1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (HAP commands) - Chapter 8: Cohomology rings and Steenrod operations for groups</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap8" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap7_mj.html">[Previous Chapter]</a> <a href="chap9_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap8.html">[MathJax off]</a></p>
<p><a id="X7ED29A58858AAAF2" name="X7ED29A58858AAAF2"></a></p>
<div class="ChapSects"><a href="chap8_mj.html#X7ED29A58858AAAF2">8 <span class="Heading">Cohomology rings and Steenrod operations for groups</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X877CAF8B7E64DE04">8.1 <span class="Heading">Mod-<span class="SimpleMath">\(p\)</span> cohomology rings of finite groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X870E0299782638AF">8.1-1 <span class="Heading">Ring presentations (for the commutative <span class="SimpleMath">\(p=2\)</span> case)</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X862538218748627F">8.2 <span class="Heading">Poincare Series for Mod-<span class="SimpleMath">\(p\)</span> cohomology</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X780DF87680C3F52B">8.3 <span class="Heading">Functorial ring homomorphisms in Mod-<span class="SimpleMath">\(p\)</span> cohomology</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X834CED9D7A104695">8.3-1 <span class="Heading">Testing homomorphism properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X7A0D505D844F0CD4">8.3-2 <span class="Heading">Testing functorial properties</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X855764877FA44225">8.3-3 <span class="Heading">Computing with larger groups</span></a>
</span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X80114B0483EF9A67">8.4 <span class="Heading">Steenrod operations for finite <span class="SimpleMath">\(2\)</span>-groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7D5ACA56870A40E9">8.5 <span class="Heading">Steenrod operations on the classifying space of a finite <span class="SimpleMath">\(p\)</span>-group</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap8_mj.html#X7D2D26C0784A0E14">8.6 <span class="Heading">Mod-<span class="SimpleMath">\(p\)</span> cohomology rings of crystallographic groups</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X81C107C07CF02F0E">8.6-1 <span class="Heading">Poincare series for crystallographic groups</span></a>
</span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap8_mj.html#X7F5C242F7BC938A5">8.6-2 <span class="Heading">Mod <span class="SimpleMath">\(2\)</span> cohomology rings of <span class="SimpleMath">\(3\)</span>-dimensional crystallographic groups</span></a>
</span>
</div></div>
</div>
<h3>8 <span class="Heading">Cohomology rings and Steenrod operations for groups</span></h3>
<p><a id="X877CAF8B7E64DE04" name="X877CAF8B7E64DE04"></a></p>
<h4>8.1 <span class="Heading">Mod-<span class="SimpleMath">\(p\)</span> cohomology rings of finite groups</span></h4>
<p>For a finite group <span class="SimpleMath">\(G\)</span>, prime <span class="SimpleMath">\(p\)</span> and positive integer <span class="SimpleMath">\(deg\)</span> the function <code class="code">ModPCohomologyRing(G,p,deg)</code> computes a finite dimensional graded ring equal to the cohomology ring <span class="SimpleMath">\(H^{\le deg}(G,\mathbb Z_p) := H^\ast(G,\mathbb Z_p)/\{x=0\ :\ {\rm degree}(x)>deg \}\)</span> .</p>
<p>The following example computes the first <span class="SimpleMath">\(14\)</span> degrees of the cohomology ring <span class="SimpleMath">\(H^\ast(M_{11},\mathbb Z_2)\)</span> where <span class="SimpleMath">\(M_{11}\)</span> is the Mathieu group of order <span class="SimpleMath">\(7920\)</span>. The ring is seen to be generated by three elements <span class="SimpleMath">\(a_3, a_4, a_6\)</span> in degrees <span class="SimpleMath">\(3,4,5\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=MathieuGroup(11);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=2;;deg:=14;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=ModPCohomologyRing(G,p,deg);</span>
<algebra over GF(2), with 20 generators>
<span class="GAPprompt">gap></span> <span class="GAPinput">gns:=ModPRingGenerators(A);</span>
[ v.1, v.6, v.8+v.10, v.13 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">List(gns,A!.degree);</span>
[ 0, 3, 4, 5 ]
</pre></div>
<p>The following additional command produces a rational function <span class="SimpleMath">\(f(x)\)</span> whose series expansion <span class="SimpleMath">\(f(x) = \sum_{i=0}^\infty f_ix^i\)</span> has coefficients <span class="SimpleMath">\(f_i\)</span> which are guaranteed to satisfy <span class="SimpleMath">\(f_i = \dim H^i(G,\mathbb Z_p)\)</span> in the range <span class="SimpleMath">\(0\le i\le deg\)</span>. We refer to <span class="SimpleMath">\(f(x)\)</span> as the <em>Poincare series</em> for the group at the prime <span class="SimpleMath">\(p=2\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=PoincareSeries(A);</span>
