1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
|
#SIXFORMAT GapDocGAP
HELPBOOKINFOSIXTMP := rec(
encoding := "UTF-8",
bookname := "HAP",
entries :=
[ [ "Title page", "0.0", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5"
],
[ "Table of Contents", "0.0-1", [ 0, 0, 1 ], 18, 2, "table of contents",
"X8537FEB07AF2BEC8" ],
[
"\033[1X\033[33X\033[0;-2YSimplicial complexes & CW complexes\033[133X\033[\
101X", "1", [ 1, 0, 0 ], 1, 7, "simplicial complexes & cw complexes",
"X7E5EA9587D4BCFB4" ],
[
"\033[1X\033[33X\033[0;-2YThe Klein bottle as a simplicial complex\033[133X\
\033[101X", "1.1", [ 1, 1, 0 ], 4, 7,
"the klein bottle as a simplicial complex", "X85691C6980034524" ],
[ "\033[1X\033[33X\033[0;-2YOther simplicial surfaces\033[133X\033[101X",
"1.2", [ 1, 2, 0 ], 46, 8, "other simplicial surfaces",
"X7B8F88487B1B766C" ],
[ "\033[1X\033[33X\033[0;-2YThe Quillen complex\033[133X\033[101X", "1.3",
[ 1, 3, 0 ], 86, 8, "the quillen complex", "X80A72C347D99A58E" ],
[
"\033[1X\033[33X\033[0;-2YThe Quillen complex as a reduced CW-complex\033[1\
33X\033[101X", "1.4", [ 1, 4, 0 ], 110, 9,
"the quillen complex as a reduced cw-complex", "X7C4A2B8B79950232" ],
[ "\033[1X\033[33X\033[0;-2YSimple homotopy equivalences\033[133X\033[101X",
"1.5", [ 1, 5, 0 ], 143, 9, "simple homotopy equivalences",
"X782AAB84799E3C44" ],
[
"\033[1X\033[33X\033[0;-2YCellular simplifications preserving homeomorphism\
type\033[133X\033[101X", "1.6", [ 1, 6, 0 ], 186, 10,
"cellular simplifications preserving homeomorphism type",
"X80474C7885AC1578" ],
[
"\033[1X\033[33X\033[0;-2YConstructing a CW-structure on a knot complement\\
033[133X\033[101X", "1.7", [ 1, 7, 0 ], 212, 10,
"constructing a cw-structure on a knot complement", "X7A15484C7E680AC9"
],
[
"\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex by attaching ce\
lls\033[133X\033[101X", "1.8", [ 1, 8, 0 ], 247, 11,
"constructing a regular cw-complex by attaching cells",
"X829793717FB6DDCE" ],
[
"\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex from its face l\
attice\033[133X\033[101X", "1.9", [ 1, 9, 0 ], 305, 12,
"constructing a regular cw-complex from its face lattice",
"X7B7354E68025FC92" ],
[ "\033[1X\033[33X\033[0;-2YCup products\033[133X\033[101X", "1.10",
[ 1, 10, 0 ], 375, 13, "cup products", "X823FA6A9828FF473" ],
[
"\033[1X\033[33X\033[0;-2YIntersection forms of \033[22X4\033[122X\033[101X\
\027\033[1X\027-manifolds\033[133X\033[101X", "1.11", [ 1, 11, 0 ], 636, 18,
"intersection forms of 4-manifolds", "X7F9B01CF7EE1D2FC" ],
[ "\033[1X\033[33X\033[0;-2YCohomology Rings\033[133X\033[101X", "1.12",
[ 1, 12, 0 ], 712, 19, "cohomology rings", "X80B6849C835B7F19" ],
[ "\033[1X\033[33X\033[0;-2YBockstein homomorphism\033[133X\033[101X",
"1.13", [ 1, 13, 0 ], 783, 20, "bockstein homomorphism",
"X83035DEC7C9659C6" ],
[
"\033[1X\033[33X\033[0;-2YDiagonal maps on associahedra and other polytopes\
\033[133X\033[101X", "1.14", [ 1, 14, 0 ], 827, 21,
"diagonal maps on associahedra and other polytopes",
"X87135D067B6CDEEC" ],
[
"\033[1X\033[33X\033[0;-2YCW maps and induced homomorphisms\033[133X\033[10\
1X", "1.15", [ 1, 15, 0 ], 877, 21, "cw maps and induced homomorphisms",
"X8771FF2885105154" ],
[
"\033[1X\033[33X\033[0;-2YConstructing a simplicial complex from a regular \
CW-complex\033[133X\033[101X", "1.16", [ 1, 16, 0 ], 931, 22,
"constructing a simplicial complex from a regular cw-complex",
"X853D6B247D0E18DB" ],
[
"\033[1X\033[33X\033[0;-2YSome limitations to representing spaces as regula\
r CW complexes\033[133X\033[101X", "1.17", [ 1, 17, 0 ], 959, 23,
"some limitations to representing spaces as regular cw complexes",
"X7900FD197F175551" ],
[ "\033[1X\033[33X\033[0;-2YEquivariant CW complexes\033[133X\033[101X",
"1.18", [ 1, 18, 0 ], 1047, 24, "equivariant cw complexes",
"X85A579217DCB6CC8" ],
[
"\033[1X\033[33X\033[0;-2YOrbifolds and classifying spaces\033[133X\033[101\
X", "1.19", [ 1, 19, 0 ], 1176, 26, "orbifolds and classifying spaces",
"X86881717878ADCD6" ],
[
"\033[1X\033[33X\033[0;-2YCubical complexes & permutahedral complexes\033[1\
33X\033[101X", "2", [ 2, 0, 0 ], 1, 31,
"cubical complexes & permutahedral complexes", "X7F8376F37AF80AAC" ],
[ "\033[1X\033[33X\033[0;-2YCubical complexes\033[133X\033[101X", "2.1",
[ 2, 1, 0 ], 4, 31, "cubical complexes", "X7D67D5F3820637AD" ],
[ "\033[1X\033[33X\033[0;-2YPermutahedral complexes\033[133X\033[101X",
"2.2", [ 2, 2, 0 ], 91, 32, "permutahedral complexes",
"X85D8195379F2A8CA" ],
[
"\033[1X\033[33X\033[0;-2YConstructing pure cubical and permutahedral compl\
exes\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 218, 34,
"constructing pure cubical and permutahedral complexes",
"X78D3037283B506E0" ],
[
"\033[1X\033[33X\033[0;-2YComputations in dynamical systems\033[133X\033[10\
1X", "2.4", [ 2, 4, 0 ], 240, 35, "computations in dynamical systems",
"X8462CF66850CC3A8" ],
[ "\033[1X\033[33X\033[0;-2YCovering spaces\033[133X\033[101X", "3",
