span class="SimpleMath">GL(3,2)</span> acts with its natural action on <span class="SimpleMath">V=K^3</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=GL(3,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rho:=GroupHomomorphismByFunction(G,G,x-&gt;x);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToModPModule(R,rho);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Cohomology(C,4);</span>
2

</pre></div>

<p>It can be computationally difficult to compute resolutions for large finite groups. But the <span class="SimpleMath">p</span>-primary part of the homology can be computed using resolutions of Sylow <span class="SimpleMath">p</span>-subgroups. This approach is used in the following example that computes the <span class="SimpleMath">2</span>-primary part</p>

<p><span class="SimpleMath">H_2(G, Z)_(2) = Z_2 ⊕ Z_2⊕ Z_2</span></p>

<p>of the degree 2 integral homology of the Rubik's cube group <span class="SimpleMath">G</span>. This group has order <span class="SimpleMath">43252003274489856000</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">gens:= [</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   ( 1, 3, 8, 6)( 2, 5, 7, 4)( 9,33,25,17)(10,34,26,18)(11,35,27,19),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   ( 9,11,16,14)(10,13,15,12)( 1,17,41,40)( 4,20,44,37)( 6,22,46,35),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   (17,19,24,22)(18,21,23,20)( 6,25,43,16)( 7,28,42,13)( 8,30,41,11),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   (25,27,32,30)(26,29,31,28)( 3,38,43,19)( 5,36,45,21)( 8,33,48,24),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   (33,35,40,38)(34,37,39,36)( 3, 9,46,32)( 2,12,47,29)( 1,14,48,27),</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">   (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput"> ];; G:=Group(gens);;P:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionNormalSeries(BigStepUCS(P,6),3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,R,TensorWithIntegers,2);</span>
[ 2, 2, 2 ]

</pre></div>

<p>The same approach is used in the following example that computes the <span class="SimpleMath">2</span>-primary part</p>

<p><span class="SimpleMath">H_11(A_7,A)_(2) = Z_2 ⊕ Z_2⊕ Z_4</span></p>

<p>of the degree 11 homology of the alternating group <span class="SimpleMath">A_7</span> of degree <span class="SimpleMath">7</span> with coefficients in the module <span class="SimpleMath">A= Z^7</span> on which <span class="SimpleMath">A_7</span> acts by permuting basis vectors.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=AlternatingGroup(7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rho:=PermToMatrixGroup(G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(SylowSubgroup(G,2),12);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=function(X); return TensorWithIntegralModule(X,rho); end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,R,F,11);</span>
[ 2, 2, 4 ]

</pre></div>

<p>Similar commands compute</p>

<p><span class="SimpleMath">H_3(A_10,A)_(2) = Z_4</span></p>

<p>with coefficient module <span class="SimpleMath">A= Z^10</span> on which <span class="SimpleMath">A_10</span> acts by permuting basis vectors.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=AlternatingGroup(10);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rho:=PermToMatrixGroup(G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(SylowSubgroup(G,2),4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=function(X); return TensorWithIntegralModule(X,rho); end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,R,F,3);</span>
[ 4 ]

</pre></div>

<p>The following commands compute</p>

<p><span class="SimpleMath">H_100(GL(3,2),V)= K^34</span></p>

<p>where <span class="SimpleMath">V</span> is the vector space of dimension <span class="SimpleMath">3</span> over <span class="SimpleMath">K=GF(2)</span> acting via some irreducible representation <span class="SimpleMath">ρ: GL(3,2) → GL(V)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=GL(3,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">rho:=IrreducibleRepresentations(G,GF(2))[3];</span>
CompositionMapping( [ (5,7)(6,8), (2,3,5)(4,7,6) ] -&gt; 
[ &lt;an immutable 3x3 matrix over GF2&gt;, &lt;an immutable 3x3 matrix over GF2&gt; ],
 &lt;action isomorphism&gt; )
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=function(X); return TensorWithModPModule(X,rho); end;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">S:=ResolutionPrimePowerGroup(SylowSubgroup(G,2),101);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">PrimePartDerivedFunctorViaSubgroupChain(G,S,F,100);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
  2, 2, 2, 2, 2, 2, 2, 2, 2 ]

</pre></div>

<p><a id="X7E573EA582CCEF2E" name="X7E573EA582CCEF2E"></a></p>

<h4>7.9 <span class="Heading">Cohomology as a functor of the first variable</span></h4>

<p>Suppose given a group homomorphism <span class="SimpleMath">f: G_1→ G_2</span> and a <span class="SimpleMath">G_2</span>-module <span class="SimpleMath">A</span>. Then <span class="SimpleMath">A</span> is naturally a <span class="SimpleMath">G_1</span>-module with action via <span class="SimpleMath">f</span>, and there is an induced cohomology homomorphism <span class="SimpleMath">H^n(f,A): H^n(G_2,A) → H^n(G_1,A)</span>.</p>

<p>The following example computes this cohomology homomorphism in degree <span class="SimpleMath">n=6</span> for the inclusion <span class="SimpleMath">f: A_5 → S_5</span> and <span class="SimpleMath">A= Z^5</span> with action that permutes the canonical basis. The final commands determine that the kernel of the homomorphism <span class="SimpleMath">H^6(f,A)</span> is the Klein group of order <span class="SimpleMath">4</span> and that the cokernel is cyclic of order <span class="SimpleMath">6</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G1:=AlternatingGroup(5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G2:=SymmetricGroup(5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=GroupHomomorphismByFunction(G1,G2,x-&gt;x);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">pi:=PermToMatrixGroup(G2,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R1:=ResolutionFiniteGroup(G1,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R2:=ResolutionFiniteGroup(G2,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=EquivariantChainMap(R1,R2,f);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=HomToIntegralModule(F,pi);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">c:=Cohomology(C,6);</span>
[ g1, g2, g3 ] -&gt; [ id, id, g3 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(Kernel(c));</span>
[ 2, 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">AbelianInvariants(Range(c)/Image(c));</span>
[ 2, 3 ]

