1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
|
<Chapter><Heading>Congruence Subgroups, Cuspidal Cohomology and Hecke Operators</Heading>
In this chapter we explain how HAP can be used to make computions
about modular forms associated to congruence subgroups <M>\Gamma</M> of <M>SL_2(\mathbb Z)</M>. Also, in Subsection 10.8 onwards, we demonstrate
cohomology computations for the <E>Picard group</E> <M>SL_2(\mathbb Z[i])</M>,
some <E>Bianchi groups</E>
<M>PSL_2({\cal O}_{-d}) </M> where <M>{\cal O}_{d}</M> is the ring of integers of <M>\mathbb Q(\sqrt{-d})</M> for square free positive integer <M>d</M>, and some other groups of the form
<M>SL_m({\cal O})</M>,
<M>GL_m({\cal O})</M>,
<M>PSL_m({\cal O})</M>,
<M>PGL_m({\cal O})</M>,
for <M>m=2,3,4</M> and certain <M>{\cal O}=\mathbb Z, {\cal O}_{-d}</M>.
<Section Label="sec:EichlerShimura"><Heading>Eichler-Shimura isomorphism</Heading>
<P/>We begin by recalling the Eichler-Shimura isomorphism
<Cite Key="eichler"/><Cite Key="shimura"/>
<Display> S_k(\Gamma) \oplus \overline{S_k(\Gamma)} \oplus E_k(\Gamma) \cong_{\sf Hecke} H^1(\Gamma,P_{\mathbb C}(k-2))</Display>
<P/> which relates the cohomology of groups to the theory of modular forms associated to a finite index subgroup <M>\Gamma</M> of <M>SL_2(\mathbb Z)</M>. In subsequent sections we explain how to compute with the right-hand side of the isomorphism. But first,
for completeness, let us define the terms on the left-hand side.
<P/> Let <M>N</M> be a positive integer. A subgroup <M>\Gamma</M> of <M>SL_2(\mathbb Z)</M> is said to be a <E>congruence subgroup</E> of level <M>N </M> if it contains the kernel of the canonical homomorphism <M>\pi_N\colon SL_2(\mathbb Z) \rightarrow SL_2(\mathbb Z/N\mathbb Z)</M>.
So any congruence subgroup is of finite index in <M>SL_2(\mathbb Z)</M>,
but the converse is not true.
<P/>One congruence subgroup of particular interest is the group
<M>\Gamma_1(N)=\ker(\pi_N)</M>, known as the <E>principal congruence subgroup</E> of level <M>N</M>. Another congruence subgroup of particular interest is the group <M>\Gamma_0(N)</M> of those matrices that project to upper triangular matrices
in <M>SL_2(\mathbb Z/N\mathbb Z)</M>.
<P/>A <E>modular form</E> of weight <M>k</M> for a congruence subgroup
<M>\Gamma</M> is a complex valued function on the upper-half plane,
<M>f\colon {\frak{h}}=\{z\in \mathbb C : Re(z)>0\} \rightarrow \mathbb C</M>, satisfying:
<List>
<Item> <M>\displaystyle f(\frac{az+b}{cz+d}) = (cz+d)^k f(z)</M> for <M>\left(\begin{array}{ll}a&b\\ c &d \end{array}\right) \in \Gamma</M>,
</Item>
<Item> <M>f</M> is `holomorphic' on the <E>extended upper-half plane</E>
<M>\frak{h}^\ast = \frak{h} \cup \mathbb Q \cup \{\infty\}</M> obtained from the upper-half plane by `adjoining a point at each cusp'.
</Item>
</List>
The collection of all weight <M>k</M> modular forms for <M>\Gamma</M> form a vector space <M>M_k(\Gamma)</M> over <M>\mathbb C</M>.
<P/>A modular form <M>f</M> is said to be a <E>cusp form</E> if <M>f(\infty)=0</M>. The collection of all weight <M>k</M> cusp forms for <M>\Gamma</M> form a vector subspace <M>S_k(\Gamma)</M>. There is a decomposition
<Display>M_k(\Gamma) \cong S_k(\Gamma) \oplus E_k(\Gamma)</Display>
<P/> involving a summand <M>E_k(\Gamma)</M> known as the <E>Eisenstein
space</E>. See <Cite Key="stein"/> for further introductory details on modular forms.
<P/>The Eichler-Shimura isomorphism is more than an isomorphism of vector spaces. It is an isomorphism of Hecke modules: both sides admit notions of <E>Hecke operators</E>, and the isomorphism preserves these operators. The bar on the left-hand side of the isomorphism denotes complex conjugation, or <E>anti-holomorphic</E> forms. See
<Cite Key="wieser"/> for a full account of the isomorphism.
<P/><P/>
On the right-hand side of the isomorphism, the <M>\mathbb Z\Gamma</M>-module
<M>P_{\mathbb C}(k-2)\subset \mathbb C[x,y]</M> denotes the space of homogeneous degree
<M>k-2</M> polynomials with action of <M>\Gamma</M> given by
<Display>\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot p(x,y) = p(dx-by,-cx+ay)\ .</Display>
In particular <M>P_{\mathbb C}(0)=\mathbb C</M> is the trivial module.
Below we shall compute with the integral analogue <M>P_{\mathbb Z}(k-2) \subset \mathbb Z[x,y]</M>.
<P/><P/>
In the following sections we explain how to use the right-hand side of the Eichler-Shimura
isomorphism to compute eigenvalues of the Hecke operators restricted to the
subspace
<M>S_k(\Gamma)</M> of cusp forms.
</Section>
<Section><Heading>Generators for <M>SL_2(\mathbb Z)</M> and the cubic tree</Heading>
<P/> The matrices
<M>S=\left(\begin{array}{rr}0&-1\\ 1 &0 \end{array}\right)</M>
and <M>T=\left(\begin{array}{rr}1&1\\ 0 &1 \end{array}\right)</M>
generate <M>SL_2(\mathbb Z)</M> and it is not difficult to devise an algorithm for expressing an arbitrary integer matrix <M>A</M>
of determinant <M>1</M> as a word
in <M>S</M>, <M>T</M> and their inverses. The following illustrates such an algorithm.
<Example>
<#Include SYSTEM "tutex/11.1.txt">
</Example>
It is convenient to introduce the matrix <M>U=ST = \left(\begin{array}{rr}0&-1\\ 1 &1 \end{array}\right)</M>. The matrices <M>S</M> and <M>U</M>
also generate <M>SL_2(\mathbb Z)</M>. In fact we have a free presentation
<M>SL_2(\mathbb Z)= \langle S,U\, |\, S^4=U^6=1, S^2=U^3 \rangle </M>.
<P/><P/>
The <E>cubic tree</E> <M>\cal T</M> is a tree (<E>i.e.</E> a <M>1</M>-dimensional contractible regular
CW-complex) with countably infinitely many edges in which each vertex has degree <M>3</M>.
We can realize the cubic tree <M>\cal T</M> by taking the
left cosets of <M>{\cal U}=\langle U\rangle</M> in <M>SL_2(\mathbb Z)</M> as vertices, and joining cosets
<M>x\,{\cal U} </M> and <M>y\,{\cal U}</M> by an edge if, and only if,
<M>x^{-1}y \in {\cal U}\, S\,{\cal U}</M>. Thus the
vertex <M>\cal U </M> is joined to <M>S\,{\cal U} </M>,
<M>US\,{\cal U}</M> and <M>U^2S\,{\cal U}</M>. The vertices of this tree
are in one-to-one
correspondence with all reduced words in <M>S</M>, <M>U</M> and <M>U^2</M>
that, apart from the identity, end in <M>S</M>.
