File: chap1.html

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (1243 lines) | stat: -rw-r--r-- 159,198 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 1: Basic functionality for cellular complexes, fundamental groups and homology</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap1"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap0.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap2.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap1_mj.html">[MathJax on]</a></p>
<p><a id="X85BEB9F48106583E" name="X85BEB9F48106583E"></a></p>
<div class="ChapSects"><a href="chap1.html#X85BEB9F48106583E">1 <span class="Heading">Basic functionality for cellular complexes, fundamental groups and homology</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X7F06418383E098EB">1.1 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Cellular Complexes </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X85C818B87D9AC922">1.1-1 RegularCWPolytope</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7910F39B7AB79096">1.1-2 CubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X78A3981C878C7FB5">1.1-3 PureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X869065F77C4761EC">1.1-4 PureCubicalKnot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7B432A6184CBAC75">1.1-5 PurePermutahedralKnot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X824625A27FF6DE6F">1.1-6 PurePermutahedralComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X80CAD0357AF44E48">1.1-7 CayleyGraphOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8187F6507BA14D5C">1.1-8 EquivariantEuclideanSpace</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7FE0522B8134DF7C">1.1-9 EquivariantOrbitPolytope</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X81E8E97278B1AE92">1.1-10 EquivariantTwoComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7F8D4C4C7ED15A31">1.1-11 QuillenComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X854B96757AF38A41">1.1-12 RestrictedEquivariantCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7A3B6B647C8CF90B">1.1-13 RandomSimplicialGraph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8394037487D3C17E">1.1-14 RandomSimplicialTwoComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X83DB403087D02CC8">1.1-15 ReadCSVfileAsPureCubicalKnot</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7BE9892784AA4990">1.1-16 ReadImageAsPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X84D89B96873308B7">1.1-17 ReadImageAsFilteredPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X80E8B89F7E95D101">1.1-18 ReadImageAsWeightFunction</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7D8681B079E019C0">1.1-19 ReadPDBfileAsPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7E278788808A9EE4">1.1-20 ReadPDBfileAsPurepermutahedralComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X85C818B87D9AC922">1.1-21 RegularCWPolytope</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X818F2E887FE5F7BE">1.1-22 SimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X79CA51F27C07435C">1.1-23 SymmetricMatrixToFilteredGraph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8227636B7E878448">1.1-24 SymmetricMatrixToGraph</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X7C0C080487641830">1.2 <span class="Heading"> Metric Spaces</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7F8113757F7DD2F4">1.2-1 CayleyMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7A4560307BA911F5">1.2-2 EuclideanMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X789AE7CE8445A67C">1.2-3 EuclideanSquaredMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X79DA33CB7D46CAB4">1.2-4 HammingMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7BD62D75829F8701">1.2-5 KendallMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8763D1167EF519A1">1.2-6 ManhattanMetric</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7C86B58A7CEA5513">1.2-7 VectorsToSymmetricMatrix</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X80A49CAC84313990">1.3 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7AF313D387F6BA22">1.3-1 BoundaryMap</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X848ED6C378A1C5C0">1.3-2 CliqueComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X85FAD5E086DBD429">1.3-3 ConcentricFiltration</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X861BA02C7902A4F4">1.3-4 DirectProduct</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7DB4D3B57E0DA723">1.3-5 FiltrationTerm</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7B335342839E5146">1.3-6 Graph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7966519E78BC6C18">1.3-7 HomotopyGraph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X84560FF678621AE1">1.3-8 Nerve</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7C2BEF7C871E54D7">1.3-9 RegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X79967AC2859A9631">1.3-10 RegularCWMap</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X82843E747FE622AF">1.3-11 ThickeningFiltration</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X7FD50DF6782F00A0">1.4 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes (Preserving Data Types)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X840576107A2907B8">1.4-1 ContractedComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7A46614B84FF25BE">1.4-2 ContractibleSubcomplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X86164F4481ACC485">1.4-3 KnotReflection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7D86D13C822D59A9">1.4-4 KnotSum</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X855537287E9C4E72">1.4-5 OrientRegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7A266B5A7BE88E89">1.4-6 PathComponent</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7FF34B9E86E901DC">1.4-7 PureComplexBoundary</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7D0C9B27845F0739">1.4-8 PureComplexComplement</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7FB5BE6C78D5C7C8">1.4-9 PureComplexDifference</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8091C9BA819C2332">1.4-10 PureComplexInterstection</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X84A7E7A47F7BA09D">1.4-11 PureComplexThickened</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X78014E027F28C2C8">1.4-12 PureComplexUnion</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7E7AC0E77E25C45B">1.4-13 SimplifiedComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X844174D37E70B9B4">1.4-14 ZigZagContractedComplex</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X7E25932F7DD535E8">1.5 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7DC474EE7A909563">1.5-1 AlexanderPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X83EF7B888014C363">1.5-2 BettiNumber</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8307F8DB85F145AE">1.5-3 EulerCharacteristic</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X78813B9A851B922A">1.5-4 EulerIntegral</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7EAE7E4181546C17">1.5-5 FundamentalGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X808733FF7EF6278E">1.5-6 FundamentalGroupOfQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X78F2C5ED80D1C8DD">1.5-7 IsAspherical</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X797F8D4A848DD9BC">1.5-8 KnotGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X825539B57FBDDE86">1.5-9 PiZero</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7EE96E8B7C1643BD">1.5-10 PersistentBettiNumbers</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X7C17A7897DDAE22C">1.6 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7F5B6CAD7CB2E985">1.6-1 DendrogramMat</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X859286BF7F6047B7">1.7 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Non Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7A1C427578108B7E">1.7-1 ChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7D4AF2E8785DA457">1.7-2 ChainComplexEquivalence</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7D77D18679E941D3">1.7-3 ChainComplexOfQuotient</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7BCD94877DF261C4">1.7-4 ChainMap</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7B8741FB7A3263EC">1.7-5 CochainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8489A39F870FF08B">1.7-6 CriticalCells</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7A4AD52D82627ABC">1.7-7 DiagonalApproximation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X858ADA3B7A684421">1.7-8 Size</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X7B6F366F7A2D8FEE">1.8 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X829DD3868410FE2E">1.8-1 FilteredTensorWithIntegers</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7BC291C47FEAC5B8">1.8-2 FilteredTensorWithIntegersModP</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X788F3B5E7810E309">1.8-3 HomToIntegers</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X8122D25786C83565">1.8-4 TensorWithIntegersModP</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X7BB8DC9783A4AF81">1.9 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X84CFC57B7E9CCCF7">1.9-1 Cohomology</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X877825E57D79839C">1.9-2 CupProduct</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X85A9D5CB8605329C">1.9-3 Homology</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap1.html#X867BE1388467C939">1.10 <span class="Heading"> Visualization</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X806A81EF79CE0DEF">1.10-1 BarCodeDisplay</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X83D60A6682EBB6F1">1.10-2 BarCodeCompactDisplay</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X80CAD0357AF44E48">1.10-3 CayleyGraphOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X83A5C59278E13248">1.10-4 Display</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7B98A3C4831D5B0D">1.10-5 DisplayArcPresentation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X861690C27BADC326">1.10-6 DisplayCSVKnotFile</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7F4AA01E7C0A5C16">1.10-7 DisplayDendrogram</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7E5A38F081B401BE">1.10-8 DisplayDendrogramMat</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X822F54F385D7EF8A">1.10-9 DisplayPDBfile</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X80EC50C27EFF2E12">1.10-10 OrbitPolytope</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap1.html#X7DF49EAD7C0B0E84">1.10-11 ScatterPlot</a></span>
</div></div>
</div>

<h3>1 <span class="Heading">Basic functionality for cellular complexes, fundamental groups and homology</span></h3>

<p>This page covers the functions used in chapters 1 and 2 of the book <span class="URL"><a href="https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980">An Invitation to Computational Homotopy</a></span>.</p>

<p><a id="X7F06418383E098EB" name="X7F06418383E098EB"></a></p>

<h4>1.1 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Cellular Complexes </span></h4>

<p><a id="X85C818B87D9AC922" name="X85C818B87D9AC922"></a></p>

<h5>1.1-1 RegularCWPolytope</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWPolytope</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L</span> of vectors in <span class="SimpleMath">R^n</span> and outputs their convex hull as a regular CW-complex.</p>

