1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 1: Basic functionality for cellular complexes, fundamental groups and homology</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap1" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap0.html">[Previous Chapter]</a> <a href="chap2.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap1_mj.html">[MathJax on]</a></p>
<p><a id="X85BEB9F48106583E" name="X85BEB9F48106583E"></a></p>
<div class="ChapSects"><a href="chap1.html#X85BEB9F48106583E">1 <span class="Heading">Basic functionality for cellular complexes, fundamental groups and homology</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7F06418383E098EB">1.1 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Cellular Complexes </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X85C818B87D9AC922">1.1-1 RegularCWPolytope</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7910F39B7AB79096">1.1-2 CubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X78A3981C878C7FB5">1.1-3 PureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X869065F77C4761EC">1.1-4 PureCubicalKnot</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7B432A6184CBAC75">1.1-5 PurePermutahedralKnot</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X824625A27FF6DE6F">1.1-6 PurePermutahedralComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X80CAD0357AF44E48">1.1-7 CayleyGraphOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8187F6507BA14D5C">1.1-8 EquivariantEuclideanSpace</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7FE0522B8134DF7C">1.1-9 EquivariantOrbitPolytope</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X81E8E97278B1AE92">1.1-10 EquivariantTwoComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7F8D4C4C7ED15A31">1.1-11 QuillenComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X854B96757AF38A41">1.1-12 RestrictedEquivariantCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7A3B6B647C8CF90B">1.1-13 RandomSimplicialGraph</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8394037487D3C17E">1.1-14 RandomSimplicialTwoComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X83DB403087D02CC8">1.1-15 ReadCSVfileAsPureCubicalKnot</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7BE9892784AA4990">1.1-16 ReadImageAsPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X84D89B96873308B7">1.1-17 ReadImageAsFilteredPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X80E8B89F7E95D101">1.1-18 ReadImageAsWeightFunction</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7D8681B079E019C0">1.1-19 ReadPDBfileAsPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7E278788808A9EE4">1.1-20 ReadPDBfileAsPurepermutahedralComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X85C818B87D9AC922">1.1-21 RegularCWPolytope</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X818F2E887FE5F7BE">1.1-22 SimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X79CA51F27C07435C">1.1-23 SymmetricMatrixToFilteredGraph</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8227636B7E878448">1.1-24 SymmetricMatrixToGraph</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7C0C080487641830">1.2 <span class="Heading"> Metric Spaces</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7F8113757F7DD2F4">1.2-1 CayleyMetric</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7A4560307BA911F5">1.2-2 EuclideanMetric</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X789AE7CE8445A67C">1.2-3 EuclideanSquaredMetric</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X79DA33CB7D46CAB4">1.2-4 HammingMetric</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7BD62D75829F8701">1.2-5 KendallMetric</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8763D1167EF519A1">1.2-6 ManhattanMetric</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7C86B58A7CEA5513">1.2-7 VectorsToSymmetricMatrix</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X80A49CAC84313990">1.3 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7AF313D387F6BA22">1.3-1 BoundaryMap</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X848ED6C378A1C5C0">1.3-2 CliqueComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X85FAD5E086DBD429">1.3-3 ConcentricFiltration</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X861BA02C7902A4F4">1.3-4 DirectProduct</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7DB4D3B57E0DA723">1.3-5 FiltrationTerm</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7B335342839E5146">1.3-6 Graph</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7966519E78BC6C18">1.3-7 HomotopyGraph</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X84560FF678621AE1">1.3-8 Nerve</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7C2BEF7C871E54D7">1.3-9 RegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X79967AC2859A9631">1.3-10 RegularCWMap</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X82843E747FE622AF">1.3-11 ThickeningFiltration</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7FD50DF6782F00A0">1.4 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes (Preserving Data Types)</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X840576107A2907B8">1.4-1 ContractedComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7A46614B84FF25BE">1.4-2 ContractibleSubcomplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X86164F4481ACC485">1.4-3 KnotReflection</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7D86D13C822D59A9">1.4-4 KnotSum</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X855537287E9C4E72">1.4-5 OrientRegularCWComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7A266B5A7BE88E89">1.4-6 PathComponent</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7FF34B9E86E901DC">1.4-7 PureComplexBoundary</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7D0C9B27845F0739">1.4-8 PureComplexComplement</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7FB5BE6C78D5C7C8">1.4-9 PureComplexDifference</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8091C9BA819C2332">1.4-10 PureComplexInterstection</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X84A7E7A47F7BA09D">1.4-11 PureComplexThickened</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X78014E027F28C2C8">1.4-12 PureComplexUnion</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7E7AC0E77E25C45B">1.4-13 SimplifiedComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X844174D37E70B9B4">1.4-14 ZigZagContractedComplex</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7E25932F7DD535E8">1.5 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7DC474EE7A909563">1.5-1 AlexanderPolynomial</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X83EF7B888014C363">1.5-2 BettiNumber</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8307F8DB85F145AE">1.5-3 EulerCharacteristic</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X78813B9A851B922A">1.5-4 EulerIntegral</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7EAE7E4181546C17">1.5-5 FundamentalGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X808733FF7EF6278E">1.5-6 FundamentalGroupOfQuotient</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X78F2C5ED80D1C8DD">1.5-7 IsAspherical</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X797F8D4A848DD9BC">1.5-8 KnotGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X825539B57FBDDE86">1.5-9 PiZero</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7EE96E8B7C1643BD">1.5-10 PersistentBettiNumbers</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7C17A7897DDAE22C">1.6 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7F5B6CAD7CB2E985">1.6-1 DendrogramMat</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X859286BF7F6047B7">1.7 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Non Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7A1C427578108B7E">1.7-1 ChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7D4AF2E8785DA457">1.7-2 ChainComplexEquivalence</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7D77D18679E941D3">1.7-3 ChainComplexOfQuotient</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7BCD94877DF261C4">1.7-4 ChainMap</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7B8741FB7A3263EC">1.7-5 CochainComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8489A39F870FF08B">1.7-6 CriticalCells</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7A4AD52D82627ABC">1.7-7 DiagonalApproximation</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X858ADA3B7A684421">1.7-8 Size</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7B6F366F7A2D8FEE">1.8 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X829DD3868410FE2E">1.8-1 FilteredTensorWithIntegers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7BC291C47FEAC5B8">1.8-2 FilteredTensorWithIntegersModP</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X788F3B5E7810E309">1.8-3 HomToIntegers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X8122D25786C83565">1.8-4 TensorWithIntegersModP</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X7BB8DC9783A4AF81">1.9 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X84CFC57B7E9CCCF7">1.9-1 Cohomology</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X877825E57D79839C">1.9-2 CupProduct</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X85A9D5CB8605329C">1.9-3 Homology</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap1.html#X867BE1388467C939">1.10 <span class="Heading"> Visualization</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X806A81EF79CE0DEF">1.10-1 BarCodeDisplay</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X83D60A6682EBB6F1">1.10-2 BarCodeCompactDisplay</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X80CAD0357AF44E48">1.10-3 CayleyGraphOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X83A5C59278E13248">1.10-4 Display</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7B98A3C4831D5B0D">1.10-5 DisplayArcPresentation</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X861690C27BADC326">1.10-6 DisplayCSVKnotFile</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7F4AA01E7C0A5C16">1.10-7 DisplayDendrogram</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7E5A38F081B401BE">1.10-8 DisplayDendrogramMat</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X822F54F385D7EF8A">1.10-9 DisplayPDBfile</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X80EC50C27EFF2E12">1.10-10 OrbitPolytope</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap1.html#X7DF49EAD7C0B0E84">1.10-11 ScatterPlot</a></span>
</div></div>
</div>
<h3>1 <span class="Heading">Basic functionality for cellular complexes, fundamental groups and homology</span></h3>
<p>This page covers the functions used in chapters 1 and 2 of the book <span class="URL"><a href="https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980">An Invitation to Computational Homotopy</a></span>.</p>