<P/> From our realization of the cubic tree <M>\cal T</M>
we see that <M>SL_2(\mathbb Z)</M> acts on <M>\cal T</M> in such a way that
each vertex is stabilized by a cyclic subgroup conjugate to <M>{\cal U}=\langle U\rangle</M> and each edge is stabilized by a cyclic subgroup conjugate to
<M>{\cal S} =\langle S \rangle</M>.
<P/> In order to store this action of <M>SL_2(\mathbb Z)</M> on
the cubic tree <M>\cal T</M> we just need to record the following finite amount of information.
<P/>
<Alt Only="HTML"><img src="images/fdsl2.png" align="center" width="350" alt="Information for the cubic tree"/>
</Alt>
</Section>
<Section><Heading>One-dimensional fundamental domains and
generators for congruence subgroups</Heading>
The modular group <M>{\cal M}=PSL_2(\mathbb Z)</M> is isomorphic, as an abstract group,
to the free product <M>\mathbb Z_2\ast \mathbb Z_3</M>. By the Kurosh subgroup
theorem, any finite index subgroup <M>M \subset {\cal M}</M> is isomorphic to the free product
of finitely many copies of <M>\mathbb Z_2</M>s, <M>\mathbb Z_3</M>s and <M>\mathbb Z</M>s. A
subset <M>\underline x \subset M</M> is an <E>independent</E>
set of subgroup generators if <M>M</M> is the free product of the cyclic subgroups <M><x ></M> as <M>x</M> runs over <M>\underline x</M>. Let us say
that a set of elements in <M>SL_2(\mathbb Z)</M> is <E>projectively
independent</E> if it maps injectively onto an independent set of subgroup generators <M>\underline x\subset {\cal M}</M>.
The generating set <M>\{S,U\}</M> for <M>SL_2(\mathbb Z)</M> given in the preceding section is projectively independent.
<P/> We are interested in constructing a set of generators for a given congruence subgroup <M>\Gamma</M>. If a small generating set for <M>\Gamma</M> is required then we should
aim
to construct one which is close to being projectively independent.
<P/>
It is useful to
invoke the following general result which follows from a perturbation result about free <M>\mathbb ZG</M>-resolutons in <Cite Key="ellisharrisskoldberg" Where="Theorem 2"/> and an old observation of John Milnor that a free <M>\mathbb ZG</M>-resolution can be realized as the cellular chain complex of a CW-complex if it can be so realized in low dimensions.
<P/><B>Theorem.</B> Let <M>X</M> be a contractible CW-complex on which a group
<M>G</M> acts by permuting cells. The cellular chain complex <M>C_\ast X</M>
is a <M>\mathbb ZG</M>-resolution of <M>\mathbb Z</M> which typically is not free.
Let <M>[e^n]</M> denote the orbit of the n-cell <M>e^n</M> under the action. Let <M>G^{e^n} \le G</M> denote the stabilizer subgroup of <M>e^n</M>, in which group elements are not required to stabilize <M>e^n</M> point-wise. Let <M>Y_{e^n}</M>
denote a contractible CW-complex on which <M>G^{e^n}</M> acts cellularly and freely. Then there exists a contractible CW-complex <M>W</M>
on which <M>G</M> acts cellularly and freely, and in which the orbits of <M>n</M>-cells are labelled by <M>[e^p]\otimes [f^q]</M> where <M>p+q=n</M> and
<M>[e^p]</M> ranges over the <M>G</M>-orbits of <M>p</M>-cells in <M>X</M>, <M>[f^q]</M> ranges over the <M>G^{e^p}</M>-orbits of <M>q</M>-cells in <M>Y_{e^p}</M>.
<P/>
<P/>Let <M>W</M> be as in the theorem. Then the quotient CW-complex <M>B_G=W/G</M> is a classifying space for <M>G</M>. Let <M>T</M> denote a maximal tree in the <M>1</M>-skeleton <M>B^1_G</M>. Basic geometric group theory tells us that the <M>1</M>-cells in <M>B^1_G\setminus T</M> correspond to
a generating set for <M>G</M>.
<P/>
Suppose we wish to compute a set of generators for a principal congruence subgroup
<M>\Gamma=\Gamma_1(N)</M>. In the above theorem take <M>X={\cal T}</M> to be the cubic tree, and note that <M>\Gamma</M> acts freely on <M>\cal T</M> and thus that <M>W={\cal T}</M>.
To determine the <M>1</M>-cells of <M>B_{\Gamma}\setminus T</M>
we need to determine a cellular subspace
<M>D_\Gamma \subset \cal T</M> whose images under the action of <M>\Gamma</M> cover <M>\cal T</M> and are pairwise either disjoint or identical. The subspace <M>D_\Gamma</M> will not be a CW-complex as it won't be closed, but it can be chosen to be connected,
and hence contractible. We call <M>D_\Gamma</M> a <E>fundamental region</E> for <M>\Gamma</M>. We denote by <M>\mathring D_\Gamma</M> the
largest CW-subcomplex of <M>D_\Gamma</M>. The vertices of <M>\mathring D_\Gamma</M> are the same as the vertices of <M>D_\Gamma</M>.
Thus <M>\mathring D_\Gamma</M> is a subtree of the cubic tree with <M>|\Gamma|/6</M> vertices.
For each vertex <M>v</M> in the tree
<M>\mathring D_\Gamma</M> define <M>\eta(v)=3 -{\rm degree}(v)</M>. Then the number of generators for <M> \Gamma </M> will
be <M>(1/2)\sum_{v\in \mathring D_\Gamma} \eta(v)</M>.
<P/>
The following commands determine projectively independent
generators for <M>\Gamma_1(6)</M> and display
<M>\mathring D_{\Gamma_1(6)}</M>. The subgroup <M>\Gamma_1(6)</M> is free on <M>13</M> generators.
<Example>
<#Include SYSTEM "tutex/11.2.txt">
</Example>
<P/>
<Alt Only="HTML"><img src="images/pctree6.gif" align="center" width="350" alt="Fundamental region in the cubic tree"/>
</Alt>
<P/>An alternative but very related approach to computing generators of congruence subgroups of <M>SL_2(\mathbb Z)</M>
is described in <Cite Key="kulkarni"/>.
<P/>The congruence subgroup <M>\Gamma_0(N)</M> does not act freely on the vertices of <M>\cal T</M>, and so one needs to incorporate
a generator for the cyclic stabilizer group according to the above theorem. Alternatively, we can replace the cubic tree by a six-fold cover
<M>{\cal T}'</M> on whose vertex set <M>\Gamma_0(N)</M> acts freely.
This alternative approach will produce a redundant set of generators.
The following commands display
<M>\mathring D_{\Gamma_0(39)}</M> for a fundamental region in <M>{\cal T}'</M>. They also use the corresponding generating set for <M>\Gamma_0(39)</M>,
involving <M>18</M> generators, to compute the abelianization <M>\Gamma_0(39)^{ab}= \mathbb Z_2 \oplus \mathbb Z_3^2 \oplus \mathbb Z^9</M>. The abelianization
shows that any generating set has at least <M>11</M> generators.
<Example>
<#Include SYSTEM "tutex/11.3.txt">
</Example>
<P/>
<Alt Only="HTML"><img src="images/g0tree39.gif" align="center" width="350" alt="Fundamental region in the cubic tree"/>
</Alt>
<P/> Note that to compute <M>D_\Gamma</M> one only needs to be able to test whether a given matrix lies in <M>\Gamma</M> or not.