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">Let's use f to list the first few cohomology dimensions</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ExpansionOfRationalFunction(f,deg); </span>
[ 1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2 ]
</pre></div>
<p>An alternative command for computing the Poincare series is the following. In this alternative we choose to ensure correctness in degrees <span class="SimpleMath">\(\le 100\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">PoincareSeriesPrimePart(MathieuGroup(11),2,100);</span>
The series is guaranteed correct for group cohomology in degrees < 101
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
</pre></div>
<p>If one needs to verify that the Poincare series is valid in all degrees then more work is required. One readily implemented (but computationally non-optimal) approach is to use Peter Symmonds result <a href="chapBib_mj.html#biBSymmonds">[Sym10]</a> that: if a non-cyclic finite group <span class="SimpleMath">\(G\)</span> has a faithful complex representation equal to a sum of irreducibles of dimensions <span class="SimpleMath">\(n_i\)</span> then the cohomology ring <span class="SimpleMath">\(H^\ast(G,\mathbb Z_p)\)</span> is generated by elements of degree at most <span class="SimpleMath">\(\sum n_i^2\)</span>; a degree bound for the relations is <span class="SimpleMath">\(2 \sum n_i^2\)</span>. The following commands use this bound, in conjunction with Webb's result <a href="chap7_mj.html#X7C5233E27D2D603E"><span class="RefLink">7.14</span></a> on the Quillen complex, to obtained a Poincare series that is guaranteed correct in all degree.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=MathieuGroup(11);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">h:=HomologicalGroupDecomposition(G,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ModPCohomologyPresentationBounds(h[1][1]);</span>
rec( generators_degree_bound := 4, relators_degree_bound := 8 )
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=ModPCohomologyRing(h[1][1],2,9);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f11:=HilbertPoincareSeries(F);</span>
(x_1^2-x_1+1)/(x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">ModPCohomologyPresentationBounds(h[1][2]);</span>
rec( generators_degree_bound := 9, relators_degree_bound := 18 )
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=ModPCohomologyRing(h[1][2],2,19);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f12:=HilbertPoincareSeries(F);</span>
(x_1^2+1)/(x_1^4-x_1^3-x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">ModPCohomologyPresentationBounds(h[2][1]);</span>
rec( generators_degree_bound := 4, relators_degree_bound := 8 )
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=ModPCohomologyRing(h[2][1],2,9);;F:=PresentationOfGradedStructureConstantAlgebra(A);;f21:=HilbertPoincareSeries(F);</span>
(1)/(x_1^2-2*x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">f11+f12-f21;</span>
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
</pre></div>
<p><a id="X870E0299782638AF" name="X870E0299782638AF"></a></p>
<h5>8.1-1 <span class="Heading">Ring presentations (for the commutative <span class="SimpleMath">\(p=2\)</span> case)</span></h5>
<p>The cohomology ring <span class="SimpleMath">\(H^\ast(G,\mathbb Z_p)\)</span> is graded commutative which, in the case <span class="SimpleMath">\(p=2\)</span>, implies strictly commutative. The following additional commands can be applied in the <span class="SimpleMath">\(p=2\)</span> setting to determine a presentation for a graded commutative ring <span class="SimpleMath">\(F\)</span> that is guaranteed to be isomorphic to the cohomology ring <span class="SimpleMath">\(H^\ast(G,\mathbb Z_p)\)</span> in degrees <span class="SimpleMath">\(i\le deg\)</span>. If <span class="SimpleMath">\(deg\)</span> is chosen "sufficiently large" then <span class="SimpleMath">\(F\)</span> will be isomorphic to the cohomology ring.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=PresentationOfGradedStructureConstantAlgebra(A);</span>
Graded algebra GF(2)[ x_1, x_2, x_3 ] / [ x_1^2*x_2+x_3^2
] with indeterminate degrees [ 3, 4, 5 ]
</pre></div>
<p>The additional command</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=HilbertPoincareSeries(F);</span>
(x_1^4-x_1^3+x_1^2-x_1+1)/(x_1^6-x_1^5+x_1^4-2*x_1^3+x_1^2-x_1+1)
</pre></div>
<p>invokes a call to <strong class="button">Singular</strong> in order to calculate the Poincare series of the graded algebra <span class="SimpleMath">\(F\)</span>.</p>
<p><a id="X862538218748627F" name="X862538218748627F"></a></p>
<h4>8.2 <span class="Heading">Poincare Series for Mod-<span class="SimpleMath">\(p\)</span> cohomology</span></h4>