<p>Inputs a permutation group G of degree <span class="SimpleMath">d</span> and vector <span class="SimpleMath">v∈ R^d</span>, and outputs the convex hull of the orbit <span class="SimpleMath">{v^g : g∈ G}</span> as a regular CW-complex.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7910F39B7AB79096" name="X7910F39B7AB79096"></a></p>

<h5>1.1-2 CubicalComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CubicalComplex</code>( <var class="Arg">A</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a binary array <span class="SimpleMath">A</span> and returns the cubical complex represented by <span class="SimpleMath">A</span>. The array <span class="SimpleMath">A</span> must of course be such that it represents a cubical complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">12</a></span> </p>

<p><a id="X78A3981C878C7FB5" name="X78A3981C878C7FB5"></a></p>

<h5>1.1-3 PureCubicalComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureCubicalComplex</code>( <var class="Arg">A</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a binary array <span class="SimpleMath">A</span> and returns the pure cubical complex represented by <span class="SimpleMath">A</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">12</a></span> </p>

<p><a id="X869065F77C4761EC" name="X869065F77C4761EC"></a></p>

<h5>1.1-4 PureCubicalKnot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureCubicalKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureCubicalKnot</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs integers <span class="SimpleMath">n, k</span> and returns the <span class="SimpleMath">k</span>-th prime knot on <span class="SimpleMath">n</span> crossings as a pure cubical complex (if this prime knot exists).</p>

<p>Inputs a list <span class="SimpleMath">L</span> describing an arc presentation for a knot or link and returns the knot or link as a pure cubical complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap6.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">11</a></span> </p>

<p><a id="X7B432A6184CBAC75" name="X7B432A6184CBAC75"></a></p>

<h5>1.1-5 PurePermutahedralKnot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PurePermutahedralKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PurePermutahedralKnot</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs integers <span class="SimpleMath">n, k</span> and returns the <span class="SimpleMath">k</span>-th prime knot on <span class="SimpleMath">n</span> crossings as a pure permutahedral complex (if this prime knot exists).</p>

<p>Inputs a list <span class="SimpleMath">L</span> describing an arc presentation for a knot or link and returns the knot or link as a pure permutahedral complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> </p>

<p><a id="X824625A27FF6DE6F" name="X824625A27FF6DE6F"></a></p>

<h5>1.1-6 PurePermutahedralComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PurePermutahedralComplex</code>( <var class="Arg">A</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a binary array <span class="SimpleMath">A</span> and returns the pure permutahedral complex represented by <span class="SimpleMath">A</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap5.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>

<p><a id="X80CAD0357AF44E48" name="X80CAD0357AF44E48"></a></p>

<h5>1.1-7 CayleyGraphOfGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CayleyGraphOfGroup</code>( <var class="Arg">G</var>, <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and a list <span class="SimpleMath">L</span> of elements in <span class="SimpleMath">G</span>.It returns the Cayley graph of the group generated by <span class="SimpleMath">L</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X8187F6507BA14D5C" name="X8187F6507BA14D5C"></a></p>

<h5>1.1-8 EquivariantEuclideanSpace</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EquivariantEuclideanSpace</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a crystallographic group <span class="SimpleMath">G</span> with left action on <span class="SimpleMath">R^n</span> together with a row vector <span class="SimpleMath">v ∈ R^n</span>. It returns an equivariant regular CW-space corresponding to the Dirichlet-Voronoi tessellation of <span class="SimpleMath">R^n</span> produced from the orbit of <span class="SimpleMath">v</span> under the action.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>

<p><a id="X7FE0522B8134DF7C" name="X7FE0522B8134DF7C"></a></p>

<h5>1.1-9 EquivariantOrbitPolytope</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EquivariantOrbitPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a permutation group <span class="SimpleMath">G</span> of degree <span class="SimpleMath">n</span> together with a row vector <span class="SimpleMath">v ∈ R^n</span>. It returns, as an equivariant regular CW-space, the convex hull of the orbit of <span class="SimpleMath">v</span> under the canonical left action of <span class="SimpleMath">G</span> on <span class="SimpleMath">R^n</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X81E8E97278B1AE92" name="X81E8E97278B1AE92"></a></p>

<h5>1.1-10 EquivariantTwoComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EquivariantTwoComplex</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a suitable group <span class="SimpleMath">G</span> and returns, as an equivariant regular CW-space, the <span class="SimpleMath">2</span>-complex associated to some presentation of <span class="SimpleMath">G</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>

<p><a id="X7F8D4C4C7ED15A31" name="X7F8D4C4C7ED15A31"></a></p>

<h5>1.1-11 QuillenComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuillenComplex</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and prime <span class="SimpleMath">p</span>, and returns the simplicial complex arising as the order complex of the poset of elementary abelian <span class="SimpleMath">p</span>-subgroups of <span class="SimpleMath">G</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>

<p><a id="X854B96757AF38A41" name="X854B96757AF38A41"></a></p>

<h5>1.1-12 RestrictedEquivariantCWComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RestrictedEquivariantCWComplex</code>( <var class="Arg">Y</var>, <var class="Arg">H</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-equivariant regular CW-space Y and a subgroup <span class="SimpleMath">H ≤ G</span> for which GAP can find a transversal. It returns the equivariant regular CW-complex obtained by retricting the action to <span class="SimpleMath">H</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7A3B6B647C8CF90B" name="X7A3B6B647C8CF90B"></a></p>

<h5>1.1-13 RandomSimplicialGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomSimplicialGraph</code>( <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an integer <span class="SimpleMath">n ≥ 1</span> and positive prime <span class="SimpleMath">p</span>, and returns an Erdős–Rényi random graph as a <span class="SimpleMath">1</span>-dimensional simplicial complex. The graph has <span class="SimpleMath">n</span> vertices. Each pair of vertices is, with probability <span class="SimpleMath">p</span>, directly connected by an edge.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">1</a></span> </p>

<p><a id="X8394037487D3C17E" name="X8394037487D3C17E"></a></p>

<h5>1.1-14 RandomSimplicialTwoComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RandomSimplicialTwoComplex</code>( <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an integer <span class="SimpleMath">n ≥ 1</span> and positive prime <span class="SimpleMath">p</span>, and returns a Linial-Meshulam random simplicial <span class="SimpleMath">2</span>-complex. The <span class="SimpleMath">1</span>-skeleton of this simplicial complex is the complete graph on <span class="SimpleMath">n</span> vertices. Each triple of vertices lies, with probability <span class="SimpleMath">p</span>, in a common <span class="SimpleMath">2</span>-simplex of the complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">2</a></span> </p>

<p><a id="X83DB403087D02CC8" name="X83DB403087D02CC8"></a></p>

<h5>1.1-15 ReadCSVfileAsPureCubicalKnot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">str</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">str</var>, <var class="Arg">r</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">L</var>, <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Reads a CSV file identified by a string str such as "file.pdb" or "path/file.pdb" and returns a <span class="SimpleMath">3</span>-dimensional pure cubical complex <span class="SimpleMath">K</span>. Each line of the file should contain the coordinates of a point in <span class="SimpleMath">R^3</span> and the complex <span class="SimpleMath">K</span> should represent a knot determined by the sequence of points, though the latter is not guaranteed. A useful check in this direction is to test that <span class="SimpleMath">K</span> has the homotopy type of a circle.</p>

<p>If the test fails then try the function again with an integer <span class="SimpleMath">r ≥ 2</span> entered as the optional second argument. The integer determines the resolution with which the knot is constructed.</p>

<p>The function can also read in a list <span class="SimpleMath">L</span> of strings identifying CSV files for several knots. In this case a list <span class="SimpleMath">R</span> of integer resolutions can also be entered. The lists <span class="SimpleMath">L</span> and <span class="SimpleMath">R</span> must be of equal length.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> </p>

<p><a id="X7BE9892784AA4990" name="X7BE9892784AA4990"></a></p>

<h5>1.1-16 ReadImageAsPureCubicalComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadImageAsPureCubicalComplex</code>( <var class="Arg">str</var>, <var class="Arg">t</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with an integer <span class="SimpleMath">t</span> between <span class="SimpleMath">0</span> and <span class="SimpleMath">765</span>. It returns a <span class="SimpleMath">2</span>-dimensional pure cubical complex corresponding to a black/white version of the image determined by the threshold <span class="SimpleMath">t</span>. The <span class="SimpleMath">2</span>-cells of the pure cubical complex correspond to pixels with RGB value <span class="SimpleMath">R+G+B ≤ t</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">5</a></span> </p>