Given an inclusion <M>\Gamma'\subset \Gamma</M> of congruence subgroups, it is straightforward to use the trees <M>\mathring D_{\Gamma'}</M> and <M>\mathring D_{\Gamma}</M> to compute a system of coset representative for <M>\Gamma'\setminus \Gamma</M>.
</Section>
<Section><Heading>Cohomology of congruence subgroups</Heading>
To compute the cohomology <M>H^n(\Gamma,A)</M> of a congruence subgroup
<M>\Gamma</M> with coefficients in a <M>\mathbb Z\Gamma</M>-module <M>A</M>
we need to construct <M>n+1</M> terms of a free
<M>\mathbb Z\Gamma</M>-resolution of <M>\mathbb Z</M>. We can do this by first
using perturbation techniques (as described in <Cite Key="buiellis"/>) to combine the cubic tree with resolutions for
the cyclic groups of order <M>4</M> and <M>6</M> in order to produce a free
<M>\mathbb ZG</M>-resolution <M>R_\ast</M> for <M>G=SL_2(\mathbb Z)</M>. This resolution is also a free <M>\mathbb Z\Gamma</M>-resolution with each term of rank
<Display>{\rm rank}_{\mathbb Z\Gamma} R_k = |G:\Gamma|\times {\rm rank}_{\mathbb ZG} R_k\ .</Display>
<P/>For congruence subgroups of lowish index in <M>G</M> this resolution suffices to make computations.
<P/>The following commands compute
<Display>H^1(\Gamma_0(39),\mathbb Z) = \mathbb Z^9\ .</Display>
<Example>
<#Include SYSTEM "tutex/11.4.txt">
</Example>
<P/>This computation establishes that the space <M>M_2(\Gamma_0(39))</M>
of weight <M>2</M> modular forms is of dimension <M>9</M>.
<P/>The following commands show that
<M>{\rm rank}_{\mathbb Z\Gamma_0(39)} R_1 = 112</M>
but that it is possible to apply `Tietze like' simplifications to <M>R_\ast</M> to obtain a free <M>\mathbb Z\Gamma_0(39)</M>-resolution <M>T_\ast</M>
with <M>{\rm rank}_{\mathbb Z\Gamma_0(39)} T_1 = 11</M>. It is more efficient to work with <M>T_\ast</M> when making cohomology computations with coefficients in a module <M>A</M> of large rank.
<Example>
<#Include SYSTEM "tutex/11.5.txt">
</Example>
<P/>The following commands compute
<Display>H^1(\Gamma_0(39),P_{\mathbb Z}(8)) = \mathbb Z_3 \oplus \mathbb Z_6
\oplus \mathbb Z_{168} \oplus \mathbb Z^{84}\ ,</Display>
<Display>H^1(\Gamma_0(39),P_{\mathbb Z}(9)) = \mathbb Z_2 \oplus \mathbb Z_2 .</Display>
<Example>
<#Include SYSTEM "tutex/11.4a.txt">
</Example>
<P/>This computation establishes that the space <M>M_{10}(\Gamma_0(39))</M>
of weight <M>10</M> modular forms is of dimension <M>84</M>,
and <M>M_{11}(\Gamma_0(39))</M> is of dimension <M>0</M>.
(There are never any modular forms of odd weight, and so
<M>M_k(\Gamma)=0</M> for all odd <M>k</M> and any congruence subgroup
<M>\Gamma</M>.)
<Subsection><Heading>Cohomology with rational coefficients</Heading>
To calculate cohomology <M>H^n(\Gamma,A)</M> with coefficients in a <M>\mathbb Q\Gamma</M>-module <M>A</M> it suffices to construct a resolution of <M>\mathbb Z</M> by non-free <M>\mathbb Z\Gamma</M>-modules where <M>\Gamma</M> acts with finite stabilizer groups on each module in the resolution. Computing over <M>\mathbb Q</M> is computationally less expensive than computing over <M>\mathbb Z</M>. The following commands first compute <M>H^1(\Gamma_0(39),\mathbb Q) =
H_1(\Gamma_0(39),\mathbb Q)= \mathbb Q^9</M>. As a larger example, they then compute
<M>H^1(\Gamma_0(2^{13}-1),\mathbb Q) =\mathbb Q^{1365}</M> where <M>\Gamma_0(2^{13}-1)</M> has index <M>8192</M> in <M>SL_2(\mathbb Z)</M>.
<Example>
<#Include SYSTEM "tutex/11.4b.txt">
</Example>
</Subsection>
</Section>
<Section><Heading>Cuspidal cohomology</Heading>
To define and compute cuspidal cohomology we consider the action of
<M>SL_2(\mathbb Z)</M> on the upper-half plane <M>{\frak h}</M>
given by
<Display>\left(\begin{array}{ll}a&b\\ c &d \end{array}\right) z =
\frac{az +b}{cz+d}\ .</Display>
A standard 'fundamental domain' for this action is the region
<Display>\begin{array}{ll}
D=&\{z\in {\frak h}\ :\ |z| > 1, |{\rm Re}(z)| < \frac{1}{2}\} \\
&
\cup\ \{z\in {\frak h} \ :\ |z| \ge 1, {\rm Re}(z)=-\frac{1}{2}\}\\
& \cup\ \{z \in {\frak h}\ :\ |z|=1, -\frac{1}{2} \le {\rm Re}(z) \le 0\}
\end{array}
</Display>
illustrated below.
<P/><Alt Only="HTML"><img src="images/filename-1.png" align="center" width="450" alt="Fundamental domain in the upper-half plane"/>
</Alt>
<P/> The action factors through an action of
<M>PSL_2(\mathbb Z) =SL_2(\mathbb Z)/\langle
\left(\begin{array}{rr}-1&0\\ 0 &-1 \end{array}\right)\rangle</M>. The images of <M>D</M> under the action of <M>PSL_2(\mathbb Z)</M>
cover the upper-half plane, and any two images have at most a single point in common. The possible common points are the bottom left-hand corner point which is stabilized by <M>\langle U\rangle</M>, and the bottom middle point which is stabilized by <M>\langle S\rangle</M>.
<P/> A congruence subgroup <M>\Gamma</M>
has a `fundamental domain' <M>D_\Gamma</M> equal to a union of finitely many
copies of <M>D</M>, one copy for each coset in <M>\Gamma\setminus SL_2(\mathbb Z)</M>.
The
quotient space <M>X=\Gamma\setminus {\frak h}</M> is not compact, and can be
compactified in several ways. We are interested in the Borel-Serre
compactification.
This is a space <M>X^{BS}</M> for which there is an inclusion
<M>X\hookrightarrow X^{BS}</M> and this inclusion is a homotopy equivalence.
One defines the <E>boundary</E> <M>\partial X^{BS} = X^{BS} - X</M> and uses the inclusion <M>\partial X^{BS} \hookrightarrow X^{BS} \simeq X</M> to define the cuspidal cohomology group, over the ground ring <M>\mathbb C</M>, as
<Display> H_{cusp}^n(\Gamma,P_{\mathbb C}(k-2)) = \ker (\ H^n(X,P_{\mathbb C}(k-2)) \rightarrow
H^n(\partial X^{BS},P_{\mathbb C}(k-2)) \ ).</Display>
Strictly speaking, this is the definition of <E>interior cohomology</E>
<M>H_!^n(\Gamma,P_{\mathbb C}(k-2))</M> which in general contains the
cuspidal cohomology as a subgroup. However, for congruence subgroups of
<M>SL_2(\mathbb Z)</M> there is equality
<M>H_!^n(\Gamma,P_{\mathbb C}(k-2)) = H_{cusp}^n(\Gamma,P_{\mathbb C}(k-2))</M>.