<p><a id="X7F06418383E098EB" name="X7F06418383E098EB"></a></p>
<h4>1.1 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Cellular Complexes </span></h4>
<p><a id="X85C818B87D9AC922" name="X85C818B87D9AC922"></a></p>
<h5>1.1-1 RegularCWPolytope</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWPolytope</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L</span> of vectors in <span class="SimpleMath">R^n</span> and outputs their convex hull as a regular CW-complex.</p>
<p>Inputs a permutation group G of degree <span class="SimpleMath">d</span> and vector <span class="SimpleMath">v∈ R^d</span>, and outputs the convex hull of the orbit <span class="SimpleMath">{v^g : g∈ G}</span> as a regular CW-complex.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7910F39B7AB79096" name="X7910F39B7AB79096"></a></p>
<h5>1.1-2 CubicalComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CubicalComplex</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a binary array <span class="SimpleMath">A</span> and returns the cubical complex represented by <span class="SimpleMath">A</span>. The array <span class="SimpleMath">A</span> must of course be such that it represents a cubical complex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">12</a></span> </p>
<p><a id="X78A3981C878C7FB5" name="X78A3981C878C7FB5"></a></p>
<h5>1.1-3 PureCubicalComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureCubicalComplex</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a binary array <span class="SimpleMath">A</span> and returns the pure cubical complex represented by <span class="SimpleMath">A</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">12</a></span> </p>
<p><a id="X869065F77C4761EC" name="X869065F77C4761EC"></a></p>
<h5>1.1-4 PureCubicalKnot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureCubicalKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureCubicalKnot</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs integers <span class="SimpleMath">n, k</span> and returns the <span class="SimpleMath">k</span>-th prime knot on <span class="SimpleMath">n</span> crossings as a pure cubical complex (if this prime knot exists).</p>
<p>Inputs a list <span class="SimpleMath">L</span> describing an arc presentation for a knot or link and returns the knot or link as a pure cubical complex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap6.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">11</a></span> </p>
<p><a id="X7B432A6184CBAC75" name="X7B432A6184CBAC75"></a></p>
<h5>1.1-5 PurePermutahedralKnot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PurePermutahedralKnot</code>( <var class="Arg">n</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PurePermutahedralKnot</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs integers <span class="SimpleMath">n, k</span> and returns the <span class="SimpleMath">k</span>-th prime knot on <span class="SimpleMath">n</span> crossings as a pure permutahedral complex (if this prime knot exists).</p>
<p>Inputs a list <span class="SimpleMath">L</span> describing an arc presentation for a knot or link and returns the knot or link as a pure permutahedral complex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> </p>
<p><a id="X824625A27FF6DE6F" name="X824625A27FF6DE6F"></a></p>
<h5>1.1-6 PurePermutahedralComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PurePermutahedralComplex</code>( <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a binary array <span class="SimpleMath">A</span> and returns the pure permutahedral complex represented by <span class="SimpleMath">A</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap5.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>
<p><a id="X80CAD0357AF44E48" name="X80CAD0357AF44E48"></a></p>
<h5>1.1-7 CayleyGraphOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CayleyGraphOfGroup</code>( <var class="Arg">G</var>, <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and a list <span class="SimpleMath">L</span> of elements in <span class="SimpleMath">G</span>.It returns the Cayley graph of the group generated by <span class="SimpleMath">L</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X8187F6507BA14D5C" name="X8187F6507BA14D5C"></a></p>
<h5>1.1-8 EquivariantEuclideanSpace</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EquivariantEuclideanSpace</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a crystallographic group <span class="SimpleMath">G</span> with left action on <span class="SimpleMath">R^n</span> together with a row vector <span class="SimpleMath">v ∈ R^n</span>. It returns an equivariant regular CW-space corresponding to the Dirichlet-Voronoi tessellation of <span class="SimpleMath">R^n</span> produced from the orbit of <span class="SimpleMath">v</span> under the action.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>
<p><a id="X7FE0522B8134DF7C" name="X7FE0522B8134DF7C"></a></p>
<h5>1.1-9 EquivariantOrbitPolytope</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EquivariantOrbitPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a permutation group <span class="SimpleMath">G</span> of degree <span class="SimpleMath">n</span> together with a row vector <span class="SimpleMath">v ∈ R^n</span>. It returns, as an equivariant regular CW-space, the convex hull of the orbit of <span class="SimpleMath">v</span> under the canonical left action of <span class="SimpleMath">G</span> on <span class="SimpleMath">R^n</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X81E8E97278B1AE92" name="X81E8E97278B1AE92"></a></p>
<h5>1.1-10 EquivariantTwoComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EquivariantTwoComplex</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a suitable group <span class="SimpleMath">G</span> and returns, as an equivariant regular CW-space, the <span class="SimpleMath">2</span>-complex associated to some presentation of <span class="SimpleMath">G</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>
<p><a id="X7F8D4C4C7ED15A31" name="X7F8D4C4C7ED15A31"></a></p>
<h5>1.1-11 QuillenComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuillenComplex</code>( <var class="Arg">G</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and prime <span class="SimpleMath">p</span>, and returns the simplicial complex arising as the order complex of the poset of elementary abelian <span class="SimpleMath">p</span>-subgroups of <span class="SimpleMath">G</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>
<p><a id="X854B96757AF38A41" name="X854B96757AF38A41"></a></p>
<h5>1.1-12 RestrictedEquivariantCWComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RestrictedEquivariantCWComplex</code>( <var class="Arg">Y</var>, <var class="Arg">H</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-equivariant regular CW-space Y and a subgroup <span class="SimpleMath">H ≤ G</span> for which GAP can find a transversal. It returns the equivariant regular CW-complex obtained by retricting the action to <span class="SimpleMath">H</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7A3B6B647C8CF90B" name="X7A3B6B647C8CF90B"></a></p>
<h5>1.1-13 RandomSimplicialGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RandomSimplicialGraph</code>( <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an integer <span class="SimpleMath">n ≥ 1</span> and positive prime <span class="SimpleMath">p</span>, and returns an Erdős–Rényi random graph as a <span class="SimpleMath">1</span>-dimensional simplicial complex. The graph has <span class="SimpleMath">n</span> vertices. Each pair of vertices is, with probability <span class="SimpleMath">p</span>, directly connected by an edge.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">1</a></span> </p>
<p><a id="X8394037487D3C17E" name="X8394037487D3C17E"></a></p>
<h5>1.1-14 RandomSimplicialTwoComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RandomSimplicialTwoComplex</code>( <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an integer <span class="SimpleMath">n ≥ 1</span> and positive prime <span class="SimpleMath">p</span>, and returns a Linial-Meshulam random simplicial <span class="SimpleMath">2</span>-complex. The <span class="SimpleMath">1</span>-skeleton of this simplicial complex is the complete graph on <span class="SimpleMath">n</span> vertices. Each triple of vertices lies, with probability <span class="SimpleMath">p</span>, in a common <span class="SimpleMath">2</span>-simplex of the complex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">2</a></span> </p>
<p><a id="X83DB403087D02CC8" name="X83DB403087D02CC8"></a></p>
<h5>1.1-15 ReadCSVfileAsPureCubicalKnot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">str</var>, <var class="Arg">r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadCSVfileAsPureCubicalKnot</code>( <var class="Arg">L</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Reads a CSV file identified by a string str such as "file.pdb" or "path/file.pdb" and returns a <span class="SimpleMath">3</span>-dimensional pure cubical complex <span class="SimpleMath">K</span>. Each line of the file should contain the coordinates of a point in <span class="SimpleMath">R^3</span> and the complex <span class="SimpleMath">K</span> should represent a knot determined by the sequence of points, though the latter is not guaranteed. A useful check in this direction is to test that <span class="SimpleMath">K</span> has the homotopy type of a circle.</p>
<p>If the test fails then try the function again with an integer <span class="SimpleMath">r ≥ 2</span> entered as the optional second argument. The integer determines the resolution with which the knot is constructed.</p>
<p>The function can also read in a list <span class="SimpleMath">L</span> of strings identifying CSV files for several knots. In this case a list <span class="SimpleMath">R</span> of integer resolutions can also be entered. The lists <span class="SimpleMath">L</span> and <span class="SimpleMath">R</span> must be of equal length.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> </p>
<p><a id="X7BE9892784AA4990" name="X7BE9892784AA4990"></a></p>
<h5>1.1-16 ReadImageAsPureCubicalComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadImageAsPureCubicalComplex</code>( <var class="Arg">str</var>, <var class="Arg">t</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with an integer <span class="SimpleMath">t</span> between <span class="SimpleMath">0</span> and <span class="SimpleMath">765</span>. It returns a <span class="SimpleMath">2</span>-dimensional pure cubical complex corresponding to a black/white version of the image determined by the threshold <span class="SimpleMath">t</span>. The <span class="SimpleMath">2</span>-cells of the pure cubical complex correspond to pixels with RGB value <span class="SimpleMath">R+G+B ≤ t</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">5</a></span> </p>