<p><a id="X84D89B96873308B7" name="X84D89B96873308B7"></a></p>

<h5>1.1-17 ReadImageAsFilteredPureCubicalComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadImageAsFilteredPureCubicalComplex</code>( <var class="Arg">str</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with a positive integer <span class="SimpleMath">n</span>. It returns a <span class="SimpleMath">2</span>-dimensional filtered pure cubical complex of filtration length <span class="SimpleMath">n</span>. The <span class="SimpleMath">k</span>th term in the filtration is a pure cubical complex corresponding to a black/white version of the image determined by the threshold <span class="SimpleMath">t_k=k × 765/n</span>. The <span class="SimpleMath">2</span>-cells of the <span class="SimpleMath">k</span>th term correspond to pixels with RGB value <span class="SimpleMath">R+G+B ≤ t_k</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X80E8B89F7E95D101" name="X80E8B89F7E95D101"></a></p>

<h5>1.1-18 ReadImageAsWeightFunction</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadImageAsWeightFunction</code>( <var class="Arg">str</var>, <var class="Arg">t</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with an integer <span class="SimpleMath">t</span>. It constructs a <span class="SimpleMath">2</span>-dimensional regular CW-complex <span class="SimpleMath">Y</span> from the image, together with a weight function <span class="SimpleMath">w: Y→ Z</span> corresponding to a filtration on <span class="SimpleMath">Y</span> of filtration length <span class="SimpleMath">t</span>. The pair <span class="SimpleMath">[Y,w]</span> is returned.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7D8681B079E019C0" name="X7D8681B079E019C0"></a></p>

<h5>1.1-19 ReadPDBfileAsPureCubicalComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadPDBfileAsPureCubicalComplex</code>( <var class="Arg">str</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadPDBfileAsPureCubicalComplex</code>( <var class="Arg">str</var>, <var class="Arg">r</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Reads a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb" and returns a <span class="SimpleMath">3</span>-dimensional pure cubical complex <span class="SimpleMath">K</span>. The complex <span class="SimpleMath">K</span> should represent a (protein backbone) knot but this is not guaranteed. A useful check in this direction is to test that <span class="SimpleMath">K</span> has the homotopy type of a circle.</p>

<p>If the test fails then try the function again with an integer <span class="SimpleMath">r ≥ 2</span> entered as the optional second argument. The integer determines the resolution with which the knot is constructed.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">3</a></span> </p>

<p><a id="X7E278788808A9EE4" name="X7E278788808A9EE4"></a></p>

<h5>1.1-20 ReadPDBfileAsPurepermutahedralComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadPDBfileAsPurepermutahedralComplex</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ReadPDBfileAsPurePermutahedralComplex</code>( <var class="Arg">str</var>, <var class="Arg">r</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Reads a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb" and returns a <span class="SimpleMath">3</span>-dimensional pure permutahedral complex <span class="SimpleMath">K</span>. The complex <span class="SimpleMath">K</span> should represent a (protein backbone) knot but this is not guaranteed. A useful check in this direction is to test that <span class="SimpleMath">K</span> has the homotopy type of a circle.</p>

<p>If the test fails then try the function again with an integer <span class="SimpleMath">r ≥ 2</span> entered as the optional second argument. The integer determines the resolution with which the knot is constructed.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X85C818B87D9AC922" name="X85C818B87D9AC922"></a></p>

<h5>1.1-21 RegularCWPolytope</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWPolytope</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L</span> of vectors in <span class="SimpleMath">R^n</span> and outputs their convex hull as a regular CW-complex.</p>

<p>Inputs a permutation group G of degree <span class="SimpleMath">d</span> and vector <span class="SimpleMath">v∈ R^d</span>, and outputs the convex hull of the orbit <span class="SimpleMath">{v^g : g∈ G}</span> as a regular CW-complex.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X818F2E887FE5F7BE" name="X818F2E887FE5F7BE"></a></p>

<h5>1.1-22 SimplicialComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplicialComplex</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L</span> whose entries are lists of vertices representing the maximal simplices of a simplicial complex, and returns the simplicial complex. Here a "vertex" is a GAP object such as an integer or a subgroup. The list <span class="SimpleMath">L</span> can also contain non-maximal simplices.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap10.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">12</a></span> </p>

<p><a id="X79CA51F27C07435C" name="X79CA51F27C07435C"></a></p>

<h5>1.1-23 SymmetricMatrixToFilteredGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatrixToFilteredGraph</code>( <var class="Arg">A</var>, <var class="Arg">m</var>, <var class="Arg">s</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatrixToFilteredGraph</code>( <var class="Arg">A</var>, <var class="Arg">m</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n × n</span> symmetric matrix <span class="SimpleMath">A</span>, a positive integer <span class="SimpleMath">m</span> and a positive rational <span class="SimpleMath">s</span>. The function returns a filtered graph of filtration length <span class="SimpleMath">m</span>. The <span class="SimpleMath">t</span>-th term of the filtration is a graph with <span class="SimpleMath">n</span> vertices and an edge between the <span class="SimpleMath">i</span>-th and <span class="SimpleMath">j</span>-th vertices if the <span class="SimpleMath">(i,j)</span> entry of <span class="SimpleMath">A</span> is less than or equal to <span class="SimpleMath">t × s/m</span>.</p>

<p>If the optional input <span class="SimpleMath">s</span> is omitted then it is set equal to the largest entry in the matrix <span class="SimpleMath">A</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">3</a></span> </p>

<p><a id="X8227636B7E878448" name="X8227636B7E878448"></a></p>

<h5>1.1-24 SymmetricMatrixToGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatrixToGraph</code>( <var class="Arg">A</var>, <var class="Arg">t</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n× n</span> symmetric matrix <span class="SimpleMath">A</span> over the rationals and a rational number <span class="SimpleMath">t ≥ 0</span>, and returns the graph on the vertices <span class="SimpleMath">1,2, ..., n</span> with an edge between distinct vertices <span class="SimpleMath">i</span> and <span class="SimpleMath">j</span> precisely when the <span class="SimpleMath">(i,j)</span> entry of <span class="SimpleMath">A</span> is <span class="SimpleMath">≤ t</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">2</a></span> </p>

<p><a id="X7C0C080487641830" name="X7C0C080487641830"></a></p>

<h4>1.2 <span class="Heading"> Metric Spaces</span></h4>

<p><a id="X7F8113757F7DD2F4" name="X7F8113757F7DD2F4"></a></p>

<h5>1.2-1 CayleyMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CayleyMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of transpositions needed to express <span class="SimpleMath">g*h^-1</span> as a product of transpositions.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>

<p><a id="X7A4560307BA911F5" name="X7A4560307BA911F5"></a></p>

<h5>1.2-2 EuclideanMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EuclideanMetric</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w ∈ R^n</span> and returns a rational number approximating the Euclidean distance between them.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X789AE7CE8445A67C" name="X789AE7CE8445A67C"></a></p>

<h5>1.2-3 EuclideanSquaredMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EuclideanSquaredMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w ∈ R^n</span> and returns the square of the Euclidean distance between them.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X79DA33CB7D46CAB4" name="X79DA33CB7D46CAB4"></a></p>

<h5>1.2-4 HammingMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HammingMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of integers moved by the permutation <span class="SimpleMath">g*h^-1</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7BD62D75829F8701" name="X7BD62D75829F8701"></a></p>

<h5>1.2-5 KendallMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KendallMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of adjacent transpositions needed to express <span class="SimpleMath">g*h^-1</span> as a product of adjacent transpositions. An <em>adjacent</em> transposition is of the form <span class="SimpleMath">(i,i+1)</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X8763D1167EF519A1" name="X8763D1167EF519A1"></a></p>

<h5>1.2-6 ManhattanMetric</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ManhattanMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w ∈ R^n</span> and returns the Manhattan distance between them.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>

<p><a id="X7C86B58A7CEA5513" name="X7C86B58A7CEA5513"></a></p>

<h5>1.2-7 VectorsToSymmetricMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VectorsToSymmetricMatrix</code>( <var class="Arg">V</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VectorsToSymmetricMatrix</code>( <var class="Arg">V</var>, <var class="Arg">d</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">V ={ v_1, ..., v_k} ∈ R^n</span> and returns the <span class="SimpleMath">k × k</span> symmetric matrix of Euclidean distances <span class="SimpleMath">d(v_i, v_j)</span>. When these distances are irrational they are approximated by a rational number.</p>

<p>As an optional second argument any rational valued function <span class="SimpleMath">d(x,y)</span> can be entered.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">3</a></span> </p>