<P/>
Working over <M>\mathbb C</M> has the advantage of
avoiding the technical issue that <M>\Gamma </M> does not necessarily act freely on <M>{\frak h}</M> since there are points with finite
cyclic stabilizer groups in <M>SL_2(\mathbb Z)</M>. But it has the disadvantage of losing information about torsion in cohomology. So HAP confronts the issue
by working with a contractible CW-complex
<M>\tilde X^{BS}</M> on which <M>\Gamma</M> acts freely, and <M>\Gamma</M>-equivariant inclusion
<M>\partial \tilde X^{BS} \hookrightarrow \tilde X^{BS}</M>. The definition of cuspidal cohomology that we use, which coincides with the above definition when working over <M>\mathbb C</M>, is
<Display> H_{cusp}^n(\Gamma,A) = \ker (\ H^n({\rm Hom}_{\, \mathbb Z\Gamma}(C_\ast(\tilde X^{BS}), A)\, ) \rightarrow
H^n(\ {\rm Hom}_{\, \mathbb Z\Gamma}(C_\ast(\tilde \partial X^{BS}), A)\, \ ).</Display>
<P/>The following data is recorded and, using perturbation theory, is combined
with free resolutions for <M>C_4</M> and <M>C_6</M> to constuct <M>\tilde X^{BS}</M>.
<P/><Alt Only="HTML"><img src="images/filename-2.png" align="center" width="450" alt="Borel-Serre compactified fundamental domain in the upper-half plane"/>
</Alt>
<P/>
The following commands calculate
<Display>H^1_{cusp}(\Gamma_0(39),\mathbb Z) = \mathbb Z^6\ .</Display>
<Example>
<#Include SYSTEM "tutex/11.6.txt">
</Example>
From the Eichler-Shimura isomorphism and the already calculated dimension
of <M>M_2(\Gamma_0(39))\cong \mathbb C^9</M>, we deduce from this cuspidal cohomology that the space
<M>S_2(\Gamma_0(39))</M> of cuspidal weight <M>2</M> forms is of dimension <M>3</M>,
and the Eisenstein space <M>E_2(\Gamma_0(39))\cong \mathbb C^3</M> is of dimension <M>3</M>.
<P/>The following commands show that the space <M>S_4(\Gamma_0(39))</M> of cuspidal weight <M>4</M> forms is of dimension <M>12</M>.
<Example>
<#Include SYSTEM "tutex/11.6a.txt">
</Example>
</Section>
<Section><Heading>Hecke operators on forms of weight 2</Heading>
A congruence subgroup <M>\Gamma \le SL_2(\mathbb Z)</M> and element <M>g\in SL_2(\mathbb Q)</M> determine the subgroup
<M>\Gamma' = \Gamma \cap g\Gamma g^{-1} </M> and homomorphisms
<Display> \Gamma\ \hookleftarrow\ \Gamma'\ \ \stackrel{\gamma \mapsto g^{-1}\gamma g}{\longrightarrow}\ \ g^{-1}\Gamma' g\ \hookrightarrow \Gamma\ . </Display>
These homomorphisms give rise to homomorphisms of cohomology groups
<Display>H^n(\Gamma,\mathbb Z)\ \ \stackrel{tr}{\leftarrow} \ \ H^n(\Gamma',\mathbb Z) \ \ \stackrel{\alpha}{\leftarrow} \ \ H^n(g^{-1}\Gamma' g,\mathbb Z) \ \ \stackrel{\beta}{\leftarrow} H^n(\Gamma, \mathbb Z) </Display>
with <M>\alpha</M>, <M>\beta</M> functorial maps, and <M>tr</M> the transfer map.
We define the composite <M>T_g=tr \circ \alpha \circ \beta\colon H^n(\Gamma, \mathbb Z) \rightarrow H^n(\Gamma, \mathbb Z)</M> to be the <E> Hecke component </E> determined by <M>g</M>.
<P/>For <M>\Gamma=\Gamma_0(N)</M>, prime integer <M>p</M> coprime to <M>N</M>, and cohomology degree <M>n=1</M> we define the <E>Hecke operator</E> <M>T_p =T_g</M>
where <M>g=\left(\begin{array}{cc}1&0\\0&p\end{array}\right)</M>.
Further details on this description of Hecke operators can be found in
<Cite Key="stein" Where="Appendix by P. Gunnells"/>.
<P/>The following commands compute <M>T_2</M> and <M>T_5</M>
and
<M>\Gamma=\Gamma_0(39)</M>. The commands also compute the eigenvalues of these two Hecke operators. The final command confirms that <M>T_2</M> and <M>T_5</M> commute. (It is a fact that <M>T_pT_q=T_qT_p</M> for all <M>p,q</M>.)
<Example>
<#Include SYSTEM "tutex/11.7.txt">
</Example>
</Section>
<Section><Heading>Hecke operators on forms of weight <M> \ge 2</M></Heading>
The above definition of Hecke operator <M>T_p</M> for <M>\Gamma=\Gamma_0(N)</M> extends to a Hecke operator
<M>T_p\colon H^1(\Gamma,P_{\mathbb Q}(k-2) ) \rightarrow H^1(\Gamma,P_{\mathbb Q}(k-2) )</M> for <M>k\ge 2</M>.
We work over the rationals since that is a setting of much interest.
The following commands compute the matrix of <M>T_2\colon H^1(\Gamma,P_{\mathbb Q}(k-2) ) \rightarrow H^1(\Gamma,P_{\mathbb Q}(k-2) )</M> for <M>\Gamma=SL_2(\mathbb Z)</M> and <M>k=4</M>;
<Example>
<#Include SYSTEM "tutex/11.7b.txt">
</Example>
</Section>
<Section><Heading>Reconstructing modular forms from cohomology computations</Heading>
<P/>Given a modular form <M>f\colon {\frak h} \rightarrow \mathbb C</M> associated to a congruence subgroup <M>\Gamma</M>, and given a compact
edge <M>e</M> in the tessellation of <M>{\frak h}</M> (<E>i.e.</E> an edge in the cubic tree <M>\cal T</M>) arising from the above fundamental domain
for
<M>SL_2(\mathbb Z)</M>, we can evaluate
<Display>\int_e f(z)\,dz \ .</Display>
In this way we obtain a cochain <M>f_1\colon C_1({\cal T}) \rightarrow \mathbb C</M> in <M>Hom_{\mathbb Z\Gamma}(C_1({\cal T}), \mathbb C)</M>
representing a cohomology class <M>c(f) \in H^1(\, Hom_{\mathbb Z\Gamma}(C_\ast({\cal T}), \mathbb C) \,) = H^1(\Gamma,\mathbb C)</M>. The correspondence <M>f\mapsto c(f)</M> underlies the Eichler-Shimura isomorphism.
Hecke operators can be used to recover modular forms from cohomology classes.
<P/>
Let <M>\Gamma=\Gamma_0(N)</M>. The above defined Hecke operators restrict to operators on cuspidal cohomology. On the left-hand side of the Eichler-Shimura isomorphism
Hecke operators restrict to operators <M>T_s\colon S_2(\Gamma) \rightarrow S_2(\Gamma)</M> for <M>s\ge 1</M>.
<P/>Consider the function <M>q=q(z)=e^{2\pi i z}</M> which is holomorphic on <M>\mathbb C</M>.
For any modular form <M>f(z) \in M_k(\Gamma)</M> there are numbers <M>a_s</M> such that
<Display>f(z) = \sum_{s=0}^\infty a_sq^s </Display>
for all <M>z\in {\frak h}</M>. The form <M>f</M> is a cusp form if <M>a_0=0</M>.