</pre></div>

<p><a id="X796731727A7EBE59" name="X796731727A7EBE59"></a></p>

<h4>7.10 <span class="Heading">Cohomology as a functor of the second variable and the long exact coefficient sequence</span></h4>

<p>A short exact sequence of <span class="SimpleMath">ZG</span>-modules <span class="SimpleMath">A ↣ B ↠ C</span> induces a long exact sequence of cohomology groups</p>

<p><span class="SimpleMath">→ H^n(G,A) → H^n(G,B) → H^n(G,C) → H^n+1(G,A) →</span> .</p>

<p>Consider the symmetric group <span class="SimpleMath">G=S_4</span> and the sequence <span class="SimpleMath">Z_4 ↣ Z_8 ↠ Z_2</span> of trivial <span class="SimpleMath">ZG</span>-modules. The following commands compute the induced cohomology homomorphism</p>

<p><span class="SimpleMath">f: H^3(S_4, Z_4) → H^3(S_4, Z_8)</span></p>

<p>and determine that the image of this induced homomorphism has order <span class="SimpleMath">8</span> and that its kernel has order <span class="SimpleMath">2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SymmetricGroup(4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">x:=(1,2,3,4,5,6,7,8);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">a:=Group(x^2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">b:=Group(x);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ahomb:=GroupHomomorphismByFunction(a,b,y-&gt;y);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=TrivialGModuleAsGOuterGroup(G,a);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B:=TrivialGModuleAsGOuterGroup(G,b);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi:=GOuterGroupHomomorphism();;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi!.Source:=A;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi!.Target:=B;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">phi!.Mapping:=ahomb;;</span>
 
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Hphi:=CohomologyHomomorphism(phi,3);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(ImageOfGOuterGroupHomomorphism(Hphi));</span>
8

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(KernelOfGOuterGroupHomomorphism(Hphi));</span>
2

</pre></div>

<p>The following commands then compute the homomorphism</p>

<p><span class="SimpleMath">H^3(S_4, Z_8) → H^3(S_4, Z_2)</span></p>

<p>induced by <span class="SimpleMath">Z_4 ↣ Z_8 ↠ Z_2</span>, and determine that the kernel of this homomorphsim has order <span class="SimpleMath">8</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">bhomc:=NaturalHomomorphismByNormalSubgroup(b,a);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">B:=TrivialGModuleAsGOuterGroup(G,b);</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=TrivialGModuleAsGOuterGroup(G,Image(bhomc));</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi:=GOuterGroupHomomorphism();</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi!.Source:=B;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi!.Target:=C;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">psi!.Mapping:=bhomc;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Hpsi:=CohomologyHomomorphism(psi,3);</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(KernelOfGOuterGroupHomomorphism(Hpsi));</span>
8

</pre></div>

<p>The following commands then compute the connecting homomorphism</p>

<p><span class="SimpleMath">H^2(S_4, Z_2) → H^3(S_4, Z_4)</span></p>

<p>and determine that the image of this homomorphism has order <span class="SimpleMath">2</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">delta:=ConnectingCohomologyHomomorphism(psi,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Size(ImageOfGOuterGroupHomomorphism(delta));</span>

</pre></div>

<p>Note that the various orders are consistent with exactness of the sequence</p>

<p><span class="SimpleMath">H^2(S_4, Z_2) → H^3(S_4, Z_4) → H^3(S_4, Z_8) → H^3(S_4, Z_2)</span> .</p>

<p><a id="X80F6FD3E7C7E4E8D" name="X80F6FD3E7C7E4E8D"></a></p>

<h4>7.11 <span class="Heading">Transfer Homomorphism</span></h4>

<p>Consider the action of the symmetric group <span class="SimpleMath">G=S_5</span> on <span class="SimpleMath">A= Z^5</span> which permutes the canonical basis. The action restricts to the sylow <span class="SimpleMath">2</span>-subgroup <span class="SimpleMath">P=Syl_2(G)</span>. The following commands compute the cohomology transfer homomorphism <span class="SimpleMath">t^4: H^4(P,A) → H^4(S_5,A)</span> and determine its kernel and image. The integral homology transfer <span class="SimpleMath">t_4: H_4(S_5, Z) → H_5(P, Z)</span> is also computed.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SymmetricGroup(5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P:=SylowSubgroup(G,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=PermToMatrixGroup(G);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr:=TransferCochainMap(R,P,A);</span>
Cochain Map between complexes of length 5 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">t4:=Cohomology(tr,4);</span>
[ g1, g2, g3, g4 ] -&gt; [ id, g1, g2, g4 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(Kernel(t4));</span>
"C2 x C2"
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">StructureDescription(Image(t4));</span>
"C4 x C2"

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">tr:=TransferChainMap(R,P);</span>
Chain Map between complexes of length 5 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(tr,4);</span>
[ g1 ] -&gt; [ g1 ]

</pre></div>

<p><a id="X79B1406C803FF178" name="X79B1406C803FF178"></a></p>

<h4>7.12 <span class="Heading">Cohomology rings of finite fundamental groups of 3-manifolds
</span></h4>

<p>A <em>spherical 3-manifold</em> is a 3-manifold arising as the quotient <span class="SimpleMath">S^3/Γ</span> of the 3-sphere <span class="SimpleMath">S^3</span> by a finite subgroup <span class="SimpleMath">Γ</span> of <span class="SimpleMath">SO(4)</span> acting freely as rotations. The geometrization conjecture, proved by Grigori Perelman, implies that every closed connected 3-manifold with a finite fundamental group is homeomorphic to a spherical 3-manifold.</p>

<p>A spherical 3-manifold <span class="SimpleMath">S^3/Γ</span> has finite fundamental group isomorphic to <span class="SimpleMath">Γ</span>. This fundamental group is one of:</p>


<ul>
<li><p><span class="SimpleMath">Γ=C_m=⟨ x | x^m⟩</span> (<strong class="button">cyclic fundamental group</strong>)</p>