[ 3, 0, 0 ], 1, 36, "covering spaces", "X87472058788D76C0" ],
[
"\033[1X\033[33X\033[0;-2YCellular chains on the universal cover\033[133X\\
033[101X", "3.1", [ 3, 1, 0 ], 15, 36,
"cellular chains on the universal cover", "X85FB4CA987BC92CC" ],
[
"\033[1X\033[33X\033[0;-2YSpun knots and the Satoh tube map\033[133X\033[10\
1X", "3.2", [ 3, 2, 0 ], 81, 37, "spun knots and the satoh tube map",
"X7E5CC04E7E3CCDAD" ],
[
"\033[1X\033[33X\033[0;-2YCohomology with local coefficients\033[133X\033[1\
01X", "3.3", [ 3, 3, 0 ], 178, 39, "cohomology with local coefficients",
"X7C304A1C7EF0BA60" ],
[
"\033[1X\033[33X\033[0;-2YDistinguishing between two non-homeomorphic homot\
opy equivalent spaces\033[133X\033[101X", "3.4", [ 3, 4, 0 ], 218, 40,
"distinguishing between two non-homeomorphic homotopy equivalent spaces"
, "X7A4F34B780FA2CD5" ],
[
"\033[1X\033[33X\033[0;-2YSecond homotopy groups of spaces with finite fund\
amental group\033[133X\033[101X", "3.5", [ 3, 5, 0 ], 259, 40,
"second homotopy groups of spaces with finite fundamental group",
"X869FD75B84AAC7AD" ],
[
"\033[1X\033[33X\033[0;-2YThird homotopy groups of simply connected spaces\\
033[133X\033[101X", "3.6", [ 3, 6, 0 ], 307, 41,
"third homotopy groups of simply connected spaces", "X87F8F6C3812A7E73"
],
[
"\033[1X\033[33X\033[0;-2YFirst example: Whitehead's certain exact sequence\
\033[133X\033[101X", "3.6-1", [ 3, 6, 1 ], 310, 41,
"first example: whiteheads certain exact sequence", "X7B506CF27DE54DBE"
],
[
"\033[1X\033[33X\033[0;-2YSecond example: the Hopf invariant\033[133X\033[1\
01X", "3.6-2", [ 3, 6, 2 ], 341, 42, "second example: the hopf invariant",
"X828F0FAB86AA60E9" ],
[
"\033[1X\033[33X\033[0;-2YComputing the second homotopy group of a space wi\
th infinite fundamental group\033[133X\033[101X", "3.7", [ 3, 7, 0 ], 433,
43,
"computing the second homotopy group of a space with infinite fundamenta\
l group", "X7EAF7E677FB9D53F" ],
[ "\033[1X\033[33X\033[0;-2YThree Manifolds\033[133X\033[101X", "4",
[ 4, 0, 0 ], 1, 45, "three manifolds", "X7BFA4D1587D8DF49" ],
[ "\033[1X\033[33X\033[0;-2YDehn Surgery\033[133X\033[101X", "4.1",
[ 4, 1, 0 ], 4, 45, "dehn surgery", "X82D1348C79238C2D" ],
[ "\033[1X\033[33X\033[0;-2YConnected Sums\033[133X\033[101X", "4.2",
[ 4, 2, 0 ], 49, 46, "connected sums", "X848EDEE882B36F6C" ],
[ "\033[1X\033[33X\033[0;-2YDijkgraaf-Witten Invariant\033[133X\033[101X",
"4.3", [ 4, 3, 0 ], 78, 46, "dijkgraaf-witten invariant",
"X78AE684C7DBD7C70" ],
[ "\033[1X\033[33X\033[0;-2YCohomology rings\033[133X\033[101X", "4.4",
[ 4, 4, 0 ], 143, 47, "cohomology rings", "X80B6849C835B7F19" ],
[ "\033[1X\033[33X\033[0;-2YLinking Form\033[133X\033[101X", "4.5",
[ 4, 5, 0 ], 184, 48, "linking form", "X7F56BB4C801AB894" ],
[
"\033[1X\033[33X\033[0;-2YDetermining the homeomorphism type of a lens spac\
e\033[133X\033[101X", "4.6", [ 4, 6, 0 ], 271, 49,
"determining the homeomorphism type of a lens space",
"X850C76697A6A1654" ],
[
"\033[1X\033[33X\033[0;-2YSurgeries on distinct knots can yield homeomorphi\
c manifolds\033[133X\033[101X", "4.7", [ 4, 7, 0 ], 383, 51,
"surgeries on distinct knots can yield homeomorphic manifolds",
"X7EC6B008878CC77E" ],
[
"\033[1X\033[33X\033[0;-2YFinite fundamental groups of \033[22X3\033[122X\\
033[101X\027\033[1X\027-manifolds\033[133X\033[101X", "4.8", [ 4, 8, 0 ],
464, 52, "finite fundamental groups of 3-manifolds",
"X7B425A3280A2AF07" ],
[ "\033[1X\033[33X\033[0;-2YPoincare's cube manifolds\033[133X\033[101X",
"4.9", [ 4, 9, 0 ], 500, 53, "poincares cube manifolds",
"X78912D227D753167" ],
[
"\033[1X\033[33X\033[0;-2YThere are at least 25 distinct cube manifolds\\
033[133X\033[101X", "4.10", [ 4, 10, 0 ], 555, 54,
"there are at least 25 distinct cube manifolds", "X8761051F84C6CEC2" ],
[ "\033[1X\033[33X\033[0;-2YFace pairings for 25 distinct cube manifolds\033\
[133X\033[101X", "4.10-1", [ 4, 10, 1 ], 672, 56,
"face pairings for 25 distinct cube manifolds", "X7D50795883E534A3" ],
[ "\033[1X\033[33X\033[0;-2YPlatonic cube manifolds\033[133X\033[101X",
"4.10-2", [ 4, 10, 2 ], 898, 60, "platonic cube manifolds",
"X837811BB8181666E" ],
[
"\033[1X\033[33X\033[0;-2YThere are at most 41 distinct cube manifolds\033[\
133X\033[101X", "4.11", [ 4, 11, 0 ], 924, 60,
"there are at most 41 distinct cube manifolds", "X8084A36082B26D86" ],
[ "\033[1X\033[33X\033[0;-2YThere are precisely 18 orientable cube manifolds\
, of which 9 are spherical and 5 are euclidean\033[133X\033[101X", "4.12",
[ 4, 12, 0 ], 1055, 62,
"there are precisely 18 orientable cube manifolds of which 9 are spheric\
al and 5 are euclidean", "X7B63C22C80E53758" ],
[ "\033[1X\033[33X\033[0;-2YCube manifolds with boundary\033[133X\033[101X",
"4.13", [ 4, 13, 0 ], 1123, 64, "cube manifolds with boundary",
"X796BF3817BD7F57D" ],
[ "\033[1X\033[33X\033[0;-2YOctahedral manifolds\033[133X\033[101X",
"4.14", [ 4, 14, 0 ], 1193, 65, "octahedral manifolds",
"X7EC4359B7DF208B0" ],