<p><a id="X80A49CAC84313990" name="X80A49CAC84313990"></a></p>

<h4>1.3 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes</span></h4>

<p><a id="X7AF313D387F6BA22" name="X7AF313D387F6BA22"></a></p>

<h5>1.3-1 BoundaryMap</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BoundaryMap</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure regular CW-complex <span class="SimpleMath">K</span> and returns the regular CW-inclusion map <span class="SimpleMath">ι : ∂ K ↪ K</span> from the boundary <span class="SimpleMath">∂ K</span> into the complex <span class="SimpleMath">K</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">3</a></span> </p>

<p><a id="X848ED6C378A1C5C0" name="X848ED6C378A1C5C0"></a></p>

<h5>1.3-2 CliqueComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CliqueComplex</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CliqueComplex</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CliqueComplex</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and integer <span class="SimpleMath">n ≥ 1</span>. It returns the <span class="SimpleMath">n</span>-skeleton of a simplicial complex <span class="SimpleMath">K</span> with one <span class="SimpleMath">k</span>-simplex for each complete subgraph of <span class="SimpleMath">G</span> on <span class="SimpleMath">k+1</span> vertices.</p>

<p>Inputs a fitered graph <span class="SimpleMath">F</span> and integer <span class="SimpleMath">n ≥ 1</span>. It returns the <span class="SimpleMath">n</span>-skeleton of a filtered simplicial complex <span class="SimpleMath">K</span> whose <span class="SimpleMath">t</span>-term has one <span class="SimpleMath">k</span>-simplex for each complete subgraph of the <span class="SimpleMath">t</span>-th term of <span class="SimpleMath">G</span> on <span class="SimpleMath">k+1</span> vertices.</p>

<p>Inputs a simplicial complex of dimension <span class="SimpleMath">d=1</span> or <span class="SimpleMath">d=2</span>. If <span class="SimpleMath">d=1</span> then the clique complex of a graph returned. If <span class="SimpleMath">d=2</span> then the clique complex of a <span class="SimpleMath">2</span>-complex is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X85FAD5E086DBD429" name="X85FAD5E086DBD429"></a></p>

<h5>1.3-3 ConcentricFiltration</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ConcentricFiltration</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">K</span> and integer <span class="SimpleMath">n ≥ 1</span>, and returns a filtered pure cubical complex of filtration length <span class="SimpleMath">n</span>. The <span class="SimpleMath">t</span>-th term of the filtration is the intersection of <span class="SimpleMath">K</span> with the ball of radius <span class="SimpleMath">r_t</span> centred on the centre of gravity of <span class="SimpleMath">K</span>, where <span class="SimpleMath">0=r_1 ≤ r_2 ≤ r_3 ≤ ⋯ ≤ r_n</span> are equally spaced rational numbers. The complex <span class="SimpleMath">K</span> is contained in the ball of radius <span class="SimpleMath">r_n</span>. (At present, this is implemented only for <span class="SimpleMath">2</span>- and <span class="SimpleMath">3</span>-dimensional complexes.)</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X861BA02C7902A4F4" name="X861BA02C7902A4F4"></a></p>

<h5>1.3-4 DirectProduct</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DirectProduct</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DirectProduct</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two or more regular CW-complexes or two or more pure cubical complexes and returns their direct product.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap10.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">7</a></span> </p>

<p><a id="X7DB4D3B57E0DA723" name="X7DB4D3B57E0DA723"></a></p>

<h5>1.3-5 FiltrationTerm</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FiltrationTerm</code>( <var class="Arg">K</var>, <var class="Arg">t</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FiltrationTerm</code>( <var class="Arg">K</var>, <var class="Arg">t</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a filtered regular CW-complex or a filtered pure cubical complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">t ≥ 1</span>. The <span class="SimpleMath">t</span>-th term of the filtration is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X7B335342839E5146" name="X7B335342839E5146"></a></p>

<h5>1.3-6 Graph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Graph</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Graph</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex or a simplicial complex <span class="SimpleMath">K</span> and returns its <span class="SimpleMath">1</span>-skeleton as a graph.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap7.html">4</a></span> , <span class="URL"><a href="../tutorial/chap10.html">5</a></span> , <span class="URL"><a href="../tutorial/chap11.html">6</a></span> , <span class="URL"><a href="../tutorial/chap14.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">15</a></span> </p>

<p><a id="X7966519E78BC6C18" name="X7966519E78BC6C18"></a></p>

<h5>1.3-7 HomotopyGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomotopyGraph</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a subgraph <span class="SimpleMath">M ⊂ Y^1</span> of the <span class="SimpleMath">1</span>-skeleton for which the induced homology homomorphisms <span class="SimpleMath">H_1(M, Z) → H_1(Y, Z)</span> and <span class="SimpleMath">H_1(Y^1, Z) → H_1(Y, Z)</span> have identical images. The construction tries to include as few edges in <span class="SimpleMath">M</span> as possible, though a minimum is not guaranteed.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X84560FF678621AE1" name="X84560FF678621AE1"></a></p>

<h5>1.3-8 Nerve</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Nerve</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Nerve</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Nerve</code>( <var class="Arg">M</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Nerve</code>( <var class="Arg">M</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex or pure permutahedral complex <span class="SimpleMath">M</span> and returns the simplicial complex <span class="SimpleMath">K</span> obtained by taking the nerve of an open cover of <span class="SimpleMath">|M|</span>, the open sets in the cover being sufficiently small neighbourhoods of the top-dimensional cells of <span class="SimpleMath">|M|</span>. The spaces <span class="SimpleMath">|M|</span> and <span class="SimpleMath">|K|</span> are homotopy equivalent by the Nerve Theorem. If an integer <span class="SimpleMath">n ≥ 0</span> is supplied as the second argument then only the n-skeleton of <span class="SimpleMath">K</span> is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap10.html">3</a></span> , <span class="URL"><a href="../tutorial/chap12.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">9</a></span> </p>

<p><a id="X7C2BEF7C871E54D7" name="X7C2BEF7C871E54D7"></a></p>

<h5>1.3-9 RegularCWComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWComplex</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWComplex</code>( <var class="Arg">L</var>, <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial, pure cubical, cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the corresponding regular CW-complex. Inputs a list <span class="SimpleMath">L=Y!.boundaries</span> of boundary incidences of a regular CW-complex <span class="SimpleMath">Y</span> and returns <span class="SimpleMath">Y</span>. Inputs a list <span class="SimpleMath">L=Y!.boundaries</span> of boundary incidences of a regular CW-complex <span class="SimpleMath">Y</span> together with a list <span class="SimpleMath">M=Y!.orientation</span> of incidence numbers and returns a regular CW-complex <span class="SimpleMath">Y</span>. The availability of precomputed incidence numbers saves recalculating them.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap10.html">6</a></span> , <span class="URL"><a href="../tutorial/chap14.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">13</a></span> </p>

<p><a id="X79967AC2859A9631" name="X79967AC2859A9631"></a></p>

<h5>1.3-10 RegularCWMap</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RegularCWMap</code>( <var class="Arg">M</var>, <var class="Arg">A</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">M</span> and a subcomplex <span class="SimpleMath">A</span> and returns the inclusion map <span class="SimpleMath">A → M</span> as a map of regular CW complexes.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap4.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">3</a></span> </p>

<p><a id="X82843E747FE622AF" name="X82843E747FE622AF"></a></p>

<h5>1.3-11 ThickeningFiltration</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ThickeningFiltration</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ThickeningFiltration</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">s</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">K</span> and integer <span class="SimpleMath">n ≥ 1</span>, and returns a filtered pure cubical complex of filtration length <span class="SimpleMath">n</span>. The <span class="SimpleMath">t</span>-th term of the filtration is the <span class="SimpleMath">t</span>-fold thickening of <span class="SimpleMath">K</span>. If an integer <span class="SimpleMath">s ≥ 1</span> is entered as the optional third argument then the <span class="SimpleMath">t</span>-th term of the filtration is the <span class="SimpleMath">ts</span>-fold thickening of <span class="SimpleMath">K</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>

<p><a id="X7FD50DF6782F00A0" name="X7FD50DF6782F00A0"></a></p>

<h4>1.4 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes (Preserving Data Types)</span></h4>

<p><a id="X840576107A2907B8" name="X840576107A2907B8"></a></p>

<h5>1.4-1 ContractedComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var>, <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var>, <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractedComplex</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a complex (regular CW, Filtered regular CW, pure cubical etc.) and returns a homotopy equivalent subcomplex.</p>

