File: polynomials.gd

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (47 lines) | stat: -rw-r--r-- 2,154 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#############################################################################
##
##  HAPPRIME - polynomials.gd
##  Functions, Operations and Methods to extend GAP's polynomials
##  Paul Smith
##
##  Copyright (C)  2008
##  Paul Smith
##  National University of Ireland Galway
##
##  This file is part of HAPprime. 
## 
##  HAPprime is free software; you can redistribute it and/or modify
##  it under the terms of the GNU General Public License as published by
##  the Free Software Foundation; either version 2 of the License, or
##  (at your option) any later version.
## 
##  HAPprime is distributed in the hope that it will be useful,
##  but WITHOUT ANY WARRANTY; without even the implied warranty of
##  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##  GNU General Public License for more details.
## 
##  You should have received a copy of the GNU General Public License
##  along with this program.  If not, see <https://www.gnu.org/licenses/>.
## 
##
#############################################################################


#######################################################################
#
# Declarations for Operations in polynomials.gi
#
DeclareAttribute("TermsOfPolynomial", IsPolynomial);
DeclareAttribute("UnivariateMonomialsOfMonomial", IsPolynomial);
DeclareAttribute("IndeterminateAndExponentOfUnivariateMonomial", IsPolynomial);
DeclareAttribute("IndeterminatesOfPolynomial", IsPolynomial);

DeclareOperation("ReduceIdeal",[IsHomogeneousList and IsRationalFunctionCollection, IsMonomialOrdering]);
DeclareOperation("ReducedPolynomialRingPresentation", [IsPolynomialRing, IsHomogeneousList and IsRationalFunctionCollection, IsHomogeneousList]);
DeclareOperation("ReducedPolynomialRingPresentationMap", [IsPolynomialRing, IsHomogeneousList and IsRationalFunctionCollection, IsHomogeneousList]);

DeclareGlobalFunction("HAPPRIME_SwitchPolynomialIndeterminates");
DeclareGlobalFunction("HAPPRIME_MapPolynomialIndeterminates");
DeclareGlobalFunction("HAPPRIME_CombineIndeterminateMaps");
DeclareGlobalFunction("HAPPRIME_SingularGroebnerBasis");
DeclareGlobalFunction("HAPPRIME_SingularReducedGroebnerBasis");