</li>
<li><p><span class="SimpleMath">Γ=C_m× ⟨ x,y | xyx^-1=y^-1, x^2^k=y^n ⟩</span> for integers <span class="SimpleMath">k, m≥ 1, n≥ 2</span> and <span class="SimpleMath">m</span> coprime to <span class="SimpleMath">2n</span> (<strong class="button">prism manifold case</strong>)</p>

</li>
<li><p><span class="SimpleMath">Γ= C_m× ⟨ x,y, z | (xy)^2=x^2=y^2, zxz^-1=y, zyz^-1=xy, z^3^k=1⟩</span> for integers <span class="SimpleMath">k,m≥ 1</span> and <span class="SimpleMath">m</span> coprime to 6 (<strong class="button">tetrahedral case</strong>)</p>

</li>
<li><p><span class="SimpleMath">Γ=C_m×⟨ x,y | (xy)^2=x^3=y^4⟩</span> for <span class="SimpleMath">m≥ 1</span> coprime to 6 (<strong class="button">octahedral case</strong>)</p>

</li>
<li><p><span class="SimpleMath">Γ=C_m× ⟨ x,y | (xy)^2=x^3=y^5⟩</span> for <span class="SimpleMath">m≥ 1</span> coprime to 30 (<strong class="button">icosahedral case</strong>).</p>

</li>
</ul>
<p>This list of cases is taken from the <span class="URL"><a href="https://en.wikipedia.org/wiki/Spherical_3-manifold">Wikipedia pages</a></span>. The group <span class="SimpleMath">Γ</span> has periodic cohomology since it acts on a sphere. The cyclic group has period 2 and in the other four cases it has period 4. (Recall that in general a finite group <span class="SimpleMath">G</span> has <em>periodic cohomology of period <span class="SimpleMath">n</span></em> if there is an element <span class="SimpleMath">u∈ H^n(G, Z)</span> such that the cup product <span class="SimpleMath">- ∪ u: H^k(G, Z) → H^k+n(G, Z)</span> is an isomorphism for all <span class="SimpleMath">k≥ 1</span>. It can be shown that <span class="SimpleMath">G</span> has periodic cohomology of period <span class="SimpleMath">n</span> if and only if <span class="SimpleMath">H^n(G, Z)= Z_|G|</span>.)</p>

<p>The cohomology of the cyclic group is well-known, and the cohomology of a direct product can be obtained from that of the factors using the Kunneth formula.</p>

<p>In the icosahedral case with <span class="SimpleMath">m=1</span> the following commands yield $$H^\ast(\Gamma,\mathbb Z)=Z[t]/(120t=0)$$ with generator <span class="SimpleMath">t</span> of degree 4. The final command demonstrates that a periodic resolution is used in the computation.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FreeGroup(2);;x:=F.1;;y:=F.2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=F/[(x*y)^2*x^-3, x^3*y^-5];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(G);</span>
120
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionSmallGroup(G,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=0;;Cohomology(HomToIntegers(R),n);</span>
[ 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=1;;Cohomology(HomToIntegers(R),n);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=2;;Cohomology(HomToIntegers(R),n);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=3;;Cohomology(HomToIntegers(R),n);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=4;;Cohomology(HomToIntegers(R),n);</span>
[ 120 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..5],k-&gt;R!.dimension(k));</span>
[ 1, 2, 2, 1, 1, 2 ]

</pre></div>

<p>In the octahedral case with <span class="SimpleMath">m=1</span> we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=24t, 2s=0, 48t=0)$$ where <span class="SimpleMath">s</span> has degree 2 and <span class="SimpleMath">t</span> has degree 4, from the following commands.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FreeGroup(2);;x:=F.1;;y:=F.2;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=F/[(x*y)^2*x^-3, x^3*y^-4];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(G);</span>
48
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=0;;Cohomology(HomToIntegers(R),n);</span>
[ 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=1;;Cohomology(HomToIntegers(R),n);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=2;;Cohomology(HomToIntegers(R),n);</span>
[ 2 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=3;;Cohomology(HomToIntegers(R),n);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=4;;Cohomology(HomToIntegers(R),n);</span>
[ 48 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IntegralCupProduct(R,[1],[1],2,2);</span>
[ 24 ]

</pre></div>

<p>In the tetrahedral case with <span class="SimpleMath">m=1</span> we obtain $$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=16t, 3s=0, 24t=0)$$ where <span class="SimpleMath">s</span> has degree 2 and <span class="SimpleMath">t</span> has degree 4, from the following commands.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">F:=FreeGroup(3);;x:=F.1;;y:=F.2;;z:=F.3;;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=F/[(x*y)^2*x^-2, x^2*y^-2, z*x*z^-1*y^-1, z*y*z^-1*y^-1*x^-1,z^3];;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Order(G);</span>
24
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=1;;Cohomology(HomToIntegers(R),n);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=2;;Cohomology(HomToIntegers(R),n);</span>
[ 3 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=3;;Cohomology(HomToIntegers(R),n);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">n:=4;;Cohomology(HomToIntegers(R),n);</span>
[ 24 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IntegralCupProduct(R,[1],[1],2,2);</span>
[ 16 ]

</pre></div>

<p>A theoretical calculation of the integral and mod-p cohomology rings of all of these fundamental groups of spherical 3-manifolds is given in <a href="chapBib.html#biBtomoda">[TZ08]</a>.</p>

<p><a id="X833A19F0791C3B06" name="X833A19F0791C3B06"></a></p>

<h4>7.13 <span class="Heading">Explicit cocycles </span></h4>

<p>Given a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span> and a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span>, one defines an <em><span class="SimpleMath">n</span>-cocycle</em> to be a <span class="SimpleMath">ZG</span>-homomorphism <span class="SimpleMath">f: R_n → A</span> for which the composite homomorphism <span class="SimpleMath">fd_n+1: R_n+1→ A</span> is zero. If <span class="SimpleMath">R_∗</span> happens to be the standard bar resolution (i.e. the cellular chain complex of the nerve of the group <span class="SimpleMath">G</span> considered as a one object category) then the free <span class="SimpleMath">ZG</span>-generators of <span class="SimpleMath">R_n</span> are indexed by <span class="SimpleMath">n</span>-tuples <span class="SimpleMath">(g_1 | g_2 | ... | g_n)</span> of elements <span class="SimpleMath">g_i</span> in <span class="SimpleMath">G</span>. In this case we say that the <span class="SimpleMath">n</span>-cocycle is a <em>standard n-cocycle</em> and we think of it as a set-theoretic function</p>