<p>For a finite <span class="SimpleMath">\(p\)</span>-group <span class="SimpleMath">\(G\)</span> the command <code class="code">PoincarePolynomial(G)</code> returns a rational function <span class="SimpleMath">\(f(x)=p(x)/q(x)\)</span> whose series expansion <span class="SimpleMath">\(f(x) = \sum_{i=0}^\infty f_ix^i\)</span> has coefficients <span class="SimpleMath">\(f_i\)</span> that are guaranteed to satisfy <span class="SimpleMath">\(f_i = \dim H^i(G,\mathbb Z_p)\)</span> in the range <span class="SimpleMath">\(0\le i < 1+ deg\)</span> for some displayed value of <span class="SimpleMath">\(deg\)</span>. Furthermore, the coefficients <span class="SimpleMath">\(f_i\)</span> are guaranteed to be integers for all <span class="SimpleMath">\(0\le i\le 1000\)</span> and the order of the pole of <span class="SimpleMath">\(f(x)\)</span> at <span class="SimpleMath">\(x=1\)</span> is guaranteed to equal the <span class="SimpleMath">\(p\)</span>-rank of <span class="SimpleMath">\(G\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SmallGroup(3^4,10);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">StructureDescription(G);</span>
"C3 . ((C3 x C3) : C3) = (C3 x C3) . (C3 x C3)"
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=PoincareSeries(G);</span>
The series is guaranteed correct for group cohomology in degrees < 14
(-x_1^3+x_1^2+1)/(x_1^6-2*x_1^5+2*x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)
</pre></div>
<p>If a higher value of <span class="SimpleMath">\(deg\)</span> is required then this can be entered as an optional second argument. For instance, the following increases the value to <span class="SimpleMath">\(deg=100\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=PoincareSeries(G,100);</span>
The series is guaranteed correct for group cohomology in degrees < 101
(-x_1^3+x_1^2+1)/(x_1^6-2*x_1^5+2*x_1^4-2*x_1^3+2*x_1^2-2*x_1+1)
</pre></div>
<p>As mentioned above, one approach to verifying that the Poincare series is valid in all degrees is to use Peter Symmonds result <a href="chapBib_mj.html#biBSymmonds">[Sym10]</a> that: if a non-cyclic finite group <span class="SimpleMath">\(G\)</span> has a faithful complex representation equal to a sum of irreducibles of dimensions <span class="SimpleMath">\(n_i\)</span> then the cohomology ring <span class="SimpleMath">\(H^\ast(G,\mathbb Z_p)\)</span> is generated by elements of degree at most <span class="SimpleMath">\(\sum n_i^2\)</span>; a degree bound for the relations is <span class="SimpleMath">\(2 \sum n_i^2\)</span>. Thus, if we use at least <span class="SimpleMath">\(\sum n_i^2\)</span> degrees of a resolution to construct a presentation for the cohomology ring then the presented ring maps surjectively onto the actual cohomology ring. Furthermore, if this surjection is a bijection in the first <span class="SimpleMath">\(2 \sum n_i^2\)</span> degrees then it is necessarily an isomorphism in all degrees.</p>
<p>The following commands use this approach to obtain a guaranteed presentation and Poincare series for the Sylow <span class="SimpleMath">\(2\)</span>-subgroup of the Mathieu group <span class="SimpleMath">\(M_{12}\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">ModPCohomologyPresentationBounds(G);</span>
rec( generators_degree_bound := 16, relators_degree_bound := 32 )
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=ModPCohomologyRing(G,16);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=PresentationOfGradedStructureConstantAlgebra(A);</span>
Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x_5, x_6, x_7 ] /
[ x_1*x_3, x_1*x_2, x_1*x_4, x_2*x_3^2+x_3^3+x_3*x_4+x_3*x_5,
x_2*x_6+x_3*x_6+x_4*x_5, x_2*x_3*x_4+x_3^2*x_4+x_3*x_6,
x_2^2*x_4+x_3^2*x_4+x_3*x_6+x_4^2, x_3^2*x_6+x_3*x_4^2+x_3*x_4*x_5,
x_2*x_4*x_5+x_4*x_6, x_3^2*x_4*x_5+x_3*x_4*x_6+x_3*x_5*x_6,
x_1^3*x_6+x_1^2*x_7+x_1*x_5*x_6+x_3*x_5*x_6+x_4*x_5^2+x_6^2,
x_3*x_4^2*x_5+x_3*x_6^2 ] with indeterminate degrees [ 1, 1, 1, 2, 2, 3, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=HilbertPoincareSeries(F);</span>
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
<span class="GAPprompt">gap></span> <span class="GAPinput">ff:=PoincareSeries(G,32);</span>
The series is guaranteed correct for group cohomology in degrees < 33
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
</pre></div>
<p>An alternative approach to obtaining a guaranteed presentation is to implement Len even's spectral sequence proof of the finite generation of cohomology rings of finite groups. The following example determines a guaranteed presentation in this way for the cohomology ring <span class="SimpleMath">\(H^\ast(Syl_2(M_{12}),\mathbb Z_2)\)</span>. The Lyndon-Hochschild-Serre spectral sequence, and Groebner basis routines from <strong class="button">Singular</strong> (for commutative rings), are used to determine how much of a resolution is needed to compute the guaranteed correct presentation.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SylowSubgroup(MathieuGroup(12),2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=Mod2CohomologyRingPresentation(G);</span>
Alpha version of completion test code will be used. This needs further work.
Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x_5, x_6, x_7 ] /
[ x_2*x_3, x_1*x_2, x_2*x_4, x_1^3+x_1^2*x_3+x_1*x_5,
x_1*x_3*x_4+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_3*x_6+x_4*x_5,
x_1^2*x_4+x_1^2*x_5+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_4^2,
x_1^2*x_3^2+x_1^2*x_5+x_1*x_3*x_5+x_1*x_6+x_3*x_6+x_4^2+x_4*x_5,
x_1^2*x_6+x_1*x_3*x_6+x_1*x_4*x_5+x_3^2*x_6+x_3*x_4^2+x_3*x_4*x_5,
x_1*x_3^2*x_5+x_3^3*x_4+x_1*x_3*x_6+x_1*x_4^2+x_3^2*x_6+x_3*x_4^2+x_4*x_6,
x_1^2*x_3*x_5+x_1*x_3*x_6+x_1*x_4^2+x_1*x_5^2,
x_3^3*x_6+x_3^2*x_4^2+x_3^2*x_4*x_5+x_3*x_4*x_6+x_3*x_5*x_6+x_4^3+x_4*x_5^2,
x_1*x_3^2*x_6+x_1*x_4*x_6+x_2^2*x_7+x_2*x_5*x_6+x_3*x_4*x_6+x_3*x_5*x_6+x_6^2,
x_1^2*x_5^2+x_1*x_3*x_5^2+x_3^2*x_4^2+x_3^2*x_4*x_5+x_2^2*x_7+x_2*x_5*x_6+x_3*x_5*x_6+x_6^2 ]
with indeterminate degrees [ 1, 1, 1, 2, 2, 3, 4 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=HilbertPoincareSeries(F);</span>
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
</pre></div>
<p><a id="X780DF87680C3F52B" name="X780DF87680C3F52B"></a></p>
<h4>8.3 <span class="Heading">Functorial ring homomorphisms in Mod-<span class="SimpleMath">\(p\)</span> cohomology</span></h4>
<p>The following example constructs the ring homomorphism</p>
<p><span class="SimpleMath">\(F\colon H^{\le deg}(G,\mathbb Z_p) \rightarrow H^{\le deg}(H,\mathbb Z_p)\)</span></p>
<p>induced by the group homomorphism <span class="SimpleMath">\(f\colon H\rightarrow G\)</span> with <span class="SimpleMath">\(H=A_5\)</span>, <span class="SimpleMath">\(G=S_5\)</span>, <span class="SimpleMath">\(f\)</span> the canonical inclusion of the alternating group into the symmetric group, <span class="SimpleMath">\(p=2\)</span> and <span class="SimpleMath">\(deg=7\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(5);;H:=AlternatingGroup(5);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=GroupHomomorphismByFunction(H,G,x->x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">p:=2;; deg:=7;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=ModPCohomologyRing(f,p,deg);</span>
[ v.1, v.2, v.4+v.6, v.5, v.7, v.8, v.9, v.12+v.15, v.13, v.14, v.16+v.17,
v.18, v.19, v.20, v.22+v.24+v.28, v.23, v.25, v.26, v.27 ] ->
[ v.1, 0*v.1, v.4+v.5+v.6, 0*v.1, v.7+v.8, 0*v.1, 0*v.1, v.14+v.15, 0*v.1,
0*v.1, v.16+v.17+v.19, 0*v.1, 0*v.1, 0*v.1, v.22+v.23+v.26+v.27+v.28,
v.25, 0*v.1, 0*v.1, 0*v.1 ]
</pre></div>
<p><a id="X834CED9D7A104695" name="X834CED9D7A104695"></a></p>
<h5>8.3-1 <span class="Heading">Testing homomorphism properties</span></h5>
<p>The following commands are consistent with <span class="SimpleMath">\(F\)</span> being a ring homomorphism.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">x:=Random(Source(F));</span>
v.4+v.6+v.8+v.9+v.12+v.13+v.14+v.15+v.18+v.20+v.22+v.24+v.25+v.28+v.32+v.35
<span class="GAPprompt">gap></span> <span class="GAPinput">y:=Random(Source(F));</span>
v.1+v.2+v.7+v.9+v.13+v.23+v.26+v.27+v.32+v.33+v.34+v.35
<span class="GAPprompt">gap></span> <span class="GAPinput">Image(F,x)+Image(F,y)=Image(F,x+y);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">Image(F,x)*Image(F,y)=Image(F,x*y);</span>
true
</pre></div>
<p><a id="X7A0D505D844F0CD4" name="X7A0D505D844F0CD4"></a></p>
<h5>8.3-2 <span class="Heading">Testing functorial properties</span></h5>
<p>The following example takes two "random" automorphisms <span class="SimpleMath">\(f,g\colon K\rightarrow K\)</span> of the group <span class="SimpleMath">\(K\)</span> of order <span class="SimpleMath">\(24\)</span> arising as the direct product <span class="SimpleMath">\(K=C_3\times Q_8\)</span> and constructs the three ring isomorphisms <span class="SimpleMath">\(F,G,FG\colon H^{\le 5}(K,\mathbb Z_2) \rightarrow H^{\le 5}(K,\mathbb Z_2)\)</span> induced by <span class="SimpleMath">\(f, g\)</span> and the composite <span class="SimpleMath">\(f\circ g\)</span>. It tests that <span class="SimpleMath">\(FG\)</span> is indeed the composite <span class="SimpleMath">\(G\circ F\)</span>. Note that when we create the ring <span class="SimpleMath">\(H^{\le 5}(K,\mathbb