File: manual.six

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (794 lines) | stat: -rw-r--r-- 43,013 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
#SIXFORMAT  GapDocGAP
HELPBOOKINFOSIXTMP := rec(
encoding := "UTF-8",
bookname := "HAP",
entries :=
[ [ "Title page", "0.0", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" 
     ], 
  [ "Table of Contents", "0.0-1", [ 0, 0, 1 ], 18, 2, "table of contents", 
      "X8537FEB07AF2BEC8" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSimplicial complexes & CW complexes\033[133X\033[\
101X", "1", [ 1, 0, 0 ], 1, 7, "simplicial complexes & cw complexes", 
      "X7E5EA9587D4BCFB4" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Klein bottle as a simplicial complex\033[133X\
\033[101X", "1.1", [ 1, 1, 0 ], 4, 7, 
      "the klein bottle as a simplicial complex", "X85691C6980034524" ], 
  [ "\033[1X\033[33X\033[0;-2YOther simplicial surfaces\033[133X\033[101X", 
      "1.2", [ 1, 2, 0 ], 46, 8, "other simplicial surfaces", 
      "X7B8F88487B1B766C" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Quillen complex\033[133X\033[101X", "1.3", 
      [ 1, 3, 0 ], 86, 8, "the quillen complex", "X80A72C347D99A58E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe Quillen complex as a reduced CW-complex\033[1\
33X\033[101X", "1.4", [ 1, 4, 0 ], 110, 9, 
      "the quillen complex as a reduced cw-complex", "X7C4A2B8B79950232" ], 
  [ "\033[1X\033[33X\033[0;-2YSimple homotopy equivalences\033[133X\033[101X",
      "1.5", [ 1, 5, 0 ], 143, 9, "simple homotopy equivalences", 
      "X782AAB84799E3C44" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCellular simplifications preserving homeomorphism\
 type\033[133X\033[101X", "1.6", [ 1, 6, 0 ], 186, 10, 
      "cellular simplifications preserving homeomorphism type", 
      "X80474C7885AC1578" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing a CW-structure on a knot complement\\
033[133X\033[101X", "1.7", [ 1, 7, 0 ], 212, 10, 
      "constructing a cw-structure on a knot complement", "X7A15484C7E680AC9" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex by attaching ce\
lls\033[133X\033[101X", "1.8", [ 1, 8, 0 ], 247, 11, 
      "constructing a regular cw-complex by attaching cells", 
      "X829793717FB6DDCE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing a regular CW-complex from its face l\
attice\033[133X\033[101X", "1.9", [ 1, 9, 0 ], 305, 12, 
      "constructing a regular cw-complex from its face lattice", 
      "X7B7354E68025FC92" ], 
  [ "\033[1X\033[33X\033[0;-2YCup products\033[133X\033[101X", "1.10", 
      [ 1, 10, 0 ], 375, 13, "cup products", "X823FA6A9828FF473" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YIntersection forms of \033[22X4\033[122X\033[101X\
\027\033[1X\027-manifolds\033[133X\033[101X", "1.11", [ 1, 11, 0 ], 636, 18, 
      "intersection forms of 4-manifolds", "X7F9B01CF7EE1D2FC" ], 
  [ "\033[1X\033[33X\033[0;-2YCohomology Rings\033[133X\033[101X", "1.12", 
      [ 1, 12, 0 ], 712, 19, "cohomology rings", "X80B6849C835B7F19" ], 
  [ "\033[1X\033[33X\033[0;-2YBockstein homomorphism\033[133X\033[101X", 
      "1.13", [ 1, 13, 0 ], 783, 20, "bockstein homomorphism", 
      "X83035DEC7C9659C6" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YDiagonal maps on associahedra and other polytopes\
\033[133X\033[101X", "1.14", [ 1, 14, 0 ], 827, 21, 
      "diagonal maps on associahedra and other polytopes", 
      "X87135D067B6CDEEC" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCW maps and induced homomorphisms\033[133X\033[10\
1X", "1.15", [ 1, 15, 0 ], 877, 21, "cw maps and induced homomorphisms", 
      "X8771FF2885105154" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing a simplicial complex from a regular \
CW-complex\033[133X\033[101X", "1.16", [ 1, 16, 0 ], 931, 22, 
      "constructing a simplicial complex from a regular cw-complex", 
      "X853D6B247D0E18DB" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSome limitations to representing spaces as regula\
r CW complexes\033[133X\033[101X", "1.17", [ 1, 17, 0 ], 959, 23, 
      "some limitations to representing spaces as regular cw complexes", 
      "X7900FD197F175551" ], 
  [ "\033[1X\033[33X\033[0;-2YEquivariant CW complexes\033[133X\033[101X", 
      "1.18", [ 1, 18, 0 ], 1047, 24, "equivariant cw complexes", 
      "X85A579217DCB6CC8" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YOrbifolds and classifying spaces\033[133X\033[101\
X", "1.19", [ 1, 19, 0 ], 1176, 26, "orbifolds and classifying spaces", 
      "X86881717878ADCD6" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCubical complexes & permutahedral complexes\033[1\
33X\033[101X", "2", [ 2, 0, 0 ], 1, 31, 
      "cubical complexes & permutahedral complexes", "X7F8376F37AF80AAC" ], 
  [ "\033[1X\033[33X\033[0;-2YCubical complexes\033[133X\033[101X", "2.1", 
      [ 2, 1, 0 ], 4, 31, "cubical complexes", "X7D67D5F3820637AD" ], 
  [ "\033[1X\033[33X\033[0;-2YPermutahedral complexes\033[133X\033[101X", 
      "2.2", [ 2, 2, 0 ], 91, 32, "permutahedral complexes", 
      "X85D8195379F2A8CA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YConstructing pure cubical and permutahedral compl\
exes\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 218, 34, 
      "constructing pure cubical and permutahedral complexes", 
      "X78D3037283B506E0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputations in dynamical systems\033[133X\033[10\
1X", "2.4", [ 2, 4, 0 ], 240, 35, "computations in dynamical systems", 