<p><a id="X84D89B96873308B7" name="X84D89B96873308B7"></a></p>
<h5>1.1-17 ReadImageAsFilteredPureCubicalComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadImageAsFilteredPureCubicalComplex</code>( <var class="Arg">str</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with a positive integer <span class="SimpleMath">n</span>. It returns a <span class="SimpleMath">2</span>-dimensional filtered pure cubical complex of filtration length <span class="SimpleMath">n</span>. The <span class="SimpleMath">k</span>th term in the filtration is a pure cubical complex corresponding to a black/white version of the image determined by the threshold <span class="SimpleMath">t_k=k × 765/n</span>. The <span class="SimpleMath">2</span>-cells of the <span class="SimpleMath">k</span>th term correspond to pixels with RGB value <span class="SimpleMath">R+G+B ≤ t_k</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X80E8B89F7E95D101" name="X80E8B89F7E95D101"></a></p>
<h5>1.1-18 ReadImageAsWeightFunction</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadImageAsWeightFunction</code>( <var class="Arg">str</var>, <var class="Arg">t</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Reads an image file identified by a string str such as "file.bmp", "file.eps", "file.jpg", "path/file.png" etc., together with an integer <span class="SimpleMath">t</span>. It constructs a <span class="SimpleMath">2</span>-dimensional regular CW-complex <span class="SimpleMath">Y</span> from the image, together with a weight function <span class="SimpleMath">w: Y→ Z</span> corresponding to a filtration on <span class="SimpleMath">Y</span> of filtration length <span class="SimpleMath">t</span>. The pair <span class="SimpleMath">[Y,w]</span> is returned.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7D8681B079E019C0" name="X7D8681B079E019C0"></a></p>
<h5>1.1-19 ReadPDBfileAsPureCubicalComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadPDBfileAsPureCubicalComplex</code>( <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadPDBfileAsPureCubicalComplex</code>( <var class="Arg">str</var>, <var class="Arg">r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Reads a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb" and returns a <span class="SimpleMath">3</span>-dimensional pure cubical complex <span class="SimpleMath">K</span>. The complex <span class="SimpleMath">K</span> should represent a (protein backbone) knot but this is not guaranteed. A useful check in this direction is to test that <span class="SimpleMath">K</span> has the homotopy type of a circle.</p>
<p>If the test fails then try the function again with an integer <span class="SimpleMath">r ≥ 2</span> entered as the optional second argument. The integer determines the resolution with which the knot is constructed.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">3</a></span> </p>
<p><a id="X7E278788808A9EE4" name="X7E278788808A9EE4"></a></p>
<h5>1.1-20 ReadPDBfileAsPurepermutahedralComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadPDBfileAsPurepermutahedralComplex</code></td><td class="tdright">( global variable )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ReadPDBfileAsPurePermutahedralComplex</code>( <var class="Arg">str</var>, <var class="Arg">r</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Reads a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb" and returns a <span class="SimpleMath">3</span>-dimensional pure permutahedral complex <span class="SimpleMath">K</span>. The complex <span class="SimpleMath">K</span> should represent a (protein backbone) knot but this is not guaranteed. A useful check in this direction is to test that <span class="SimpleMath">K</span> has the homotopy type of a circle.</p>
<p>If the test fails then try the function again with an integer <span class="SimpleMath">r ≥ 2</span> entered as the optional second argument. The integer determines the resolution with which the knot is constructed.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X85C818B87D9AC922" name="X85C818B87D9AC922"></a></p>
<h5>1.1-21 RegularCWPolytope</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWPolytope</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L</span> of vectors in <span class="SimpleMath">R^n</span> and outputs their convex hull as a regular CW-complex.</p>
<p>Inputs a permutation group G of degree <span class="SimpleMath">d</span> and vector <span class="SimpleMath">v∈ R^d</span>, and outputs the convex hull of the orbit <span class="SimpleMath">{v^g : g∈ G}</span> as a regular CW-complex.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X818F2E887FE5F7BE" name="X818F2E887FE5F7BE"></a></p>
<h5>1.1-22 SimplicialComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplicialComplex</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L</span> whose entries are lists of vertices representing the maximal simplices of a simplicial complex, and returns the simplicial complex. Here a "vertex" is a GAP object such as an integer or a subgroup. The list <span class="SimpleMath">L</span> can also contain non-maximal simplices.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap10.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">12</a></span> </p>
<p><a id="X79CA51F27C07435C" name="X79CA51F27C07435C"></a></p>
<h5>1.1-23 SymmetricMatrixToFilteredGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SymmetricMatrixToFilteredGraph</code>( <var class="Arg">A</var>, <var class="Arg">m</var>, <var class="Arg">s</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SymmetricMatrixToFilteredGraph</code>( <var class="Arg">A</var>, <var class="Arg">m</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n × n</span> symmetric matrix <span class="SimpleMath">A</span>, a positive integer <span class="SimpleMath">m</span> and a positive rational <span class="SimpleMath">s</span>. The function returns a filtered graph of filtration length <span class="SimpleMath">m</span>. The <span class="SimpleMath">t</span>-th term of the filtration is a graph with <span class="SimpleMath">n</span> vertices and an edge between the <span class="SimpleMath">i</span>-th and <span class="SimpleMath">j</span>-th vertices if the <span class="SimpleMath">(i,j)</span> entry of <span class="SimpleMath">A</span> is less than or equal to <span class="SimpleMath">t × s/m</span>.</p>
<p>If the optional input <span class="SimpleMath">s</span> is omitted then it is set equal to the largest entry in the matrix <span class="SimpleMath">A</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">3</a></span> </p>
<p><a id="X8227636B7E878448" name="X8227636B7E878448"></a></p>
<h5>1.1-24 SymmetricMatrixToGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SymmetricMatrixToGraph</code>( <var class="Arg">A</var>, <var class="Arg">t</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n× n</span> symmetric matrix <span class="SimpleMath">A</span> over the rationals and a rational number <span class="SimpleMath">t ≥ 0</span>, and returns the graph on the vertices <span class="SimpleMath">1,2, ..., n</span> with an edge between distinct vertices <span class="SimpleMath">i</span> and <span class="SimpleMath">j</span> precisely when the <span class="SimpleMath">(i,j)</span> entry of <span class="SimpleMath">A</span> is <span class="SimpleMath">≤ t</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">2</a></span> </p>
<p><a id="X7C0C080487641830" name="X7C0C080487641830"></a></p>
<h4>1.2 <span class="Heading"> Metric Spaces</span></h4>
<p><a id="X7F8113757F7DD2F4" name="X7F8113757F7DD2F4"></a></p>
<h5>1.2-1 CayleyMetric</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CayleyMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of transpositions needed to express <span class="SimpleMath">g*h^-1</span> as a product of transpositions.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>
<p><a id="X7A4560307BA911F5" name="X7A4560307BA911F5"></a></p>
<h5>1.2-2 EuclideanMetric</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EuclideanMetric</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w ∈ R^n</span> and returns a rational number approximating the Euclidean distance between them.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X789AE7CE8445A67C" name="X789AE7CE8445A67C"></a></p>
<h5>1.2-3 EuclideanSquaredMetric</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EuclideanSquaredMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w ∈ R^n</span> and returns the square of the Euclidean distance between them.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X79DA33CB7D46CAB4" name="X79DA33CB7D46CAB4"></a></p>
<h5>1.2-4 HammingMetric</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HammingMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of integers moved by the permutation <span class="SimpleMath">g*h^-1</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7BD62D75829F8701" name="X7BD62D75829F8701"></a></p>
<h5>1.2-5 KendallMetric</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ KendallMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two permutations <span class="SimpleMath">g,h</span> and optionally the degree <span class="SimpleMath">N</span> of a symmetric group containing them. It returns the minimum number of adjacent transpositions needed to express <span class="SimpleMath">g*h^-1</span> as a product of adjacent transpositions. An <em>adjacent</em> transposition is of the form <span class="SimpleMath">(i,i+1)</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X8763D1167EF519A1" name="X8763D1167EF519A1"></a></p>
<h5>1.2-6 ManhattanMetric</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ManhattanMetric</code>( <var class="Arg">g</var>, <var class="Arg">h</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two vectors <span class="SimpleMath">v,w ∈ R^n</span> and returns the Manhattan distance between them.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>
<p><a id="X7C86B58A7CEA5513" name="X7C86B58A7CEA5513"></a></p>
<h5>1.2-7 VectorsToSymmetricMatrix</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ VectorsToSymmetricMatrix</code>( <var class="Arg">V</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ VectorsToSymmetricMatrix</code>( <var class="Arg">V</var>, <var class="Arg">d</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">V ={ v_1, ..., v_k} ∈ R^n</span> and returns the <span class="SimpleMath">k × k</span> symmetric matrix of Euclidean distances <span class="SimpleMath">d(v_i, v_j)</span>. When these distances are irrational they are approximated by a rational number.</p>
