1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
#(C) Graham Ellis, 2005-2006
#####################################################################
InstallGlobalFunction(ResolutionArtinGroup_spherical,
function(D,K)
local
#We asume that D defines a sperical Artin group G and then, from the
#point of view of computations, treat G as a Coxeter group.
Dimension,
Boundary,
Contraction, #not yet used
EltsG, EltsG1,
Vertices,
G, gensG, Glist, G1, M, #G is the Artin group of D. We treat G as a
GhomG1, gensG1, gensM, #free group. However, we output a copy G1 of
#G with relators.
W, Wgens, GhomW, #W is the Coxeter group of D
ResGens,
BoundaryCoeff,
PseudoBoundary,
BoundaryRecord,
m, n, i, S, SD,R, iso, epi, x, y, F, gensF;
if not CoxeterDiagramIsSpherical(D) then return fail; fi;
Vertices:=CoxeterDiagramVertices(D);
Glist:=CoxeterDiagramFpArtinGroup(D);
G1:=Glist[1]/Glist[2]; #Take care for this not to cause Knuth-Bendix
gensG1:=GeneratorsOfGroup(G1); #to start up later on!
M:=CoxeterDiagramMatCoxeterGroup(D);
gensM:=GeneratorsOfGroup(M);
iso:=IsomorphismPermGroup(M);
gensG:=List(gensM,x->Image(iso,x));
G:=Group(gensG);
#G:=Image(iso);
F:=Glist[1];
gensF:=GeneratorsOfGroup(F);
epi:=GroupHomomorphismByImages(F,G,gensF,gensG);
GhomG1:=GroupHomomorphismByImagesNC(G,G1,gensG,gensG1);
EltsG:=Enumerator(G);;
ResGens:=[];
ResGens[1]:=[[]];
for n in [1..K] do
ResGens[n+1]:=[];
for S in Combinations(Vertices,n) do
SD:=CoxeterSubDiagram(D,S);
AddSet(ResGens[n+1],S);
od;
od;
#####################################################################
Dimension:=function(n)
if n=0 then return 1;
else return Length(ResGens[n+1]); fi;
end;
#####################################################################
BoundaryRecord:=[];
for n in [1..K] do
BoundaryRecord[n]:=[];
for m in [1..Dimension(n)] do
BoundaryRecord[n][m]:=true;
od;
od;
#####################################################################
PseudoBoundary:=function(S) #S is a subset of vertices with finite
#Coxeter group WS.
local T, bndry, a;
bndry:=[];
for T in Combinations(S,Length(S)-1) do
a:=Difference(S,T)[1];
Append(bndry,[ [T,BoundaryCoeff(S,T),Position(S,a)] ]);
od;
return bndry;
end;
#####################################################################
####################################################################
BoundaryCoeff:=function(S,T) #S is a set of vertices generating a
#finite Coxeter group WS. T is a
#subset of S, and WT is the corresponding
#subgroup of WS.
local SD, WS, gensWS,
WT, gensWT,
Trans,
WShomG1, WShomG, Ggens, G1gens,
x,y;
SD:=CoxeterSubDiagram(D,S);
WS:=CoxeterDiagramFpCoxeterGroup(SD);
WS:=WS[1]/WS[2];
G1gens:=List(S,x->gensG1[Position(Vertices,x)]);
gensWS:=GeneratorsOfGroup(WS);
WShomG1:=GroupHomomorphismByImagesNC(WS,G1,gensWS,G1gens);
Ggens:=List(S,x->gensG[Position(Vertices,x)]);
WShomG:=GroupHomomorphismByImagesNC(WS,G,gensWS,Ggens);
gensWT:=List(T,x->gensWS[Position(S,x)]);
if Length(T)>0 then WT:=Group(gensWT);
else WT:=Group(Identity(WS)); fi;
#Trans:=List(Elements(RightTransversal(WS,WT)),x->x^-1);
Trans:=RightTransversal(WS,WT);
return List(Trans,x->Image(WShomG,x^-1));
end;
#####################################################################
#####################################################################
Boundary:=function(n,kk)
local B, B1, FreeGWord, x, y, k;
#n:=AbsoluteValue(m);
if n<1 then return 0; fi;
k:=AbsoluteValue(kk);
if not BoundaryRecord[n][k]=true then
if kk>0 then return BoundaryRecord[n][k];
else return NegateWord(BoundaryRecord[n][k]);fi;
fi;
B:=PseudoBoundary(ResGens[n+1][k]);
B1:=List(B,x->[Position(ResGens[n],x[1]),
List(x[2],y->(-1)^(Length(Image(GhomG1,y))+x[3])*Position(EltsG,y)) ]);
FreeGWord:=[];
for x in B1 do
for y in x[2] do
Append(FreeGWord,[ [SignInt(y)*x[1],AbsoluteValue(y)] ]);
od;
od;
BoundaryRecord[n][k]:=FreeGWord;
if kk>0 then return FreeGWord;
else return NegateWord(FreeGWord); fi;
end;
#####################################################################
EltsG1:=[];
R:= Objectify(HapResolution,
rec(
dimension:=Dimension,
boundary:=Boundary,
homotopy:=fail,
elts:=EltsG1,
group:=G1,
resGens:=ResGens,
properties:=
[["length",n],
["characteristic",0],
["type","resolution"],
["reduced",true]] ));
for n in [1..Length(R)] do
for i in [1..R!.dimension(n)] do
x:=R!.boundary(n,i);
for y in x do
EltsG1[y[2]]:= Image(GhomG1,EltsG[y[2]]) ;
od;
od;od;
R!.elts:=EltsG1;
return R;
end);
#####################################################################
|