<p><span class="SimpleMath">f : G × G × ⋯ × G ⟶ A</span></p>

<p>satisfying a certain algebraic cocycle condition. Bearing in mind that a standard <span class="SimpleMath">n</span>-cocycle really just assigns an element <span class="SimpleMath">f(g_1, ... ,g_n) ∈ A</span> to an <span class="SimpleMath">n</span>-simplex in the nerve of <span class="SimpleMath">G</span> , the cocycle condition is a very natural one which states that <em><span class="SimpleMath">f</span> must vanish on the boundary of a certain <span class="SimpleMath">(n+1)</span>-simplex</em>. For <span class="SimpleMath">n=2</span> the condition is that a <span class="SimpleMath">2</span>-cocycle <span class="SimpleMath">f(g_1,g_2)</span> must satisfy</p>

<p><span class="SimpleMath">g.f(h,k) + f(g,hk) = f(gh,k) + f(g,h)</span></p>

<p>for all <span class="SimpleMath">g,h,k ∈ G</span>. This equation is explained by the following picture.</p>

<p><img src="images/cocycle.png" align="center" height="200" alt="2-cocycle equation"/></p>

<p>The definition of a cocycle clearly depends on the choice of <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span>. However, the cohomology group <span class="SimpleMath">H^n(G,A)</span>, which is a group of equivalence classes of <span class="SimpleMath">n</span>-cocycles, is independent of the choice of <span class="SimpleMath">R_∗</span>.</p>

<p>There are some occasions when one needs explicit examples of standard cocycles. For instance:</p>


<ul>
<li><p>Let <span class="SimpleMath">G</span> be a finite group and <span class="SimpleMath">k</span> a field of characteristic <span class="SimpleMath">0</span>. The group algebra <span class="SimpleMath">k(G)</span>, and the algebra <span class="SimpleMath">F(G)</span> of functions <span class="SimpleMath">d_g: G→ k, h→ d_g,h</span>, are both Hopf algebras. The tensor product <span class="SimpleMath">F(G) ⊗ k(G)</span> also admits a Hopf algebra structure known as the quantum double <span class="SimpleMath">D(G)</span>. A twisted quantum double <span class="SimpleMath">D_f(G)</span> was introduced by R. Dijkraaf, V. Pasquier &amp; P. Roche <a href="chapBib.html#biBdpr">[DPR91]</a>. The twisted double is a quasi-Hopf algebra depending on a <span class="SimpleMath">3</span>-cocycle <span class="SimpleMath">f: G× G× G→ k</span>. The multiplication is given by <span class="SimpleMath">(d_g ⊗ x)(d_h ⊗ y) = d_gx,xhβ_g(x,y)(d_g ⊗ xy)</span> where <span class="SimpleMath">β_a</span> is defined by <span class="SimpleMath">β_a(h,g) = f(a,h,g) f(h,h^-1ah,g)^-1 f(h,g,(hg)^-1ahg)</span> . Although the algebraic structure of <span class="SimpleMath">D_f(G)</span> depends very much on the particular <span class="SimpleMath">3</span>-cocycle <span class="SimpleMath">f</span>, representation-theoretic properties of <span class="SimpleMath">D_f(G)</span> depend only on the cohomology class of <span class="SimpleMath">f</span>.</p>

</li>
<li><p>An explicit <span class="SimpleMath">2</span>-cocycle <span class="SimpleMath">f: G× G→ A</span> is needed to construct the multiplication <span class="SimpleMath">(a,g)(a',g') = (a + g⋅ a' + f(g,g'), gg')</span> in the extension a group <span class="SimpleMath">G</span> by a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span> determined by the cohomology class of <span class="SimpleMath">f</span> in <span class="SimpleMath">H^2(G,A)</span>. See <a href="chap6.html#X8333413B838D787D"><span class="RefLink">6.7</span></a>.</p>

</li>
<li><p>In work on coding theory and Hadamard matrices a number of papers have investigated square matrices <span class="SimpleMath">(a_ij)</span> whose entries <span class="SimpleMath">a_ij=f(g_i,g_j)</span> are the values of a <span class="SimpleMath">2</span>-cocycle <span class="SimpleMath">f: G× G → Z_2</span> where <span class="SimpleMath">G</span> is a finite group acting trivially on <span class="SimpleMath">Z_2</span>. See for instance <a href="chapBib.html#biBhoradam">[Hor00]</a> and <a href="chap6.html#X7C60E2B578074532"><span class="RefLink">6.10</span></a>.</p>

</li>
</ul>
<p>Given a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span> (with contracting homotopy) and a <span class="SimpleMath">ZG</span>-module <span class="SimpleMath">A</span> one can use HAP commands to compute explicit standard <span class="SimpleMath">n</span>-cocycles <span class="SimpleMath">f: G^n → A</span>. With the twisted quantum double in mind, we illustrate the computation for <span class="SimpleMath">n=3</span>, <span class="SimpleMath">G=S_3</span>, and <span class="SimpleMath">A=U(1)</span> the group of complex numbers of modulus <span class="SimpleMath">1</span> with trivial <span class="SimpleMath">G</span>-action.</p>

<p>We first compute a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R_∗</span>. The Universal Coefficient Theorem gives an isomorphism <span class="SimpleMath">H_3(G,U(1)) = Hom_ Z(H_3(G, Z), U(1))</span>, The multiplicative group <span class="SimpleMath">U(1)</span> can thus be viewed as <span class="SimpleMath">Z_m</span> where <span class="SimpleMath">m</span> is a multiple of the exponent of <span class="SimpleMath">H_3(G, Z)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SymmetricGroup(3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R:=ResolutionFiniteGroup(G,4);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">TR:=TensorWithIntegers(R);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TR,3);</span>
[ 6 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R!.dimension(3);</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R!.dimension(4);</span>
5