[ "\033[1X\033[33X\033[0;-2YDodecahedral manifolds\033[133X\033[101X",
"4.15", [ 4, 15, 0 ], 1232, 65, "dodecahedral manifolds",
"X85FFF9B97B7AD818" ],
[ "\033[1X\033[33X\033[0;-2YPrism manifolds\033[133X\033[101X", "4.16",
[ 4, 16, 0 ], 1281, 66, "prism manifolds", "X78B75E2E79FBCC54" ],
[ "\033[1X\033[33X\033[0;-2YBipyramid manifolds\033[133X\033[101X", "4.17",
[ 4, 17, 0 ], 1339, 67, "bipyramid manifolds", "X7F31DFDA846E8E75" ],
[ "\033[1X\033[33X\033[0;-2YTopological data analysis\033[133X\033[101X",
"5", [ 5, 0, 0 ], 1, 68, "topological data analysis",
"X7B7E077887694A9F" ],
[ "\033[1X\033[33X\033[0;-2YPersistent homology\033[133X\033[101X", "5.1",
[ 5, 1, 0 ], 4, 68, "persistent homology", "X80A70B20873378E0" ],
[ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X",
"5.1-1", [ 5, 1, 1 ], 66, 69, "background to the data",
"X7D512DA37F789B4C" ],
[ "\033[1X\033[33X\033[0;-2YMapper clustering\033[133X\033[101X", "5.2",
[ 5, 2, 0 ], 73, 69, "mapper clustering", "X849556107A23FF7B" ],
[ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X",
"5.2-1", [ 5, 2, 1 ], 117, 70, "background to the data",
"X7D512DA37F789B4C" ],
[
"\033[1X\033[33X\033[0;-2YSome tools for handling pure complexes\033[133X\\
033[101X", "5.3", [ 5, 3, 0 ], 123, 70,
"some tools for handling pure complexes", "X7BBDE0567DB8C5DA" ],
[
"\033[1X\033[33X\033[0;-2YDigital image analysis and persistent homology\\
033[133X\033[101X", "5.4", [ 5, 4, 0 ], 194, 71,
"digital image analysis and persistent homology", "X79616D12822FDB9A" ],
[ "\033[1X\033[33X\033[0;-2YNaive example of image segmentation by automatic\
thresholding\033[133X\033[101X", "5.4-1", [ 5, 4, 1 ], 222, 71,
"naive example of image segmentation by automatic thresholding",
"X8066F9B17B78418E" ],
[ "\033[1X\033[33X\033[0;-2YRefining the filtration\033[133X\033[101X",
"5.4-2", [ 5, 4, 2 ], 246, 72, "refining the filtration",
"X7E6436E0856761F2" ],
[ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X",
"5.4-3", [ 5, 4, 3 ], 270, 72, "background to the data",
"X7D512DA37F789B4C" ],
[
"\033[1X\033[33X\033[0;-2YA second example of digital image segmentation\\
033[133X\033[101X", "5.5", [ 5, 5, 0 ], 275, 72,
"a second example of digital image segmentation", "X7A8224DA7B00E0D9" ],
[ "\033[1X\033[33X\033[0;-2YA third example of digital image segmentation\
\033[133X\033[101X", "5.6", [ 5, 6, 0 ], 327, 73,
"a third example of digital image segmentation", "X8290E7D287F69B98" ],
[ "\033[1X\033[33X\033[0;-2YNaive example of digital image contour extractio\
n\033[133X\033[101X", "5.7", [ 5, 7, 0 ], 371, 74,
"naive example of digital image contour extraction",
"X7957F329835373E9" ],
[
"\033[1X\033[33X\033[0;-2YAlternative approaches to computing persistent ho\
mology\033[133X\033[101X", "5.8", [ 5, 8, 0 ], 456, 75,
"alternative approaches to computing persistent homology",
"X7D2CC9CB85DF1BAF" ],
[ "\033[1X\033[33X\033[0;-2YNon-trivial cup product\033[133X\033[101X",
"5.8-1", [ 5, 8, 1 ], 522, 76, "non-trivial cup product",
"X86FD0A867EC9E64F" ],
[ "\033[1X\033[33X\033[0;-2YExplicit homology generators\033[133X\033[101X",
"5.8-2", [ 5, 8, 2 ], 539, 76, "explicit homology generators",
"X783EF0F17B629C46" ],
[ "\033[1X\033[33X\033[0;-2YKnotted proteins\033[133X\033[101X", "5.9",
[ 5, 9, 0 ], 577, 77, "knotted proteins", "X80D0D8EB7BCD05E9" ],
[ "\033[1X\033[33X\033[0;-2YRandom simplicial complexes\033[133X\033[101X",
"5.10", [ 5, 10, 0 ], 656, 78, "random simplicial complexes",
"X87AF06677F05C624" ],
[
"\033[1X\033[33X\033[0;-2YComputing homology of a clique complex (Vietoris-\
Rips complex)\033[133X\033[101X", "5.11", [ 5, 11, 0 ], 759, 80,
"computing homology of a clique complex vietoris-rips complex",
"X875EE92F7DBA1E27" ],
[ "\033[1X\033[33X\033[0;-2YGroup theoretic computations\033[133X\033[101X",
"6", [ 6, 0, 0 ], 1, 82, "group theoretic computations",
"X7C07F4BD8466991A" ],
[
"\033[1X\033[33X\033[0;-2YThird homotopy group of a supsension of an Eilenb\
erg-MacLane space\033[133X\033[101X", "6.1", [ 6, 1, 0 ], 4, 82,
"third homotopy group of a supsension of an eilenberg-maclane space",
"X86D7FBBD7E5287C9" ],
[
"\033[1X\033[33X\033[0;-2YRepresentations of knot quandles\033[133X\033[101\
X", "6.2", [ 6, 2, 0 ], 23, 82, "representations of knot quandles",
"X803FDFFE78A08446" ],
[ "\033[1X\033[33X\033[0;-2YIdentifying knots\033[133X\033[101X", "6.3",
[ 6, 3, 0 ], 62, 83, "identifying knots", "X7E4EFB987DA22017" ],
[
"\033[1X\033[33X\033[0;-2YAspherical \033[22X2\033[122X\033[101X\027\033[1X\
\027-complexes\033[133X\033[101X", "6.4", [ 6, 4, 0 ], 80, 83,
"aspherical 2-complexes", "X8664E986873195E6" ],
[
"\033[1X\033[33X\033[0;-2YGroup presentations and homotopical syzygies\033[\
133X\033[101X", "6.5", [ 6, 5, 0 ], 102, 83,
"group presentations and homotopical syzygies", "X84C0CB8B7C21E179" ],
[ "\033[1X\033[33X\033[0;-2YBogomolov multiplier\033[133X\033[101X", "6.6",
[ 6, 6, 0 ], 186, 85, "bogomolov multiplier", "X7F719758856A443D" ],
