1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<title>GAP (HAP commands) - Chapter 9: Bredon homology</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap9" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap8_mj.html">[Previous Chapter]</a> <a href="chap10_mj.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap9.html">[MathJax off]</a></p>
<p><a id="X786DB80A8693779E" name="X786DB80A8693779E"></a></p>
<div class="ChapSects"><a href="chap9_mj.html#X786DB80A8693779E">9 <span class="Heading">Bredon homology</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X7B0212F97F3D442A">9.1 <span class="Heading">Davis complex</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X7AFFB32587D047FE">9.2 <span class="Heading">Arithmetic groups</span></a>
</span>
</div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap9_mj.html#X7DEBF2BB7D1FB144">9.3 <span class="Heading">Crystallographic groups</span></a>
</span>
</div>
</div>
<h3>9 <span class="Heading">Bredon homology</span></h3>
<p><a id="X7B0212F97F3D442A" name="X7B0212F97F3D442A"></a></p>
<h4>9.1 <span class="Heading">Davis complex</span></h4>
<p>The following example computes the Bredon homology</p>
<p><span class="SimpleMath">\(\underline H_0(W,{\cal R}) = \mathbb Z^{21}\)</span></p>
<p>for the infinite Coxeter group <span class="SimpleMath">\(W\)</span> associated to the Dynkin diagram shown in the computation, with coefficients in the complex representation ring.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=[[1,[2,3]],[2,[3,3]],[3,[4,3]],[4,[5,6]]];;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">CoxeterDiagramDisplay(D);</span>
</pre></div>
<p><img src="images/infcoxdiag.gif" align="center" height="160" alt="Coxeter diagram"/></p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=DavisComplex(D);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=TensorWithComplexRepresentationRing(C);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(D,0);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<p><a id="X7AFFB32587D047FE" name="X7AFFB32587D047FE"></a></p>
<h4>9.2 <span class="Heading">Arithmetic groups</span></h4>
<p>The following example computes the Bredon homology</p>
<p><span class="SimpleMath">\(\underline H_0(SL_2({\cal O}_{-3}),{\cal R}) = \mathbb Z_2\oplus \mathbb Z^{9}\)</span></p>
<p><span class="SimpleMath">\(\underline H_1(SL_2({\cal O}_{-3}),{\cal R}) = \mathbb Z\)</span></p>
<p>for <span class="SimpleMath">\({\cal O}_{-3}\)</span> the ring of integers of the number field <span class="SimpleMath">\(\mathbb Q(\sqrt{-3})\)</span>, and <span class="SimpleMath">\(\cal R\)</span> the complex reflection ring.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=ContractibleGcomplex("SL(2,O-3)");;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRigid(R);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=BaryCentricSubdivision(R);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRigid(S);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">C:=TensorWithComplexRepresentationRing(S);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,0);</span>
[ 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(C,1);</span>
[ 0 ]
</pre></div>
<p><a id="X7DEBF2BB7D1FB144" name="X7DEBF2BB7D1FB144"></a></p>
<h4>9.3 <span class="Heading">Crystallographic groups</span></h4>
<p>The following example computes the Bredon homology</p>
<p><span class="SimpleMath">\(\underline H_0(G,{\cal R}) = \mathbb Z^{17}\)</span></p>
<p>for <span class="SimpleMath">\(G\)</span> the second crystallographic group of dimension <span class="SimpleMath">\(4\)</span> in <strong class="button">GAP</strong>'s library of crystallographic groups, and for <span class="SimpleMath">\(\cal R\)</span> the Burnside ring.</p>
<div class="example"><pre>
<span class="GAPprompt">gap></span> <span class="GAPinput">G:=SpaceGroup(4,2);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">gens:=GeneratorsOfGroup(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">B:=CrystGFullBasis(G);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">R:=CrystGcomplex(gens,B,1);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRigid(R);</span>
false
<span class="GAPprompt">gap></span> <span class="GAPinput">S:=CrystGcomplex(gens,B,0);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">IsRigid(S);</span>
true
<span class="GAPprompt">gap></span> <span class="GAPinput">D:=TensorWithBurnsideRing(S);;</span>
<span class="GAPprompt">gap></span> <span class="GAPinput">Homology(D,0);</span>
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
</pre></div>
<div class="chlinkprevnextbot"> <a href="chap0_mj.html">[Top of Book]</a> <a href="chap0_mj.html#contents">[Contents]</a> <a href="chap8_mj.html">[Previous Chapter]</a> <a href="chap10_mj.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0_mj.html">Top</a> <a href="chap1_mj.html">1</a> <a href="chap2_mj.html">2</a> <a href="chap3_mj.html">3</a> <a href="chap4_mj.html">4</a> <a href="chap5_mj.html">5</a> <a href="chap6_mj.html">6</a> <a href="chap7_mj.html">7</a> <a href="chap8_mj.html">8</a> <a href="chap9_mj.html">9</a> <a href="chap10_mj.html">10</a> <a href="chap11_mj.html">11</a> <a href="chap12_mj.html">12</a> <a href="chap13_mj.html">13</a> <a href="chap14_mj.html">14</a> <a href="chap15_mj.html">15</a> <a href="chap16_mj.html">16</a> <a href="chapBib_mj.html">Bib</a> <a href="chapInd_mj.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|