File: 13.10.txt

package info (click to toggle)
gap-hap 1.70%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 56,612 kB
  • sloc: xml: 16,139; sh: 216; javascript: 155; makefile: 126; ansic: 47; perl: 36
file content (31 lines) | stat: -rw-r--r-- 989 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
gap> res:=ResolutionFiniteGroup(SymmetricGroup(5),5);;
gap> C:=TensorWithIntegers(res);
Chain complex of length 5 in characteristic 0 . 

gap> D:=ContractedComplex(C);#A chain homotopic complex
Chain complex of length 5 in characteristic 0 . 
gap> List([0..5],C!.dimension);
[ 1, 4, 10, 20, 35, 56 ]
gap> List([0..5],D!.dimension);
[ 1, 1, 2, 4, 6, 38 ]

gap> CxC:=TensorProduct(C,C);
Chain complex of length 10 in characteristic 0 . 

gap> SC:=SuspendedChainComplex(C);
Chain complex of length 6 in characteristic 0 . 

gap> RC:=ReducedSuspendedChainComplex(C);
Chain complex of length 6 in characteristic 0 .

gap> PC:=PathObjectForChainComplex(C);
Chain complex of length 5 in characteristic 0 .

gap> dualC:=HomToIntegers(C);
Cochain complex of length 5 in characteristic 0 .

gap> Cxp:=TensorWithIntegersModP(C,5);
Chain complex of length 5 in characteristic 5 .

gap> CxQ:=TensorWithRationals(C); #The quirky -1/2 denotes rationals
Chain complex of length 5 in characteristic -1/2 .