Z_2)\)</span> twice in <strong class="button">GAP</strong> we obtain two canonically isomorphic but distinct implimentations of the ring. Thus the canocial isomorphism between these distinct implementations needs to be incorporated into the test. Note also that <strong class="button">GAP</strong> defines <span class="SimpleMath">\(g\ast f = f\circ g\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">K:=SmallGroup(24,11);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">aut:=AutomorphismGroup(K);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=Elements(aut)[5];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">g:=Elements(aut)[8];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">fg:=g*f;;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=ModPCohomologyRing(f,2,5);</span>
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7 ] -> [ v.1, v.2+v.3, v.3, v.4+v.5, v.5,
v.6, v.7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=ModPCohomologyRing(g,2,5);</span>
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7 ] -> [ v.1, v.2+v.3, v.2, v.5, v.4+v.5,
v.6, v.7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">FG:=ModPCohomologyRing(fg,2,5);</span>
[ v.1, v.2, v.3, v.4, v.5, v.6, v.7 ] -> [ v.1, v.3, v.2, v.4, v.4+v.5, v.6,
v.7 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">sF:=Source(F);;tF:=Target(F);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">sG:=Source(G);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">tGsF:=AlgebraHomomorphismByImages(tF,sG,Basis(tF),Basis(sG));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(GeneratorsOfAlgebra(sF),x->Image(G,Image(tGsF,Image(F,x))));</span>
[ v.1, v.3, v.2, v.4, v.4+v.5, v.6, v.7 ]
</pre></div>
<p><a id="X855764877FA44225" name="X855764877FA44225"></a></p>
<h5>8.3-3 <span class="Heading">Computing with larger groups</span></h5>
<p>Mod-<span class="SimpleMath">\(p\)</span> cohomology rings of finite groups are constructed as the rings of stable elements in the cohomology of a (non-functorially) chosen Sylow <span class="SimpleMath">\(p\)</span>-subgroup and thus require the construction of a free resolution only for the Sylow subgroup. However, to ensure the functoriality of induced cohomology homomorphisms the above computations construct free resolutions for the entire groups <span class="SimpleMath">\(G,H\)</span>. This is a more expensive computation than finding resolutions just for Sylow subgroups.</p>
<p>The default algorithm used by the function <code class="code">ModPCohomologyRing()</code> for constructing resolutions of a finite group <span class="SimpleMath">\(G\)</span> is <code class="code">ResolutionFiniteGroup()</code> or <code class="code">ResolutionPrimePowerGroup()</code> in the case when <span class="SimpleMath">\(G\)</span> happens to be a group of prime-power order. If the user is able to construct the first <span class="SimpleMath">\(deg\)</span> terms of free resolutions <span class="SimpleMath">\(RG, RH\)</span> for the groups <span class="SimpleMath">\(G, H\)</span> then the pair <code class="code">[RG,RH]</code> can be entered as the third input variable of <code class="code">ModPCohomologyRing()</code>.</p>
<p>For instance, the following example constructs the ring homomorphism</p>
<p><span class="SimpleMath">\(F\colon H^{\le 7}(A_6,\mathbb Z_2) \rightarrow H^{\le 7}(S_6,\mathbb Z_2)\)</span></p>
<p>induced by the the canonical inclusion of the alternating group <span class="SimpleMath">\(A_6\)</span> into the symmetric group <span class="SimpleMath">\(S_6\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SymmetricGroup(6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">H:=AlternatingGroup(6);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">f:=GroupHomomorphismByFunction(H,G,x->x);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RG:=ResolutionFiniteGroup(G,7);; </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">RH:=ResolutionFiniteSubgroup(RG,H);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">F:=ModPCohomologyRing(f,2,[RG,RH]); </span>