<p>As an optional second argument any rational valued function <span class="SimpleMath">d(x,y)</span> can be entered.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">3</a></span> </p>
<p><a id="X80A49CAC84313990" name="X80A49CAC84313990"></a></p>
<h4>1.3 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes</span></h4>
<p><a id="X7AF313D387F6BA22" name="X7AF313D387F6BA22"></a></p>
<h5>1.3-1 BoundaryMap</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BoundaryMap</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure regular CW-complex <span class="SimpleMath">K</span> and returns the regular CW-inclusion map <span class="SimpleMath">ι : ∂ K ↪ K</span> from the boundary <span class="SimpleMath">∂ K</span> into the complex <span class="SimpleMath">K</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">3</a></span> </p>
<p><a id="X848ED6C378A1C5C0" name="X848ED6C378A1C5C0"></a></p>
<h5>1.3-2 CliqueComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CliqueComplex</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CliqueComplex</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CliqueComplex</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and integer <span class="SimpleMath">n ≥ 1</span>. It returns the <span class="SimpleMath">n</span>-skeleton of a simplicial complex <span class="SimpleMath">K</span> with one <span class="SimpleMath">k</span>-simplex for each complete subgraph of <span class="SimpleMath">G</span> on <span class="SimpleMath">k+1</span> vertices.</p>
<p>Inputs a fitered graph <span class="SimpleMath">F</span> and integer <span class="SimpleMath">n ≥ 1</span>. It returns the <span class="SimpleMath">n</span>-skeleton of a filtered simplicial complex <span class="SimpleMath">K</span> whose <span class="SimpleMath">t</span>-term has one <span class="SimpleMath">k</span>-simplex for each complete subgraph of the <span class="SimpleMath">t</span>-th term of <span class="SimpleMath">G</span> on <span class="SimpleMath">k+1</span> vertices.</p>
<p>Inputs a simplicial complex of dimension <span class="SimpleMath">d=1</span> or <span class="SimpleMath">d=2</span>. If <span class="SimpleMath">d=1</span> then the clique complex of a graph returned. If <span class="SimpleMath">d=2</span> then the clique complex of a <span class="SimpleMath">2</span>-complex is returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X85FAD5E086DBD429" name="X85FAD5E086DBD429"></a></p>
<h5>1.3-3 ConcentricFiltration</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ConcentricFiltration</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">K</span> and integer <span class="SimpleMath">n ≥ 1</span>, and returns a filtered pure cubical complex of filtration length <span class="SimpleMath">n</span>. The <span class="SimpleMath">t</span>-th term of the filtration is the intersection of <span class="SimpleMath">K</span> with the ball of radius <span class="SimpleMath">r_t</span> centred on the centre of gravity of <span class="SimpleMath">K</span>, where <span class="SimpleMath">0=r_1 ≤ r_2 ≤ r_3 ≤ ⋯ ≤ r_n</span> are equally spaced rational numbers. The complex <span class="SimpleMath">K</span> is contained in the ball of radius <span class="SimpleMath">r_n</span>. (At present, this is implemented only for <span class="SimpleMath">2</span>- and <span class="SimpleMath">3</span>-dimensional complexes.)</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X861BA02C7902A4F4" name="X861BA02C7902A4F4"></a></p>
<h5>1.3-4 DirectProduct</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectProduct</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DirectProduct</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two or more regular CW-complexes or two or more pure cubical complexes and returns their direct product.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap10.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">7</a></span> </p>
<p><a id="X7DB4D3B57E0DA723" name="X7DB4D3B57E0DA723"></a></p>
<h5>1.3-5 FiltrationTerm</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FiltrationTerm</code>( <var class="Arg">K</var>, <var class="Arg">t</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FiltrationTerm</code>( <var class="Arg">K</var>, <var class="Arg">t</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a filtered regular CW-complex or a filtered pure cubical complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">t ≥ 1</span>. The <span class="SimpleMath">t</span>-th term of the filtration is returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X7B335342839E5146" name="X7B335342839E5146"></a></p>
<h5>1.3-6 Graph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Graph</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Graph</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex or a simplicial complex <span class="SimpleMath">K</span> and returns its <span class="SimpleMath">1</span>-skeleton as a graph.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap7.html">4</a></span> , <span class="URL"><a href="../tutorial/chap10.html">5</a></span> , <span class="URL"><a href="../tutorial/chap11.html">6</a></span> , <span class="URL"><a href="../tutorial/chap14.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">15</a></span> </p>
<p><a id="X7966519E78BC6C18" name="X7966519E78BC6C18"></a></p>
<h5>1.3-7 HomotopyGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomotopyGraph</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a subgraph <span class="SimpleMath">M ⊂ Y^1</span> of the <span class="SimpleMath">1</span>-skeleton for which the induced homology homomorphisms <span class="SimpleMath">H_1(M, Z) → H_1(Y, Z)</span> and <span class="SimpleMath">H_1(Y^1, Z) → H_1(Y, Z)</span> have identical images. The construction tries to include as few edges in <span class="SimpleMath">M</span> as possible, though a minimum is not guaranteed.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X84560FF678621AE1" name="X84560FF678621AE1"></a></p>
<h5>1.3-8 Nerve</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Nerve</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Nerve</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Nerve</code>( <var class="Arg">M</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Nerve</code>( <var class="Arg">M</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex or pure permutahedral complex <span class="SimpleMath">M</span> and returns the simplicial complex <span class="SimpleMath">K</span> obtained by taking the nerve of an open cover of <span class="SimpleMath">|M|</span>, the open sets in the cover being sufficiently small neighbourhoods of the top-dimensional cells of <span class="SimpleMath">|M|</span>. The spaces <span class="SimpleMath">|M|</span> and <span class="SimpleMath">|K|</span> are homotopy equivalent by the Nerve Theorem. If an integer <span class="SimpleMath">n ≥ 0</span> is supplied as the second argument then only the n-skeleton of <span class="SimpleMath">K</span> is returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap10.html">3</a></span> , <span class="URL"><a href="../tutorial/chap12.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">9</a></span> </p>
<p><a id="X7C2BEF7C871E54D7" name="X7C2BEF7C871E54D7"></a></p>
<h5>1.3-9 RegularCWComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWComplex</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWComplex</code>( <var class="Arg">L</var>, <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial, pure cubical, cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the corresponding regular CW-complex. Inputs a list <span class="SimpleMath">L=Y!.boundaries</span> of boundary incidences of a regular CW-complex <span class="SimpleMath">Y</span> and returns <span class="SimpleMath">Y</span>. Inputs a list <span class="SimpleMath">L=Y!.boundaries</span> of boundary incidences of a regular CW-complex <span class="SimpleMath">Y</span> together with a list <span class="SimpleMath">M=Y!.orientation</span> of incidence numbers and returns a regular CW-complex <span class="SimpleMath">Y</span>. The availability of precomputed incidence numbers saves recalculating them.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap10.html">6</a></span> , <span class="URL"><a href="../tutorial/chap14.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">13</a></span> </p>
<p><a id="X79967AC2859A9631" name="X79967AC2859A9631"></a></p>
<h5>1.3-10 RegularCWMap</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RegularCWMap</code>( <var class="Arg">M</var>, <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">M</span> and a subcomplex <span class="SimpleMath">A</span> and returns the inclusion map <span class="SimpleMath">A → M</span> as a map of regular CW complexes.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap4.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">3</a></span> </p>
<p><a id="X82843E747FE622AF" name="X82843E747FE622AF"></a></p>
<h5>1.3-11 ThickeningFiltration</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ThickeningFiltration</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ThickeningFiltration</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">s</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">K</span> and integer <span class="SimpleMath">n ≥ 1</span>, and returns a filtered pure cubical complex of filtration length <span class="SimpleMath">n</span>. The <span class="SimpleMath">t</span>-th term of the filtration is the <span class="SimpleMath">t</span>-fold thickening of <span class="SimpleMath">K</span>. If an integer <span class="SimpleMath">s ≥ 1</span> is entered as the optional third argument then the <span class="SimpleMath">t</span>-th term of the filtration is the <span class="SimpleMath">ts</span>-fold thickening of <span class="SimpleMath">K</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>
<p><a id="X7FD50DF6782F00A0" name="X7FD50DF6782F00A0"></a></p>
<h4>1.4 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Cellular Complexes (Preserving Data Types)</span></h4>
<p><a id="X840576107A2907B8" name="X840576107A2907B8"></a></p>
<h5>1.4-1 ContractedComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var>, <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractedComplex</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a complex (regular CW, Filtered regular CW, pure cubical etc.) and returns a homotopy equivalent subcomplex.</p>
<p>Inputs a pure cubical complex or pure permutahedral complex <span class="SimpleMath">K</span> and a subcomplex <span class="SimpleMath">S</span>. It returns a homotopy equivalent subcomplex of <span class="SimpleMath">K</span> that contains <span class="SimpleMath">S</span>.</p>