[
"\033[1X\033[33X\033[0;-2YSecond group cohomology and group extensions\033[\
133X\033[101X", "6.7", [ 6, 7, 0 ], 205, 85,
"second group cohomology and group extensions", "X8333413B838D787D" ],
[ "\033[1X\033[33X\033[0;-2YCocyclic groups: a convenient way of representin\
g certain groups\033[133X\033[101X", "6.8", [ 6, 8, 0 ], 350, 88,
"cocyclic groups: a convenient way of representing certain groups",
"X7F04FA5E81FFA848" ],
[ "\033[1X\033[33X\033[0;-2YEffective group presentations\033[133X\033[101X"
, "6.9", [ 6, 9, 0 ], 446, 89, "effective group presentations",
"X863080FE8270468D" ],
[
"\033[1X\033[33X\033[0;-2YSecond group cohomology and cocyclic Hadamard mat\
rices\033[133X\033[101X", "6.10", [ 6, 10, 0 ], 533, 91,
"second group cohomology and cocyclic hadamard matrices",
"X7C60E2B578074532" ],
[
"\033[1X\033[33X\033[0;-2YThird group cohomology and homotopy \033[22X2\\
033[122X\033[101X\027\033[1X\027-types\033[133X\033[101X", "6.11",
[ 6, 11, 0 ], 556, 91, "third group cohomology and homotopy 2-types",
"X78040D8580D35D53" ],
[
"\033[1X\033[33X\033[0;-2YCohomology of groups (and Lie Algebras)\033[133X\\
033[101X", "7", [ 7, 0, 0 ], 1, 94, "cohomology of groups and lie algebras",
"X787E37187B7308C9" ],
[ "\033[1X\033[33X\033[0;-2YFinite groups\033[133X\033[101X", "7.1",
[ 7, 1, 0 ], 4, 94, "finite groups", "X807B265978F90E01" ],
[
"\033[1X\033[33X\033[0;-2YNaive homology computation for a very small group\
\033[133X\033[101X", "7.1-1", [ 7, 1, 1 ], 7, 94,
"naive homology computation for a very small group",
"X80A721AC7A8D30A3" ],
[
"\033[1X\033[33X\033[0;-2YA more efficient homology computation\033[133X\\
033[101X", "7.1-2", [ 7, 1, 2 ], 66, 95,
"a more efficient homology computation", "X838CEA3F850DFC82" ],
[
"\033[1X\033[33X\033[0;-2YComputation of an induced homology homomorphism\\
033[133X\033[101X", "7.1-3", [ 7, 1, 3 ], 89, 95,
"computation of an induced homology homomorphism", "X842E93467AD09EC1" ]
,
[
"\033[1X\033[33X\033[0;-2YSome other finite group homology computations\\
033[133X\033[101X", "7.1-4", [ 7, 1, 4 ], 117, 96,
"some other finite group homology computations", "X8754D2937E6FD7CE" ],
[ "\033[1X\033[33X\033[0;-2YNilpotent groups\033[133X\033[101X", "7.2",
[ 7, 2, 0 ], 236, 97, "nilpotent groups", "X8463EF6A821FFB69" ],
[
"\033[1X\033[33X\033[0;-2YCrystallographic and Almost Crystallographic grou\
ps\033[133X\033[101X", "7.3", [ 7, 3, 0 ], 255, 98,
"crystallographic and almost crystallographic groups",
"X82E8FAC67BC16C01" ],
[ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "7.4",
[ 7, 4, 0 ], 284, 98, "arithmetic groups", "X7AFFB32587D047FE" ],
[ "\033[1X\033[33X\033[0;-2YArtin groups\033[133X\033[101X", "7.5",
[ 7, 5, 0 ], 301, 98, "artin groups", "X800CB6257DC8FB3A" ],
[ "\033[1X\033[33X\033[0;-2YGraphs of groups\033[133X\033[101X", "7.6",
[ 7, 6, 0 ], 345, 99, "graphs of groups", "X7BAFCA3680E478AE" ],
[
"\033[1X\033[33X\033[0;-2YLie algebra homology and free nilpotent groups\\
033[133X\033[101X", "7.7", [ 7, 7, 0 ], 374, 100,
"lie algebra homology and free nilpotent groups", "X7CE849E58706796C" ],
[ "\033[1X\033[33X\033[0;-2YCohomology with coefficients in a module\033[133\
X\033[101X", "7.8", [ 7, 8, 0 ], 446, 101,
"cohomology with coefficients in a module", "X7C3DEDD57BB4D537" ],
[
"\033[1X\033[33X\033[0;-2YCohomology as a functor of the first variable\\
033[133X\033[101X", "7.9", [ 7, 9, 0 ], 615, 103,
"cohomology as a functor of the first variable", "X7E573EA582CCEF2E" ],
[ "\033[1X\033[33X\033[0;-2YCohomology as a functor of the second variable a\
nd the long exact coefficient sequence\033[133X\033[101X", "7.10",
[ 7, 10, 0 ], 647, 104,
"cohomology as a functor of the second variable and the long exact coeff\
icient sequence", "X796731727A7EBE59" ],
[ "\033[1X\033[33X\033[0;-2YTransfer Homomorphism\033[133X\033[101X",
"7.11", [ 7, 11, 0 ], 727, 105, "transfer homomorphism",
"X80F6FD3E7C7E4E8D" ],
[
"\033[1X\033[33X\033[0;-2YCohomology rings of finite fundamental groups of \
3-manifolds\033[133X\033[101X", "7.12", [ 7, 12, 0 ], 760, 106,
"cohomology rings of finite fundamental groups of 3-manifolds",
"X79B1406C803FF178" ],
[ "\033[1X\033[33X\033[0;-2YExplicit cocycles\033[133X\033[101X", "7.13",
[ 7, 13, 0 ], 876, 108, "explicit cocycles", "X833A19F0791C3B06" ],
[
"\033[1X\033[33X\033[0;-2YQuillen's complex and the \033[22Xp\033[122X\033[\
101X\027\033[1X\027-part of homology\033[133X\033[101X", "7.14",
[ 7, 14, 0 ], 1062, 111, "quillens complex and the p-part of homology",
"X7C5233E27D2D603E" ],
[ "\033[1X\033[33X\033[0;-2YHomology of a Lie algebra\033[133X\033[101X",
"7.15", [ 7, 15, 0 ], 1266, 114, "homology of a lie algebra",
"X865CC8E0794C0E61" ],
[ "\033[1X\033[33X\033[0;-2YCovers of Lie algebras\033[133X\033[101X",
"7.16", [ 7, 16, 0 ], 1308, 114, "covers of lie algebras",
"X86B4EE4783A244F7" ],
[ "\033[1X\033[33X\033[0;-2YComputing a cover\033[133X\033[101X", "7.16-1",
