File: resArtin_spherical.gi

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (173 lines) | stat: -rw-r--r-- 4,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#(C) Graham Ellis, 2005-2006

#####################################################################
InstallGlobalFunction(ResolutionArtinGroup_spherical,
function(D,K)
local
 #We asume that D defines a sperical Artin group G and then, from the 
 #point of view of computations, treat G as a Coxeter group.
	Dimension,
	Boundary,       
	Contraction,	#not yet used
	EltsG, EltsG1,	
	Vertices,
	G, gensG, Glist, G1, M,	#G is the Artin group of D. We treat G as a
 	GhomG1,	gensG1, gensM,	#free group. However, we output a copy G1 of
				#G with relators. 
	W, Wgens, GhomW,	#W is the Coxeter group of D
	ResGens,
	BoundaryCoeff,
	PseudoBoundary,
	BoundaryRecord,
	m, n, i, S, SD,R, iso, epi, x, y, F, gensF;

if not CoxeterDiagramIsSpherical(D) then return fail; fi; 

Vertices:=CoxeterDiagramVertices(D);
Glist:=CoxeterDiagramFpArtinGroup(D);
G1:=Glist[1]/Glist[2];        	#Take care for this not to cause Knuth-Bendix 
gensG1:=GeneratorsOfGroup(G1);	#to start up later on!
M:=CoxeterDiagramMatCoxeterGroup(D);
gensM:=GeneratorsOfGroup(M);
iso:=IsomorphismPermGroup(M);
gensG:=List(gensM,x->Image(iso,x));
G:=Group(gensG);
#G:=Image(iso);
F:=Glist[1];
gensF:=GeneratorsOfGroup(F);
epi:=GroupHomomorphismByImages(F,G,gensF,gensG);

GhomG1:=GroupHomomorphismByImagesNC(G,G1,gensG,gensG1);
EltsG:=Enumerator(G);;

ResGens:=[];
ResGens[1]:=[[]];
for n in [1..K] do
ResGens[n+1]:=[];
for S in Combinations(Vertices,n) do
SD:=CoxeterSubDiagram(D,S);
 AddSet(ResGens[n+1],S); 
od;
od;

#####################################################################
Dimension:=function(n)

if n=0 then return 1;
else return Length(ResGens[n+1]); fi;

end;
#####################################################################

BoundaryRecord:=[];
for n in [1..K] do
BoundaryRecord[n]:=[];
for m in [1..Dimension(n)] do
BoundaryRecord[n][m]:=true;
od;
od;


#####################################################################
PseudoBoundary:=function(S)	#S is a subset of vertices with finite
				#Coxeter group WS.
local T, bndry, a;

bndry:=[];
for T in Combinations(S,Length(S)-1) do
a:=Difference(S,T)[1];
Append(bndry,[  [T,BoundaryCoeff(S,T),Position(S,a)]  ]);
od;

return bndry;
end;
#####################################################################

####################################################################
BoundaryCoeff:=function(S,T)    #S is a set of vertices generating a
                                #finite Coxeter group WS. T is a
                                #subset of S, and WT is the corresponding
                                #subgroup of WS.
local   SD, WS, gensWS,
        WT, gensWT,
        Trans,
        WShomG1, WShomG, Ggens, G1gens,
        x,y;

SD:=CoxeterSubDiagram(D,S);
WS:=CoxeterDiagramFpCoxeterGroup(SD);
WS:=WS[1]/WS[2];
G1gens:=List(S,x->gensG1[Position(Vertices,x)]);
gensWS:=GeneratorsOfGroup(WS);
WShomG1:=GroupHomomorphismByImagesNC(WS,G1,gensWS,G1gens);
Ggens:=List(S,x->gensG[Position(Vertices,x)]);
WShomG:=GroupHomomorphismByImagesNC(WS,G,gensWS,Ggens);
gensWT:=List(T,x->gensWS[Position(S,x)]);
if Length(T)>0 then WT:=Group(gensWT);
else WT:=Group(Identity(WS)); fi;

#Trans:=List(Elements(RightTransversal(WS,WT)),x->x^-1);
Trans:=RightTransversal(WS,WT);

return List(Trans,x->Image(WShomG,x^-1));
end;
#####################################################################

#####################################################################
Boundary:=function(n,kk)
local B, B1, FreeGWord, x, y, k;

#n:=AbsoluteValue(m);
if n<1 then return 0; fi;

k:=AbsoluteValue(kk);

if not BoundaryRecord[n][k]=true then
if kk>0 then return BoundaryRecord[n][k];
else return NegateWord(BoundaryRecord[n][k]);fi;
fi;

B:=PseudoBoundary(ResGens[n+1][k]);
B1:=List(B,x->[Position(ResGens[n],x[1]),
        List(x[2],y->(-1)^(Length(Image(GhomG1,y))+x[3])*Position(EltsG,y))  ]);
FreeGWord:=[];
for x in B1 do
for y in x[2] do
Append(FreeGWord,[ [SignInt(y)*x[1],AbsoluteValue(y)] ]);
od;
od;

BoundaryRecord[n][k]:=FreeGWord;
if kk>0 then return FreeGWord;
else return NegateWord(FreeGWord); fi;
end;
#####################################################################

EltsG1:=[];
R:=         Objectify(HapResolution,
	    rec(
	    dimension:=Dimension,
	    boundary:=Boundary,
	    homotopy:=fail,
	    elts:=EltsG1,
	    group:=G1,
	    resGens:=ResGens,
	    properties:=
	    [["length",n],
	     ["characteristic",0],
	     ["type","resolution"],
	     ["reduced",true]]  ));
for n in [1..Length(R)] do
for i in [1..R!.dimension(n)] do
x:=R!.boundary(n,i);
for y in x do
EltsG1[y[2]]:= Image(GhomG1,EltsG[y[2]]) ;
od;
od;od;
R!.elts:=EltsG1;

return R;

end);
#####################################################################