      "X8462CF66850CC3A8" ], 
  [ "\033[1X\033[33X\033[0;-2YCovering spaces\033[133X\033[101X", "3", 
      [ 3, 0, 0 ], 1, 36, "covering spaces", "X87472058788D76C0" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCellular chains on the universal cover\033[133X\\
033[101X", "3.1", [ 3, 1, 0 ], 15, 36, 
      "cellular chains on the universal cover", "X85FB4CA987BC92CC" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSpun knots and the Satoh tube map\033[133X\033[10\
1X", "3.2", [ 3, 2, 0 ], 81, 37, "spun knots and the satoh tube map", 
      "X7E5CC04E7E3CCDAD" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCohomology with local coefficients\033[133X\033[1\
01X", "3.3", [ 3, 3, 0 ], 178, 39, "cohomology with local coefficients", 
      "X7C304A1C7EF0BA60" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YDistinguishing between two non-homeomorphic homot\
opy equivalent spaces\033[133X\033[101X", "3.4", [ 3, 4, 0 ], 218, 40, 
      "distinguishing between two non-homeomorphic homotopy equivalent spaces"
        , "X7A4F34B780FA2CD5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSecond homotopy groups of spaces with finite fund\
amental group\033[133X\033[101X", "3.5", [ 3, 5, 0 ], 259, 40, 
      "second homotopy groups of spaces with finite fundamental group", 
      "X869FD75B84AAC7AD" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThird homotopy groups of simply connected spaces\\
033[133X\033[101X", "3.6", [ 3, 6, 0 ], 307, 41, 
      "third homotopy groups of simply connected spaces", "X87F8F6C3812A7E73" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFirst example: Whitehead's certain exact sequence\
\033[133X\033[101X", "3.6-1", [ 3, 6, 1 ], 310, 41, 
      "first example: whiteheads certain exact sequence", "X7B506CF27DE54DBE" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSecond example: the Hopf invariant\033[133X\033[1\
01X", "3.6-2", [ 3, 6, 2 ], 341, 42, "second example: the hopf invariant", 
      "X828F0FAB86AA60E9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputing the second homotopy group of a space wi\
th infinite fundamental group\033[133X\033[101X", "3.7", [ 3, 7, 0 ], 433, 
      43, 
      "computing the second homotopy group of a space with infinite fundamenta\
l group", "X7EAF7E677FB9D53F" ], 
  [ "\033[1X\033[33X\033[0;-2YThree Manifolds\033[133X\033[101X", "4", 
      [ 4, 0, 0 ], 1, 45, "three manifolds", "X7BFA4D1587D8DF49" ], 
  [ "\033[1X\033[33X\033[0;-2YDehn Surgery\033[133X\033[101X", "4.1", 
      [ 4, 1, 0 ], 4, 45, "dehn surgery", "X82D1348C79238C2D" ], 
  [ "\033[1X\033[33X\033[0;-2YConnected Sums\033[133X\033[101X", "4.2", 
      [ 4, 2, 0 ], 49, 46, "connected sums", "X848EDEE882B36F6C" ], 
  [ "\033[1X\033[33X\033[0;-2YDijkgraaf-Witten Invariant\033[133X\033[101X", 
      "4.3", [ 4, 3, 0 ], 78, 46, "dijkgraaf-witten invariant", 
      "X78AE684C7DBD7C70" ], 
  [ "\033[1X\033[33X\033[0;-2YCohomology rings\033[133X\033[101X", "4.4", 
      [ 4, 4, 0 ], 143, 47, "cohomology rings", "X80B6849C835B7F19" ], 
  [ "\033[1X\033[33X\033[0;-2YLinking Form\033[133X\033[101X", "4.5", 
      [ 4, 5, 0 ], 184, 48, "linking form", "X7F56BB4C801AB894" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YDetermining the homeomorphism type of a lens spac\
e\033[133X\033[101X", "4.6", [ 4, 6, 0 ], 271, 49, 
      "determining the homeomorphism type of a lens space", 
      "X850C76697A6A1654" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSurgeries on distinct knots can yield homeomorphi\
c manifolds\033[133X\033[101X", "4.7", [ 4, 7, 0 ], 383, 51, 
      "surgeries on distinct knots can yield homeomorphic manifolds", 
      "X7EC6B008878CC77E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFinite fundamental groups of \033[22X3\033[122X\\
033[101X\027\033[1X\027-manifolds\033[133X\033[101X", "4.8", [ 4, 8, 0 ], 
      464, 52, "finite fundamental groups of 3-manifolds", 
      "X7B425A3280A2AF07" ], 
  [ "\033[1X\033[33X\033[0;-2YPoincare's cube manifolds\033[133X\033[101X", 
      "4.9", [ 4, 9, 0 ], 500, 53, "poincares cube manifolds", 
      "X78912D227D753167" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThere are at least 25 distinct cube manifolds\\
033[133X\033[101X", "4.10", [ 4, 10, 0 ], 555, 54, 
      "there are at least 25 distinct cube manifolds", "X8761051F84C6CEC2" ], 
  [ "\033[1X\033[33X\033[0;-2YFace pairings for 25 distinct cube manifolds\033\
[133X\033[101X", "4.10-1", [ 4, 10, 1 ], 672, 56, 
      "face pairings for 25 distinct cube manifolds", "X7D50795883E534A3" ], 
  [ "\033[1X\033[33X\033[0;-2YPlatonic cube manifolds\033[133X\033[101X", 
      "4.10-2", [ 4, 10, 2 ], 898, 60, "platonic cube manifolds", 
      "X837811BB8181666E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThere are at most 41 distinct cube manifolds\033[\
133X\033[101X", "4.11", [ 4, 11, 0 ], 924, 60, 
      "there are at most 41 distinct cube manifolds", "X8084A36082B26D86" ], 
  [ "\033[1X\033[33X\033[0;-2YThere are precisely 18 orientable cube manifolds\
, of which 9 are spherical and 5 are euclidean\033[133X\033[101X", "4.12", 
      [ 4, 12, 0 ], 1055, 62, 
      "there are precisely 18 orientable cube manifolds of which 9 are spheric\
al and 5 are euclidean", "X7B63C22C80E53758" ], 
  [ "\033[1X\033[33X\033[0;-2YCube manifolds with boundary\033[133X\033[101X",
      "4.13", [ 4, 13, 0 ], 1123, 64, "cube manifolds with boundary", 
      "X796BF3817BD7F57D" ], 
