1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
|
gap> G:=SylowSubgroup(MathieuGroup(12),2);;
gap> F:=Mod2CohomologyRingPresentation(G);
Alpha version of completion test code will be used. This needs further work.
Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x_5, x_6, x_7 ] /
[ x_2*x_3, x_1*x_2, x_2*x_4, x_1^3+x_1^2*x_3+x_1*x_5,
x_1*x_3*x_4+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_3*x_6+x_4*x_5,
x_1^2*x_4+x_1^2*x_5+x_1*x_3*x_5+x_3^2*x_4+x_1*x_6+x_4^2,
x_1^2*x_3^2+x_1^2*x_5+x_1*x_3*x_5+x_1*x_6+x_3*x_6+x_4^2+x_4*x_5,
x_1^2*x_6+x_1*x_3*x_6+x_1*x_4*x_5+x_3^2*x_6+x_3*x_4^2+x_3*x_4*x_5,
x_1*x_3^2*x_5+x_3^3*x_4+x_1*x_3*x_6+x_1*x_4^2+x_3^2*x_6+x_3*x_4^2+x_4*x_6,
x_1^2*x_3*x_5+x_1*x_3*x_6+x_1*x_4^2+x_1*x_5^2,
x_3^3*x_6+x_3^2*x_4^2+x_3^2*x_4*x_5+x_3*x_4*x_6+x_3*x_5*x_6+x_4^3+x_4*x_5^2,
x_1*x_3^2*x_6+x_1*x_4*x_6+x_2^2*x_7+x_2*x_5*x_6+x_3*x_4*x_6+x_3*x_5*x_6+x_6^2,
x_1^2*x_5^2+x_1*x_3*x_5^2+x_3^2*x_4^2+x_3^2*x_4*x_5+x_2^2*x_7+x_2*x_5*x_6+x_3*x_5*x_6+x_6^2 ]
with indeterminate degrees [ 1, 1, 1, 2, 2, 3, 4 ]
gap> f:=HilbertPoincareSeries(F);
(1)/(-x_1^3+3*x_1^2-3*x_1+1)
|