File: 12.26.txt

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (216 lines) | stat: -rw-r--r-- 6,587 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
gap> for i in [1..25] do                                              
> p:=Manifolds[i]!.cubeFacePairings;
> Print("Manifold ",i," has face pairings:\n");
> Print(p[1],"\n",p[2],"\n",p[3],"\n");
> Print("Fundamental group is:  ");
> if i in [ 1, 9, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25 ] then
> Print(StructureDescription(FundamentalGroup(Manifolds[i])),"\n");
> else Print("infinite non-cyclic\n"); fi;
> if Homology(Manifolds[i],3)=[0] then Print("Orientable, ");
> else Print("Non orientable, "); fi;
> Print(ManifoldType(Manifolds[i]),"\n");
> for x in Manifolds[i]!.edgeDegrees do
> Print(x[2]," edges of \"degree\" ",x[1],",  ");
> od;
> Print("\n\n");
> od;

Manifold 1 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 7, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 3, 2, 6, 7 ] ]
Fundamental group is:  Z x C2
Non orientable, other
4 edges of "degree" 2,  4 edges of "degree" 4,  

Manifold 2 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 4, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, other
2 edges of "degree" 1,  2 edges of "degree" 3,  2 edges of "degree" 8,  

Manifold 3 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 4 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 7, 3, 2 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 5 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 6, 5, 8, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 6, 7, 3 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 6 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 7 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, other
2 edges of "degree" 1,  2 edges of "degree" 3,  2 edges of "degree" 8,  

Manifold 8 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, other
4 edges of "degree" 2,  2 edges of "degree" 8,  

Manifold 9 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 5, 6, 7 ] ]
[ [ 1, 4, 8, 5 ], [ 6, 2, 3, 7 ] ]
Fundamental group is:  Q8
Orientable, spherical
8 edges of "degree" 3,  

Manifold 10 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, other
4 edges of "degree" 2,  4 edges of "degree" 4,  

Manifold 11 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 3, 7, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  infinite non-cyclic
Non orientable, euclidean
6 edges of "degree" 4,  

Manifold 12 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  Z x Z x Z
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 13 has face pairings:
[ [ 1, 5, 6, 2 ], [ 4, 8, 7, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 14 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 7, 8, 5, 6 ] ]
[ [ 1, 4, 8, 5 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  C2
Orientable, spherical
12 edges of "degree" 2,  

Manifold 15 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 7, 8, 4 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  Z
Non orientable, other
4 edges of "degree" 1,  2 edges of "degree" 2,  2 edges of "degree" 8,  

Manifold 16 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 2, 3, 7, 6 ] ]
Fundamental group is:  Z
Orientable, other
4 edges of "degree" 1,  2 edges of "degree" 2,  2 edges of "degree" 8,  

Manifold 17 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is:  C4
Orientable, spherical
2 edges of "degree" 1,  2 edges of "degree" 3,  2 edges of "degree" 8,  

Manifold 18 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 6, 2, 3, 7 ] ]
Fundamental group is:  C3 : C4
Orientable, spherical
2 edges of "degree" 2,  4 edges of "degree" 5,  

Manifold 19 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is:  C12
Orientable, spherical
2 edges of "degree" 2,  2 edges of "degree" 3,  2 edges of "degree" 7,  

Manifold 20 has face pairings:
[ [ 1, 5, 6, 2 ], [ 3, 4, 8, 7 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
[ [ 5, 8, 7, 6 ], [ 3, 7, 6, 2 ] ]
Fundamental group is:  C8
Orientable, spherical
8 edges of "degree" 3,  

Manifold 21 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 3, 4, 8 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
[ [ 5, 8, 7, 6 ], [ 7, 6, 2, 3 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 22 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 8, 4, 1, 5 ] ]
Fundamental group is:  C14
Orientable, spherical
2 edges of "degree" 2,  4 edges of "degree" 5,  

Manifold 23 has face pairings:
[ [ 1, 5, 6, 2 ], [ 5, 6, 7, 8 ] ]
[ [ 3, 7, 8, 4 ], [ 7, 6, 2, 3 ] ]
[ [ 1, 2, 3, 4 ], [ 5, 8, 4, 1 ] ]
Fundamental group is:  C6
Orientable, spherical
6 edges of "degree" 2,  2 edges of "degree" 6,  

Manifold 24 has face pairings:
[ [ 1, 5, 6, 2 ], [ 7, 8, 5, 6 ] ]
[ [ 3, 7, 8, 4 ], [ 2, 3, 7, 6 ] ]
[ [ 1, 2, 3, 4 ], [ 4, 1, 5, 8 ] ]
Fundamental group is:  infinite non-cyclic
Orientable, euclidean
6 edges of "degree" 4,  

Manifold 25 has face pairings:
[ [ 1, 5, 6, 2 ], [ 6, 7, 8, 5 ] ]
[ [ 3, 7, 8, 4 ], [ 3, 7, 6, 2 ] ]
[ [ 1, 2, 3, 4 ], [ 1, 5, 8, 4 ] ]
Fundamental group is:  1
Orientable, spherical
4 edges of "degree" 1,  4 edges of "degree" 5,