<P/> A non-zero
cusp form <M>f\in S_2(\Gamma)</M> is a cusp <E>eigenform</E> if it is simultaneously an eigenvector for the Hecke operators <M>T_s</M> for all <M>s =1,2,3,\cdots</M> coprime to the level <M>N</M>. A cusp eigenform is said to be <E>normalized</E> if its coefficient <M>a_1=1</M>. It turns out that if <M>f</M> is normalized then the coefficient <M>a_s</M> is an eigenvalue for <M>T_s</M> (see for instance <Cite Key="stein"/> for details).
It can be shown <Cite Key="atkinlehner"/> that <M>S_2(\Gamma_0(N))</M> admits a "basis constructed from eigenforms".
<P/> This all implies that, in principle,
we can construct an approximation to an explicit
basis for the space <M>S_2(\Gamma_0(N))</M> of cusp
forms by computing eigenvalues for Hecke operators.
<P/> Suppose that we would like a basis for <M>S_2(\Gamma_0(11))</M>. The following commands first show that <M>H^1_{cusp}(\Gamma_0(11),\mathbb Z)=\mathbb Z\oplus \mathbb Z</M> from which we deduce that <M>S_2(\Gamma_0(11)) =\mathbb C</M> is <M>1</M>-dimensional and thus admits a basis of eigenforms. Then eigenvalues of
Hecke operators are calculated to establish that the modular form
<Display>f = q -2q^2 -q^3 +2q^4 +q^5 +2q^6 -2q^7 + -2q^9 -2q^{10} + \cdots </Display>
constitutes a basis for <M>S_2(\Gamma_0(11))</M>.
<Example>
<#Include SYSTEM "tutex/11.7a.txt">
</Example>
<P/> For a normalized eigenform <M>f=1 + \sum_{s=2}^\infty a_sq^s</M>
the coefficients <M>a_s</M> with <M>s</M> a composite integer can be expressed in terms of the coefficients <M>a_p</M> for prime <M>p</M>.
If <M>r,s</M> are coprime then <M>T_{rs} =T_rT_s</M>.
If <M>p</M> is a prime that is not a divisor of the level <M>N</M> of <M>\Gamma</M> then
<M>a_{p^m} =a_{p^{m-1}}a_p - p a_{p^{m-2}}.</M>
If the prime <M> p</M> divides <M>N</M> then <M>a_{p^m} = (a_p)^m</M>. It thus suffices to compute the coefficients <M>a_p</M> for prime integers <M>p</M> only.
<P/>
The following commands establish that <M>S_{12}(SL_2(\mathbb Z))</M> has a basis
consisting of one cusp eigenform
<P/><M>q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 - 16744q^7 + 84480q^8 - 113643q^9 </M>
<P/><M>- 115920q^{10} + 534612q^{11} - 370944q^{12} - 577738q^{13} + 401856q^{14} + 1217160q^{15} + 987136q^{16}</M>
<P/><M> - 6905934q^{17} + 2727432q^{18} + 10661420q^{19} + ...</M>
<Example>
<#Include SYSTEM "tutex/11.7c.txt">
</Example>
</Section>
<Section><Heading>The Picard group</Heading>
Let us now consider the <E>Picard group</E> <M>G=SL_2(\mathbb Z[ i])</M> and
its action on <E>upper-half space</E>
<Display>{\frak h}^3 =\{(z,t) \in \mathbb C\times \mathbb R\ |\ t > 0\} \ . </Display>
To describe the action we introduce the symbol <M>j</M> satisfying <M>j^2=-1</M>, <M>ij=-ji</M> and write <M>z+tj</M> instead of <M>(z,t)</M>. The action is given by
<Display>\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \ \left(a(z+tj)+b\right)\left(c(z+tj)+d\right)^{-1}\ .</Display>
Alternatively, and more explicitly, the action is given by
<Display>\left(\begin{array}{ll}a&b\\ c &d \end{array}\right)\cdot (z+tj) \ = \
\frac{(az+b)\overline{(cz+d) } + a\overline c t^2}{|cz +d|^2 + |c|^2t^2} \ +\
\frac{t}{|cz+d|^2+|c|^2t^2}\, j
\ .</Display>
<P/>A standard 'fundamental domain' <M>D</M> for this action is the following region (with some of the boundary points removed).
<Display>
\{z+tj\in {\frak h}^3\ |\ 0 \le |{\rm Re}(z)| \le \frac{1}{2}, 0\le {\rm Im}(z) \le \frac{1}{2}, z\overline z +t^2 \ge 1\}
</Display>
<Alt Only="HTML"><img src="images/picarddomain.png" align="center" width="350" alt="Fundamental domain for the Picard group"/>
</Alt>
<P/>The four bottom vertices of <M>D</M> are
<M>a = -\frac{1}{2} +\frac{1}{2}i +\frac{\sqrt{2}}{2}j</M>,
<M>b = -\frac{1}{2} +\frac{\sqrt{3}}{2}j</M>,
<M>c = \frac{1}{2} +\frac{\sqrt{3}}{2}j</M>,
<M>d = \frac{1}{2} +\frac{1}{2}i +\frac{\sqrt{2}}{2}j</M>.
<P/>The upper-half space <M>{\frak h}^3</M> can be retracted onto a <M>2</M>-dimensional subspace <M>{\cal T} \subset {\frak h}^3</M>. The space <M>{\cal T}</M>
is a contractible
<M>2</M>-dimensional regular CW-complex, and the action of the Picard group <M>G</M> restricts to a cellular action of <M>G</M> on <M>{\cal T}</M>.
<P/>Using perturbation techniques, the <M>2</M>-complex <M>{\cal T}</M> can be combined with free resolutions for the cell stabilizer groups to contruct a regular CW-complex <M>X</M> on which the Picard group <M>G</M> acts freely.
The following commands compute the first few terms of the free <M>\mathbb ZG</M>-resolution
<M>R_\ast =C_\ast X</M>.
Then <M>R_\ast</M> is used to compute
<Display>H^1(G,\mathbb Z) =0\ ,</Display>
<Display>H^2(G,\mathbb Z) =\mathbb Z_2\oplus \mathbb Z_2\ ,</Display>
<Display>H^3(G,\mathbb Z) =\mathbb Z_6\ ,</Display>
<Display>H^4(G,\mathbb Z) =\mathbb Z_4\oplus \mathbb Z_{24}\ ,</Display>
and compute a free presentation for <M>G</M> involving four generators and seven relators.
