File: symmetricSquareInf.gi

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (142 lines) | stat: -rw-r--r-- 4,046 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#(C) Graham Ellis, October 2005

#####################################################################
InstallGlobalFunction(NonabelianSymmetricSquare_inf,
function(arg)
local
	AG, SizeOrList,
	gensAG, NiceGensAG,  
	G,G1, gensG, relsG, 
	BG, GhomBG, BG1homF, BG2homF,
	F, relsT, gensF, gensF1, gensF2,
	AF, FhomAF,
	AGhomG, G1homF, G2homF, AG1homF, AG2homF,
	SF, gensSF, gensSFG, FhomSF, AFhomSF, AG1homSF, AG2homSF, SFhomAG,
	AFhomSSF,SSF,gensSF2,SSFhomSF,
	SymmetricSquare, delta,
	Trans,
	CrossedPairing, 
	AGhomBG,
	BGhomAG,
	i,v,w,x,y,z;






AG:=arg[1];

# AG and SF are groups whose elements are essentially enumerated. AG is 
# isomorphic to G and to BG. SF is equal to F/relsT and AF. Two isomorphic 
# copies of AG lie inside SF, and the homomorphisms AG1homSF, AG2homSF 
# identify the two copies. delta is the commutator map from SymmetricSquare to AG.
# The homomorphisms GhomBG, AGhomG, FhomSF, FhomAF, AFhomSF are all 
# isomorphisms. The relationship between the groups is summarized in the 
# following diagrams:   AG->G->BG->F->AF->SF and SF->AG.

gensAG:=GeneratorsOfGroup(AG);
NiceGensAG:=gensAG;
AGhomG:=IsomorphismFpGroup(AG);
G:=Range(AGhomG);


gensG:=FreeGeneratorsOfFpGroup(G);
relsG:=RelatorsOfFpGroup(G);
BG:=FreeGroupOfFpGroup(G);
			#I hope GhomBG really is the identity map!
BGhomAG:=GroupHomomorphismByImagesNC(BG,AG, GeneratorsOfGroup(BG),gensAG);
F:=FreeGroup(2*Length(gensG));
gensF:=GeneratorsOfGroup(F); gensF1:=[]; gensF2:=[];
for i in [1..Length(gensG)] do
Append(gensF1,[gensF[i]]);
Append(gensF2,[gensF[Length(gensG)+i]]);
od;

BG1homF:=GroupHomomorphismByImagesNC(BG,F,gensG,gensF1);
BG2homF:=GroupHomomorphismByImagesNC(BG,F,gensG,gensF2);
AG1homF:=GroupHomomorphismByFunction(AG,F,g->Image(BG1homF,PreImagesRepresentative(BGhomAG,g)));
AG2homF:=GroupHomomorphismByFunction(AG,F,g->Image(BG2homF,PreImagesRepresentative(BGhomAG,g)));


relsT:=[];
for x in relsG do
Append(relsT,[Image(BG1homF,x), Image(BG2homF,x)]);
od;

#for z in GeneratorsOfGroup(AG) do
#for x in NiceGensAG do
#for y in NiceGensAG do
for z in NiceGensAG do
for x in gensAG do
for y in gensAG do
v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG1homF,z) ;
w:=Comm(Image(AG2homF,y^z),Image(AG1homF,x^z) );
Append(relsT,[v*w]);
v:=Comm(Image(AG1homF,x),Image(AG2homF,y))^Image(AG2homF,z);
Append(relsT,[v*w]);
od;
od;
od;

#####################################################################IF
AF:=F/relsT;
FhomAF:=
GroupHomomorphismByImagesNC(F,AF,GeneratorsOfGroup(F),GeneratorsOfGroup(AF));

AFhomSSF:=IsomorphismSimplifiedFpGroup(AF);
SSF:=Image(AFhomSSF);

	    SSFhomSF:=HAP_NqEpimorphismNilpotentQuotient(SSF);

SF:=Range(SSFhomSF);

gensSF2:=List(GeneratorsOfGroup(AF),x->Image(SSFhomSF,Image(AFhomSSF,x)));

AFhomSF:=GroupHomomorphismByImagesNC(AF,SF,GeneratorsOfGroup(AF),gensSF2);

FhomSF:=
GroupHomomorphismByFunction(F,SF,x->Image(AFhomSF,Image(FhomAF,x)) );

#####################################################################FI

AG1homSF:=GroupHomomorphismByFunction(AG,SF,x->Image(FhomSF,Image(AG1homF,x)));
AG2homSF:=GroupHomomorphismByFunction(AG,SF,x->Image(FhomSF,Image(AG2homF,x)));



SymmetricSquare:=CommutatorSubgroup(
Group(List(GeneratorsOfGroup(AG),x->Image(AG1homSF,x))),
Group(List(GeneratorsOfGroup(AG),x->Image(AG2homSF,x))))
;



gensSF:=List(gensF,x->Image(FhomSF,x));
gensSFG:=[];
for i in [1..Length(gensAG)] do
Append(gensSFG,[gensAG[i]]);
od;
for i in [1..Length(gensAG)] do
Append(gensSFG,[gensAG[i]]);
od;

SFhomAG:=GroupHomomorphismByImagesNC(SF,AG,gensSF,gensSFG);

delta:=GroupHomomorphismByImagesNC(SymmetricSquare,AG,
GeneratorsOfGroup(SymmetricSquare),
List(GeneratorsOfGroup(SymmetricSquare),x->Image(SFhomAG,x)));

#####################################################################
CrossedPairing:=function(x,y)

return Comm(Image(AG1homSF,x), Image(AG2homSF,y));

end;
#####################################################################

return rec(homomorphism:=delta, pairing:=CrossedPairing);
end);
#####################################################################