[ v.1, v.2+v.3, v.6+v.8+v.10, v.7+v.9, v.11+v.12, v.13+v.15+v.16+v.18+v.19,
v.14+v.16+v.19, v.17, v.22, v.23+v.28+v.32+v.35,
v.24+v.26+v.27+v.29+v.32+v.33+v.35, v.25+v.26+v.27+v.29+v.32+v.33+v.35,
v.30+v.32+v.33+v.34+v.35, v.36+v.39+v.43+v.45+v.47+v.49+v.50+v.55,
v.38+v.45+v.47+v.49+v.50+v.55, v.40,
v.41+v.43+v.45+v.47+v.48+v.49+v.50+v.53+v.55,
v.42+v.43+v.45+v.46+v.47+v.49+v.53+v.54, v.44+v.45+v.46+v.47+v.49+v.53+v.54,
v.51+v.52, v.58+v.60, v.59+v.68+v.73+v.77+v.81+v.83,
v.62+v.68+v.74+v.77+v.78+v.80+v.81+v.83+v.84,
v.63+v.69+v.73+v.74+v.78+v.80+v.84, v.64+v.68+v.73+v.77+v.81+v.83, v.65,
v.66+v.75+v.81, v.67+v.68+v.69+v.70+v.73+v.74+v.78+v.80+v.84,
v.71+v.72+v.73+v.76+v.77+v.78+v.80+v.82+v.83+v.84, v.79 ] ->
[ v.1, 0*v.1, v.4+v.5+v.6, 0*v.1, v.8, v.8, 0*v.1, v.7, 0*v.1,
v.12+v.13+v.14+v.15, v.12+v.13+v.14+v.15, v.12+v.13+v.14+v.15,
v.12+v.13+v.14+v.15, v.18+v.19, 0*v.1, 0*v.1, v.18+v.19, v.18+v.19,
v.18+v.19, v.16+v.17, 0*v.1, v.25, v.22+v.24+v.25+v.26+v.27+v.28,
v.22+v.24+v.25+v.26+v.27+v.28, 0*v.1, 0*v.1, v.25, v.22+v.24+v.26+v.27+v.28,
v.22+v.24+v.26+v.27+v.28, v.23 ]
</pre></div>
<p><a id="X80114B0483EF9A67" name="X80114B0483EF9A67"></a></p>
<h4>8.4 <span class="Heading">Steenrod operations for finite <span class="SimpleMath">\(2\)</span>-groups</span></h4>
<p>The command <code class="code">CohomologicalData(G,n)</code> prints complete information for the cohomology ring <span class="SimpleMath">\(H^\ast(G, Z_2 )\)</span> and steenrod operations for a <span class="SimpleMath">\(2\)</span>-group <span class="SimpleMath">\(G\)</span> provided that the integer <span class="SimpleMath">\(n\)</span> is at least the maximal degree of a generator or relator in a minimal set of generatoirs and relators for the ring.</p>
<p>The following example produces complete information on the Steenrod algebra of group number <span class="SimpleMath">\(8\)</span> in <strong class="button">GAP</strong>'s library of groups of order <span class="SimpleMath">\(32\)</span>. Groebner basis routines (for commutative rings) from <strong class="button">Singular</strong> are called in the example. (This example take over 2 hours to run. Most other groups of order 32 run significantly quicker.)</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">CohomologicalData(SmallGroup(32,8),12);</span>
Integer argument is large enough to ensure completeness of cohomology ring presentation.
Group number: 8
Group description: C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)
Cohomology generators
Degree 1: a, b
Degree 2: c, d
Degree 3: e
Degree 5: f, g
Degree 6: h
Degree 8: p
Cohomology relations
1: f^2
2: c*h+e*f
3: c*f
4: b*h+c*g
5: b*e+c*d
6: a*h
7: a*g
8: a*f+b*f
9: a*e+c^2
10: a*c
11: a*b
12: a^2
13: d*e*h+e^2*g+f*h
14: d^2*h+d*e*f+d*e*g+f*g
15: c^2*d+b*f
16: b*c*g+e*f
17: b*c*d+c*e
18: b^2*g+d*f
19: b^2*c+c^2
20: b^3+a*d
21: c*d^2*e+c*d*g+d^2*f+e*h
22: c*d^3+d*e^2+d*h+e*f+e*g
23: b^2*d^2+c*d^2+b*f+e^2
24: b^3*d
25: d^3*e^2+d^2*e*f+c^2*p+h^2
26: d^4*e+b*c*p+e^2*g+g*h
27: d^5+b*d^2*g+b^2*p+f*g+g^2
Poincare series
(x^5+x^2+1)/(x^8-2*x^7+2*x^6-2*x^5+2*x^4-2*x^3+2*x^2-2*x+1)
Steenrod squares
Sq^1(c)=0
Sq^1(d)=b*b*b+d*b
Sq^1(e)=c*b*b
Sq^2(e)=e*d+f
Sq^1(f)=c*d*b*b+d*d*b*b
Sq^2(f)=g*b*b
Sq^4(f)=p*a
Sq^1(g)=d*d*d+g*b
Sq^2(g)=0
Sq^4(g)=c*d*d*d*b+g*d*b*b+g*d*d+p*a+p*b
Sq^1(h)=c*d*d*b+e*d*d
Sq^2(h)=d*d*d*b*b+c*d*d*d+g*c*b
Sq^4(h)=d*d*d*d*b*b+g*e*d+p*c
Sq^1(p)=c*d*d*d*b
Sq^2(p)=d*d*d*d*b*b+c*d*d*d*d
Sq^4(p)=d*d*d*d*d*b*b+d*d*d*d*d*d+g*d*d*d*b+g*g*d+p*d*d
</pre></div>
<p><a id="X7D5ACA56870A40E9" name="X7D5ACA56870A40E9"></a></p>
<h4>8.5 <span class="Heading">Steenrod operations on the classifying space of a finite <span class="SimpleMath">\(p\)</span>-group</span></h4>