<Example>
<#Include SYSTEM "tutex/11.8.txt">
</Example>
We can also compute the cohomology of <M>G=SL_2(\mathbb Z[i])</M> with
coefficients in a module such as the module
<M>P_{\mathbb Z[i]}(k)</M> of degree <M>k</M>
homogeneous polynomials with coefficients in <M>\mathbb Z[i]</M>
and with the action described above. For instance,
the following commands compute
<Display>H^1(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^4 \oplus \mathbb Z_4
\oplus \mathbb Z_8 \oplus \mathbb Z_{40} \oplus \mathbb Z_{80}\, ,</Display>
<Display>H^2(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{24} \oplus \mathbb Z_{520030}\oplus \mathbb Z_{1040060} \oplus \mathbb Z^2\, ,</Display>
<Display>H^3(G,P_{\mathbb Z[i]}(24)) = (\mathbb Z_2)^{22} \oplus \mathbb Z_{4}\oplus (\mathbb Z_{12})^2 \, .</Display>
<Example>
<#Include SYSTEM "tutex/11.9.txt">
</Example>
</Section>
<Section><Heading>Bianchi groups</Heading>
The <E>Bianchi groups</E> are the groups <M>G=PSL_2({\cal O}_{-d})</M> where <M>d</M> is a square free positive integer and <M>{\cal O}_{-d}</M> is the ring of integers
of the imaginary quadratic field <M>\mathbb Q(\sqrt{-d})</M>. More explicitly,
<Display>{\cal O}_{-d} = \mathbb Z\left[\sqrt{-d}\right]~~~~~~~~ {\rm if~} d \equiv 1,2 {\rm ~mod~} 4\, ,</Display>
<Display>{\cal O}_{-d} = \mathbb Z\left[\frac{1+\sqrt{-d}}{2}\right]~~~~~ {\rm if~} d \equiv 3 {\rm ~mod~} 4\, .</Display>
These groups act on upper-half space <M>{\frak h}^3</M> in the same way as the Picard group. Upper-half space can be tessellated by a 'fundamental domain'
for this action. Moreover, as with the Picard group, this tessellation contains a <M>2</M>-dimensional cellular subspace <M>{\cal T}\subset {\frak h}^3</M>
where <M>{\cal T}</M> is a contractible CW-complex on which <M>G</M> acts cellularly. It should be mentioned that the fundamental domain and the contractible <M>2</M>-complex <M>{\cal T}</M> are not uniquely determined by <M>G</M>.
Various algorithms exist for computing <M>{\cal T}</M> and its cell stabilizers. One algorithm due to Swan
<Cite Key="swan"/> has been implemented by Alexander Rahm
<Cite Key="rahmthesis"/> and the output for various values of <M>d</M> are stored in HAP. Another approach is to use Voronoi's theory of perfect forms. This approach has been implemented by Sebastian Schoennenbeck <Cite Key="schoennenbeck"/> and, again, its output for various values of <M>d</M> are
stored in HAP. The following commands combine data from Schoennenbeck's algorithm with free resolutions for cell stabiliers to compute
<Display>H^1(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^4
\oplus \mathbb Z_{12}
\oplus \mathbb Z_{24}
\oplus \mathbb Z_{9240}
\oplus \mathbb Z_{55440}
\oplus \mathbb Z^4\,,
</Display>
<Display>H^2(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
\begin{array}{l}
(\mathbb Z_2)^{26}
\oplus \mathbb (Z_{6})^8
\oplus \mathbb (Z_{12})^{9}
\oplus \mathbb Z_{24}
\oplus (\mathbb Z_{120})^2
\oplus (\mathbb Z_{840})^3\\
\oplus \mathbb Z_{2520}
\oplus (\mathbb Z_{27720})^2
\oplus (\mathbb Z_{24227280})^2
\oplus (\mathbb Z_{411863760})^2\\
\oplus \mathbb Z_{2454438243748928651877425142836664498129840}\\
\oplus \mathbb Z_{14726629462493571911264550857019986988779040}\\
\oplus \mathbb Z^4\end{array}\ ,
</Display>
<Display>H^3(PSL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^{23}
\oplus \mathbb Z_{4}
\oplus (\mathbb Z_{12})^2\ .
</Display>
Note that the action of <M>SL_2({\cal O}_{-d})</M> on <M>P_{{\cal O}_{-d}}(k)</M> induces an action of <M>PSL_2({\cal O}_{-d})</M>
provided <M>k</M> is even.
<Example>
<#Include SYSTEM "tutex/11.10.txt">
</Example>
<P/>We can also consider the coefficient module
<Display> P_{{\cal O}_{-d}}(k,\ell) = P_{{\cal O}_{-d}}(k) \otimes_{{\cal O}_{-d}} \overline{P_{{\cal O}_{-d}}(\ell)} </Display>
where the bar denotes a twist in the action obtained from complex conjugation. For an action of the projective linear group we must insist that <M>k+\ell</M> is even. The following commands compute
<Display>H^2(PSL_2({\cal O}_{-11}),P_{{\cal O}_{-11}}(5,5)) =
(\mathbb Z_2)^8 \oplus \mathbb Z_{60} \oplus (\mathbb Z_{660})^3 \oplus \mathbb Z^6\,, </Display>
a computation which was first made, along with many other cohomology computationsfor Bianchi groups, by Mehmet Haluk Sengun <Cite Key="sengun"/>.
<Example>
<#Include SYSTEM "tutex/11.10b.txt">
</Example>
<P/>The function <Code>ResolutionPSL2QuadraticIntegers(-d,n)</Code> relies on a limited data base produced by the algorithms implemented by Schoennenbeck and Rahm.
The function also covers some cases covered by entering a sring
"-d+I" as first variable. These cases
correspond to projective special groups of module automorphisms of lattices of rank 2 over the integers of the imaginary quadratic number field <M>\mathbb Q(\sqrt{-d})</M> with non-trivial Steinitz-class. In the case of a larger class group there are cases labelled "-d+I2",...,"-d+Ik" and the Ij together with O-d form a system of representatives of elements of the class group modulo squares and Galois action.
For instance,
the following commands compute
<Display>H_2(PSL({\cal O}_{-21+I2}),\mathbb Z) = \mathbb Z_2\oplus \mathbb Z^6\, .</Display>
<Example>
<#Include SYSTEM "tutex/11.11.txt">
</Example>
</Section>
<Section><Heading>(Co)homology of Bianchi groups and <M>SL_2({\cal O}_{-d})</M></Heading>
The (co)homology of Bianchi groups has been studied in papers such as
<Cite Key="Schwermer"/>
<Cite Key="Vogtmann"/>
<Cite Key="Berkove00"/>
<Cite Key="Berkove06"/>
<Cite Key="Rahm11"/>
<Cite Key="Rahm13"/>
<Cite Key="Rahm13a"/>
<Cite Key="Rahm20"/>.
Calculations in these papers can often be verified by computer. For instance, the calculation
<Display>H_q(PSL_2({\cal O}_{-15}),\mathbb Z) =
\left\{\begin{array}{ll}
\mathbb Z^2 \oplus \mathbb Z_6 & q=1,\\
\mathbb Z \oplus \mathbb Z_6 & q=2,\\
\mathbb Z_6 & q\ge 3\\
\end{array}\right.
</Display>
obtained in <Cite Key="Rahm11"/> can be verified as follows, once we note that Bianchi groups have virtual cohomological dimension 2 and, if all stabilizer groups are periodic with period dividing m, then the homology has period dividing m in degree <M>\ge 3</M>.
<Example>
<#Include SYSTEM "tutex/11.22.txt">
</Example>
All finite subgroups of <M>SL_2({\cal O}_{-d})</M> are periodic. Thus the above example can be adapted from PSL to SL for any square=free <M>d\ge 1</M>. For example, the calculation
<Display>H^q(SL_2({\cal O}_{-2}),\mathbb Z) =
\left\{\begin{array}{ll}
\mathbb Z & q=1,\\
\mathbb Z_6 & q=2 {\rm \ mod\ } 4,\\
\mathbb Z_2 \oplus \mathbb Z_{12} & q= 3 {\rm \ mod\ } 4\\
\mathbb Z_2 \oplus \mathbb Z_{24} & q= 0 {\rm \ mod\ } 4 (q>0)\\
\mathbb Z_{12} & q= 1 {\rm \ mod\ } 4 (q > 1)\\
\end{array}\right.
</Display>
obtained in <Cite Key="Schwermer"/> can be verified as follows.
