1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
gap> Read("SpaceGroupCohomologyData.gi"); #These two files must be
gap> Read("SpaceGroupCohomologyFunctions.gi"); #downloaded from
gap> #https://github.com/liuchx1993/Space-Group-Cohomology-and-LSM/
gap> IsPeriodicSpaceGroup(SpaceGroupIT(3,30));
true
gap> SpaceGroupCohomologyRingGapInterface(30);
===========================================
Mod-2 Cohomology Ring of Group No. 30:
Z2[Ac,Am,Ax,Bb]/<R2,R3,R4>
R2: Ac.Am Am^2 Ax^2+Ac.Ax
R3: Am.Bb
R4: Bb^2
===========================================
LSM:
2a Ac.Bb+Ax.Bb
2b Ax.Bb
true
gap> IsPeriodicSpaceGroup(SpaceGroupIT(3,216));
false
gap> SpaceGroupCohomologyRingGapInterface(216);
===========================================
Mod-2 Cohomology Ring of Group No. 216:
Z2[Am,Ba,Bb,Bxyxzyz,Ca,Cb,Cc,Cxyz]/<R4,R5,R6>
R4: Am.Ca Am.Cb Ba.Bxyxzyz+Am.Cc Bb^2+Am.Cc+Ba.Bb Bb.Bxyxzyz+Am^2.Bb+Am.Cxyz Bxyxzyz^2
R5: Bxyxzyz.Ca Ba.Cb+Bb.Ca Bb.Cb+Bb.Ca Bxyxzyz.Cb Bxyxzyz.Cc Ba.Cxyz+Am.Ba.Bb+Bb.Cc Bb.Cxyz+Am^2.Cc+Am.Ba.Bb+Bb.Cc Bxyxzyz.Cxyz+Am^3.Bb+Am^2.Cxyz
===========================================
LSM:
4a Ca+Cc+Cxyz
4b Cb+Cc+Cxyz
4c Cb+Cxyz
4d Cxyz
true
|