  [ "\033[1X\033[33X\033[0;-2YOctahedral manifolds\033[133X\033[101X", 
      "4.14", [ 4, 14, 0 ], 1193, 65, "octahedral manifolds", 
      "X7EC4359B7DF208B0" ], 
  [ "\033[1X\033[33X\033[0;-2YDodecahedral manifolds\033[133X\033[101X", 
      "4.15", [ 4, 15, 0 ], 1232, 65, "dodecahedral manifolds", 
      "X85FFF9B97B7AD818" ], 
  [ "\033[1X\033[33X\033[0;-2YPrism manifolds\033[133X\033[101X", "4.16", 
      [ 4, 16, 0 ], 1281, 66, "prism manifolds", "X78B75E2E79FBCC54" ], 
  [ "\033[1X\033[33X\033[0;-2YBipyramid manifolds\033[133X\033[101X", "4.17", 
      [ 4, 17, 0 ], 1339, 67, "bipyramid manifolds", "X7F31DFDA846E8E75" ], 
  [ "\033[1X\033[33X\033[0;-2YTopological data analysis\033[133X\033[101X", 
      "5", [ 5, 0, 0 ], 1, 68, "topological data analysis", 
      "X7B7E077887694A9F" ], 
  [ "\033[1X\033[33X\033[0;-2YPersistent homology\033[133X\033[101X", "5.1", 
      [ 5, 1, 0 ], 4, 68, "persistent homology", "X80A70B20873378E0" ], 
  [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", 
      "5.1-1", [ 5, 1, 1 ], 66, 69, "background to the data", 
      "X7D512DA37F789B4C" ], 
  [ "\033[1X\033[33X\033[0;-2YMapper clustering\033[133X\033[101X", "5.2", 
      [ 5, 2, 0 ], 73, 69, "mapper clustering", "X849556107A23FF7B" ], 
  [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", 
      "5.2-1", [ 5, 2, 1 ], 117, 70, "background to the data", 
      "X7D512DA37F789B4C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSome tools for handling pure complexes\033[133X\\
033[101X", "5.3", [ 5, 3, 0 ], 123, 70, 
      "some tools for handling pure complexes", "X7BBDE0567DB8C5DA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YDigital image analysis and persistent homology\\
033[133X\033[101X", "5.4", [ 5, 4, 0 ], 194, 71, 
      "digital image analysis and persistent homology", "X79616D12822FDB9A" ],
  [ "\033[1X\033[33X\033[0;-2YNaive example of image segmentation by automatic\
 thresholding\033[133X\033[101X", "5.4-1", [ 5, 4, 1 ], 222, 71, 
      "naive example of image segmentation by automatic thresholding", 
      "X8066F9B17B78418E" ], 
  [ "\033[1X\033[33X\033[0;-2YRefining the filtration\033[133X\033[101X", 
      "5.4-2", [ 5, 4, 2 ], 246, 72, "refining the filtration", 
      "X7E6436E0856761F2" ], 
  [ "\033[1X\033[33X\033[0;-2YBackground to the data\033[133X\033[101X", 
      "5.4-3", [ 5, 4, 3 ], 270, 72, "background to the data", 
      "X7D512DA37F789B4C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA second example of digital image segmentation\\
033[133X\033[101X", "5.5", [ 5, 5, 0 ], 275, 72, 
      "a second example of digital image segmentation", "X7A8224DA7B00E0D9" ],
  [ "\033[1X\033[33X\033[0;-2YA third example of digital image segmentation\
\033[133X\033[101X", "5.6", [ 5, 6, 0 ], 327, 73, 
      "a third example of digital image segmentation", "X8290E7D287F69B98" ], 
  [ "\033[1X\033[33X\033[0;-2YNaive example of digital image contour extractio\
n\033[133X\033[101X", "5.7", [ 5, 7, 0 ], 371, 74, 
      "naive example of digital image contour extraction", 
      "X7957F329835373E9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAlternative approaches to computing persistent ho\
mology\033[133X\033[101X", "5.8", [ 5, 8, 0 ], 456, 75, 
      "alternative approaches to computing persistent homology", 
      "X7D2CC9CB85DF1BAF" ], 
  [ "\033[1X\033[33X\033[0;-2YNon-trivial cup product\033[133X\033[101X", 
      "5.8-1", [ 5, 8, 1 ], 522, 76, "non-trivial cup product", 
      "X86FD0A867EC9E64F" ], 
  [ "\033[1X\033[33X\033[0;-2YExplicit homology generators\033[133X\033[101X",
      "5.8-2", [ 5, 8, 2 ], 539, 76, "explicit homology generators", 
      "X783EF0F17B629C46" ], 
  [ "\033[1X\033[33X\033[0;-2YKnotted proteins\033[133X\033[101X", "5.9", 
      [ 5, 9, 0 ], 577, 77, "knotted proteins", "X80D0D8EB7BCD05E9" ], 
  [ "\033[1X\033[33X\033[0;-2YRandom simplicial complexes\033[133X\033[101X", 
      "5.10", [ 5, 10, 0 ], 656, 78, "random simplicial complexes", 
      "X87AF06677F05C624" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputing homology of a clique complex (Vietoris-\
Rips complex)\033[133X\033[101X", "5.11", [ 5, 11, 0 ], 759, 80, 
      "computing homology of a clique complex vietoris-rips complex", 
      "X875EE92F7DBA1E27" ], 
  [ "\033[1X\033[33X\033[0;-2YGroup theoretic computations\033[133X\033[101X",
      "6", [ 6, 0, 0 ], 1, 82, "group theoretic computations", 
      "X7C07F4BD8466991A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThird homotopy group of a supsension of an Eilenb\
erg-MacLane space\033[133X\033[101X", "6.1", [ 6, 1, 0 ], 4, 82, 
      "third homotopy group of a supsension of an eilenberg-maclane space", 
      "X86D7FBBD7E5287C9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YRepresentations of knot quandles\033[133X\033[101\
X", "6.2", [ 6, 2, 0 ], 23, 82, "representations of knot quandles", 
      "X803FDFFE78A08446" ], 
  [ "\033[1X\033[33X\033[0;-2YIdentifying knots\033[133X\033[101X", "6.3", 
      [ 6, 3, 0 ], 62, 83, "identifying knots", "X7E4EFB987DA22017" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAspherical \033[22X2\033[122X\033[101X\027\033[1X\
\027-complexes\033[133X\033[101X", "6.4", [ 6, 4, 0 ], 80, 83, 
      "aspherical 2-complexes", "X8664E986873195E6" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YGroup presentations and homotopical syzygies\033[\
133X\033[101X", "6.5", [ 6, 5, 0 ], 102, 83, 
      "group presentations and homotopical syzygies", "X84C0CB8B7C21E179" ], 