</pre></div>

<p>We thus replace the very infinite group U(1) by the finite cyclic group <span class="SimpleMath">Z_6</span>. Since the resolution <span class="SimpleMath">R_∗</span> has <span class="SimpleMath">4</span> generators in degree <span class="SimpleMath">3</span>, a homomorphism <span class="SimpleMath">f: R^3→ U(1)</span> can be represented by a list <span class="SimpleMath">f=[f_1, f_2, f_3, f_4]</span> with <span class="SimpleMath">f_i</span> the image in <span class="SimpleMath">Z_6</span> of the <span class="SimpleMath">i</span>th generator. The cocycle condition on <span class="SimpleMath">f</span> can be expressed as a matrix equation</p>

<p><span class="SimpleMath">Mf^t = 0 mod 6</span>.</p>

<p>where the matrix <span class="SimpleMath">M</span> is obtained from the following command and <span class="SimpleMath">f^t</span> denotes the transpose.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=CocycleCondition(R,3);;</span>

</pre></div>

<p>A particular cocycle <span class="SimpleMath">f=[f_1, f_2, f_3, f_4]</span> can be obtained by choosing a solution to the equation Mf^t=0.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SolutionsMod2:=NullspaceModQ(TransposedMat(M),2);</span>
[ [ 0, 0, 0, 0 ], [ 0, 0, 1, 1 ], [ 1, 1, 0, 0 ], [ 1, 1, 1, 1 ] ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SolutionsMod3:=NullspaceModQ(TransposedMat(M),3);</span>
[ [ 0, 0, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 0, 2 ], [ 0, 0, 1, 0 ],
  [ 0, 0, 1, 1 ], [ 0, 0, 1, 2 ], [ 0, 0, 2, 0 ], [ 0, 0, 2, 1 ],
  [ 0, 0, 2, 2 ] ]

</pre></div>

<p>A non-standard <span class="SimpleMath">3</span>-cocycle <span class="SimpleMath">f</span> can be converted to a standard one using the command <code class="code">StandardCocycle(R,f,n,q)</code> . This command inputs <span class="SimpleMath">R_∗</span>, integers <span class="SimpleMath">n</span> and <span class="SimpleMath">q</span>, and an <span class="SimpleMath">n</span>-cocycle <span class="SimpleMath">f</span> for the resolution <span class="SimpleMath">R_∗</span>. It returns a standard cocycle <span class="SimpleMath">G^n → Z_q</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">f:=3*SolutionsMod2[3] - SolutionsMod3[5];   #An example solution to Mf=0 mod 6.</span>
[ 3, 3, -1, -1 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Standard_f:=StandardCocycle(R,f,3,6);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">g:=Random(G); h:=Random(G); k:=Random(G);</span>
(1,2)
(1,3,2)
(1,3)

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Standard_f(g,h,k);</span>
3

</pre></div>

<p>A function <span class="SimpleMath">f: G× G× G → A</span> is a standard <span class="SimpleMath">3</span>-cocycle if and only if</p>

<p><span class="SimpleMath">g⋅ f(h,k,l) - f(gh,k,l) + f(g,hk,l) - f(g,h,kl) + f(g,h,k) = 0</span></p>

<p>for all <span class="SimpleMath">g,h,k,l ∈ G</span>. In the above example the group <span class="SimpleMath">G=S_3</span> acts trivially on <span class="SimpleMath">A=Z_6</span>. The following commands show that the standard <span class="SimpleMath">3</span>-cocycle produced in the example really does satisfy this <span class="SimpleMath">3</span>-cocycle condition.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sf:=Standard_f;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Test:=function(g,h,k,l);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">return sf(h,k,l) - sf(g*h,k,l) + sf(g,h*k,l) - sf(g,h,k*l) + sf(g,h,k);</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">end;</span>
function( g, h, k, l ) ... end

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">for g in G do for h in G do for k in G do for l in G do</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">Print(Test(g,h,k,l),",");</span>
<span class="GAPprompt">&gt;</span> <span class="GAPinput">od;od;od;od;</span>
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,6,6,0,0,6,
0,0,0,0,0,6,6,6,0,6,0,12,12,6,12,6,0,12,6,0,6,6,0,0,0,0,0,0,0,12,12,6,6,6,0,
6,6,0,6,6,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,
0,6,0,0,6,6,6,0,0,0,0,0,0,0,-6,0,0,-6,0,-6,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,
0,0,0,6,6,6,0,0,0,6,6,6,0,0,0,0,-6,0,6,6,0,0,0,0,0,0,0,12,6,6,0,6,0,0,0,0,12,
6,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,0,0,6,0,0,0,0,0,6,6,
6,0,0,0,6,12,6,6,0,0,0,-6,0,0,6,0,0,0,0,0,0,0,12,12,6,6,6,0,0,0,0,6,6,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,0,6,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,
6,6,0,6,6,0,12,12,6,12,12,0,0,0,0,0,0,0,6,6,0,0,0,0,6,6,6,12,12,0,-6,-6,0,0,
0,0,6,6,0,0,6,0,0,6,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,
0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,6,6,0,6,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-6,0,6,0,6,0,6,0,0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,
0,0,0,0,0,0,12,12,6,12,12,0,6,6,0,6,6,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,
0,0,0,0,0,0,6,0,0,6,6,0,6,6,0,6,0,0,6,6,6,0,0,0,-6,0,0,0,-6,0,0,-6,0,-6,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,6,0,0,0,0,0,0,0,6,6,0,0,0,
0,0,0,0,6,6,0,-6,0,0,-6,0,0,12,6,0,-6,-6,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,-6,0,0,0,0,0,0,0,0,0,0,6,6,6,6,6,0,6,12,0,6,0,0,6,0,0,0,6,0,0,0,0,0,0,
0,6,12,0,0,0,0,0,0,0,6,6,0,-6,-6,0,0,0,0,0,0,0,0,6,0,0,6,0,6,6,0,0,0,0,0,0,0,
6,0,0,0,6,0,0,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,
0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,6,0,6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,
6,6,0,6,6,6,12,12,0,0,0,0,0,0,0,6,6,0,0,6,0,0,6,0,6,6,