<Example>
<#Include SYSTEM "tutex/11.23.txt">
</Example>
A quotient of a periodic group by a central subgroup of order 2 need not be periodic. For this reason the (co)homology of PSL can be a bit more tricky than SL.
For example, the calculation
<Display>H^q(PSL_2({\cal O}_{-13}),\mathbb Z) =
\left\{\begin{array}{ll}
\mathbb Z^3 \oplus (\mathbb Z_2)^2 & q=1,\\
\mathbb Z^2 \oplus \mathbb Z_4 \oplus (\mathbb Z_3)^2 \oplus \mathbb Z_2 & q=2,\\
(\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2 & q= 3 {\rm \ mod\ } 4\\
(\mathbb Z_2)^q & q= 0 {\rm \ mod\ } 4 (q>0)\\
(\mathbb Z_2)^q & q= 1 {\rm \ mod\ } 4 (q>1)\\
(\mathbb Z_2)^q \oplus (\mathbb Z_{3})^2 & q= 2 {\rm \ mod\ } 4 (q > 2)\\
\end{array}\right.
</Display>
was obtained in <Cite Key="Rahm11"/>. The following commands verify the calculation in the first 34 degrees, but for a proof valid for all degrees one needs to analyse the computation to spot that there is a certain "periodicity of period 2" in the computations for <M>q\ge 3</M>. This analysis is done in <Cite Key="Rahm11"/>.
<Example>
<#Include SYSTEM "tutex/11.24.txt">
</Example>
The Lyndon-Hochschild-Serre spectral sequence <M>H_p(G/N,H_q(N,A)) \Rightarrow H_{p+q}(G,A)</M> for the groups <M>G=SL_2({\mathcal O}_{-d})</M> and <M>N\cong C_2</M> the central subgroup with <M>G/N\cong PSL_2({\mathcal O}_{-d})</M>, and the trivial module
<M>A = \mathbb Z_{\ell}</M>, implies that for primes <M>\ell>2</M>
we have a natural isomorphism <M>H_n(PSL_2({\mathcal O}_{-d}),\mathbb Z_{\ell}) \cong H_n(SL_2({\mathcal O}_{-d}),\mathbb Z_{\ell})</M>. It follows that we have an isomorphism of <M>\ell</M>-primary
parts <M>H_n(PSL_2({\mathcal O}_{-d}),\mathbb Z)_{(\ell)} \cong H_n(SL_2({\mathcal O}_{-d}),\mathbb Z)_{(\ell)}</M>.
Since <M> H_n(SL_2({\mathcal O}_{-d}),\mathbb Z)_{(\ell)}</M> is periodic in degrees <M> \ge 3</M> we can recover
the <M>3</M>-primary part of <M>H_n(PSL_2({\mathcal O}_{-13}),\mathbb Z)</M> in all degrees <M>q\ge1</M>
from the following computation by ignoring all <M>2</M>-power factors in the output.
<Example>
<#Include SYSTEM "tutex/11.25.txt">
</Example>
The ring <M>{\mathcal O}_{-163}</M> is an example of a
principal ideal domain that is not a Euclidean domain. It seems that no complete calculation of <M>H_n(PSL_2({\mathcal O}_{-163}),\mathbb Z)</M>
is yet available in the literature. The following comands compute this homology in the first <M>31</M> degrees. The computation suggests a general formula in higher degrees. All but two of the stabilizer groups for
the action of
<M>PSL_2({\mathcal O}_{-163})</M> are periodic. The non-periodic group <M>A_4</M> occurs twice in degree <M>0</M>.
<Example>
<#Include SYSTEM "tutex/11.26.txt">
</Example>
</Section>
<Section><Heading>Some other infinite matrix groups</Heading>
Analogous to the functions for Bianchi groups, HAP has functions
<List>
<Item><Code>ResolutionSL2QuadraticIntegers(-d,n)</Code> </Item>
<Item><Code>ResolutionSL2ZInvertedInteger(m,n)</Code></Item>
<Item><Code>ResolutionGL2QuadraticIntegers(-d,n)</Code></Item>
<Item><Code>ResolutionPGL2QuadraticIntegers(-d,n)</Code></Item>
<Item><Code>ResolutionGL3QuadraticIntegers(-d,n)</Code></Item>
<Item><Code>ResolutionPGL3QuadraticIntegers(-d,n)</Code></Item>
</List>
for computing free resolutions for certain values of <M>SL_2({\cal O}_{-d})</M>,
<M>SL_2(\mathbb Z[\frac{1}{m}])</M>,
<M>GL_2({\cal O}_{-d})</M> and <M>PGL_2({\cal O}_{-d})</M>.
Additionally, the function
<List>
<Item><Code>ResolutionArithmeticGroup("string",n)</Code></Item>
</List>
can be used to compute resolutions for groups whose data (provided by Sebastian Schoennenbeck, Alexander Rahm and Mathieu Dutour) is stored in the directory <Code>gap/pkg/Hap/lib/Perturbations/Gcomplexes</Code> .
<P/>For instance, the following commands compute
<Display>H^1(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^4
\oplus \mathbb Z_{12}
\oplus \mathbb Z_{24}
\oplus \mathbb Z_{9240}
\oplus \mathbb Z_{55440}
\oplus \mathbb Z^4\,,
</Display>
<Display>H^2(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
\begin{array}{l}
(\mathbb Z_2)^{26}
\oplus \mathbb (Z_{6})^7
\oplus \mathbb (Z_{12})^{10}
\oplus \mathbb Z_{24}
\oplus (\mathbb Z_{120})^2
\oplus (\mathbb Z_{840})^3\\
\oplus \mathbb Z_{2520}
\oplus (\mathbb Z_{27720})^2
\oplus (\mathbb Z_{24227280})^2
\oplus (\mathbb Z_{411863760})^2\\
\oplus \mathbb Z_{2454438243748928651877425142836664498129840}\\
\oplus \mathbb Z_{14726629462493571911264550857019986988779040}\\
\oplus \mathbb Z^4\end{array}\ ,
</Display>
<Display>H^3(SL_2({\cal O}_{-6}),P_{{\cal O}_{-6}}(24)) =
(\mathbb Z_2)^{58}
\oplus (\mathbb Z_{4})^4
\oplus (\mathbb Z_{12})\ .
</Display>
<Example>
<#Include SYSTEM "tutex/11.10a.txt">
</Example>
<P/>The following commands construct free resolutions up to degree 5 for the groups <M>SL_2(\mathbb Z[\frac{1}{2}])</M>,
<M>GL_2({\cal O}_{-2})</M>, <M>GL_2({\cal O}_{2})</M>, <M>PGL_2({\cal O}_{2})</M>, <M>GL_3({\cal O}_{-2})</M>, <M>PGL_3({\cal O}_{-2})</M>.
The final command constructs a free resolution up to degree 3 for <M>PSL_4(\mathbb Z)</M>.
<Example>
<#Include SYSTEM "tutex/11.12.txt">
</Example>
</Section>
<Section><Heading>Ideals and finite quotient groups</Heading>
The following commands first construct the number field <M>\mathbb Q(\sqrt{-7})</M>,
its ring of integers <M>{\cal O}_{-7}={\cal O}(\mathbb Q(\sqrt{-7}))</M>, and the principal ideal <M>I=\langle 5 + 2\sqrt{-7}\rangle \triangleleft {\cal O}(\mathbb Q(\sqrt{-7}))</M>
of norm <M>{\cal N}(I)=53</M>. The ring <M>I</M> is prime since its norm is a prime number. The primality of <M>I</M> is also demonstrated by observing that the quotient ring <M>R={\cal O}_{-7}/I</M> is an integral domain and hence
isomorphic to the unique finite field of order <M>53 </M>,
<M>R\cong \mathbb Z/53\mathbb Z</M> . (In a ring of quadratic integers <E>prime ideal</E> is the same as <E>maximal ideal</E>).