  [ "\033[1X\033[33X\033[0;-2YBogomolov multiplier\033[133X\033[101X", "6.6", 
      [ 6, 6, 0 ], 186, 85, "bogomolov multiplier", "X7F719758856A443D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSecond group cohomology and group extensions\033[\
133X\033[101X", "6.7", [ 6, 7, 0 ], 205, 85, 
      "second group cohomology and group extensions", "X8333413B838D787D" ], 
  [ "\033[1X\033[33X\033[0;-2YCocyclic groups: a convenient way of representin\
g certain groups\033[133X\033[101X", "6.8", [ 6, 8, 0 ], 350, 88, 
      "cocyclic groups: a convenient way of representing certain groups", 
      "X7F04FA5E81FFA848" ], 
  [ "\033[1X\033[33X\033[0;-2YEffective group presentations\033[133X\033[101X"
        , "6.9", [ 6, 9, 0 ], 446, 89, "effective group presentations", 
      "X863080FE8270468D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSecond group cohomology and cocyclic Hadamard mat\
rices\033[133X\033[101X", "6.10", [ 6, 10, 0 ], 533, 91, 
      "second group cohomology and cocyclic hadamard matrices", 
      "X7C60E2B578074532" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThird group cohomology and homotopy \033[22X2\\
033[122X\033[101X\027\033[1X\027-types\033[133X\033[101X", "6.11", 
      [ 6, 11, 0 ], 556, 91, "third group cohomology and homotopy 2-types", 
      "X78040D8580D35D53" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCohomology of groups (and Lie Algebras)\033[133X\\
033[101X", "7", [ 7, 0, 0 ], 1, 94, "cohomology of groups and lie algebras", 
      "X787E37187B7308C9" ], 
  [ "\033[1X\033[33X\033[0;-2YFinite groups\033[133X\033[101X", "7.1", 
      [ 7, 1, 0 ], 4, 94, "finite groups", "X807B265978F90E01" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YNaive homology computation for a very small group\
\033[133X\033[101X", "7.1-1", [ 7, 1, 1 ], 7, 94, 
      "naive homology computation for a very small group", 
      "X80A721AC7A8D30A3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA more efficient homology computation\033[133X\\
033[101X", "7.1-2", [ 7, 1, 2 ], 66, 95, 
      "a more efficient homology computation", "X838CEA3F850DFC82" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputation of an induced homology homomorphism\\
033[133X\033[101X", "7.1-3", [ 7, 1, 3 ], 89, 95, 
      "computation of an induced homology homomorphism", "X842E93467AD09EC1" ]
    , 
  [ 
      "\033[1X\033[33X\033[0;-2YSome other finite group homology computations\\
033[133X\033[101X", "7.1-4", [ 7, 1, 4 ], 117, 96, 
      "some other finite group homology computations", "X8754D2937E6FD7CE" ], 
  [ "\033[1X\033[33X\033[0;-2YNilpotent groups\033[133X\033[101X", "7.2", 
      [ 7, 2, 0 ], 236, 97, "nilpotent groups", "X8463EF6A821FFB69" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCrystallographic and Almost Crystallographic grou\
ps\033[133X\033[101X", "7.3", [ 7, 3, 0 ], 255, 98, 
      "crystallographic and almost crystallographic groups", 
      "X82E8FAC67BC16C01" ], 
  [ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "7.4", 
      [ 7, 4, 0 ], 284, 98, "arithmetic groups", "X7AFFB32587D047FE" ], 
  [ "\033[1X\033[33X\033[0;-2YArtin groups\033[133X\033[101X", "7.5", 
      [ 7, 5, 0 ], 301, 98, "artin groups", "X800CB6257DC8FB3A" ], 
  [ "\033[1X\033[33X\033[0;-2YGraphs of groups\033[133X\033[101X", "7.6", 
      [ 7, 6, 0 ], 345, 99, "graphs of groups", "X7BAFCA3680E478AE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YLie algebra homology and free nilpotent groups\\
033[133X\033[101X", "7.7", [ 7, 7, 0 ], 374, 100, 
      "lie algebra homology and free nilpotent groups", "X7CE849E58706796C" ],
  [ "\033[1X\033[33X\033[0;-2YCohomology with coefficients in a module\033[133\
X\033[101X", "7.8", [ 7, 8, 0 ], 446, 101, 
      "cohomology with coefficients in a module", "X7C3DEDD57BB4D537" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCohomology as a functor of the first variable\\
033[133X\033[101X", "7.9", [ 7, 9, 0 ], 615, 103, 
      "cohomology as a functor of the first variable", "X7E573EA582CCEF2E" ], 
  [ "\033[1X\033[33X\033[0;-2YCohomology as a functor of the second variable a\
nd the long exact coefficient sequence\033[133X\033[101X", "7.10", 
      [ 7, 10, 0 ], 647, 104, 
      "cohomology as a functor of the second variable and the long exact coeff\
icient sequence", "X796731727A7EBE59" ], 
  [ "\033[1X\033[33X\033[0;-2YTransfer Homomorphism\033[133X\033[101X", 
      "7.11", [ 7, 11, 0 ], 727, 105, "transfer homomorphism", 
      "X80F6FD3E7C7E4E8D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCohomology rings of finite fundamental groups of \
3-manifolds\033[133X\033[101X", "7.12", [ 7, 12, 0 ], 760, 106, 
      "cohomology rings of finite fundamental groups of 3-manifolds", 
      "X79B1406C803FF178" ], 
  [ "\033[1X\033[33X\033[0;-2YExplicit cocycles\033[133X\033[101X", "7.13", 
      [ 7, 13, 0 ], 876, 108, "explicit cocycles", "X833A19F0791C3B06" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YQuillen's complex and the \033[22Xp\033[122X\033[\
101X\027\033[1X\027-part of homology\033[133X\033[101X", "7.14", 
      [ 7, 14, 0 ], 1062, 111, "quillens complex and the p-part of homology", 
      "X7C5233E27D2D603E" ], 
  [ "\033[1X\033[33X\033[0;-2YHomology of a Lie algebra\033[133X\033[101X", 
      "7.15", [ 7, 15, 0 ], 1266, 114, "homology of a lie algebra", 
      "X865CC8E0794C0E61" ], 
  [ "\033[1X\033[33X\033[0;-2YCovers of Lie algebras\033[133X\033[101X", 
      "7.16", [ 7, 16, 0 ], 1308, 114, "covers of lie algebras", 