[ 7, 16, 1 ], 1332, 115, "computing a cover", "X7DFF32A67FF39C82" ],
[
"\033[1X\033[33X\033[0;-2YCohomology rings and Steenrod operations for grou\
ps\033[133X\033[101X", "8", [ 8, 0, 0 ], 1, 116,
"cohomology rings and steenrod operations for groups",
"X7ED29A58858AAAF2" ],
[
"\033[1X\033[33X\033[0;-2YMod-\033[22Xp\033[122X\033[101X\027\033[1X\027 co\
homology rings of finite groups\033[133X\033[101X", "8.1", [ 8, 1, 0 ], 4,
116, "mod-p cohomology rings of finite groups", "X877CAF8B7E64DE04" ],
[ "\033[1X\033[33X\033[0;-2YRing presentations (for the commutative \033[22X\
p=2\033[122X\033[101X\027\033[1X\027 case)\033[133X\033[101X", "8.1-1",
[ 8, 1, 1 ], 89, 117, "ring presentations for the commutative p=2 case",
"X870E0299782638AF" ],
[
"\033[1X\033[33X\033[0;-2YPoincare Series for Mod-\033[22Xp\033[122X\033[10\
1X\027\033[1X\027 cohomology\033[133X\033[101X", "8.2", [ 8, 2, 0 ], 117,
118, "poincare series for mod-p cohomology", "X862538218748627F" ],
[
"\033[1X\033[33X\033[0;-2YFunctorial ring homomorphisms in Mod-\033[22Xp\\
033[122X\033[101X\027\033[1X\027 cohomology\033[133X\033[101X", "8.3",
[ 8, 3, 0 ], 214, 119,
"functorial ring homomorphisms in mod-p cohomology",
"X780DF87680C3F52B" ],
[
"\033[1X\033[33X\033[0;-2YTesting homomorphism properties\033[133X\033[101X\
", "8.3-1", [ 8, 3, 1 ], 237, 120, "testing homomorphism properties",
"X834CED9D7A104695" ],
[ "\033[1X\033[33X\033[0;-2YTesting functorial properties\033[133X\033[101X"
, "8.3-2", [ 8, 3, 2 ], 254, 120, "testing functorial properties",
"X7A0D505D844F0CD4" ],
[ "\033[1X\033[33X\033[0;-2YComputing with larger groups\033[133X\033[101X",
"8.3-3", [ 8, 3, 3 ], 290, 121, "computing with larger groups",
"X855764877FA44225" ],
[
"\033[1X\033[33X\033[0;-2YSteenrod operations for finite \033[22X2\033[122X\
\033[101X\027\033[1X\027-groups\033[133X\033[101X", "8.4", [ 8, 4, 0 ], 343,
122, "steenrod operations for finite 2-groups", "X80114B0483EF9A67" ],
[ "\033[1X\033[33X\033[0;-2YSteenrod operations on the classifying space of \
a finite \033[22Xp\033[122X\033[101X\027\033[1X\027-group\033[133X\033[101X",
"8.5", [ 8, 5, 0 ], 425, 123,
"steenrod operations on the classifying space of a finite p-group",
"X7D5ACA56870A40E9" ],
[
"\033[1X\033[33X\033[0;-2YMod-\033[22Xp\033[122X\033[101X\027\033[1X\027 co\
homology rings of crystallographic groups\033[133X\033[101X", "8.6",
[ 8, 6, 0 ], 443, 123,
"mod-p cohomology rings of crystallographic groups",
"X7D2D26C0784A0E14" ],
[
"\033[1X\033[33X\033[0;-2YPoincare series for crystallographic groups\033[1\
33X\033[101X", "8.6-1", [ 8, 6, 1 ], 453, 123,
"poincare series for crystallographic groups", "X81C107C07CF02F0E" ],
[
"\033[1X\033[33X\033[0;-2YMod \033[22X2\033[122X\033[101X\027\033[1X\027 co\
homology rings of \033[22X3\033[122X\033[101X\027\033[1X\027-dimensional cryst\
allographic groups\033[133X\033[101X", "8.6-2", [ 8, 6, 2 ], 519, 125,
"mod 2 cohomology rings of 3-dimensional crystallographic groups",
"X7F5C242F7BC938A5" ],
[ "\033[1X\033[33X\033[0;-2YBredon homology\033[133X\033[101X", "9",
[ 9, 0, 0 ], 1, 127, "bredon homology", "X786DB80A8693779E" ],
[ "\033[1X\033[33X\033[0;-2YDavis complex\033[133X\033[101X", "9.1",
[ 9, 1, 0 ], 4, 127, "davis complex", "X7B0212F97F3D442A" ],
[ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "9.2",
[ 9, 2, 0 ], 28, 127, "arithmetic groups", "X7AFFB32587D047FE" ],
[ "\033[1X\033[33X\033[0;-2YCrystallographic groups\033[133X\033[101X",
"9.3", [ 9, 3, 0 ], 55, 128, "crystallographic groups",
"X7DEBF2BB7D1FB144" ],
[ "\033[1X\033[33X\033[0;-2YChain Complexes\033[133X\033[101X", "10",
[ 10, 0, 0 ], 1, 129, "chain complexes", "X7A06103979B92808" ],
[
"\033[1X\033[33X\033[0;-2YChain complex of a simplicial complex and simplic\
ial pair\033[133X\033[101X", "10.1", [ 10, 1, 0 ], 24, 129,
"chain complex of a simplicial complex and simplicial pair",
"X782DE78884DD6992" ],
[
"\033[1X\033[33X\033[0;-2YChain complex of a cubical complex and cubical pa\
ir\033[133X\033[101X", "10.2", [ 10, 2, 0 ], 91, 130,
"chain complex of a cubical complex and cubical pair",
"X79E7A13E7DE9C412" ],
[
"\033[1X\033[33X\033[0;-2YChain complex of a regular CW-complex\033[133X\\
033[101X", "10.3", [ 10, 3, 0 ], 140, 131,
"chain complex of a regular cw-complex", "X86C38E87817F2EAD" ],
[
"\033[1X\033[33X\033[0;-2YChain Maps of simplicial and regular CW maps\033[\
133X\033[101X", "10.4", [ 10, 4, 0 ], 180, 132,
"chain maps of simplicial and regular cw maps", "X7F9662EF83A1FA76" ],
[ "\033[1X\033[33X\033[0;-2YConstructions for chain complexes\033[133X\033[1\
01X", "10.5", [ 10, 5, 0 ], 215, 132, "constructions for chain complexes",
"X8127E17383F45359" ],
[ "\033[1X\033[33X\033[0;-2YFiltered chain complexes\033[133X\033[101X",
"10.6", [ 10, 6, 0 ], 256, 133, "filtered chain complexes",
"X7AAAB26682CD8AC4" ],
[ "\033[1X\033[33X\033[0;-2YSparse chain complexes\033[133X\033[101X",
"10.7", [ 10, 7, 0 ], 297, 134, "sparse chain complexes",