<p>Inputs a pure cubical complex or pure permutahedral complex <span class="SimpleMath">K</span> and a subcomplex <span class="SimpleMath">S</span>. It returns a homotopy equivalent subcomplex of <span class="SimpleMath">K</span> that contains <span class="SimpleMath">S</span>.</p>

<p>Inputs a graph <span class="SimpleMath">G</span> and returns a subgraph <span class="SimpleMath">S</span> such that the clique complexes of <span class="SimpleMath">G</span> and <span class="SimpleMath">S</span> are homotopy equivalent.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap5.html">4</a></span> , <span class="URL"><a href="../tutorial/chap7.html">5</a></span> , <span class="URL"><a href="../tutorial/chap10.html">6</a></span> , <span class="URL"><a href="../tutorial/chap11.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">11</a></span> </p>

<p><a id="X7A46614B84FF25BE" name="X7A46614B84FF25BE"></a></p>

<h5>1.4-2 ContractibleSubcomplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractibleSubcomplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractibleSubcomplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractibleSubcomplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a non-empty pure cubical, pure permutahedral or simplicial complex <span class="SimpleMath">K</span> and returns a contractible subcomplex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">2</a></span> </p>

<p><a id="X86164F4481ACC485" name="X86164F4481ACC485"></a></p>

<h5>1.4-3 KnotReflection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KnotReflection</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical knot and returns the reflected knot.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7D86D13C822D59A9" name="X7D86D13C822D59A9"></a></p>

<h5>1.4-4 KnotSum</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KnotSum</code>( <var class="Arg">K</var>, <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two pure cubical knots and returns their sum.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap6.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">5</a></span> </p>

<p><a id="X855537287E9C4E72" name="X855537287E9C4E72"></a></p>

<h5>1.4-5 OrientRegularCWComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrientRegularCWComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and computes and stores incidence numbers for <span class="SimpleMath">Y</span>. If <span class="SimpleMath">Y</span> already has incidence numbers then the function does nothing.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7A266B5A7BE88E89" name="X7A266B5A7BE88E89"></a></p>

<h5>1.4-6 PathComponent</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PathComponent</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PathComponent</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PathComponent</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial, pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">1 ≤ n ≤ β_0(K)</span>. The <span class="SimpleMath">n</span>-th path component of <span class="SimpleMath">K</span> is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">3</a></span> </p>

<p><a id="X7FF34B9E86E901DC" name="X7FF34B9E86E901DC"></a></p>

<h5>1.4-7 PureComplexBoundary</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexBoundary</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexBoundary</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">d</span>-dimensional pure cubical or pure permutahedral complex <span class="SimpleMath">M</span> and returns a <span class="SimpleMath">d</span>-dimensional complex consisting of the closure of those <span class="SimpleMath">d</span>-cells whose boundaries contains some cell with coboundary of size less than the maximal possible size.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X7D0C9B27845F0739" name="X7D0C9B27845F0739"></a></p>

<h5>1.4-8 PureComplexComplement</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexComplement</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexComplement</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex or a pure permutahedral complex and returns its complement.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap5.html">4</a></span> , <span class="URL"><a href="../tutorial/chap10.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">7</a></span> </p>

<p><a id="X7FB5BE6C78D5C7C8" name="X7FB5BE6C78D5C7C8"></a></p>

<h5>1.4-9 PureComplexDifference</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexDifference</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexDifference</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two pure cubical complexes or two pure permutahedral complexes and returns the difference <span class="SimpleMath">M - N</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X8091C9BA819C2332" name="X8091C9BA819C2332"></a></p>

<h5>1.4-10 PureComplexInterstection</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexInterstection</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexIntersection</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two pure cubical complexes or two pure permutahedral complexes and returns their intersection.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X84A7E7A47F7BA09D" name="X84A7E7A47F7BA09D"></a></p>

<h5>1.4-11 PureComplexThickened</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexThickened</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexThickened</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex or a pure permutahedral complex and returns the a thickened complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X78014E027F28C2C8" name="X78014E027F28C2C8"></a></p>

<h5>1.4-12 PureComplexUnion</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexUnion</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexUnion</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two pure cubical complexes or two pure permutahedral complexes and returns their union.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X7E7AC0E77E25C45B" name="X7E7AC0E77E25C45B"></a></p>

<h5>1.4-13 SimplifiedComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplifiedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplifiedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplifiedComplex</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplifiedComplex</code>( <var class="Arg">C</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex or a pure permutahedral complex <span class="SimpleMath">K</span> and returns a homeomorphic complex with possibly fewer cells and certainly no more cells.</p>

<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of <span class="SimpleMath">Z</span> and returns a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">S</span> with potentially fewer free generators.</p>

<p>Inputs a chain complex <span class="SimpleMath">C</span> of free abelian groups and returns a chain homotopic chain complex <span class="SimpleMath">D</span> with potentially fewer free generators.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap11.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">6</a></span> </p>

<p><a id="X844174D37E70B9B4" name="X844174D37E70B9B4"></a></p>

<h5>1.4-14 ZigZagContractedComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ZigZagContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ZigZagContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ZigZagContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical, filtered pure cubical or pure permutahedral complex and returns a homotopy equivalent complex. In the filtered case, the <span class="SimpleMath">t</span>-th term of the output is homotopy equivalent to the <span class="SimpleMath">t</span>-th term of the input for all <span class="SimpleMath">t</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> </p>

<p><a id="X7E25932F7DD535E8" name="X7E25932F7DD535E8"></a></p>

<h4>1.5 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></h4>

<p><a id="X7DC474EE7A909563" name="X7DC474EE7A909563"></a></p>

<h5>1.5-1 AlexanderPolynomial</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AlexanderPolynomial</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AlexanderPolynomial</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AlexanderPolynomial</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">3</span>-dimensional pure cubical or pure permutahdral complex <span class="SimpleMath">K</span> representing a knot and returns the Alexander polynomial of the fundamental group <span class="SimpleMath">G = π_1( R^3∖ K)</span>.</p>

<p>Inputs a finitely presented group <span class="SimpleMath">G</span> with infinite cyclic abelianization and returns its Alexander polynomial.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">4</a></span> </p>

<p><a id="X83EF7B888014C363" name="X83EF7B888014C363"></a></p>

<h5>1.5-2 BettiNumber</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial, cubical, pure cubical, pure permutahedral, regular CW, chain or sparse chain complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>th Betti number of <span class="SimpleMath">K</span>.</p>

<p>Inputs a simplicial, cubical, pure cubical, pure permutahedral or regular CW-complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and a prime <span class="SimpleMath">p ≥ 0</span> or <span class="SimpleMath">p=0</span>. In this case the <span class="SimpleMath">n</span>th Betti number of <span class="SimpleMath">K</span> over a field of characteristic <span class="SimpleMath">p</span> is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X8307F8DB85F145AE" name="X8307F8DB85F145AE"></a></p>

<h5>1.5-3 EulerCharacteristic</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerCharacteristic</code>( <var class="Arg">C</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> and returns its Euler characteristic.</p>

<p>Inputs a cubical, or pure cubical, or pure permutahedral or regular CW-, or simplicial complex <span class="SimpleMath">K</span> and returns its Euler characteristic.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X78813B9A851B922A" name="X78813B9A851B922A"></a></p>

<h5>1.5-4 EulerIntegral</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerIntegral</code>( <var class="Arg">Y</var>, <var class="Arg">w</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and a weight function <span class="SimpleMath">w: Y→ Z</span>, and returns the Euler integral <span class="SimpleMath">∫_Y w dχ</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7EAE7E4181546C17" name="X7EAE7E4181546C17"></a></p>

<h5>1.5-5 FundamentalGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">F</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroup</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW, simplicial, pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the fundamental group.</p>

<p>Inputs a regular CW complex <span class="SimpleMath">K</span> and the number <span class="SimpleMath">n</span> of some zero cell. It returns the fundamental group of <span class="SimpleMath">K</span> based at the <span class="SimpleMath">n</span>-th zero cell.</p>

<p>Inputs a regular CW map <span class="SimpleMath">F</span> and returns the induced homomorphism of fundamental groups. If the number of some zero cell in the domain of <span class="SimpleMath">F</span> is entered as an optional second variable then the fundamental group is based at this zero cell.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap11.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">13</a></span> </p>

