1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|
gap> res:=ResolutionFiniteGroup(SymmetricGroup(5),5);;
gap> C:=TensorWithIntegers(res);
Chain complex of length 5 in characteristic 0 .
gap> D:=ContractedComplex(C);#A chain homotopic complex
Chain complex of length 5 in characteristic 0 .
gap> List([0..5],C!.dimension);
[ 1, 4, 10, 20, 35, 56 ]
gap> List([0..5],D!.dimension);
[ 1, 1, 2, 4, 6, 38 ]
gap> CxC:=TensorProduct(C,C);
Chain complex of length 10 in characteristic 0 .
gap> SC:=SuspendedChainComplex(C);
Chain complex of length 6 in characteristic 0 .
gap> RC:=ReducedSuspendedChainComplex(C);
Chain complex of length 6 in characteristic 0 .
gap> PC:=PathObjectForChainComplex(C);
Chain complex of length 5 in characteristic 0 .
gap> dualC:=HomToIntegers(C);
Cochain complex of length 5 in characteristic 0 .
gap> Cxp:=TensorWithIntegersModP(C,5);
Chain complex of length 5 in characteristic 5 .
gap> CxQ:=TensorWithRationals(C); #The quirky -1/2 denotes rationals
Chain complex of length 5 in characteristic -1/2 .
|