      "X86B4EE4783A244F7" ], 
  [ "\033[1X\033[33X\033[0;-2YComputing a cover\033[133X\033[101X", "7.16-1", 
      [ 7, 16, 1 ], 1332, 115, "computing a cover", "X7DFF32A67FF39C82" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCohomology rings and Steenrod operations for grou\
ps\033[133X\033[101X", "8", [ 8, 0, 0 ], 1, 116, 
      "cohomology rings and steenrod operations for groups", 
      "X7ED29A58858AAAF2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YMod-\033[22Xp\033[122X\033[101X\027\033[1X\027 co\
homology rings of finite groups\033[133X\033[101X", "8.1", [ 8, 1, 0 ], 4, 
      116, "mod-p cohomology rings of finite groups", "X877CAF8B7E64DE04" ], 
  [ "\033[1X\033[33X\033[0;-2YRing presentations (for the commutative \033[22X\
p=2\033[122X\033[101X\027\033[1X\027 case)\033[133X\033[101X", "8.1-1", 
      [ 8, 1, 1 ], 89, 117, "ring presentations for the commutative p=2 case",
      "X870E0299782638AF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YPoincare Series for Mod-\033[22Xp\033[122X\033[10\
1X\027\033[1X\027 cohomology\033[133X\033[101X", "8.2", [ 8, 2, 0 ], 117, 
      118, "poincare series for mod-p cohomology", "X862538218748627F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFunctorial ring homomorphisms in Mod-\033[22Xp\\
033[122X\033[101X\027\033[1X\027 cohomology\033[133X\033[101X", "8.3", 
      [ 8, 3, 0 ], 214, 119, 
      "functorial ring homomorphisms in mod-p cohomology", 
      "X780DF87680C3F52B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YTesting homomorphism properties\033[133X\033[101X\
", "8.3-1", [ 8, 3, 1 ], 237, 120, "testing homomorphism properties", 
      "X834CED9D7A104695" ], 
  [ "\033[1X\033[33X\033[0;-2YTesting functorial properties\033[133X\033[101X"
        , "8.3-2", [ 8, 3, 2 ], 254, 120, "testing functorial properties", 
      "X7A0D505D844F0CD4" ], 
  [ "\033[1X\033[33X\033[0;-2YComputing with larger groups\033[133X\033[101X",
      "8.3-3", [ 8, 3, 3 ], 290, 121, "computing with larger groups", 
      "X855764877FA44225" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSteenrod operations for finite \033[22X2\033[122X\
\033[101X\027\033[1X\027-groups\033[133X\033[101X", "8.4", [ 8, 4, 0 ], 343, 
      122, "steenrod operations for finite 2-groups", "X80114B0483EF9A67" ], 
  [ "\033[1X\033[33X\033[0;-2YSteenrod operations on the classifying space of \
a finite \033[22Xp\033[122X\033[101X\027\033[1X\027-group\033[133X\033[101X", 
      "8.5", [ 8, 5, 0 ], 425, 123, 
      "steenrod operations on the classifying space of a finite p-group", 
      "X7D5ACA56870A40E9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YMod-\033[22Xp\033[122X\033[101X\027\033[1X\027 co\
homology rings of crystallographic groups\033[133X\033[101X", "8.6", 
      [ 8, 6, 0 ], 443, 123, 
      "mod-p cohomology rings of crystallographic groups", 
      "X7D2D26C0784A0E14" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YPoincare series for crystallographic groups\033[1\
33X\033[101X", "8.6-1", [ 8, 6, 1 ], 453, 123, 
      "poincare series for crystallographic groups", "X81C107C07CF02F0E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YMod \033[22X2\033[122X\033[101X\027\033[1X\027 co\
homology rings of \033[22X3\033[122X\033[101X\027\033[1X\027-dimensional cryst\
allographic groups\033[133X\033[101X", "8.6-2", [ 8, 6, 2 ], 519, 125, 
      "mod 2 cohomology rings of 3-dimensional crystallographic groups", 
      "X7F5C242F7BC938A5" ], 
  [ "\033[1X\033[33X\033[0;-2YBredon homology\033[133X\033[101X", "9", 
      [ 9, 0, 0 ], 1, 127, "bredon homology", "X786DB80A8693779E" ], 
  [ "\033[1X\033[33X\033[0;-2YDavis complex\033[133X\033[101X", "9.1", 
      [ 9, 1, 0 ], 4, 127, "davis complex", "X7B0212F97F3D442A" ], 
  [ "\033[1X\033[33X\033[0;-2YArithmetic groups\033[133X\033[101X", "9.2", 
      [ 9, 2, 0 ], 28, 127, "arithmetic groups", "X7AFFB32587D047FE" ], 
  [ "\033[1X\033[33X\033[0;-2YCrystallographic groups\033[133X\033[101X", 
      "9.3", [ 9, 3, 0 ], 55, 128, "crystallographic groups", 
      "X7DEBF2BB7D1FB144" ], 
  [ "\033[1X\033[33X\033[0;-2YChain Complexes\033[133X\033[101X", "10", 
      [ 10, 0, 0 ], 1, 129, "chain complexes", "X7A06103979B92808" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YChain complex of a simplicial complex and simplic\
ial pair\033[133X\033[101X", "10.1", [ 10, 1, 0 ], 24, 129, 
      "chain complex of a simplicial complex and simplicial pair", 
      "X782DE78884DD6992" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YChain complex of a cubical complex and cubical pa\
ir\033[133X\033[101X", "10.2", [ 10, 2, 0 ], 91, 130, 
      "chain complex of a cubical complex and cubical pair", 
      "X79E7A13E7DE9C412" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YChain complex of a regular CW-complex\033[133X\\
033[101X", "10.3", [ 10, 3, 0 ], 140, 131, 
      "chain complex of a regular cw-complex", "X86C38E87817F2EAD" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YChain Maps of simplicial and regular CW maps\033[\
133X\033[101X", "10.4", [ 10, 4, 0 ], 180, 132, 
      "chain maps of simplicial and regular cw maps", "X7F9662EF83A1FA76" ], 
  [ "\033[1X\033[33X\033[0;-2YConstructions for chain complexes\033[133X\033[1\
01X", "10.5", [ 10, 5, 0 ], 215, 132, "constructions for chain complexes", 
      "X8127E17383F45359" ], 
  [ "\033[1X\033[33X\033[0;-2YFiltered chain complexes\033[133X\033[101X", 
      "10.6", [ 10, 6, 0 ], 256, 133, "filtered chain complexes", 
      "X7AAAB26682CD8AC4" ], 