</pre></div>

<p><a id="X7C5233E27D2D603E" name="X7C5233E27D2D603E"></a></p>

<h4>7.14 <span class="Heading">Quillen's complex and the <span class="SimpleMath">p</span>-part of homology </span></h4>

<p>Let <span class="SimpleMath">G</span> be a finite group with order divisible by prime <span class="SimpleMath">p</span>. Let <span class="SimpleMath">mathcal A=mathcal A_p(G)</span> denote Quillen's simplicial complex arising as the order complex of the poset of non-trivial elementary abelian <span class="SimpleMath">p</span>-subgroups of <span class="SimpleMath">G</span>. The group <span class="SimpleMath">G</span> acts on <span class="SimpleMath">mathcal A</span>. Denote the orbit of a <span class="SimpleMath">k</span>-simplex <span class="SimpleMath">e^k</span> by <span class="SimpleMath">[e^k]</span>, and the stabilizer of <span class="SimpleMath">e^k</span> by <span class="SimpleMath">Stab(e^k) ≤ G</span>. For a finite abelian group <span class="SimpleMath">H</span> let <span class="SimpleMath">H_p</span> denote the Sylow <span class="SimpleMath">p</span>-subgroup or the "<span class="SimpleMath">p</span>-part". In Theorem 3.3 of <a href="chapBib.html#biBWebb">[Web87]</a> P.J. Webb proved the following.</p>

<p><strong class="button">Theorem.</strong><a href="chapBib.html#biBWebb">[Web87]</a> For any <span class="SimpleMath">G</span>-module <span class="SimpleMath">M</span> there is a (non natural) isomomorphism</p>

<p><span class="SimpleMath">H_n(G,M)_p ⊕ ⨁_[e^k] : k~ odd~H_n(Stab(e^k),M)_p ≅ ⨁_[e^k] : k~ even~H_n(Stab(e^k),M)_p</span></p>

<p>for <span class="SimpleMath">n≥ 1</span>. The isomorphism can also be expressed as</p>

<p><span class="SimpleMath">H_n(G,M)_p ≅ ⨁_[e^k] : k~ even~H_n(Stab(e^k),M)_p - ⨁_[e^k] : k~ odd~H_n(Stab(e^k),M)_p</span></p>

<p>where terms can often be cancelled.</p>

<p>Thus the additive structure of the <span class="SimpleMath">p</span>-part of the homology of <span class="SimpleMath">G</span> is determined by that of the stabilizer groups. The result also holds with homology replaced by cohomology.</p>

<p><strong class="button">Illustration 1</strong></p>

<p>As an illustration of the theorem, the following commands calculate</p>

<p><span class="SimpleMath">H_n(SL_3( Z_2), Z) ≅ H_n(S_4, Z)_2 ⊕ H_n(S_4, Z)_2 ⊖ H_n(D_8, Z)_2 ⊕ H_n(S_3, Z)_3 ⊕ H_n(C_7 : C_3, Z)_7</span></p>

<p>where <span class="SimpleMath">n≥ 1</span>, <span class="SimpleMath">S_k</span> denotes the symmetric group on <span class="SimpleMath">n</span> letters, <span class="SimpleMath">D_8</span> the dihedral group of order <span class="SimpleMath">8</span> and <span class="SimpleMath">C_7 : C_3</span> a nonabelian semi-direct product of cyclic groups. Furthermore, for <span class="SimpleMath">n≥ 1</span></p>

<p><span class="SimpleMath">H_n(C_7 : C_3, Z)_7 ={beginarrayll Z_7, n ≡ 5 mod 6 0, otherwise endarray.</span></p>

<p>and</p>

<p><span class="SimpleMath">H_n(S_3, Z)_3 ={beginarrayll Z_3, n ≡ 3 mod 4 0, n ~otherwise . endarray.</span></p>

<p>Formulas for <span class="SimpleMath">H_n(S_4, Z)</span> and <span class="SimpleMath">H_n(D_8, Z)</span> can be found in the literature. Alternatively, they can be computed using <strong class="button">GAP</strong> for a given value of <span class="SimpleMath">n</span>. For <span class="SimpleMath">n=27</span> we find</p>

<p><span class="SimpleMath">H_27(S_4, Z)_2 ⊕ H_27(S_4, Z)_2 ⊖ H_27(D_8, Z)_2 ≅ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_4</span></p>

<p>and</p>

<p><span class="SimpleMath">H_27(SL_3( Z_2), Z) ≅ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_4 ⊕ Z_3</span> .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=SL(3,2);;Factors(Order(G));</span>
[ 2, 2, 2, 3, 7 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D2:=HomologicalGroupDecomposition(G,2);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D3:=HomologicalGroupDecomposition(G,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D7:=HomologicalGroupDecomposition(G,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D2[1],StructureDescription);</span>
[ "S4", "S4" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D2[2],StructureDescription);</span>
[ "D8" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D3[1],StructureDescription);</span>
[ "S3" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D3[2],StructureDescription);</span>
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D7[1],StructureDescription);</span>
[ "C7 : C3" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D7[2],StructureDescription);</span>
[  ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CohomologicalPeriod(D7[1][1]);</span>
6
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([1..6],n-&gt;GroupHomology(D7[1][1],n));</span>
[ [ 3 ], [  ], [ 3 ], [  ], [ 3, 7 ], [  ] ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CohomologicalPeriod(D3[1][1]);</span>
4
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([1..4],n-&gt;GroupHomology(D3[1][1],n));</span>
[ [ 2 ], [  ], [ 6 ], [  ] ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R_S4:=ResolutionFiniteGroup(Group([(1,2),(2,3),(3,4)]),28);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">R_D8:=ResolutionFiniteGroup(Group([(1,2),(1,3)(2,4)]),28);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(R_S4),27);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 12 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(TensorWithIntegers(R_D8),27);</span>
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4 ]