<p>The following example constructs the first eight degrees of the mod-<span class="SimpleMath">\(3\)</span> cohomology ring <span class="SimpleMath">\(H^\ast(G,\mathbb Z_3)\)</span> for the group <span class="SimpleMath">\(G\)</span> number 4 in <strong class="button">GAP</strong>'s library of groups of order <span class="SimpleMath">\(81\)</span>. It determines a minimal set of ring generators lying in degree <span class="SimpleMath">\(\le 8\)</span> and it evaluates the Bockstein operator on these generators. Steenrod powers for <span class="SimpleMath">\(p\ge 3\)</span> are not implemented as no efficient method of implementation is known.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SmallGroup(81,4);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">A:=ModPSteenrodAlgebra(G,8);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">List(ModPRingGenerators(A),x->Bockstein(A,x));</span>
[ 0*v.1, 0*v.1, v.5, 0*v.1, (Z(3))*v.7+v.8+(Z(3))*v.9 ]
</pre></div>
<p><a id="X7D2D26C0784A0E14" name="X7D2D26C0784A0E14"></a></p>
<h4>8.6 <span class="Heading">Mod-<span class="SimpleMath">\(p\)</span> cohomology rings of crystallographic groups</span></h4>
<p>Mod <span class="SimpleMath">\(p\)</span> cohomology ring computations can be attempted for any group <span class="SimpleMath">\(G\)</span> for which we can compute sufficiently many terms of a free <span class="SimpleMath">\(ZG\)</span>-resolution with contracting homotopy. The contracting homotopy is not needed if only the dimensions of the cohomology in each degree are sought. Crystallographic groups are one class of infinite groups where such computations can be attempted.</p>
<p><a id="X81C107C07CF02F0E" name="X81C107C07CF02F0E"></a></p>
<h5>8.6-1 <span class="Heading">Poincare series for crystallographic groups</span></h5>
<p>Consider the space group <span class="SimpleMath">\(G=SpaceGroupOnRightIT(3,226,'1')\)</span>. The following computation computes the infinite series</p>
<p><span class="SimpleMath">\((-2x^4+2x^2+1)/(-x^5+2x^4-x^3+x^2-2x+1)\)</span></p>
<p>in which the coefficient of the monomial <span class="SimpleMath">\(x^n\)</span> is guaranteed to equal the dimension of the vector space <span class="SimpleMath">\(H^n(G,\mathbb Z_2)\)</span> in degrees <span class="SimpleMath">\(n\le 14\)</span>. One would need to involve a theoretical argument to establish that this equality in fact holds in every degree <span class="SimpleMath">\(n\ge 0\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroupIT(3,226);</span>
SpaceGroupOnRightIT(3,226,'1')
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionSpaceGroup(G,15);</span>
Resolution of length 15 in characteristic 0 for <matrix group with
8 generators> .
No contracting homotopy available.
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=List([0..14],n->Cohomology(HomToIntegersModP(R,2),n));</span>
[ 1, 2, 5, 9, 11, 15, 20, 23, 28, 34, 38, 44, 51, 56, 63 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">PoincareSeries(D,14);</span>
(-2*x_1^4+2*x_1^2+1)/(-x_1^5+2*x_1^4-x_1^3+x_1^2-2*x_1+1)
</pre></div>
<p>Consider the space group <span class="SimpleMath">\(SpaceGroupOnRightIT(3,103,'1')\)</span>. The following computation uses a different construction of a free resolution to compute the infinite series</p>
<p><span class="SimpleMath">\( (x^3+2x^2+2x+1)/(-x+1) \)</span></p>
<p>in which the coefficient of the monomial <span class="SimpleMath">\(x^n\)</span> is guaranteed to equal the dimension of the vector space <span class="SimpleMath">\(H^n(G,\mathbb Z_2)\)</span> in degrees <span class="SimpleMath">\(n\le 99\)</span>. The final commands show that <span class="SimpleMath">\(G\)</span> acts on a (cubical) cellular decomposition of <span class="SimpleMath">\(\mathbb R^3\)</span> with cell ctabilizers being either trivial or cyclic of order <span class="SimpleMath">\(2\)</span> or <span class="SimpleMath">\(4\)</span>. From this extra calculation it follows that the cohomology is periodic in degrees greater than <span class="SimpleMath">\(3\)</span> and that the Poincare series is correct in every degree <span class="SimpleMath">\(n \ge 0\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroupIT(3,103);</span>
SpaceGroupOnRightIT(3,103,'1')
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ResolutionCubicalCrystGroup(G,100);</span>
Resolution of length 100 in characteristic 0 for <matrix group with 6 generators> .