  [ "\033[1X\033[33X\033[0;-2YSparse chain complexes\033[133X\033[101X", 
      "10.7", [ 10, 7, 0 ], 297, 134, "sparse chain complexes", 
      "X856F202D823280F8" ], 
  [ "\033[1X\033[33X\033[0;-2YResolutions\033[133X\033[101X", "11", 
      [ 11, 0, 0 ], 1, 136, "resolutions", "X7C0B125E7D5415B4" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for small finite groups\033[133X\033[\
101X", "11.1", [ 11, 1, 0 ], 10, 136, "resolutions for small finite groups", 
      "X83E8F9DA7CDC0DA7" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for very small finite groups\033[133X\
\033[101X", "11.2", [ 11, 2, 0 ], 26, 136, 
      "resolutions for very small finite groups", "X7EEA738385CC3AEA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for finite groups acting on orbit pol\
ytopes\033[133X\033[101X", "11.3", [ 11, 3, 0 ], 120, 138, 
      "resolutions for finite groups acting on orbit polytopes", 
      "X86C0983E81F706F5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YMinimal resolutions for finite \033[22Xp\033[122X\
\033[101X\027\033[1X\027-groups over \033[22XF_p\033[122X\033[101X\027\033[1X\
\027\033[133X\033[101X", "11.4", [ 11, 4, 0 ], 168, 139, 
      "minimal resolutions for finite p-groups over f_p", "X85374EA47E3D97CF" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for abelian groups\033[133X\033[101X"
        , "11.5", [ 11, 5, 0 ], 207, 139, "resolutions for abelian groups", 
      "X866C8D91871D1170" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for nilpotent groups\033[133X\033[101\
X", "11.6", [ 11, 6, 0 ], 227, 140, "resolutions for nilpotent groups", 
      "X7B332CBE85120B38" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for groups with subnormal series\033[\
133X\033[101X", "11.7", [ 11, 7, 0 ], 290, 141, 
      "resolutions for groups with subnormal series", "X7B03997084E00509" ], 
  [ "\033[1X\033[33X\033[0;-2YResolutions for groups with normal series\033[13\
3X\033[101X", "11.8", [ 11, 8, 0 ], 309, 141, 
      "resolutions for groups with normal series", "X814FFCE080B3A826" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for polycyclic (almost) crystallograp\
hic groups\033[133X\033[101X", "11.9", [ 11, 9, 0 ], 330, 141, 
      "resolutions for polycyclic almost crystallographic groups", 
      "X81227BF185C417AF" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for Bieberbach groups\033[133X\033[10\
1X", "11.10", [ 11, 10, 0 ], 370, 142, "resolutions for bieberbach groups", 
      "X814BCDD6837BB9C5" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for arbitrary crystallographic groups\
\033[133X\033[101X", "11.11", [ 11, 11, 0 ], 445, 143, 
      "resolutions for arbitrary crystallographic groups", 
      "X87ADCB7D7FC0B4D3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for crystallographic groups admitting\
 cubical fundamental domain\033[133X\033[101X", "11.12", [ 11, 12, 0 ], 464, 
      143, 
      "resolutions for crystallographic groups admitting cubical fundamental d\
omain", "X7B9B3AF487338A9B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for Coxeter groups\033[133X\033[101X"
        , "11.13", [ 11, 13, 0 ], 499, 144, "resolutions for coxeter groups", 
      "X78DD8D068349065A" ], 
  [ "\033[1X\033[33X\033[0;-2YResolutions for Artin groups\033[133X\033[101X",
      "11.14", [ 11, 14, 0 ], 525, 144, "resolutions for artin groups", 
      "X7C69E7227F919CC9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for \033[22XG=SL_2( Z[1/m])\033[122X\\
033[101X\027\033[1X\027\033[133X\033[101X", "11.15", [ 11, 15, 0 ], 543, 145, 
      "resolutions for g=sl_2 z[1/m]", "X8032647F8734F4EB" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=SL_2( m\
athcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", 
      "11.16", [ 11, 16, 0 ], 558, 145, 
      "resolutions for selected groups g=sl_2 mathcal o q sqrtd", 
      "X7BE4DE82801CD38E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for selected groups \033[22XG=PSL_2( \
mathcal O( Q(sqrtd) )\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", 
      "11.17", [ 11, 17, 0 ], 577, 145, 
      "resolutions for selected groups g=psl_2 mathcal o q sqrtd", 
      "X7D9CCB2C7DAA2310" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for a few higher-dimensional arithmet\
ic groups\033[133X\033[101X", "11.18", [ 11, 18, 0 ], 596, 146, 
      "resolutions for a few higher-dimensional arithmetic groups", 
      "X7F699587845E6DB1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for finite-index subgroups\033[133X\\
033[101X", "11.19", [ 11, 19, 0 ], 618, 146, 
      "resolutions for finite-index subgroups", "X7812EB3F7AC45F87" ], 
  [ "\033[1X\033[33X\033[0;-2YSimplifying resolutions\033[133X\033[101X", 
      "11.20", [ 11, 20, 0 ], 645, 147, "simplifying resolutions", 
      "X84CAAA697FAC8E0D" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for graphs of groups and for groups w\
ith aspherical presentations\033[133X\033[101X", "11.21", [ 11, 21, 0 ], 668, 
      147, 
      "resolutions for graphs of groups and for groups with aspherical present\
ations", "X780C3F038148A1C7" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YResolutions for \033[22XFG\033[122X\033[101X\027\\
033[1X\027-modules\033[133X\033[101X", "11.22", [ 11, 22, 0 ], 716, 148, 
      "resolutions for fg-modules", "X85AB973F8566690A" ], 
  [ "\033[1X\033[33X\033[0;-2YSimplicial groups\033[133X\033[101X", "12", 
      [ 12, 0, 0 ], 1, 149, "simplicial groups", "X7D818E5F80F4CF63" ], 