<P/>The finite group <M>G=SL_2({\cal O}_{-7}\,/\,I)</M> is then
constructed and confirmed to be isomorphic to <M>SL_2(\mathbb Z/53\mathbb Z)</M>. The group <M>G</M> is shown to admit a periodic <M>\mathbb ZG</M>-resolution of <M>\mathbb Z</M> of period dividing <M>52</M>.
<P/>Finally the integral homology
<Display>H_n(G,\mathbb Z) = \left\{\begin{array}{ll}
0 & n\ne 3,7, {\rm~for~} 0\le n \le 8,\\
\mathbb Z_{2808} & n=3,7,
\end{array}\right.</Display>
is computed.
<Example>
<#Include SYSTEM "tutex/11.13.txt">
</Example>
<P/>The following commands show that the rational prime <M>7</M>
is not prime in <M>{\cal O}_{-5}={\cal O}(\mathbb Q(\sqrt{-5}))</M>. Moreover,
<M>7</M> totally splits in <M>{\cal O}_{-5}</M> since the final command
shows that only the rational primes <M>2</M> and <M>5</M> ramify in
<M>{\cal O}_{-5}</M>.
<Example>
<#Include SYSTEM "tutex/11.14.txt">
</Example>
<P/> For <M>d < 0</M> the rings <M>{\cal O}_d={\cal O}(\mathbb Q(\sqrt{d}))</M> are unique factorization domains for precisely
<Display> d = -1, -2, -3, -7, -11, -19, -43, -67, -163.</Display>
This result was conjectured by Gauss, and essentially proved by Kurt Heegner,
and then later proved by Harold Stark.
<P/>The following commands construct the classic example of a prime ideal <M>I</M> that is not principal. They then illustrate reduction modulo <M>I</M>.
<Example>
<#Include SYSTEM "tutex/11.15.txt">
</Example>
</Section>
<Section><Heading>Congruence subgroups for ideals</Heading>
<P/> Given a ring of integers <M>{\cal O}</M> and ideal
<M>I \triangleleft {\cal O}</M> there is a canonical homomorphism
<M>\pi_I\colon SL_2({\cal O}) \rightarrow SL_2({\cal O}/I)</M>. A
subgroup <M>\Gamma \le SL_2({\cal O})</M> is said to be a
<E>congruence subgroup</E> if it contains <M>\ker \pi_I</M>. Thus congruence subgroups are of finite index.
Generalizing the definition in <Ref Sect="sec:EichlerShimura"/> above, we define the <E>principal congruence subgroup</E> <M>\Gamma_1(I)=\ker \pi_I</M>, and the congruence subgroup
<M>\Gamma_0(I)</M> consisting of preimages of the upper triangular matrices in
<M>SL_2({\cal O}/I)</M>.
<P/> The following commands construct <M>\Gamma=\Gamma_0(I)</M> for the ideal
<M>I\triangleleft {\cal O}\mathbb Q(\sqrt{-5})</M> generated by <M>12</M>
and <M>36\sqrt{-5}</M>. The group <M>\Gamma</M>
has index <M>385</M> in <M>SL_2({\cal O}\mathbb Q(\sqrt{-5}))</M>.
The final command displays a tree in a Cayley graph for <M>SL_2({\cal O}\mathbb Q(\sqrt{-5}))</M> whose nodes represent a transversal for <M>\Gamma</M>.
<Example>
<#Include SYSTEM "tutex/11.17.txt">
</Example>
<Alt Only="HTML"><img src="images/treesqrt5.gif" align="center" width="350" alt="Information for the cubic tree"/>
</Alt>
<P/>The next commands first construct the congruence subgroup
<M>\Gamma_0(I)</M> of index <M>144</M> in <M>SL_2({\cal O}\mathbb Q(\sqrt{-2}))</M> for the ideal <M>I</M> in <M>{\cal O}\mathbb Q(\sqrt{-2})</M> generated by
<M>4+5\sqrt{-2}</M>.
The commands then compute
<Display>H_1(\Gamma_0(I),\mathbb Z) = \mathbb Z_3 \oplus \mathbb Z_6 \oplus \mathbb Z_{30} \oplus \mathbb Z^8\, ,</Display>
<Display>H_2(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \oplus \mathbb Z^7\, ,</Display>
<Display>H_3(\Gamma_0(I), \mathbb Z) = (\mathbb Z_2)^9 \, .</Display>
<Example>
<#Include SYSTEM "tutex/11.16.txt">
</Example>
</Section>
<Section><Heading>First homology</Heading>
The isomorphism <M>H_1(G,\mathbb Z) \cong G_{ab}</M> allows for the computation of first integral homology using computational methods for finitely presented groups. Such methods underly the following computation of
<Display>H_1( \Gamma_0(I),\mathbb Z) \cong \mathbb Z_2 \oplus \cdots \oplus
\mathbb Z_{4078793513671}</Display>
where <M>I</M> is the prime ideal in the Gaussian integers generated by <M>41+56\sqrt{-1}</M>.
<Example>
<#Include SYSTEM "tutex/11.18.txt">
</Example>
<P/>We write <M>G^{ab}_{tors}</M> to denote the maximal finite
summand of the first homology group of <M>G</M> and refer to this as the
<E>torsion subgroup</E>.
Nicholas Bergeron and Akshay Venkatesh <Cite Key="bergeron"/>
have conjectured relationships between
the torsion in congruence subgroups <M>\Gamma</M> and the volume of their quotient manifold
<M>{\frak h}^3/\Gamma</M>. For instance, for the Gaussian integers
they conjecture
<Display> \frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)} \rightarrow \frac{\lambda}{18\pi},\ \lambda =L(2,\chi_{\mathbb Q(\sqrt{-1})}) = 1 -\frac{1}{9} + \frac{1}{25} - \frac{1}{49} + \cdots</Display>
as the norm of the prime ideal <M>I</M> tends to <M>\infty</M>.
The following approximates <M>\lambda/18\pi = 0.0161957</M> and
<M>\frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)} = 0.0210325</M>
for the above example.
<Example>
<#Include SYSTEM "tutex/11.19.txt">
</Example>
<P/> The link with volume is given by the Humbert volume formula
<Display>
{\rm Vol} ( {\frak h}^3 / PSL_2( {\cal O}_{d} ) )
= \frac{|D|^{3/2}}{24} \zeta_{ \mathbb Q( \sqrt{d} ) }(2)/\zeta_{\mathbb Q}(2) </Display>
valid for square-free <M>d<0</M>, where <M>D</M> is the discriminant of <M>\mathbb Q(\sqrt{d})</M>. The volume of a finite index subgroup <M>\Gamma</M>
is obtained by multiplying the right-hand side by the index <M>|PSL_2({\cal O}_d)\,:\, \Gamma|</M>.
<P/>
The following commands produce a graph of
<M> \frac{\log |\Gamma_0(I)_{tors}^{ab}|}{{\rm Norm}(I)}</M> against
<M>{\rm Norm}(I)</M> for prime ideals <M>I</M> of norm <M>49 \le {\rm Norm}(I) \le 4357</M> (where one ideal for each norm is taken).
<Example>
<#Include SYSTEM "tutex/11.21.txt">
</Example>
<Alt Only="HTML"><img src="images/primesTorsion.png" align="center" width="1200" alt="graph of torsion versus norm"/>
</Alt>
</Section>
</Chapter>
|