<p>Inputs a graph <span class="SimpleMath">G</span> and returns a subgraph <span class="SimpleMath">S</span> such that the clique complexes of <span class="SimpleMath">G</span> and <span class="SimpleMath">S</span> are homotopy equivalent.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap5.html">4</a></span> , <span class="URL"><a href="../tutorial/chap7.html">5</a></span> , <span class="URL"><a href="../tutorial/chap10.html">6</a></span> , <span class="URL"><a href="../tutorial/chap11.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">11</a></span> </p>
<p><a id="X7A46614B84FF25BE" name="X7A46614B84FF25BE"></a></p>
<h5>1.4-2 ContractibleSubcomplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractibleSubcomplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractibleSubcomplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractibleSubcomplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a non-empty pure cubical, pure permutahedral or simplicial complex <span class="SimpleMath">K</span> and returns a contractible subcomplex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">2</a></span> </p>
<p><a id="X86164F4481ACC485" name="X86164F4481ACC485"></a></p>
<h5>1.4-3 KnotReflection</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ KnotReflection</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical knot and returns the reflected knot.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7D86D13C822D59A9" name="X7D86D13C822D59A9"></a></p>
<h5>1.4-4 KnotSum</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ KnotSum</code>( <var class="Arg">K</var>, <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two pure cubical knots and returns their sum.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap6.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">5</a></span> </p>
<p><a id="X855537287E9C4E72" name="X855537287E9C4E72"></a></p>
<h5>1.4-5 OrientRegularCWComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OrientRegularCWComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and computes and stores incidence numbers for <span class="SimpleMath">Y</span>. If <span class="SimpleMath">Y</span> already has incidence numbers then the function does nothing.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7A266B5A7BE88E89" name="X7A266B5A7BE88E89"></a></p>
<h5>1.4-6 PathComponent</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PathComponent</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PathComponent</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PathComponent</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial, pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">1 ≤ n ≤ β_0(K)</span>. The <span class="SimpleMath">n</span>-th path component of <span class="SimpleMath">K</span> is returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">3</a></span> </p>
<p><a id="X7FF34B9E86E901DC" name="X7FF34B9E86E901DC"></a></p>
<h5>1.4-7 PureComplexBoundary</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexBoundary</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexBoundary</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">d</span>-dimensional pure cubical or pure permutahedral complex <span class="SimpleMath">M</span> and returns a <span class="SimpleMath">d</span>-dimensional complex consisting of the closure of those <span class="SimpleMath">d</span>-cells whose boundaries contains some cell with coboundary of size less than the maximal possible size.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X7D0C9B27845F0739" name="X7D0C9B27845F0739"></a></p>
<h5>1.4-8 PureComplexComplement</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexComplement</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexComplement</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex or a pure permutahedral complex and returns its complement.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap5.html">4</a></span> , <span class="URL"><a href="../tutorial/chap10.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">7</a></span> </p>
<p><a id="X7FB5BE6C78D5C7C8" name="X7FB5BE6C78D5C7C8"></a></p>
<h5>1.4-9 PureComplexDifference</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexDifference</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexDifference</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two pure cubical complexes or two pure permutahedral complexes and returns the difference <span class="SimpleMath">M - N</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X8091C9BA819C2332" name="X8091C9BA819C2332"></a></p>
<h5>1.4-10 PureComplexInterstection</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexInterstection</code></td><td class="tdright">( global variable )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexIntersection</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two pure cubical complexes or two pure permutahedral complexes and returns their intersection.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X84A7E7A47F7BA09D" name="X84A7E7A47F7BA09D"></a></p>
<h5>1.4-11 PureComplexThickened</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexThickened</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexThickened</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex or a pure permutahedral complex and returns the a thickened complex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X78014E027F28C2C8" name="X78014E027F28C2C8"></a></p>
<h5>1.4-12 PureComplexUnion</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexUnion</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexUnion</code>( <var class="Arg">M</var>, <var class="Arg">N</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs two pure cubical complexes or two pure permutahedral complexes and returns their union.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X7E7AC0E77E25C45B" name="X7E7AC0E77E25C45B"></a></p>
<h5>1.4-13 SimplifiedComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplifiedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplifiedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplifiedComplex</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplifiedComplex</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex or a pure permutahedral complex <span class="SimpleMath">K</span> and returns a homeomorphic complex with possibly fewer cells and certainly no more cells.</p>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of <span class="SimpleMath">Z</span> and returns a <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">S</span> with potentially fewer free generators.</p>
<p>Inputs a chain complex <span class="SimpleMath">C</span> of free abelian groups and returns a chain homotopic chain complex <span class="SimpleMath">D</span> with potentially fewer free generators.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap11.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">6</a></span> </p>
<p><a id="X844174D37E70B9B4" name="X844174D37E70B9B4"></a></p>
<h5>1.4-14 ZigZagContractedComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ZigZagContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ZigZagContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ZigZagContractedComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical, filtered pure cubical or pure permutahedral complex and returns a homotopy equivalent complex. In the filtered case, the <span class="SimpleMath">t</span>-th term of the output is homotopy equivalent to the <span class="SimpleMath">t</span>-th term of the input for all <span class="SimpleMath">t</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> </p>
<p><a id="X7E25932F7DD535E8" name="X7E25932F7DD535E8"></a></p>
<h4>1.5 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></h4>
<p><a id="X7DC474EE7A909563" name="X7DC474EE7A909563"></a></p>
<h5>1.5-1 AlexanderPolynomial</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlexanderPolynomial</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlexanderPolynomial</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ AlexanderPolynomial</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">3</span>-dimensional pure cubical or pure permutahdral complex <span class="SimpleMath">K</span> representing a knot and returns the Alexander polynomial of the fundamental group <span class="SimpleMath">G = π_1( R^3∖ K)</span>.</p>
<p>Inputs a finitely presented group <span class="SimpleMath">G</span> with infinite cyclic abelianization and returns its Alexander polynomial.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">4</a></span> </p>
<p><a id="X83EF7B888014C363" name="X83EF7B888014C363"></a></p>
<h5>1.5-2 BettiNumber</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BettiNumber</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial, cubical, pure cubical, pure permutahedral, regular CW, chain or sparse chain complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>th Betti number of <span class="SimpleMath">K</span>.</p>
<p>Inputs a simplicial, cubical, pure cubical, pure permutahedral or regular CW-complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and a prime <span class="SimpleMath">p ≥ 0</span> or <span class="SimpleMath">p=0</span>. In this case the <span class="SimpleMath">n</span>th Betti number of <span class="SimpleMath">K</span> over a field of characteristic <span class="SimpleMath">p</span> is returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X8307F8DB85F145AE" name="X8307F8DB85F145AE"></a></p>
<h5>1.5-3 EulerCharacteristic</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerCharacteristic</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerCharacteristic</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> and returns its Euler characteristic.</p>
<p>Inputs a cubical, or pure cubical, or pure permutahedral or regular CW-, or simplicial complex <span class="SimpleMath">K</span> and returns its Euler characteristic.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X78813B9A851B922A" name="X78813B9A851B922A"></a></p>
<h5>1.5-4 EulerIntegral</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerIntegral</code>( <var class="Arg">Y</var>, <var class="Arg">w</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and a weight function <span class="SimpleMath">w: Y→ Z</span>, and returns the Euler integral <span class="SimpleMath">∫_Y w dχ</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7EAE7E4181546C17" name="X7EAE7E4181546C17"></a></p>
<h5>1.5-5 FundamentalGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroup</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroup</code>( <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroup</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW, simplicial, pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the fundamental group.</p>