"X856F202D823280F8" ],
[ "\033[1X\033[33X\033[0;-2YResolutions\033[133X\033[101X", "11",
[ 11, 0, 0 ], 1, 136, "resolutions", "X7C0B125E7D5415B4" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for small finite groups\033[133X\033[\
101X", "11.1", [ 11, 1, 0 ], 10, 136, "resolutions for small finite groups",
"X83E8F9DA7CDC0DA7" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for very small finite groups\033[133X\
\033[101X", "11.2", [ 11, 2, 0 ], 26, 136,
"resolutions for very small finite groups", "X7EEA738385CC3AEA" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for finite groups acting on orbit pol\
ytopes\033[133X\033[101X", "11.3", [ 11, 3, 0 ], 120, 138,
"resolutions for finite groups acting on orbit polytopes",
"X86C0983E81F706F5" ],
[
"\033[1X\033[33X\033[0;-2YMinimal resolutions for finite \033[22Xp\033[122X\
\033[101X\027\033[1X\027-groups over \033[22XF_p\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "11.4", [ 11, 4, 0 ], 168, 139,
"minimal resolutions for finite p-groups over f_p", "X85374EA47E3D97CF"
],
[
"\033[1X\033[33X\033[0;-2YResolutions for abelian groups\033[133X\033[101X"
, "11.5", [ 11, 5, 0 ], 207, 139, "resolutions for abelian groups",
"X866C8D91871D1170" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for nilpotent groups\033[133X\033[101\
X", "11.6", [ 11, 6, 0 ], 227, 140, "resolutions for nilpotent groups",
"X7B332CBE85120B38" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for groups with subnormal series\033[\
133X\033[101X", "11.7", [ 11, 7, 0 ], 290, 141,
"resolutions for groups with subnormal series", "X7B03997084E00509" ],
[ "\033[1X\033[33X\033[0;-2YResolutions for groups with normal series\033[13\
3X\033[101X", "11.8", [ 11, 8, 0 ], 309, 141,
"resolutions for groups with normal series", "X814FFCE080B3A826" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for polycyclic (almost) crystallograp\
hic groups\033[133X\033[101X", "11.9", [ 11, 9, 0 ], 330, 141,
"resolutions for polycyclic almost crystallographic groups",
"X81227BF185C417AF" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for Bieberbach groups\033[133X\033[10\
1X", "11.10", [ 11, 10, 0 ], 370, 142, "resolutions for bieberbach groups",
"X814BCDD6837BB9C5" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for arbitrary crystallographic groups\
\033[133X\033[101X", "11.11", [ 11, 11, 0 ], 445, 143,
"resolutions for arbitrary crystallographic groups",
"X87ADCB7D7FC0B4D3" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for crystallographic groups admitting\
cubical fundamental domain\033[133X\033[101X", "11.12", [ 11, 12, 0 ], 464,
143,
"resolutions for crystallographic groups admitting cubical fundamental d\
omain", "X7B9B3AF487338A9B" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for Coxeter groups\033[133X\033[101X"
, "11.13", [ 11, 13, 0 ], 499, 144, "resolutions for coxeter groups",
"X78DD8D068349065A" ],
[ "\033[1X\033[33X\033[0;-2YResolutions for Artin groups\033[133X\033[101X",
"11.14", [ 11, 14, 0 ], 525, 144, "resolutions for artin groups",
"X7C69E7227F919CC9" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for \033[22XG=SL_2( Z[1/m])\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "11.15", [ 11, 15, 0 ], 543, 145,
"resolutions for g=sl_2 z[1/m]", "X8032647F8734F4EB" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=SL_2( m\
athcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X",
"11.16", [ 11, 16, 0 ], 558, 145,
"resolutions for selected groups g=sl_2 mathcal o q sqrtd",
"X7BE4DE82801CD38E" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=PSL_2( \
mathcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X",
"11.17", [ 11, 17, 0 ], 577, 145,
"resolutions for selected groups g=psl_2 mathcal o q sqrtd",
"X7D9CCB2C7DAA2310" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for a few higher-dimensional arithmet\
ic groups\033[133X\033[101X", "11.18", [ 11, 18, 0 ], 596, 146,
"resolutions for a few higher-dimensional arithmetic groups",
"X7F699587845E6DB1" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for finite-index subgroups\033[133X\\
033[101X", "11.19", [ 11, 19, 0 ], 618, 146,
"resolutions for finite-index subgroups", "X7812EB3F7AC45F87" ],
[ "\033[1X\033[33X\033[0;-2YSimplifying resolutions\033[133X\033[101X",
"11.20", [ 11, 20, 0 ], 645, 147, "simplifying resolutions",
"X84CAAA697FAC8E0D" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for graphs of groups and for groups w\
ith aspherical presentations\033[133X\033[101X", "11.21", [ 11, 21, 0 ], 668,
147,
"resolutions for graphs of groups and for groups with aspherical present\
ations", "X780C3F038148A1C7" ],
[
"\033[1X\033[33X\033[0;-2YResolutions for \033[22XFG\033[122X\033[101X\027\\
033[1X\027-modules\033[133X\033[101X", "11.22", [ 11, 22, 0 ], 716, 148,
"resolutions for fg-modules", "X85AB973F8566690A" ],
[ "\033[1X\033[33X\033[0;-2YSimplicial groups\033[133X\033[101X", "12",