<p><a id="X808733FF7EF6278E" name="X808733FF7EF6278E"></a></p>

<h5>1.5-6 FundamentalGroupOfQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FundamentalGroupOfQuotient</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-equivariant regular CW complex <span class="SimpleMath">Y</span> and returns the group <span class="SimpleMath">G</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>

<p><a id="X78F2C5ED80D1C8DD" name="X78F2C5ED80D1C8DD"></a></p>

<h5>1.5-7 IsAspherical</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IsAspherical</code>( <var class="Arg">F</var>, <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a free group <span class="SimpleMath">F</span> and a list <span class="SimpleMath">R</span> of words in <span class="SimpleMath">F</span>. The function attempts to test if the quotient group <span class="SimpleMath">G=F/⟨ R ⟩^F</span> is aspherical. If it succeeds it returns <span class="SimpleMath">true</span>. Otherwise the test is inconclusive and <span class="SimpleMath">fail</span> is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap3.html">1</a></span> , <span class="URL"><a href="../tutorial/chap6.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">4</a></span> </p>

<p><a id="X797F8D4A848DD9BC" name="X797F8D4A848DD9BC"></a></p>

<h5>1.5-8 KnotGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KnotGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; KnotGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the fundamental group of its complement. If the complement is path-connected then this fundamental group is unique up to isomorphism. Otherwise it will depend on the path-component in which the randomly chosen base-point lies.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">1</a></span> </p>

<p><a id="X825539B57FBDDE86" name="X825539B57FBDDE86"></a></p>

<h5>1.5-9 PiZero</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PiZero</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PiZero</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PiZero</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span>, or graph <span class="SimpleMath">Y</span>, or simplicial complex <span class="SimpleMath">Y</span> and returns a pair <span class="SimpleMath">[cells,r]</span> where: <span class="SimpleMath">cells</span> is a list of vertices of <span class="SimpleMath">Y</span> representing the distinct path-components; <span class="SimpleMath">r(v)</span> is a function which, for each vertex <span class="SimpleMath">v</span> of <span class="SimpleMath">Y</span> returns the representative vertex <span class="SimpleMath">r(v) ∈ cells</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X7EE96E8B7C1643BD" name="X7EE96E8B7C1643BD"></a></p>

<h5>1.5-10 PersistentBettiNumbers</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a filtered simplicial, filtered pure cubical, filtered regular CW, filtered chain or filtered sparse chain complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>th PersistentBetti numbers of <span class="SimpleMath">K</span> as a list of lists of integers.</p>

<p>Inputs a filtered simplicial, filtered pure cubical, filtered regular CW, filtered chain or filtered sparse chain complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and a prime <span class="SimpleMath">p ≥ 0</span> or <span class="SimpleMath">p=0</span>. In this case the <span class="SimpleMath">n</span>th PersistentBetti numbers of <span class="SimpleMath">K</span> over a field of characteristic <span class="SimpleMath">p</span> are returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X7C17A7897DDAE22C" name="X7C17A7897DDAE22C"></a></p>

<h4>1.6 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Homotopy Invariants</span></h4>

<p><a id="X7F5B6CAD7CB2E985" name="X7F5B6CAD7CB2E985"></a></p>

<h5>1.6-1 DendrogramMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DendrogramMat</code>( <var class="Arg">A</var>, <var class="Arg">t</var>, <var class="Arg">s</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n× n</span> symmetric matrix <span class="SimpleMath">A</span> over the rationals, a rational <span class="SimpleMath">t ≥ 0</span> and an integer <span class="SimpleMath">s ≥ 1</span>. A list <span class="SimpleMath">[v_1, ..., v_t+1]</span> is returned with each <span class="SimpleMath">v_k</span> a list of positive integers. Let <span class="SimpleMath">t_k = (k-1)s</span>. Let <span class="SimpleMath">G(A,t_k)</span> denote the graph with vertices <span class="SimpleMath">1, ..., n</span> and with distinct vertices <span class="SimpleMath">i</span> and <span class="SimpleMath">j</span> connected by an edge when the <span class="SimpleMath">(i,j)</span> entry of <span class="SimpleMath">A</span> is <span class="SimpleMath">≤ t_k</span>. The <span class="SimpleMath">i</span>-th path component of <span class="SimpleMath">G(A,t_k)</span> is included in the <span class="SimpleMath">v_k[i]</span>-th path component of <span class="SimpleMath">G(A,t_k+1)</span>. This defines the integer vector <span class="SimpleMath">v_k</span>. The vector <span class="SimpleMath">v_k</span> has length equal to the number of path components of <span class="SimpleMath">G(A,t_k)</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X859286BF7F6047B7" name="X859286BF7F6047B7"></a></p>

<h4>1.7 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Non Homotopy Invariants</span></h4>

<p><a id="X7A1C427578108B7E" name="X7A1C427578108B7E"></a></p>

<h5>1.7-1 ChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex <span class="SimpleMath">K</span> and returns its chain complex of free abelian groups. In degree <span class="SimpleMath">n</span> this chain complex has one free generator for each <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">K</span>.</p>

<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a chain complex <span class="SimpleMath">C</span> which is chain homotopy equivalent to the cellular chain complex of <span class="SimpleMath">Y</span>. In degree <span class="SimpleMath">n</span> the free abelian chain group <span class="SimpleMath">C_n</span> has one free generator for each critical <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">Y</span> with respect to some discrete vector field on <span class="SimpleMath">Y</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap12.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> </p>

<p><a id="X7D4AF2E8785DA457" name="X7D4AF2E8785DA457"></a></p>

<h5>1.7-2 ChainComplexEquivalence</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplexEquivalence</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">X</span> and returns a pair <span class="SimpleMath">[f_∗, g_∗]</span> of chain maps <span class="SimpleMath">f_∗: C_∗(X) → D_∗(X)</span>, <span class="SimpleMath">g_∗: D_∗(X) → C_∗(X)</span>. Here <span class="SimpleMath">C_∗(X)</span> is the standard cellular chain complex of <span class="SimpleMath">X</span> with one free generator for each cell in <span class="SimpleMath">X</span>. The chain complex <span class="SimpleMath">D_∗(X)</span> is a typically smaller chain complex arising from a discrete vector field on <span class="SimpleMath">X</span>. The chain maps <span class="SimpleMath">f_∗, g_∗</span> are chain homotopy equivalences.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7D77D18679E941D3" name="X7D77D18679E941D3"></a></p>

<h5>1.7-3 ChainComplexOfQuotient</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplexOfQuotient</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-equivariant regular CW-complex <span class="SimpleMath">Y</span> and returns the cellular chain complex of the quotient space <span class="SimpleMath">Y/G</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>

<p><a id="X7BCD94877DF261C4" name="X7BCD94877DF261C4"></a></p>

<h5>1.7-4 ChainMap</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainMap</code>( <var class="Arg">X</var>, <var class="Arg">A</var>, <var class="Arg">Y</var>, <var class="Arg">B</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainMap</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainMap</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">Y</span> and pure cubical sucomplexes <span class="SimpleMath">X⊂ Y</span>, <span class="SimpleMath">B⊂ Y</span>,<span class="SimpleMath">A⊂ B</span>. It returns the induced chain map <span class="SimpleMath">f_∗: C_∗(X/A) → C_∗(Y/B)</span> of cellular chain complexes of pairs. (Typlically one takes <span class="SimpleMath">A</span> and <span class="SimpleMath">B</span> to be empty or contractible subspaces, in which case <span class="SimpleMath">C_∗(X/A) ≃ C_∗(X)</span>, <span class="SimpleMath">C_∗(Y/B) ≃ C_∗(Y)</span>.)</p>

<p>Inputs a map <span class="SimpleMath">f: X → Y</span> between two regular CW-complexes <span class="SimpleMath">X,Y</span> and returns an induced chain map <span class="SimpleMath">f_∗: C_∗(X) → C_∗(Y)</span> where <span class="SimpleMath">C_∗(X)</span>, <span class="SimpleMath">C_∗(Y)</span> are chain homotopic to (but usually smaller than) the cellular chain complexes of <span class="SimpleMath">X</span>, <span class="SimpleMath">Y</span>.</p>

<p>Inputs a map <span class="SimpleMath">f: X → Y</span> between two simplicial complexes <span class="SimpleMath">X,Y</span> and returns the induced chain map <span class="SimpleMath">f_∗: C_∗(X) → C_∗(Y)</span> of cellular chain complexes.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap10.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">8</a></span> </p>