<p>Inputs a regular CW complex <span class="SimpleMath">K</span> and the number <span class="SimpleMath">n</span> of some zero cell. It returns the fundamental group of <span class="SimpleMath">K</span> based at the <span class="SimpleMath">n</span>-th zero cell.</p>
<p>Inputs a regular CW map <span class="SimpleMath">F</span> and returns the induced homomorphism of fundamental groups. If the number of some zero cell in the domain of <span class="SimpleMath">F</span> is entered as an optional second variable then the fundamental group is based at this zero cell.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap11.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">13</a></span> </p>
<p><a id="X808733FF7EF6278E" name="X808733FF7EF6278E"></a></p>
<h5>1.5-6 FundamentalGroupOfQuotient</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FundamentalGroupOfQuotient</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-equivariant regular CW complex <span class="SimpleMath">Y</span> and returns the group <span class="SimpleMath">G</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>
<p><a id="X78F2C5ED80D1C8DD" name="X78F2C5ED80D1C8DD"></a></p>
<h5>1.5-7 IsAspherical</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IsAspherical</code>( <var class="Arg">F</var>, <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a free group <span class="SimpleMath">F</span> and a list <span class="SimpleMath">R</span> of words in <span class="SimpleMath">F</span>. The function attempts to test if the quotient group <span class="SimpleMath">G=F/⟨ R ⟩^F</span> is aspherical. If it succeeds it returns <span class="SimpleMath">true</span>. Otherwise the test is inconclusive and <span class="SimpleMath">fail</span> is returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap3.html">1</a></span> , <span class="URL"><a href="../tutorial/chap6.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">4</a></span> </p>
<p><a id="X797F8D4A848DD9BC" name="X797F8D4A848DD9BC"></a></p>
<h5>1.5-8 KnotGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ KnotGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ KnotGroup</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the fundamental group of its complement. If the complement is path-connected then this fundamental group is unique up to isomorphism. Otherwise it will depend on the path-component in which the randomly chosen base-point lies.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">1</a></span> </p>
<p><a id="X825539B57FBDDE86" name="X825539B57FBDDE86"></a></p>
<h5>1.5-9 PiZero</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PiZero</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PiZero</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PiZero</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span>, or graph <span class="SimpleMath">Y</span>, or simplicial complex <span class="SimpleMath">Y</span> and returns a pair <span class="SimpleMath">[cells,r]</span> where: <span class="SimpleMath">cells</span> is a list of vertices of <span class="SimpleMath">Y</span> representing the distinct path-components; <span class="SimpleMath">r(v)</span> is a function which, for each vertex <span class="SimpleMath">v</span> of <span class="SimpleMath">Y</span> returns the representative vertex <span class="SimpleMath">r(v) ∈ cells</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X7EE96E8B7C1643BD" name="X7EE96E8B7C1643BD"></a></p>
<h5>1.5-10 PersistentBettiNumbers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PersistentBettiNumbers</code>( <var class="Arg">K</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a filtered simplicial, filtered pure cubical, filtered regular CW, filtered chain or filtered sparse chain complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>th PersistentBetti numbers of <span class="SimpleMath">K</span> as a list of lists of integers.</p>
<p>Inputs a filtered simplicial, filtered pure cubical, filtered regular CW, filtered chain or filtered sparse chain complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span> and a prime <span class="SimpleMath">p ≥ 0</span> or <span class="SimpleMath">p=0</span>. In this case the <span class="SimpleMath">n</span>th PersistentBetti numbers of <span class="SimpleMath">K</span> over a field of characteristic <span class="SimpleMath">p</span> are returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X7C17A7897DDAE22C" name="X7C17A7897DDAE22C"></a></p>
<h4>1.6 <span class="Heading"> Data <span class="SimpleMath">⟶</span> Homotopy Invariants</span></h4>
<p><a id="X7F5B6CAD7CB2E985" name="X7F5B6CAD7CB2E985"></a></p>
<h5>1.6-1 DendrogramMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DendrogramMat</code>( <var class="Arg">A</var>, <var class="Arg">t</var>, <var class="Arg">s</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n× n</span> symmetric matrix <span class="SimpleMath">A</span> over the rationals, a rational <span class="SimpleMath">t ≥ 0</span> and an integer <span class="SimpleMath">s ≥ 1</span>. A list <span class="SimpleMath">[v_1, ..., v_t+1]</span> is returned with each <span class="SimpleMath">v_k</span> a list of positive integers. Let <span class="SimpleMath">t_k = (k-1)s</span>. Let <span class="SimpleMath">G(A,t_k)</span> denote the graph with vertices <span class="SimpleMath">1, ..., n</span> and with distinct vertices <span class="SimpleMath">i</span> and <span class="SimpleMath">j</span> connected by an edge when the <span class="SimpleMath">(i,j)</span> entry of <span class="SimpleMath">A</span> is <span class="SimpleMath">≤ t_k</span>. The <span class="SimpleMath">i</span>-th path component of <span class="SimpleMath">G(A,t_k)</span> is included in the <span class="SimpleMath">v_k[i]</span>-th path component of <span class="SimpleMath">G(A,t_k+1)</span>. This defines the integer vector <span class="SimpleMath">v_k</span>. The vector <span class="SimpleMath">v_k</span> has length equal to the number of path components of <span class="SimpleMath">G(A,t_k)</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X859286BF7F6047B7" name="X859286BF7F6047B7"></a></p>
<h4>1.7 <span class="Heading"> Cellular Complexes <span class="SimpleMath">⟶</span> Non Homotopy Invariants</span></h4>
<p><a id="X7A1C427578108B7E" name="X7A1C427578108B7E"></a></p>
<h5>1.7-1 ChainComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex <span class="SimpleMath">K</span> and returns its chain complex of free abelian groups. In degree <span class="SimpleMath">n</span> this chain complex has one free generator for each <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">K</span>.</p>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a chain complex <span class="SimpleMath">C</span> which is chain homotopy equivalent to the cellular chain complex of <span class="SimpleMath">Y</span>. In degree <span class="SimpleMath">n</span> the free abelian chain group <span class="SimpleMath">C_n</span> has one free generator for each critical <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">Y</span> with respect to some discrete vector field on <span class="SimpleMath">Y</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap12.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> </p>
<p><a id="X7D4AF2E8785DA457" name="X7D4AF2E8785DA457"></a></p>
<h5>1.7-2 ChainComplexEquivalence</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplexEquivalence</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">X</span> and returns a pair <span class="SimpleMath">[f_∗, g_∗]</span> of chain maps <span class="SimpleMath">f_∗: C_∗(X) → D_∗(X)</span>, <span class="SimpleMath">g_∗: D_∗(X) → C_∗(X)</span>. Here <span class="SimpleMath">C_∗(X)</span> is the standard cellular chain complex of <span class="SimpleMath">X</span> with one free generator for each cell in <span class="SimpleMath">X</span>. The chain complex <span class="SimpleMath">D_∗(X)</span> is a typically smaller chain complex arising from a discrete vector field on <span class="SimpleMath">X</span>. The chain maps <span class="SimpleMath">f_∗, g_∗</span> are chain homotopy equivalences.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7D77D18679E941D3" name="X7D77D18679E941D3"></a></p>
<h5>1.7-3 ChainComplexOfQuotient</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplexOfQuotient</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">G</span>-equivariant regular CW-complex <span class="SimpleMath">Y</span> and returns the cellular chain complex of the quotient space <span class="SimpleMath">Y/G</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>
<p><a id="X7BCD94877DF261C4" name="X7BCD94877DF261C4"></a></p>
<h5>1.7-4 ChainMap</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainMap</code>( <var class="Arg">X</var>, <var class="Arg">A</var>, <var class="Arg">Y</var>, <var class="Arg">B</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainMap</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainMap</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex <span class="SimpleMath">Y</span> and pure cubical sucomplexes <span class="SimpleMath">X⊂ Y</span>, <span class="SimpleMath">B⊂ Y</span>,<span class="SimpleMath">A⊂ B</span>. It returns the induced chain map <span class="SimpleMath">f_∗: C_∗(X/A) → C_∗(Y/B)</span> of cellular chain complexes of pairs. (Typlically one takes <span class="SimpleMath">A</span> and <span class="SimpleMath">B</span> to be empty or contractible subspaces, in which case <span class="SimpleMath">C_∗(X/A) ≃ C_∗(X)</span>, <span class="SimpleMath">C_∗(Y/B) ≃ C_∗(Y)</span>.)</p>
<p>Inputs a map <span class="SimpleMath">f: X → Y</span> between two regular CW-complexes <span class="SimpleMath">X,Y</span> and returns an induced chain map <span class="SimpleMath">f_∗: C_∗(X) → C_∗(Y)</span> where <span class="SimpleMath">C_∗(X)</span>, <span class="SimpleMath">C_∗(Y)</span> are chain homotopic to (but usually smaller than) the cellular chain complexes of <span class="SimpleMath">X</span>, <span class="SimpleMath">Y</span>.</p>
<p>Inputs a map <span class="SimpleMath">f: X → Y</span> between two simplicial complexes <span class="SimpleMath">X,Y</span> and returns the induced chain map <span class="SimpleMath">f_∗: C_∗(X) → C_∗(Y)</span> of cellular chain complexes.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap10.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">8</a></span> </p>
<p><a id="X7B8741FB7A3263EC" name="X7B8741FB7A3263EC"></a></p>