  [ "\033[1X\033[33X\033[0;-2YCrossed modules\033[133X\033[101X", "12.1", 
      [ 12, 1, 0 ], 4, 149, "crossed modules", "X808C6B357F8BADC1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial groups (no\
t recommended)\033[133X\033[101X", "12.2", [ 12, 2, 0 ], 76, 150, 
      "eilenberg-maclane spaces as simplicial groups not recommended", 
      "X795E339978B42775" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YEilenberg-MacLane spaces as simplicial free abeli\
an groups (recommended)\033[133X\033[101X", "12.3", [ 12, 3, 0 ], 100, 150, 
      "eilenberg-maclane spaces as simplicial free abelian groups recommended"
        , "X7D91E64D7DD7F10F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YElementary theoretical information on \033[22XH^\\
342\210\227(K(\317\200,n), Z)\033[122X\033[101X\027\033[1X\027\033[133X\033[10\
1X", "12.4", [ 12, 4, 0 ], 182, 152, 
      "elementary theoretical information on h^a\210\227 k i\200 n z", 
      "X84ABCA497C577132" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe first three non-trivial homotopy groups of sp\
heres\033[133X\033[101X", "12.5", [ 12, 5, 0 ], 256, 153, 
      "the first three non-trivial homotopy groups of spheres", 
      "X7F828D8D8463CC20" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YThe first two non-trivial homotopy groups of the \
suspension and double suspension of a \033[22XK(G,1)\033[122X\033[101X\027\033\
[1X\027\033[133X\033[101X", "12.6", [ 12, 6, 0 ], 323, 154, 
      "the first two non-trivial homotopy groups of the suspension and double \
suspension of a k g 1", "X81E2F80384ADF8C2" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YPostnikov towers and \033[22X\317\200_5(S^3)\033[\
122X\033[101X\027\033[1X\027\033[133X\033[101X", "12.7", [ 12, 7, 0 ], 376, 
      154, "postnikov towers and i\200_5 s^3", "X83EAC40A8324571F" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YTowards \033[22X\317\200_4(\316\243 K(G,1))\033[1\
22X\033[101X\027\033[1X\027\033[133X\033[101X", "12.8", [ 12, 8, 0 ], 475, 
      156, "towards i\200_4 i\244 k g 1", "X8227000D83B9A17F" ], 
  [ "\033[1X\033[33X\033[0;-2YEnumerating homotopy 2-types\033[133X\033[101X",
      "12.9", [ 12, 9, 0 ], 536, 157, "enumerating homotopy 2-types", 
      "X7F5E6C067B2AE17A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YIdentifying cat\033[22X^1\033[122X\033[101X\027\\
033[1X\027-groups of low order\033[133X\033[101X", "12.10", [ 12, 10, 0 ], 
      627, 158, "identifying cat^1-groups of low order", "X7D99B7AA780D8209" ]
    , 
  [ 
      "\033[1X\033[33X\033[0;-2YIdentifying crossed modules of low order\033[133X\
\033[101X", "12.11", [ 12, 11, 0 ], 688, 159, 
      "identifying crossed modules of low order", "X7F386CF078CB9A20" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCongruence Subgroups, Cuspidal Cohomology and Hec\
ke Operators\033[133X\033[101X", "13", [ 13, 0, 0 ], 1, 161, 
      "congruence subgroups cuspidal cohomology and hecke operators", 
      "X86D5DB887ACB1661" ], 
  [ "\033[1X\033[33X\033[0;-2YEichler-Shimura isomorphism\033[133X\033[101X", 
      "13.1", [ 13, 1, 0 ], 12, 161, "eichler-shimura isomorphism", 
      "X79A1974B7B4987DE" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YGenerators for \033[22XSL_2( Z)\033[122X\033[101X\
\027\033[1X\027 and the cubic tree\033[133X\033[101X", "13.2", [ 13, 2, 0 ], 
      87, 162, "generators for sl_2 z and the cubic tree", 
      "X7BFA2C91868255D9" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YOne-dimensional fundamental domains and generator\
s for congruence subgroups\033[133X\033[101X", "13.3", [ 13, 3, 0 ], 128, 
      163, 
      "one-dimensional fundamental domains and generators for congruence subgr\
oups", "X7D1A56967A073A8B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCohomology of congruence subgroups\033[133X\033[1\
01X", "13.4", [ 13, 4, 0 ], 231, 164, "cohomology of congruence subgroups", 
      "X818BFA9A826C0DB3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCohomology with rational coefficients\033[133X\\
033[101X", "13.4-1", [ 13, 4, 1 ], 327, 166, 
      "cohomology with rational coefficients", "X7F55F8EA82FE9122" ], 
  [ "\033[1X\033[33X\033[0;-2YCuspidal cohomology\033[133X\033[101X", "13.5", 
      [ 13, 5, 0 ], 361, 166, "cuspidal cohomology", "X84D30F1580CD42D1" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YHecke operators on forms of weight 2\033[133X\\
033[101X", "13.6", [ 13, 6, 0 ], 464, 168, 
      "hecke operators on forms of weight 2", "X80861D3F87C29C43" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YHecke operators on forms of weight \033[22X\342\\
211\245 2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "13.7", 
      [ 13, 7, 0 ], 534, 169, "hecke operators on forms of weight a\211\246 2"
        , "X831BB0897B988DA3" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YReconstructing modular forms from cohomology comp\
utations\033[133X\033[101X", "13.8", [ 13, 8, 0 ], 552, 169, 
      "reconstructing modular forms from cohomology computations", 
      "X84CC51EE8525E0D9" ], 
  [ "\033[1X\033[33X\033[0;-2YThe Picard group\033[133X\033[101X", "13.9", 
      [ 13, 9, 0 ], 683, 171, "the picard group", "X8180E53C834301EF" ], 
  [ "\033[1X\033[33X\033[0;-2YBianchi groups\033[133X\033[101X", "13.10", 
      [ 13, 10, 0 ], 819, 172, "bianchi groups", "X858B1B5D8506FE81" ], 
  [ 
      "\033[1X\033[33X\033[0;-2Y(Co)homology of Bianchi groups and \033[22XSL_2(c\
al O_-d)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "13.11", 