[ 12, 0, 0 ], 1, 149, "simplicial groups", "X7D818E5F80F4CF63" ],
[ "\033[1X\033[33X\033[0;-2YCrossed modules\033[133X\033[101X", "12.1",
[ 12, 1, 0 ], 4, 149, "crossed modules", "X808C6B357F8BADC1" ],
[
"\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial groups (no\
t recommended)\033[133X\033[101X", "12.2", [ 12, 2, 0 ], 76, 150,
"eilenberg-maclane spaces as simplicial groups not recommended",
"X795E339978B42775" ],
[
"\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial free abeli\
an groups (recommended)\033[133X\033[101X", "12.3", [ 12, 3, 0 ], 100, 150,
"eilenberg-maclane spaces as simplicial free abelian groups recommended"
, "X7D91E64D7DD7F10F" ],
[
"\033[1X\033[33X\033[0;-2YElementary theoretical information on \033[22XH^\\
342\210\227(K(\317\200,n), Z)\033[122X\033[101X\027\033[1X\027\033[133X\033[10\
1X", "12.4", [ 12, 4, 0 ], 182, 152,
"elementary theoretical information on h^a\210\227 k i\200 n z",
"X84ABCA497C577132" ],
[
"\033[1X\033[33X\033[0;-2YThe first three non-trivial homotopy groups of sp\
heres\033[133X\033[101X", "12.5", [ 12, 5, 0 ], 256, 153,
"the first three non-trivial homotopy groups of spheres",
"X7F828D8D8463CC20" ],
[
"\033[1X\033[33X\033[0;-2YThe first two non-trivial homotopy groups of the \
suspension and double suspension of a \033[22XK(G,1)\033[122X\033[101X\027\033\
[1X\027\033[133X\033[101X", "12.6", [ 12, 6, 0 ], 323, 154,
"the first two non-trivial homotopy groups of the suspension and double \
suspension of a k g 1", "X81E2F80384ADF8C2" ],
[
"\033[1X\033[33X\033[0;-2YPostnikov towers and \033[22X\317\200_5(S^3)\033[\
122X\033[101X\027\033[1X\027\033[133X\033[101X", "12.7", [ 12, 7, 0 ], 376,
154, "postnikov towers and i\200_5 s^3", "X83EAC40A8324571F" ],
[
"\033[1X\033[33X\033[0;-2YTowards \033[22X\317\200_4(\316\243 K(G,1))\033[1\
22X\033[101X\027\033[1X\027\033[133X\033[101X", "12.8", [ 12, 8, 0 ], 475,
156, "towards i\200_4 i\244 k g 1", "X8227000D83B9A17F" ],
[ "\033[1X\033[33X\033[0;-2YEnumerating homotopy 2-types\033[133X\033[101X",
"12.9", [ 12, 9, 0 ], 536, 157, "enumerating homotopy 2-types",
"X7F5E6C067B2AE17A" ],
[
"\033[1X\033[33X\033[0;-2YIdentifying cat\033[22X^1\033[122X\033[101X\027\\
033[1X\027-groups of low order\033[133X\033[101X", "12.10", [ 12, 10, 0 ],
627, 158, "identifying cat^1-groups of low order", "X7D99B7AA780D8209" ]
,
[
"\033[1X\033[33X\033[0;-2YIdentifying crossed modules of low order\033[133X\
\033[101X", "12.11", [ 12, 11, 0 ], 688, 159,
"identifying crossed modules of low order", "X7F386CF078CB9A20" ],
[
"\033[1X\033[33X\033[0;-2YCongruence Subgroups, Cuspidal Cohomology and Hec\
ke Operators\033[133X\033[101X", "13", [ 13, 0, 0 ], 1, 161,
"congruence subgroups cuspidal cohomology and hecke operators",
"X86D5DB887ACB1661" ],
[ "\033[1X\033[33X\033[0;-2YEichler-Shimura isomorphism\033[133X\033[101X",
"13.1", [ 13, 1, 0 ], 12, 161, "eichler-shimura isomorphism",
"X79A1974B7B4987DE" ],
[
"\033[1X\033[33X\033[0;-2YGenerators for \033[22XSL_2( Z)\033[122X\033[101X\
\027\033[1X\027 and the cubic tree\033[133X\033[101X", "13.2", [ 13, 2, 0 ],
87, 162, "generators for sl_2 z and the cubic tree",
"X7BFA2C91868255D9" ],
[
"\033[1X\033[33X\033[0;-2YOne-dimensional fundamental domains and generator\
s for congruence subgroups\033[133X\033[101X", "13.3", [ 13, 3, 0 ], 128,
163,
"one-dimensional fundamental domains and generators for congruence subgr\
oups", "X7D1A56967A073A8B" ],
[
"\033[1X\033[33X\033[0;-2YCohomology of congruence subgroups\033[133X\033[1\
01X", "13.4", [ 13, 4, 0 ], 231, 164, "cohomology of congruence subgroups",
"X818BFA9A826C0DB3" ],
[
"\033[1X\033[33X\033[0;-2YCohomology with rational coefficients\033[133X\\
033[101X", "13.4-1", [ 13, 4, 1 ], 327, 166,
"cohomology with rational coefficients", "X7F55F8EA82FE9122" ],
[ "\033[1X\033[33X\033[0;-2YCuspidal cohomology\033[133X\033[101X", "13.5",
[ 13, 5, 0 ], 361, 166, "cuspidal cohomology", "X84D30F1580CD42D1" ],
[
"\033[1X\033[33X\033[0;-2YHecke operators on forms of weight 2\033[133X\\
033[101X", "13.6", [ 13, 6, 0 ], 464, 168,
"hecke operators on forms of weight 2", "X80861D3F87C29C43" ],
[
"\033[1X\033[33X\033[0;-2YHecke operators on forms of weight \033[22X\342\\
211\245 2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "13.7",
[ 13, 7, 0 ], 534, 169, "hecke operators on forms of weight a\211\246 2"
, "X831BB0897B988DA3" ],
[
"\033[1X\033[33X\033[0;-2YReconstructing modular forms from cohomology comp\
utations\033[133X\033[101X", "13.8", [ 13, 8, 0 ], 552, 169,
"reconstructing modular forms from cohomology computations",
"X84CC51EE8525E0D9" ],
[ "\033[1X\033[33X\033[0;-2YThe Picard group\033[133X\033[101X", "13.9",
[ 13, 9, 0 ], 683, 171, "the picard group", "X8180E53C834301EF" ],
[ "\033[1X\033[33X\033[0;-2YBianchi groups\033[133X\033[101X", "13.10",
[ 13, 10, 0 ], 819, 172, "bianchi groups", "X858B1B5D8506FE81" ],
[
"\033[1X\033[33X\033[0;-2Y(Co)homology of Bianchi groups and \033[22XSL_2(c\