<h5>1.7-5 CochainComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CochainComplex</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CochainComplex</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a cubical, or pure cubical, or pure permutahedral or simplicial complex <span class="SimpleMath">K</span> and returns its cochain complex of free abelian groups. In degree <span class="SimpleMath">n</span> this cochain complex has one free generator for each <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">K</span>.</p>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a cochain complex <span class="SimpleMath">C</span> which is chain homotopy equivalent to the cellular cochain complex of <span class="SimpleMath">Y</span>. In degree <span class="SimpleMath">n</span> the free abelian cochain group <span class="SimpleMath">C_n</span> has one free generator for each critical <span class="SimpleMath">n</span>-dimensional cell of <span class="SimpleMath">Y</span> with respect to some discrete vector field on <span class="SimpleMath">Y</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X8489A39F870FF08B" name="X8489A39F870FF08B"></a></p>
<h5>1.7-6 CriticalCells</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CriticalCells</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">K</span> and returns its critical cells with respect to some discrete vector field on <span class="SimpleMath">K</span>. If no discrete vector field on <span class="SimpleMath">K</span> is available then one will be computed and stored.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">8</a></span> </p>
<p><a id="X7A4AD52D82627ABC" name="X7A4AD52D82627ABC"></a></p>
<h5>1.7-7 DiagonalApproximation</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DiagonalApproximation</code>( <var class="Arg">X</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">X</span> and outputs a pair <span class="SimpleMath">[p,ι]</span> of maps of CW-complexes. The map <span class="SimpleMath">p: X^∆ → X</span> will often be a homotopy equivalence. This is always the case if <span class="SimpleMath">X</span> is the CW-space of any pure cubical complex. In general, one can test to see if the induced chain map <span class="SimpleMath">p_∗ : C_∗(X^∆) → C_∗(X)</span> is an isomorphism on integral homology. The second map <span class="SimpleMath">ι : X^∆ ↪ X× X</span> is an inclusion into the direct product. If <span class="SimpleMath">p_∗</span> induces an isomorphism on homology then the chain map <span class="SimpleMath">ι_∗: C_∗(X^∆) → C_∗(X× X)</span> can be used to compute the cup product.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> </p>
<p><a id="X858ADA3B7A684421" name="X858ADA3B7A684421"></a></p>
<h5>1.7-8 Size</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Size</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Size</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Size</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Size</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW complex or a simplicial complex <span class="SimpleMath">Y</span> and returns the number of cells in the complex.</p>
<p>Inputs a <span class="SimpleMath">d</span>-dimensional pure cubical or pure permutahedral complex <span class="SimpleMath">K</span> and returns the number of <span class="SimpleMath">d</span>-dimensional cells in the complex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap6.html">6</a></span> , <span class="URL"><a href="../tutorial/chap7.html">7</a></span> , <span class="URL"><a href="../tutorial/chap10.html">8</a></span> , <span class="URL"><a href="../tutorial/chap11.html">9</a></span> , <span class="URL"><a href="../tutorial/chap12.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeripheral.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnots.html">22</a></span> </p>
<p><a id="X7B6F366F7A2D8FEE" name="X7B6F366F7A2D8FEE"></a></p>
<h4>1.8 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></h4>
<p><a id="X829DD3868410FE2E" name="X829DD3868410FE2E"></a></p>
<h5>1.8-1 FilteredTensorWithIntegers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FilteredTensorWithIntegers</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> for which <span class="SimpleMath">"filteredDimension"</span> lies in <strong class="button">NamesOfComponents(R)</strong>. (Such a resolution can be produced using <strong class="button">TwisterTensorProduct()</strong>, <strong class="button">ResolutionNormalSubgroups()</strong> or <strong class="button">FreeGResolution()</strong>.) It returns the filtered chain complex obtained by tensoring with the trivial module <span class="SimpleMath">Z</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>
<p><a id="X7BC291C47FEAC5B8" name="X7BC291C47FEAC5B8"></a></p>
<h5>1.8-2 FilteredTensorWithIntegersModP</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ FilteredTensorWithIntegersModP</code>( <var class="Arg">R</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> for which <span class="SimpleMath">"filteredDimension"</span> lies in <strong class="button">NamesOfComponents(R)</strong>, together with a prime <span class="SimpleMath">p</span>. (Such a resolution can be produced using <strong class="button">TwisterTensorProduct()</strong>, <strong class="button">ResolutionNormalSubgroups()</strong> or <strong class="button">FreeGResolution()</strong>.) It returns the filtered chain complex obtained by tensoring with the trivial module <span class="SimpleMath">F</span>, the field of <span class="SimpleMath">p</span> elements.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>
<p><a id="X788F3B5E7810E309" name="X788F3B5E7810E309"></a></p>
<h5>1.8-3 HomToIntegers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToIntegers</code>( <var class="Arg">C</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToIntegers</code>( <var class="Arg">R</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ HomToIntegers</code>( <var class="Arg">F</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> of free abelian groups and returns the cochain complex <span class="SimpleMath">Hom_ Z(C, Z)</span>.</p>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> in characteristic <span class="SimpleMath">0</span> and returns the cochain complex <span class="SimpleMath">Hom_ ZG(R, Z)</span>.</p>
<p>Inputs an equivariant chain map <span class="SimpleMath">F: R→ S</span> of resolutions and returns the induced cochain map <span class="SimpleMath">Hom_ ZG(S, Z) ⟶ Hom_ ZG(R, Z)</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap8.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap13.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>
<p><a id="X8122D25786C83565" name="X8122D25786C83565"></a></p>
<h5>1.8-4 TensorWithIntegersModP</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithIntegersModP</code>( <var class="Arg">C</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithIntegersModP</code>( <var class="Arg">R</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ TensorWithIntegersModP</code>( <var class="Arg">F</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> of characteristic <span class="SimpleMath">0</span> and a prime integer <span class="SimpleMath">p</span>. It returns the chain complex <span class="SimpleMath">C ⊗_ Z Z_p</span> of characteristic <span class="SimpleMath">p</span>.</p>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of characteristic <span class="SimpleMath">0</span> and a prime integer <span class="SimpleMath">p</span>. It returns the chain complex <span class="SimpleMath">R ⊗_ ZG Z_p</span> of characteristic <span class="SimpleMath">p</span>.</p>
<p>Inputs an equivariant chain map <span class="SimpleMath">F: R → S</span> in characteristic <span class="SimpleMath">0</span> a prime integer <span class="SimpleMath">p</span>. It returns the induced chain map <span class="SimpleMath">F⊗_ ZG Z_p : R ⊗_ ZG Z_p ⟶ S ⊗_ ZG Z_p</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>
<p><a id="X7BB8DC9783A4AF81" name="X7BB8DC9783A4AF81"></a></p>
<h4>1.9 <span class="Heading"> (Co)chain Complexes <span class="SimpleMath">⟶</span> Homotopy Invariants</span></h4>
<p><a id="X84CFC57B7E9CCCF7" name="X84CFC57B7E9CCCF7"></a></p>
<h5>1.9-1 Cohomology</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Cohomology</code>( <var class="Arg">C</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Cohomology</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Cohomology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a cochain complex <span class="SimpleMath">C</span> and integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>-th cohomology group of <span class="SimpleMath">C</span> as a list of its abelian invariants.</p>
<p>Inputs a chain map <span class="SimpleMath">F</span> and integer <span class="SimpleMath">n ≥ 0</span>. It returns the induced cohomology homomorphism <span class="SimpleMath">H_n(F)</span> as a homomorphism of finitely presented groups.</p>
<p>Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span>. It returns the <span class="SimpleMath">n</span>-th integral cohomology group of <span class="SimpleMath">K</span> as a list of its abelian invariants.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap6.html">4</a></span> , <span class="URL"><a href="../tutorial/chap7.html">5</a></span> , <span class="URL"><a href="../tutorial/chap8.html">6</a></span> , <span class="URL"><a href="../tutorial/chap12.html">7</a></span> , <span class="URL"><a href="../tutorial/chap13.html">8</a></span> , <span class="URL"><a href="../tutorial/chap14.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutNoncrossing.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoefficientSequence.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSurvey.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">26</a></span> </p>
<p><a id="X877825E57D79839C" name="X877825E57D79839C"></a></p>
<h5>1.9-2 CupProduct</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CupProduct</code>( <var class="Arg">Y</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CupProduct</code>( <var class="Arg">R</var>, <var class="Arg">p</var>, <var class="Arg">q</var>, <var class="Arg">P</var>, <var class="Arg">Q</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a regular CW-complex <span class="SimpleMath">Y</span> and returns a function <span class="SimpleMath">f(p,q,P,Q)</span>. This function <span class="SimpleMath">f</span> inputs two integers <span class="SimpleMath">p,q ≥ 0</span> and two integer lists <span class="SimpleMath">P=[p_1, ..., p_m]</span>, <span class="SimpleMath">Q=[q_1, ..., q_n]</span> representing elements <span class="SimpleMath">P∈ H^p(Y, Z)</span> and <span class="SimpleMath">Q∈ H^q(Y, Z)</span>. The function <span class="SimpleMath">f</span> returns a list <span class="SimpleMath">P ∪ Q</span> representing the cup product <span class="SimpleMath">P ∪ Q ∈ H^p+q(Y, Z)</span>.</p>
