File: tensorWithModPModule.gi

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (200 lines) | stat: -rw-r--r-- 4,919 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# preserved most of notations from homToZmodule.gi

#####################################################################
#####################################################################
InstallGlobalFunction(TensorWithModPModule,
function(arg)
local R, f, g, p, k, one, TensorObj, TensorArr;

R:=arg[1];
f:=arg[2];
k:=FieldOfMatrixGroup(Target(f));
p:=Characteristic(k);
if not k=GF(p) then
Print("The ground field is not of prime order.\n");
return fail; fi;
one:=One(k);


TensorObj:=function(R,f)
local
	DimensionC,
	BoundaryC,
	LengthC,
	BoundaryOfElt,
	Cache,
	LA,
	IntToPair;

LA:=Length(Identity(Image(f)));
LengthC:=EvaluateProperty(R,"length");

#####################################################################
DimensionC:=function(n)
return LA*R!.dimension(n);
end;
#####################################################################

####################################################################
IntToPair:=function(i)
local q, r;
r:=i mod LA;
q:=(i-r)/LA;

if r>0 then return [q+1,r];
else return [q, LA]; fi;
end;
####################################################################

#####################################################################
BoundaryOfElt:=function(n,k)	#Only use this for k>0
local row, kq, kr, i, x, r, v;

if n<=0 then
	return [];
fi;

x:=IntToPair(k);
kq:=x[1]; kr:=x[2];

row:= [1..LA * R!.dimension(n-1)]*0;

for x in R!.boundary(n,kq) do
	i := AbsoluteValue(x[1]);

	# range of generators of tensored complex which coresponds to generator i of resolution
	r := [ (i-1)*LA+1 .. i*LA ];
        v:=r*0; v[kr]:=1;

	# It is left action.
	# Would be faster:
	# for ?
	# list of lists and then Flat() ?
	#row{r} := row{r} + SignInt(x[1]) * Image(f,(R!.elts[x[2]])^-1){[1..LA]}[kr];
row{r} := row{r} + SignInt(x[1]) * v*TransposedMat((Image(f,R!.elts[x[2]]^-1)));

od;

return row*one;
end;
#####################################################################

#####################################################################
BoundaryC:=function(n,k)

if n <= 0 then
	return [];
fi;

if not IsBound(Cache) then
	Cache := [];
fi;
if not IsBound(Cache[n]) then
	Cache[n] := [];
fi;
if not IsBound(Cache[n][k]) then
	Cache[n][k] := BoundaryOfElt(n,k);
	MakeImmutable(Cache[n][k]); # is it working as I want ?
fi;

return Cache[n][k];
end;
#####################################################################


return Objectify(HapChainComplex,
		rec(
                dimension:=DimensionC,
                boundary:=BoundaryC,
                IntToPair:=IntToPair,
                properties:=
                [["length",LengthC],
                ["connected",true],
                ["type", "chainComplex"], 
                ["characteristic",p]
                 ]));
end;
#####################################################################
#####################################################################

#####################################################################
#####################################################################
TensorArr:=function(F,f)
local
                R,S,g,                    #R->S is an equivariant chain
                C,D,ChomD,              #map.
                DimensionS,
                DimensionC,
                x, gg, mapgen, LA;
R:=F!.source;
S:=F!.target;
g:=F!.conjugator;
DimensionS:=S!.dimension;
C:=TensorObj(R,f);
D:=TensorObj(S,f);
DimensionC:=C!.dimension;
LA:=Length(Identity(Image(f)));


#####################################################################
mapgen:=function(n,k)
local w, v, x, y, z, u, i, zz;
w:=[1..D!.dimension(n)]*0;
x:=C!.IntToPair(k);
v:=[1..LA]*0; v[x[2]]:=1;
y:=F!.mapping([[x[1],1]],n);

gg:=TransposedMat(Image(f,g))^-1;
for z in y do
u:=v*gg*TransposedMat(Image(f,S!.elts[z[2]]^-1));
u:=SignInt(z[1])*u;
zz:=AbsInt(z[1]);
for i in [(zz-1)*LA+1..zz*LA] do
w[i]:=w[i]+u[i-(zz-1)*LA];
od;
od;
return w;
end;
#####################################################################


#####################################################################
ChomD:=function(v,n)
local w,k;
w:=[1..D!.dimension(n)]*0;
for k in [1..Length(v)] do
if not v[k]=0 then
w:=w+v[k]*mapgen(n,k);
fi;
od;
return w;
end;
#####################################################################


return Objectify(HapChainMap,
        rec(
           source:=C,
           target:=D,
           mapping:=ChomD,
           properties:=[ ["type","chainMap"],
           ["characteristic", EvaluateProperty(C,"characteristic")] 
           ]));
end;
#####################################################################
#####################################################################


if IsHapResolution(R) then
return TensorObj(R,f);
fi;
if IsHapEquivariantChainMap(R) then
return TensorArr(R,f);
fi;

return fail;
						
end);
#####################################################################
#####################################################################