</pre></div>

<p><strong class="button">Illustration 2</strong></p>

<p>As a further illustration of the theorem, the following commands calculate</p>

<p><span class="SimpleMath">H_n(M_12,M)_3 ≅ ⨁_1≤ i≤ 3H_n(Stab_i,M)_3 - ⨁_4≤ i≤ 5H_n(Stab_i,M)_3</span></p>

<p>for the Mathieu simple group <span class="SimpleMath">M_12</span> of order <span class="SimpleMath">95040</span>, where</p>

<p><span class="SimpleMath">Stab_1≅ Stab_3=(((C_3 × C_3) : Q_8) : C_3) : C_2</span></p>

<p><span class="SimpleMath">Stab_2=A_4 × S_3</span></p>

<p><span class="SimpleMath">Stab_4=C_3 × S_3</span></p>

<p><span class="SimpleMath">Stab_5=((C_3 × C_3) : C_3) : (C_2 × C_2)</span> .</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=MathieuGroup(12);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[1],StructureDescription);</span>
[ "(((C3 x C3) : Q8) : C3) : C2", "A4 x S3", "(((C3 x C3) : Q8) : C3) : C2" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[2],StructureDescription);</span>
[ "C3 x S3", "((C3 x C3) : C3) : (C2 x C2)" ]

</pre></div>

<p><strong class="button">Illustration 3</strong></p>

<p>As a third illustration, the following commands show that <span class="SimpleMath">H_n(M_23,M)_p</span> is periodic for primes <span class="SimpleMath">p=5, 7, 11, 23</span> of periods dividing <span class="SimpleMath">8, 6, 10, 22</span> respectively.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=MathieuGroup(23);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Factors(Order(G));</span>
[ 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 7, 11, 23 ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">sd:=StructureDescription;;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,5);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C15 : C4" ]
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
8

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,7);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C2 x (C7 : C3)" ]
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
6

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,11);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C11 : C5" ]
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
10

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,23);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[1],sd);List(D[2],sd);</span>
[ "C23 : C11" ]
[  ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">IsPeriodic(D[1][1]);</span>
true
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">CohomologicalPeriod(D[1][1]);</span>
22

</pre></div>

<p>The order <span class="SimpleMath">|M_23|=10200960</span> is divisible by primes <span class="SimpleMath">p=2, 3, 5, 7, 11, 23</span>. For <span class="SimpleMath">p=3</span> the following commands establish that the Poincare series</p>

<p><span class="SimpleMath">(x^16 - 2x^15</span> <span class="SimpleMath">+ 3x^14 - 4x^13</span> <span class="SimpleMath">+ 4x^12 - 4x^11</span> <span class="SimpleMath">+ 4x^10 - 3x^9</span> <span class="SimpleMath">+ 3x^8 - 3x^7 +</span> <span class="SimpleMath">4x^6 - 4x^5</span> <span class="SimpleMath">+ 4x^4 -4x^3</span> <span class="SimpleMath">+ 3x^2 -2x + 1) /</span> <span class="SimpleMath">(x^18 - 2x^17</span> <span class="SimpleMath">+ 3x^16 - 4x^15</span> <span class="SimpleMath">+ 4x^14 -</span> <span class="SimpleMath">4x^13 + 4x^12</span> <span class="SimpleMath">- 4x^11 + 4x^10</span> <span class="SimpleMath">- 4x^9 + 4x^8</span> <span class="SimpleMath">- 4x^7 + 4x^6</span> <span class="SimpleMath">- 4x^5 + 4x^4</span> <span class="SimpleMath">- 4x^3 +</span> <span class="SimpleMath">3x^2 - 2x + 1)</span></p>

<p>describes the dimension of the vector space <span class="SimpleMath">H^n(M_23, Z_3)</span> up to at least degree <span class="SimpleMath">n=40</span>. To prove that it describes the dimension in all degrees one would need to verify "completion criteria".</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">G:=MathieuGroup(23);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=HomologicalGroupDecomposition(G,3);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[1],StructureDescription);</span>
[ "(C3 x C3) : QD16", "A5 : S3" ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List(D[2],StructureDescription);</span>
[ "S3 x S3" ]

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P1:=PoincareSeriesPrimePart(D[1][1],3,40);</span>
(x_1^16-2*x_1^15+3*x_1^14-4*x_1^13+4*x_1^12-4*x_1^11+4*x_1^10-3*x_1^9+3*x_1^8-3*x_1^7+4*x_1^6-4*x_1^5+\
4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)/(x_1^18-2*x_1^17+3*x_1^16-4*x_1^15+4*x_1^14-4*x_1^13+4*x_1^12-4*x_1^1\
1+4*x_1^10-4*x_1^9+4*x_1^8-4*x_1^7+4*x_1^6-4*x_1^5+4*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P2:=PoincareSeriesPrimePart(D[1][2],3,40);</span>
(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">P3:=PoincareSeriesPrimePart(D[2][1],3,40);</span>
(x_1^4-2*x_1^3+3*x_1^2-2*x_1+1)/(x_1^6-2*x_1^5+3*x_1^4-4*x_1^3+3*x_1^2-2*x_1+1)

</pre></div>

<p><a id="X865CC8E0794C0E61" name="X865CC8E0794C0E61"></a></p>

<h4>7.15 <span class="Heading">Homology of a Lie algebra</span></h4>

<p>Let <span class="SimpleMath">A</span> be the Lie algebra constructed from the associative algebra <span class="SimpleMath">M^4× 4( Q)</span> of all <span class="SimpleMath">4× 4</span> rational matrices. Let <span class="SimpleMath">V</span> be its adjoint module (with underlying vector space of dimension <span class="SimpleMath">16</span> and equal to that of <span class="SimpleMath">A</span>). The following commands compute <span class="SimpleMath">H_4(A,V) = Q</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">M:=FullMatrixAlgebra(Rationals,4);; </span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=LieAlgebra(M);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">V:=AdjointModule(A);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=ChevalleyEilenbergComplex(V,17);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..17],C!.dimension);</span>
[ 16, 256, 1920, 8960, 29120, 69888, 128128, 183040, 205920, 183040, 128128, 
  69888, 29120, 8960, 1920, 256, 16, 0 ]
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Homology(C,4);</span>
1