<p><a id="X7B8741FB7A3263EC" name="X7B8741FB7A3263EC"></a></p>

<h5>1.7-5 CochainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CochainComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex <span class="SimpleMath">K</span> and returns its cochain complex of free abelian groups. In degree <span class="SimpleMath">n</span> this cochain complex has one free generator for each <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">K</span>.</p>

<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a cochain complex <span class="SimpleMath">C</span> which is chain homotopy equivalent to the cellular cochain complex of <span class="SimpleMath">Y</span>. In degree <span class="SimpleMath">n</span> the free abelian cochain group <span class="SimpleMath">C_n</span> has one free generator for each critical <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">Y</span> with respect to some discrete vector field on <span class="SimpleMath">Y</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X8489A39F870FF08B" name="X8489A39F870FF08B"></a></p>

<h5>1.7-6 CriticalCells</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CriticalCells</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">K</span> and returns its critical cells with respect to some discrete vector field on <span class="SimpleMath">K</span>. If no discrete vector field on <span class="SimpleMath">K</span> is available then one will be computed and stored.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">8</a></span> </p>

<p><a id="X7A4AD52D82627ABC" name="X7A4AD52D82627ABC"></a></p>

<h5>1.7-7 DiagonalApproximation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DiagonalApproximation</code>( <var class="Arg">X</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">X</span> and outputs a pair <span class="SimpleMath">[p,ι]</span> of maps of CW-complexes. The map <span class="SimpleMath">p: X^∆ → X</span> will often be a homotopy equivalence. This is always the case if <span class="SimpleMath">X</span> is the CW-space of any pure cubical complex. In general, one can test to see if the induced chain map <span class="SimpleMath">p_∗ : C_∗(X^∆) → C_∗(X)</span> is an isomorphism on integral homology. The second map <span class="SimpleMath">ι : X^∆ ↪ X× X</span> is an inclusion into the direct product. If <span class="SimpleMath">p_∗</span> induces an isomorphism on homology then the chain map <span class="SimpleMath">ι_∗: C_∗(X^∆) → C_∗(X× X)</span> can be used to compute the cup product.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>

<p><a id="X858ADA3B7A684421" name="X858ADA3B7A684421"></a></p>

<h5>1.7-8 Size</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Size</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Size</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Size</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Size</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW complex or a simplicial complex <span class="SimpleMath">Y</span> and returns the number of cells in the complex.</p>

<p>Inputs a <span class="SimpleMath">d</span>-dimensional pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the number of <span class="SimpleMath">d</span>-dimensional cells in the complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap6.html">6</a></span> , <span class="URL"><a href="../tutorial/chap7.html">7</a></span> , <span class="URL"><a href="../tutorial/chap10.html">8</a></span> , <span class="URL"><a href="../tutorial/chap11.html">9</a></span> , <span class="URL"><a href="../tutorial/chap12.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">22</a></span> </p>

<p><a id="X7B6F366F7A2D8FEE" name="X7B6F366F7A2D8FEE"></a></p>

<h4>1.8 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></h4>

<p><a id="X829DD3868410FE2E" name="X829DD3868410FE2E"></a></p>

<h5>1.8-1 FilteredTensorWithIntegers</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FilteredTensorWithIntegers</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> for which <span class="SimpleMath">"filteredDimension"</span> lies in <strong class="button">NamesOfComponents(R)</strong>. (Such a resolution can be produced using <strong class="button">TwisterTensorProduct()</strong>, <strong class="button">ResolutionNormalSubgroups()</strong> or <strong class="button">FreeGResolution()</strong>.) It returns the filtered chain complex obtained by tensoring with the trivial module <span class="SimpleMath">Z</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>

<p><a id="X7BC291C47FEAC5B8" name="X7BC291C47FEAC5B8"></a></p>

<h5>1.8-2 FilteredTensorWithIntegersModP</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FilteredTensorWithIntegersModP</code>( <var class="Arg">R</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> for which <span class="SimpleMath">"filteredDimension"</span> lies in <strong class="button">NamesOfComponents(R)</strong>, together with a prime <span class="SimpleMath">p</span>. (Such a resolution can be produced using <strong class="button">TwisterTensorProduct()</strong>, <strong class="button">ResolutionNormalSubgroups()</strong> or <strong class="button">FreeGResolution()</strong>.) It returns the filtered chain complex obtained by tensoring with the trivial module <span class="SimpleMath">F</span>, the field of <span class="SimpleMath">p</span> elements.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>

<p><a id="X788F3B5E7810E309" name="X788F3B5E7810E309"></a></p>

<h5>1.8-3 HomToIntegers</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomToIntegers</code>( <var class="Arg">C</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomToIntegers</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomToIntegers</code>( <var class="Arg">F</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> of free abelian groups and returns the cochain complex <span class="SimpleMath">Hom_ Z(C, Z)</span>.</p>

<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> in characteristic <span class="SimpleMath">0</span> and returns the cochain complex <span class="SimpleMath">Hom_ ZG(R, Z)</span>.</p>

<p>Inputs an equivariant chain map <span class="SimpleMath">F: R→ S</span> of resolutions and returns the induced cochain map <span class="SimpleMath">Hom_ ZG(S, Z) ⟶ Hom_ ZG(R, Z)</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap8.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap13.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>

<p><a id="X8122D25786C83565" name="X8122D25786C83565"></a></p>

<h5>1.8-4 TensorWithIntegersModP</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegersModP</code>( <var class="Arg">C</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegersModP</code>( <var class="Arg">R</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegersModP</code>( <var class="Arg">F</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> of characteristic <span class="SimpleMath">0</span> and a prime integer <span class="SimpleMath">p</span>. It returns the chain complex <span class="SimpleMath">C ⊗_ Z Z_p</span> of characteristic <span class="SimpleMath">p</span>.</p>

<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of characteristic <span class="SimpleMath">0</span> and a prime integer <span class="SimpleMath">p</span>. It returns the chain complex <span class="SimpleMath">R ⊗_ ZG Z_p</span> of characteristic <span class="SimpleMath">p</span>.</p>

<p>Inputs an equivariant chain map <span class="SimpleMath">F: R → S</span> in characteristic <span class="SimpleMath">0</span> a prime integer <span class="SimpleMath">p</span>. It returns the induced chain map <span class="SimpleMath">F⊗_ ZG Z_p : R ⊗_ ZG Z_p ⟶ S ⊗_ ZG Z_p</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>

<p><a id="X7BB8DC9783A4AF81" name="X7BB8DC9783A4AF81"></a></p>

<h4>1.9 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></h4>

<p><a id="X84CFC57B7E9CCCF7" name="X84CFC57B7E9CCCF7"></a></p>

<h5>1.9-1 Cohomology</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cohomology</code>( <var class="Arg">C</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cohomology</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a cochain complex <span class="SimpleMath">C</span> and integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>-th cohomology group of <span class="SimpleMath">C</span> as a list of its abelian invariants.</p>

<p>Inputs a chain map <span class="SimpleMath">F</span> and integer <span class="SimpleMath">n ≥ 0</span>. It returns the induced cohomology homomorphism <span class="SimpleMath">H_n(F)</span> as a homomorphism of finitely presented groups.</p>

<p>Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span>. It returns the <span class="SimpleMath">n</span>-th integral cohomology group of <span class="SimpleMath">K</span> as a list of its abelian invariants.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap6.html">4</a></span> , <span class="URL"><a href="../tutorial/chap7.html">5</a></span> , <span class="URL"><a href="../tutorial/chap8.html">6</a></span> , <span class="URL"><a href="../tutorial/chap12.html">7</a></span> , <span class="URL"><a href="../tutorial/chap13.html">8</a></span> , <span class="URL"><a href="../tutorial/chap14.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutNoncrossing.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSurvey.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">26</a></span> </p>

<p><a id="X877825E57D79839C" name="X877825E57D79839C"></a></p>

<h5>1.9-2 CupProduct</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CupProduct</code>( <var class="Arg">Y</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CupProduct</code>( <var class="Arg">R</var>, <var class="Arg">p</var>, <var class="Arg">q</var>, <var class="Arg">P</var>, <var class="Arg">Q</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a function <span class="SimpleMath">f(p,q,P,Q)</span>. This function <span class="SimpleMath">f</span> inputs two integers <span class="SimpleMath">p,q ≥ 0</span> and two integer lists <span class="SimpleMath">P=[p_1, ..., p_m]</span>, <span class="SimpleMath">Q=[q_1, ..., q_n]</span> representing elements <span class="SimpleMath">P∈ H^p(Y, Z)</span> and <span class="SimpleMath">Q∈ H^q(Y, Z)</span>. The function <span class="SimpleMath">f</span> returns a list <span class="SimpleMath">P ∪ Q</span> representing the cup product <span class="SimpleMath">P ∪ Q ∈ H^p+q(Y, Z)</span>.</p>