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=List([0..99],n->Cohomology(HomToIntegersModP(R,2),n));;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">PoincareSeries(D,99);</span>
(x_1^3+2*x_1^2+2*x_1+1)/(-x_1+1)
#Torsion subgroups are cyclic
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=CrystGFullBasis(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=CrystGcomplex(GeneratorsOfGroup(G),B,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">for n in [0..3] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">for k in [1..C!.dimension(n)] do</span>
<span class="GAPprompt">></span> <span class="GAPinput">Print(StructureDescription(C!.stabilizer(n,k))," ");</span>
<span class="GAPprompt">></span> <span class="GAPinput">od;od;</span>
C4 C2 C4 1 1 C4 C2 C4 1 1 1 1
</pre></div>
<p><a id="X7F5C242F7BC938A5" name="X7F5C242F7BC938A5"></a></p>
<h5>8.6-2 <span class="Heading">Mod <span class="SimpleMath">\(2\)</span> cohomology rings of <span class="SimpleMath">\(3\)</span>-dimensional crystallographic groups</span></h5>
<p>Computations in the <em>integral</em> cohomology of a crystallographic group are illustrated in Section <a href="chap1_mj.html#X86881717878ADCD6"><span class="RefLink">1.19</span></a>. The commands underlying that illustration could be further developed and adapted to mod <span class="SimpleMath">\(p\)</span> cohomology. Indeed, the authors of the paper <a href="chapBib_mj.html#biBliuye">[LY24a]</a> have developed commands for accessing the mod <span class="SimpleMath">\(2\)</span> cohomology of <span class="SimpleMath">\(3\)</span>-dimensional crystallographic groups with the aim of establishing a connection between these rings and the lattice structure of crystals with space group symmetry. Their code is available at the github repository <a href="chapBib_mj.html#biBliuyegithub">[LY24b]</a>. In particular, their code contains the command</p>
<ul>
<li><p><code class="code">SpaceGroupCohomologyRingGapInterface(ITC)</code></p>
</li>
</ul>
<p>that inputs an integer in the range <span class="SimpleMath">\(1\le ITC\le 230\)</span> corresponding to the numbering of a <span class="SimpleMath">\(3\)</span>-dimensional space group <span class="SimpleMath">\(G\)</span> in the International Table for Crystallography. This command returns</p>
<ul>
<li><p>a presentation for the mod <span class="SimpleMath">\(2\)</span> cohomology ring <span class="SimpleMath">\(H^\ast(G,\mathbb Z_2)\)</span>. The presentation is guaranteed to be correct for low degree cohomology. In cases where the cohomology is periodic in degrees <span class="SimpleMath">\( \ge 5\)</span> (which can be tested using <code class="code">IsPeriodicSpaceGroup(G)</code>) the presentation is guaranteed correct in all degrees. In non-periodic cases some additional mathematical argument needs to be provided to be mathematically sure that the presentation is correct in all degrees.</p>
</li>
<li><p>the Lieb-Schultz-Mattis anomaly (degree-3 cocycles) associated with the Irreducible Wyckoff Position (see the paper <a href="chapBib_mj.html#biBliuye">[LY24a]</a> for a definition).</p>
</li>
</ul>
<p>The command <code class="code">SpaceGroupCohomologyRingGapInterface(ITC)</code> is fast for most groups (a few seconds to a few minutes) but can be very slow for certain space groups (e.g. ITC <span class="SimpleMath">\(= 228\)</span> and ITC <span class="SimpleMath">\(= 142\)</span>). The following illustration assumes that two relevant files have been downloaded from <a href="chapBib_mj.html#biBliuyegithub">[LY24b]</a> and illustrates the command for ITC <span class="SimpleMath">\( =30\)</span> and ITC <span class="SimpleMath">\(=216\)</span>.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">Read("SpaceGroupCohomologyData.gi"); #These two files must be </span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Read("SpaceGroupCohomologyFunctions.gi"); #downloaded from</span>
<span class="GAPprompt">gap></span> <span class="GAPinput"> #https://github.com/liuchx1993/Space-Group-Cohomology-and-LSM/</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPeriodicSpaceGroup(SpaceGroupIT(3,30));</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">SpaceGroupCohomologyRingGapInterface(30);</span>
===========================================
Mod-2 Cohomology Ring of Group No. 30:
Z2[Ac,Am,Ax,Bb]/<R2,R3,R4>
R2: Ac.Am Am^2 Ax^2+Ac.Ax
R3: Am.Bb
R4: Bb^2
===========================================
LSM:
2a Ac.Bb+Ax.Bb
2b Ax.Bb
true
<span class="GAPprompt">gap></span> <span class="GAPinput">IsPeriodicSpaceGroup(SpaceGroupIT(3,216));</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">SpaceGroupCohomologyRingGapInterface(216);</span>
===========================================
Mod-2 Cohomology Ring of Group No. 216:
Z2[Am,Ba,Bb,Bxyxzyz,Ca,Cb,Cc,Cxyz]/<R4,R5,R6>
R4: Am.Ca Am.Cb Ba.Bxyxzyz+Am.Cc Bb^2+Am.Cc+Ba.Bb Bb.Bxyxzyz+Am^2.Bb+Am.Cxyz Bxyxzyz^2
R5: Bxyxzyz.Ca Ba.Cb+Bb.Ca Bb.Cb+Bb.Ca Bxyxzyz.Cb Bxyxzyz.Cc Ba.Cxyz+Am.Ba.Bb+Bb.Cc Bb.Cxyz+Am^2.Cc+Am.Ba.Bb+Bb.Cc Bxyxzyz.Cxyz+Am^3.Bb+Am^2.Cxyz
===========================================
LSM:
4a Ca+Cc+Cxyz
4b Cb+Cc+Cxyz
4c Cb+Cxyz
4d Cxyz
true
</pre></div>
<p>In the example the naming convention for ring generators follows the paper <a href="chapBib_mj.html#biBliuye">[LY24a]</a>.</p>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap7_mj.html">[Previous Chapter]</a> <a href="chap9_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|