</pre></div>

<p>Note that the eighth term <span class="SimpleMath">C_8(V)</span> in the Chevalley-Eilenberg complex <span class="SimpleMath">C_∗(V)</span> is a vector space of dimension <span class="SimpleMath">205920</span> and so it will take longer to compute the homology in degree <span class="SimpleMath">8</span>.</p>

<p>As a second example, let <span class="SimpleMath">B</span> be the classical Lie ring of type <span class="SimpleMath">B_3</span> over the ring of integers. The following commands compute <span class="SimpleMath">H_3(B, Z)= Z ⊕ Z_2^105</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">A:=SimpleLieAlgebra("B",7,Integers);       </span>
&lt;Lie algebra of dimension 105 over Integers&gt;
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=ChevalleyEilenbergComplex(A,4,"sparse");</span>
Sparse chain complex of length 4 in characteristic 0 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">D:=ContractedComplex(C);</span>
Sparse chain complex of length 4 in characteristic 0 . 

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Collected(Homology(D,3));</span>
[ [ 0, 1 ], [ 2, 105 ] ]

</pre></div>

<p><a id="X86B4EE4783A244F7" name="X86B4EE4783A244F7"></a></p>

<h4>7.16 <span class="Heading">Covers of Lie algebras</span></h4>

<p>A short exact sequence of Lie algebras</p>

<p><span class="SimpleMath">M ↣ C ↠ L</span></p>

<p>(over a field <span class="SimpleMath">k</span>) is said to be a <em>stem extension</em> of <span class="SimpleMath">L</span> if <span class="SimpleMath">M</span> lies both in the centre <span class="SimpleMath">Z(C)</span> and in the derived subalgeba <span class="SimpleMath">C^2</span>. If, in addition, the rank of the vector space <span class="SimpleMath">M</span> is equal to the rank of the second Chevalley-Eilenberg homology <span class="SimpleMath">H_2(L,k)</span> then the Lie algebra <span class="SimpleMath">C</span> is said to be a <em>cover</em> of <span class="SimpleMath">L</span>.</p>

<p>Each finite dimensional Lie algebra <span class="SimpleMath">L</span> admits a cover <span class="SimpleMath">C</span>, and this cover can be shown to be unique up to Lie isomorphism.</p>

<p>The cover can be used to determine whether there exists a Lie algebra <span class="SimpleMath">E</span> whose central quotient <span class="SimpleMath">E/Z(E)</span> is isomorphic to <span class="SimpleMath">L</span>. The image in <span class="SimpleMath">L</span> of the centre of <span class="SimpleMath">C</span> is called the <em>Lie Epicentre</em> of <span class="SimpleMath">L</span>, and this image is trivial if and only if such an <span class="SimpleMath">E</span> exists.</p>

<p>The cover can also be used to determine the stem extensions of <span class="SimpleMath">L</span>. It can be shown that each stem extension is a quotient of the cover by an ideal in the Lie multiplier <span class="SimpleMath">H_2(L,k)</span>.</p>

<p><a id="X7DFF32A67FF39C82" name="X7DFF32A67FF39C82"></a></p>

<h5>7.16-1 <span class="Heading">Computing a cover</span></h5>

<p>The following commands compute the cover <span class="SimpleMath">C</span> of the solvable but non-nilpotent 13-dimensional Lie algebra <span class="SimpleMath">L</span> (over <span class="SimpleMath">k= Q</span>) that was introduced by M. Wuestner <a href="chapBib.html#biBWustner">[Wue92]</a>. They also show that: the second homology of <span class="SimpleMath">C</span> is trivial and compute the ranks of the homology groups in other dimensions; the Lie algebra <span class="SimpleMath">L</span> is not isomorphic to any central quotient <span class="SimpleMath">E/Z(E)</span>.</p>


<div class="example"><pre>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SCTL:=EmptySCTable(13,0,"antisymmetric");;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 6, [ 1, 7 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 8, [ 1, 9 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 10, [ 1, 11 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 12, [ 1, 13 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 7, [ -1, 6 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 9, [ -1, 8 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 11, [ -1, 10 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 1, 13, [ -1, 12 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 6, 7, [ 1, 2 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 8, 9, [ 1, 3 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 6, 9, [ -1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 7, 8, [ 1, 5 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 2, 8, [ 1, 12 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 2, 9, [ 1, 13 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 3, 6, [ 1, 10 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 3, 7, [ 1, 11 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 2, 3, [ 1, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 6, [ -1, 12 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 7, [ -1, 13 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 8, [ -1, 10 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 5, 9, [ -1, 11 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 6, 11, [ -1/2, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 7, 10, [ 1/2, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 8, 13, [ 1/2, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">SetEntrySCTable( SCTL, 9, 12, [ -1/2, 4 ] );;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">L:=LieAlgebraByStructureConstants(Rationals,SCTL);;</span>

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">C:=Source(LieCoveringHomomorphism(L));</span>
&lt;Lie algebra of dimension 15 over Rationals&gt;

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">Dimension(LieEpiCentre(L));</span>
1

<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">ch:=ChevalleyEilenbergComplex(C,17);;</span>
<span class="GAPprompt">gap&gt;</span> <span class="GAPinput">List([0..16],n-&gt;Homology(ch,n));     </span>
[ 1, 1, 0, 9, 23, 27, 47, 88, 88, 47, 27, 23, 9, 0, 1, 1, 0 ]

</pre></div>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap6.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap8.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chapBib.html">Bib</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>