<p>Inputs a free <span class="SimpleMath">ZG</span> resolution <span class="SimpleMath">R</span> of <span class="SimpleMath">Z</span> for some group <span class="SimpleMath">G</span>, together with integers <span class="SimpleMath">p,q ≥ 0</span> and integer lists <span class="SimpleMath">P, Q</span> representing cohomology classes <span class="SimpleMath">P∈ H^p(G, Z)</span>, <span class="SimpleMath">Q∈ H^q(G, Z)</span>. An integer list representing the cup product <span class="SimpleMath">P∪ Q ∈ H^p+q(G, Z)</span> is returned.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap5.html">3</a></span> , <span class="URL"><a href="../tutorial/chap7.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">5</a></span> </p>
<p><a id="X85A9D5CB8605329C" name="X85A9D5CB8605329C"></a></p>
<h5>1.9-3 Homology</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">C</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">F</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">K</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> and integer <span class="SimpleMath">n ≥ 0</span> and returns the <span class="SimpleMath">n</span>-th homology group of <span class="SimpleMath">C</span> as a list of its abelian invariants.</p>
<p>Inputs a chain map <span class="SimpleMath">F</span> and integer <span class="SimpleMath">n ≥ 0</span>. It returns the induced homology homomorphism <span class="SimpleMath">H_n(F)</span> as a homomorphism of finitely presented groups.</p>
<p>Inputs a cubical, or pure cubical, or pure permutahedral or regular CW or simplicial complex <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n ≥ 0</span>. It returns the <span class="SimpleMath">n</span>-th integral homology group of <span class="SimpleMath">K</span> as a list of its abelian invariants.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap6.html">6</a></span> , <span class="URL"><a href="../tutorial/chap7.html">7</a></span> , <span class="URL"><a href="../tutorial/chap9.html">8</a></span> , <span class="URL"><a href="../tutorial/chap10.html">9</a></span> , <span class="URL"><a href="../tutorial/chap11.html">10</a></span> , <span class="URL"><a href="../tutorial/chap12.html">11</a></span> , <span class="URL"><a href="../tutorial/chap13.html">12</a></span> , <span class="URL"><a href="../tutorial/chap14.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">26</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">27</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">28</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutquasi.html">29</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">30</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">31</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">32</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">33</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">34</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">35</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">36</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">37</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">38</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">39</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">40</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTensorSquare.html">41</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLieCovers.html">42</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">43</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLie.html">44</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">45</a></span> </p>
<p><a id="X867BE1388467C939" name="X867BE1388467C939"></a></p>
<h4>1.10 <span class="Heading"> Visualization</span></h4>
<p><a id="X806A81EF79CE0DEF" name="X806A81EF79CE0DEF"></a></p>
<h5>1.10-1 BarCodeDisplay</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BarCodeDisplay</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Displays a barcode <strong class="button">L=PersitentBettiNumbers(X,n)</strong>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">2</a></span> </p>
<p><a id="X83D60A6682EBB6F1" name="X83D60A6682EBB6F1"></a></p>
<h5>1.10-2 BarCodeCompactDisplay</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ BarCodeCompactDisplay</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Displays a barcode <strong class="button">L=PersitentBettiNumbers(X,n)</strong> in compact form.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">3</a></span> </p>
<p><a id="X80CAD0357AF44E48" name="X80CAD0357AF44E48"></a></p>
<h5>1.10-3 CayleyGraphOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CayleyGraphOfGroup</code>( <var class="Arg">G</var>, <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and a list <span class="SimpleMath">L</span> of elements in <span class="SimpleMath">G</span>.It displays the Cayley graph of the group generated by <span class="SimpleMath">L</span> where edge colours correspond to generators.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X83A5C59278E13248" name="X83A5C59278E13248"></a></p>
<h5>1.10-4 Display</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Display</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Display</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Display</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Displays a graph <span class="SimpleMath">G</span>; a <span class="SimpleMath">2</span>- or <span class="SimpleMath">3</span>-dimensional pure cubical complex <span class="SimpleMath">M</span>; a <span class="SimpleMath">3</span>-dimensional pure permutahedral complex <span class="SimpleMath">M</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap5.html">4</a></span> , <span class="URL"><a href="../tutorial/chap6.html">5</a></span> , <span class="URL"><a href="../tutorial/chap7.html">6</a></span> , <span class="URL"><a href="../tutorial/chap9.html">7</a></span> , <span class="URL"><a href="../tutorial/chap10.html">8</a></span> , <span class="URL"><a href="../tutorial/chap11.html">9</a></span> , <span class="URL"><a href="../tutorial/chap13.html">10</a></span> , <span class="URL"><a href="../tutorial/chap14.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutNoncrossing.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeriodic.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles2.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutQuandles.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSuperperfect.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutKnotsQuandles.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">24</a></span> </p>
<p><a id="X7B98A3C4831D5B0D" name="X7B98A3C4831D5B0D"></a></p>
<h5>1.10-5 DisplayArcPresentation</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DisplayArcPresentation</code>( <var class="Arg">K</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Displays a <span class="SimpleMath">3</span>-dimensional pure cubical knot <strong class="button">K=PureCubicalKnot(L)</strong> in the form of an arc presentation.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X861690C27BADC326" name="X861690C27BADC326"></a></p>
<h5>1.10-6 DisplayCSVKnotFile</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DisplayCSVKnotFile</code></td><td class="tdright">( global variable )</td></tr></table></div>
<p>Inputs a string <span class="SimpleMath">str</span> that identifies a csv file containing the points on a piecewise linear knot in <span class="SimpleMath">R^3</span>. It displays the knot.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7F4AA01E7C0A5C16" name="X7F4AA01E7C0A5C16"></a></p>
<h5>1.10-7 DisplayDendrogram</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DisplayDendrogram</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Displays the dendrogram <strong class="button">L:=DendrogramMat(A,t,s)</strong>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7E5A38F081B401BE" name="X7E5A38F081B401BE"></a></p>
<h5>1.10-8 DisplayDendrogramMat</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DisplayDendrogramMat</code>( <var class="Arg">A</var>, <var class="Arg">t</var>, <var class="Arg">s</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">n× n</span> symmetric matrix <span class="SimpleMath">A</span> over the rationals, a rational <span class="SimpleMath">t ≥ 0</span> and an integer <span class="SimpleMath">s ≥ 1</span>. The dendrogram defined by <strong class="button">DendrogramMat(A,t,s)</strong> is displayed.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X822F54F385D7EF8A" name="X822F54F385D7EF8A"></a></p>
<h5>1.10-9 DisplayPDBfile</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ DisplayPDBfile</code>( <var class="Arg">str</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Displays the protein backone described in a PDB (Protein Database) file identified by a string str such as "file.pdb" or "path/file.pdb".</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> </p>
<p><a id="X80EC50C27EFF2E12" name="X80EC50C27EFF2E12"></a></p>
<h5>1.10-10 OrbitPolytope</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ OrbitPolytope</code>( <var class="Arg">G</var>, <var class="Arg">v</var>, <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a permutation group or finite matrix group <span class="SimpleMath">G</span> of degree <span class="SimpleMath">d</span> and a rational vector <span class="SimpleMath">v∈ R^d</span>. In both cases there is a natural action of <span class="SimpleMath">G</span> on <span class="SimpleMath">R^d</span>. Let <span class="SimpleMath">P(G,v)</span> be the convex hull of the orbit of <span class="SimpleMath">v</span> under the action of <span class="SimpleMath">G</span>. The function also inputs a sublist <span class="SimpleMath">L</span> of the following list of strings: ["dimension","vertex_degree", "visual_graph", "schlegel", "visual"]</p>
<p>Depending on <span class="SimpleMath">L</span>, the function displays the following information:<br /> the dimension of the orbit polytope <span class="SimpleMath">P(G,v)</span>;<br /> the degree of a vertex in the graph of <span class="SimpleMath">P(G,v)</span>;<br /> a visualization of the graph of <span class="SimpleMath">P(G,v)</span>;<br /> a visualization of the Schlegel diagram of <span class="SimpleMath">P(G,v)</span>;<br /> a visualization of the polytope <span class="SimpleMath">P(G,v)</span> if <span class="SimpleMath">d=2,3</span>.</p>
<p>The function requires Polymake software.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">2</a></span> </p>
<p><a id="X7DF49EAD7C0B0E84" name="X7DF49EAD7C0B0E84"></a></p>
<h5>1.10-11 ScatterPlot</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ScatterPlot</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list <span class="SimpleMath">L=[[x_1,y_1],..., [x_n,y_n]]</span> of pairs of rational numbers and displays a scatter plot of the points in the <span class="SimpleMath">x</span>-<span class="SimpleMath">y</span>-plane.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> </p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap0.html">[Previous Chapter]</a> <a href="chap2.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|