      [ 13, 11, 0 ], 959, 174, 
      "co homology of bianchi groups and sl_2 cal o_-d", "X851390E07C3B3BB1" ]
    , 
  [ 
      "\033[1X\033[33X\033[0;-2YSome other infinite matrix groups\033[133X\033[10\
1X", "13.12", [ 13, 12, 0 ], 1218, 179, "some other infinite matrix groups", 
      "X86A6858884B9C05B" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YIdeals and finite quotient groups\033[133X\033[10\
1X", "13.13", [ 13, 13, 0 ], 1330, 181, "ideals and finite quotient groups", 
      "X7EF5D97281EB66DA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCongruence subgroups for ideals\033[133X\033[101X\
", "13.14", [ 13, 14, 0 ], 1442, 182, "congruence subgroups for ideals", 
      "X7D1F72287F14C5E1" ], 
  [ "\033[1X\033[33X\033[0;-2YFirst homology\033[133X\033[101X", "13.15", 
      [ 13, 15, 0 ], 1514, 183, "first homology", "X85E912617AFE03F4" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YFundamental domains for Bianchi groups\033[133X\\
033[101X", "14", [ 14, 0, 0 ], 1, 186, 
      "fundamental domains for bianchi groups", "X805848868005D528" ], 
  [ "\033[1X\033[33X\033[0;-2YBianchi groups\033[133X\033[101X", "14.1", 
      [ 14, 1, 0 ], 4, 186, "bianchi groups", "X858B1B5D8506FE81" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YSwan's description of a fundamental domain\033[13\
3X\033[101X", "14.2", [ 14, 2, 0 ], 51, 186, 
      "swans description of a fundamental domain", "X872D22507F797001" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputing a fundamental domain\033[133X\033[101X"
        , "14.3", [ 14, 3, 0 ], 69, 187, "computing a fundamental domain", 
      "X7B9DE54F7ECB7E44" ], 
  [ "\033[1X\033[33X\033[0;-2YExamples\033[133X\033[101X", "14.4", 
      [ 14, 4, 0 ], 100, 187, "examples", "X7A489A5D79DA9E5C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YEstablishing correctness of a fundamental domain\\
033[133X\033[101X", "14.5", [ 14, 5, 0 ], 183, 188, 
      "establishing correctness of a fundamental domain", "X86CD59CB7A04EE5A" 
     ], 
  [ 
      "\033[1X\033[33X\033[0;-2YComputing a free resolution for \033[22XSL_2(math\
cal O_-d)\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", "14.6", 
      [ 14, 6, 0 ], 227, 189, 
      "computing a free resolution for sl_2 mathcal o_-d", 
      "X78476F127B73BBD1" ], 
  [ "\033[1X\033[33X\033[0;-2YSome sanity checks\033[133X\033[101X", "14.7", 
      [ 14, 7, 0 ], 284, 190, "some sanity checks", "X784B2156823AEB15" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YEquivariant Euler characteristic\033[133X\033[101\
X", "14.7-1", [ 14, 7, 1 ], 291, 190, "equivariant euler characteristic", 
      "X7E5A36D47F9D4A47" ], 
  [ "\033[1X\033[33X\033[0;-2YBoundary squares to zero\033[133X\033[101X", 
      "14.7-2", [ 14, 7, 2 ], 323, 191, "boundary squares to zero", 
      "X852CDAFF84C5DF01" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YCompare different algorithms or implementations\\
033[133X\033[101X", "14.7-3", [ 14, 7, 3 ], 352, 191, 
      "compare different algorithms or implementations", "X7E64819A7C058EDD" ]
    , 
  [ "\033[1X\033[33X\033[0;-2YCompare geometry to algebra\033[133X\033[101X", 
      "14.7-4", [ 14, 7, 4 ], 383, 192, "compare geometry to algebra", 
      "X8223864085412705" ], 
  [ "\033[1X\033[33X\033[0;-2YGroup presentations\033[133X\033[101X", "14.8", 
      [ 14, 8, 0 ], 422, 192, "group presentations", "X78BC9D077956089A" ], 
  [ "\033[1X\033[33X\033[0;-2YFinite index subgroups\033[133X\033[101X", 
      "14.9", [ 14, 9, 0 ], 464, 193, "finite index subgroups", 
      "X786CFAA17C0A6E7A" ], 
  [ "\033[1X\033[33X\033[0;-2YParallel computation\033[133X\033[101X", "15", 
      [ 15, 0, 0 ], 1, 195, "parallel computation", "X7F571E8F7BBC7514" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YAn embarassingly parallel computation\033[133X\\
033[101X", "15.1", [ 15, 1, 0 ], 4, 195, 
      "an embarassingly parallel computation", "X7EAE286B837D27BA" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YA non-embarassingly parallel computation\033[133X\
\033[101X", "15.2", [ 15, 2, 0 ], 40, 195, 
      "a non-embarassingly parallel computation", "X80F359DD7C54D405" ], 
  [ "\033[1X\033[33X\033[0;-2YParallel persistent homology\033[133X\033[101X",
      "15.3", [ 15, 3, 0 ], 108, 197, "parallel persistent homology", 
      "X8496786F7FCEC24A" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YRegular CW-structure on knots (written by Kelvin \
Killeen)\033[133X\033[101X", "16", [ 16, 0, 0 ], 1, 198, 
      "regular cw-structure on knots written by kelvin killeen", 
      "X7C57D4AB8232983E" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YKnot complements in the 3-ball\033[133X\033[101X"
        , "16.1", [ 16, 1, 0 ], 4, 198, "knot complements in the 3-ball", 
      "X86F56A85848347FF" ], 
  [ "\033[1X\033[33X\033[0;-2YTubular neighbourhoods\033[133X\033[101X", 
      "16.2", [ 16, 2, 0 ], 93, 199, "tubular neighbourhoods", 
      "X83EA2A38801E7A4C" ], 
  [ 
      "\033[1X\033[33X\033[0;-2YKnotted surface complements in the 4-ball\033[133\
X\033[101X", "16.3", [ 16, 3, 0 ], 265, 202, 
      "knotted surface complements in the 4-ball", "X78C28038837300BD" ], 
  [ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 209, "bibliography", 
      "X7A6F98FD85F02BFE" ], 
  [ "References", "bib", [ "Bib", 0, 0 ], 1, 209, "references", 
      "X7A6F98FD85F02BFE" ], 
  [ "Index", "ind", [ "Ind", 0, 0 ], 1, 213, "index", "X83A0356F839C696F" ] ]
);