<p>Inputs a free <span class="SimpleMath">ZG</span> resolution <span class="SimpleMath">R</span> of <span class="SimpleMath">Z</span> for some group <span class="SimpleMath">G</span>, together with integers <span class="SimpleMath">p,q ≥ 0</span> and integer lists <span class="SimpleMath">P, Q</span> representing cohomology classes <span class="SimpleMath">P∈ H^p(G, Z)</span>, <span class="SimpleMath">Q∈ H^q(G, Z)</span>. An integer list representing the cup product <span class="SimpleMath">P∪ Q ∈ H^p+q(G, Z)</span> is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap7.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">5</a></span> </p>

<p><a id="X85A9D5CB8605329C" name="X85A9D5CB8605329C"></a></p>

<h5>1.9-3 Homology</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">C</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> and integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>-th homology group of <span class="SimpleMath">C</span> as a list of its abelian invariants.</p>

<p>Inputs a chain map <span class="SimpleMath">F</span> and integer <span class="SimpleMath">n ≥ 0</span>. It returns the induced homology homomorphism <span class="SimpleMath">H_n(F)</span> as a homomorphism of finitely presented groups.</p>

<p>Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span>. It returns the <span class="SimpleMath">n</span>-th integral homology group of <span class="SimpleMath">K</span> as a list of its abelian invariants.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap6.html">6</a></span> , <span class="URL"><a href="../tutorial/chap7.html">7</a></span> , <span class="URL"><a href="../tutorial/chap9.html">8</a></span> , <span class="URL"><a href="../tutorial/chap10.html">9</a></span> , <span class="URL"><a href="../tutorial/chap11.html">10</a></span> , <span class="URL"><a href="../tutorial/chap12.html">11</a></span> , <span class="URL"><a href="../tutorial/chap13.html">12</a></span> , <span class="URL"><a href="../tutorial/chap14.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">26</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">27</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">28</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutquasi.html">29</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">30</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">31</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">32</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">33</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">34</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">35</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">36</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">37</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">38</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">39</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">40</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTensorSquare.html">41</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLieCovers.html">42</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">43</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLie.html">44</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">45</a></span> </p>

<p><a id="X867BE1388467C939" name="X867BE1388467C939"></a></p>

<h4>1.10 <span class="Heading"> Visualization</span></h4>

<p><a id="X806A81EF79CE0DEF" name="X806A81EF79CE0DEF"></a></p>

<h5>1.10-1 BarCodeDisplay</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BarCodeDisplay</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Displays a barcode <strong class="button">L=PersitentBettiNumbers(X,n)</strong>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>

<p><a id="X83D60A6682EBB6F1" name="X83D60A6682EBB6F1"></a></p>

<h5>1.10-2 BarCodeCompactDisplay</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; BarCodeCompactDisplay</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Displays a barcode <strong class="button">L=PersitentBettiNumbers(X,n)</strong> in compact form.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">3</a></span> </p>

<p><a id="X80CAD0357AF44E48" name="X80CAD0357AF44E48"></a></p>

<h5>1.10-3 CayleyGraphOfGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CayleyGraphOfGroup</code>( <var class="Arg">G</var>, <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and a list <span class="SimpleMath">L</span> of elements in <span class="SimpleMath">G</span>.It displays the Cayley graph of the group generated by <span class="SimpleMath">L</span> where edge colours correspond to generators.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X83A5C59278E13248" name="X83A5C59278E13248"></a></p>

<h5>1.10-4 Display</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Display</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Display</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Display</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Displays a graph <span class="SimpleMath">G</span>; a <span class="SimpleMath">2</span>- or <span class="SimpleMath">3</span>-dimensional pure cubical complex <span class="SimpleMath">M</span>; a <span class="SimpleMath">3</span>-dimensional pure permutahedral complex <span class="SimpleMath">M</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap5.html">4</a></span> , <span class="URL"><a href="../tutorial/chap6.html">5</a></span> , <span class="URL"><a href="../tutorial/chap7.html">6</a></span> , <span class="URL"><a href="../tutorial/chap9.html">7</a></span> , <span class="URL"><a href="../tutorial/chap10.html">8</a></span> , <span class="URL"><a href="../tutorial/chap11.html">9</a></span> , <span class="URL"><a href="../tutorial/chap13.html">10</a></span> , <span class="URL"><a href="../tutorial/chap14.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutNoncrossing.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeriodic.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSuperperfect.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">24</a></span> </p>

<p><a id="X7B98A3C4831D5B0D" name="X7B98A3C4831D5B0D"></a></p>

<h5>1.10-5 DisplayArcPresentation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DisplayArcPresentation</code>( <var class="Arg">K</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Displays a <span class="SimpleMath">3</span>-dimensional pure cubical knot <strong class="button">K=PureCubicalKnot(L)</strong> in the form of an arc presentation.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X861690C27BADC326" name="X861690C27BADC326"></a></p>

<h5>1.10-6 DisplayCSVKnotFile</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DisplayCSVKnotFile</code></td><td class="tdright">(&nbsp;global variable&nbsp;)</td></tr></table></div>
<p>Inputs a string <span class="SimpleMath">str</span> that identifies a csv file containing the points on a piecewise linear knot in <span class="SimpleMath">R^3</span>. It displays the knot.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7F4AA01E7C0A5C16" name="X7F4AA01E7C0A5C16"></a></p>

<h5>1.10-7 DisplayDendrogram</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DisplayDendrogram</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Displays the dendrogram <strong class="button">L:=DendrogramMat(A,t,s)</strong>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7E5A38F081B401BE" name="X7E5A38F081B401BE"></a></p>

<h5>1.10-8 DisplayDendrogramMat</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DisplayDendrogramMat</code>( <var class="Arg">A</var>, <var class="Arg">t</var>, <var class="Arg">s</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n× n</span> symmetric matrix <span class="SimpleMath">A</span> over the rationals, a rational <span class="SimpleMath">t ≥ 0</span> and an integer <span class="SimpleMath">s ≥ 1</span>. The dendrogram defined by <strong class="button">DendrogramMat(A,t,s)</strong> is displayed.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X822F54F385D7EF8A" name="X822F54F385D7EF8A"></a></p>

<h5>1.10-9 DisplayPDBfile</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; DisplayPDBfile</code>( <var class="Arg">str</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Displays the protein backone described in a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb".</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>

<p><a id="X80EC50C27EFF2E12" name="X80EC50C27EFF2E12"></a></p>

<h5>1.10-10 OrbitPolytope</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; OrbitPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var>, <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a permutation group or finite matrix group <span class="SimpleMath">G</span> of degree <span class="SimpleMath">d</span> and a rational vector <span class="SimpleMath">v∈ R^d</span>. In both cases there is a natural action of <span class="SimpleMath">G</span> on <span class="SimpleMath">R^d</span>. Let <span class="SimpleMath">P(G,v)</span> be the convex hull of the orbit of <span class="SimpleMath">v</span> under the action of <span class="SimpleMath">G</span>. The function also inputs a sublist <span class="SimpleMath">L</span> of the following list of strings: ["dimension","vertex_degree", "visual_graph", "schlegel", "visual"]</p>

<p>Depending on <span class="SimpleMath">L</span>, the function displays the following information:<br /> the dimension of the orbit polytope <span class="SimpleMath">P(G,v)</span>;<br /> the degree of a vertex in the graph of <span class="SimpleMath">P(G,v)</span>;<br /> a visualization of the graph of <span class="SimpleMath">P(G,v)</span>;<br /> a visualization of the Schlegel diagram of <span class="SimpleMath">P(G,v)</span>;<br /> a visualization of the polytope <span class="SimpleMath">P(G,v)</span> if <span class="SimpleMath">d=2,3</span>.</p>

<p>The function requires Polymake software.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">2</a></span> </p>

<p><a id="X7DF49EAD7C0B0E84" name="X7DF49EAD7C0B0E84"></a></p>

<h5>1.10-11 ScatterPlot</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ScatterPlot</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L=[[x_1,y_1],..., [x_n,y_n]]</span> of pairs of rational numbers and displays a scatter plot of the points in the <span class="SimpleMath">x</span>-<span class="SimpleMath">y</span>-plane.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> </p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap0.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap2.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>