al O_-d)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "13.11",
[ 13, 11, 0 ], 959, 174,
"co homology of bianchi groups and sl_2 cal o_-d", "X851390E07C3B3BB1" ]
,
[
"\033[1X\033[33X\033[0;-2YSome other infinite matrix groups\033[133X\033[10\
1X", "13.12", [ 13, 12, 0 ], 1218, 179, "some other infinite matrix groups",
"X86A6858884B9C05B" ],
[
"\033[1X\033[33X\033[0;-2YIdeals and finite quotient groups\033[133X\033[10\
1X", "13.13", [ 13, 13, 0 ], 1330, 181, "ideals and finite quotient groups",
"X7EF5D97281EB66DA" ],
[
"\033[1X\033[33X\033[0;-2YCongruence subgroups for ideals\033[133X\033[101X\
", "13.14", [ 13, 14, 0 ], 1442, 182, "congruence subgroups for ideals",
"X7D1F72287F14C5E1" ],
[ "\033[1X\033[33X\033[0;-2YFirst homology\033[133X\033[101X", "13.15",
[ 13, 15, 0 ], 1514, 183, "first homology", "X85E912617AFE03F4" ],
[
"\033[1X\033[33X\033[0;-2YFundamental domains for Bianchi groups\033[133X\\
033[101X", "14", [ 14, 0, 0 ], 1, 186,
"fundamental domains for bianchi groups", "X805848868005D528" ],
[ "\033[1X\033[33X\033[0;-2YBianchi groups\033[133X\033[101X", "14.1",
[ 14, 1, 0 ], 4, 186, "bianchi groups", "X858B1B5D8506FE81" ],
[
"\033[1X\033[33X\033[0;-2YSwan's description of a fundamental domain\033[13\
3X\033[101X", "14.2", [ 14, 2, 0 ], 51, 186,
"swans description of a fundamental domain", "X872D22507F797001" ],
[
"\033[1X\033[33X\033[0;-2YComputing a fundamental domain\033[133X\033[101X"
, "14.3", [ 14, 3, 0 ], 69, 187, "computing a fundamental domain",
"X7B9DE54F7ECB7E44" ],
[ "\033[1X\033[33X\033[0;-2YExamples\033[133X\033[101X", "14.4",
[ 14, 4, 0 ], 100, 187, "examples", "X7A489A5D79DA9E5C" ],
[
"\033[1X\033[33X\033[0;-2YEstablishing correctness of a fundamental domain\\
033[133X\033[101X", "14.5", [ 14, 5, 0 ], 183, 188,
"establishing correctness of a fundamental domain", "X86CD59CB7A04EE5A"
],
[
"\033[1X\033[33X\033[0;-2YComputing a free resolution for \033[22XSL_2(math\
cal O_-d)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "14.6",
[ 14, 6, 0 ], 227, 189,
"computing a free resolution for sl_2 mathcal o_-d",
"X78476F127B73BBD1" ],
[ "\033[1X\033[33X\033[0;-2YSome sanity checks\033[133X\033[101X", "14.7",
[ 14, 7, 0 ], 284, 190, "some sanity checks", "X784B2156823AEB15" ],
[
"\033[1X\033[33X\033[0;-2YEquivariant Euler characteristic\033[133X\033[101\
X", "14.7-1", [ 14, 7, 1 ], 291, 190, "equivariant euler characteristic",
"X7E5A36D47F9D4A47" ],
[ "\033[1X\033[33X\033[0;-2YBoundary squares to zero\033[133X\033[101X",
"14.7-2", [ 14, 7, 2 ], 323, 191, "boundary squares to zero",
"X852CDAFF84C5DF01" ],
[
"\033[1X\033[33X\033[0;-2YCompare different algorithms or implementations\\
033[133X\033[101X", "14.7-3", [ 14, 7, 3 ], 352, 191,
"compare different algorithms or implementations", "X7E64819A7C058EDD" ]
,
[ "\033[1X\033[33X\033[0;-2YCompare geometry to algebra\033[133X\033[101X",
"14.7-4", [ 14, 7, 4 ], 383, 192, "compare geometry to algebra",
"X8223864085412705" ],
[ "\033[1X\033[33X\033[0;-2YGroup presentations\033[133X\033[101X", "14.8",
[ 14, 8, 0 ], 422, 192, "group presentations", "X78BC9D077956089A" ],
[ "\033[1X\033[33X\033[0;-2YFinite index subgroups\033[133X\033[101X",
"14.9", [ 14, 9, 0 ], 464, 193, "finite index subgroups",
"X786CFAA17C0A6E7A" ],
[ "\033[1X\033[33X\033[0;-2YParallel computation\033[133X\033[101X", "15",
[ 15, 0, 0 ], 1, 195, "parallel computation", "X7F571E8F7BBC7514" ],
[
"\033[1X\033[33X\033[0;-2YAn embarassingly parallel computation\033[133X\\
033[101X", "15.1", [ 15, 1, 0 ], 4, 195,
"an embarassingly parallel computation", "X7EAE286B837D27BA" ],
[
"\033[1X\033[33X\033[0;-2YA non-embarassingly parallel computation\033[133X\
\033[101X", "15.2", [ 15, 2, 0 ], 40, 195,
"a non-embarassingly parallel computation", "X80F359DD7C54D405" ],
[ "\033[1X\033[33X\033[0;-2YParallel persistent homology\033[133X\033[101X",
"15.3", [ 15, 3, 0 ], 108, 197, "parallel persistent homology",
"X8496786F7FCEC24A" ],
[
"\033[1X\033[33X\033[0;-2YRegular CW-structure on knots (written by Kelvin \
Killeen)\033[133X\033[101X", "16", [ 16, 0, 0 ], 1, 198,
"regular cw-structure on knots written by kelvin killeen",
"X7C57D4AB8232983E" ],
[
"\033[1X\033[33X\033[0;-2YKnot complements in the 3-ball\033[133X\033[101X"
, "16.1", [ 16, 1, 0 ], 4, 198, "knot complements in the 3-ball",
"X86F56A85848347FF" ],
[ "\033[1X\033[33X\033[0;-2YTubular neighbourhoods\033[133X\033[101X",
"16.2", [ 16, 2, 0 ], 93, 199, "tubular neighbourhoods",
"X83EA2A38801E7A4C" ],
[
"\033[1X\033[33X\033[0;-2YKnotted surface complements in the 4-ball\033[133\
X\033[101X", "16.3", [ 16, 3, 0 ], 265, 202,
"knotted surface complements in the 4-ball", "X78C28038837300BD" ],
[ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 209, "bibliography",
"X7A6F98FD85F02BFE" ],
[ "References", "bib", [ "Bib", 0, 0 ], 1, 209, "references",
"X7A6F98FD85F02BFE" ],
[ "Index", "ind", [ "Ind", 0, 0 ], 1, 213, "index", "X83A0356F839C696F" ] ]
);
|