1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#(C) Graham Ellis, 2005-2006
#####################################################################
#####################################################################
InstallGlobalFunction(PolytopalGenerators,
function(GG,v)
local action, G, Points,
vertices, CG, x, w, N,
proj, poly, EdgeGenerators, tmp,
index, i, Faces, FacesFinal, p;
if not (IsPermGroup(GG) or IsMatrixGroup(GG)) then
Print("The group G must be a permutation or matrix group.\n");
return fail;
fi;
if IsPermGroup(GG) then
action:=function(g,V)
return Permuted(V,g^-1);
end;
else
action:=function(g,V)
return g*V; #This actually works!
end;
fi;
Points:=[];
for x in GG do
w:=action(x,v); # warning: left action!
if not w in Points and not w=v then
Add(Points,w);
fi;
od;
Points:=Set(Points);
G:=[];
for w in Points do
for x in GG do
if action(x,v)=w then
Add(G,x);
break;
fi;
od;
od;
###################### CALCULATE CENTRE OF GRAVITY ##################
CG:=Sum(Points)/Size(Points);
##################### CENTRE OF GRAVITY DONE ########################
################# PROJECTION ################################
N:=CG-v; #This might be parallel to an edge!!!
proj:=function(w)
local k, m;
m:=(w-v)*N;
k:= ((CG-v)*N)/m;
return v+(k*(w-v));
end;
#############################################################
################## CALCULATE HULL OF PROJECTED POINTS ###############
Points := List(Points, proj);
poly:=CreatePolymakeObject();
AppendPointlistToPolymakeObject(poly,Points);
################# HULL CALCULATED ###################################
################# READ VERTICES #####################################
vertices := Polymake(poly,"VERTICES");
################ VERTICES READ ######################################
################ RECOVER THE EDGE GENERATORS ########################
EdgeGenerators:=[];
for w in Points do
if w in vertices then
x:=G[Position(Points,w)];
EdgeGenerators[Position(vertices,w)]:=x;
fi;
od;
################ EDGE GENERATORS RECOVERED ##########################
################ READ HASSE DIAGRAM #################################
tmp := Polymake(poly,"F_VECTOR");
index:=[1]; #because Polymake has
for i in [1..Length(tmp)] do #discontinued the DIMS
Add(index,index[i]+tmp[i]); #property.
od; #
Faces := Polymake(poly,"FACES");
if Length(Faces[1])=0 then
Remove(Faces,1);
fi;
Faces:=List(Faces, f -> f-1);
if Length(Faces[1])=1 then
FacesFinal:=[];
for i in [1..Length(index)-1] do
Append(FacesFinal,[[index[i]..index[i+1]-1]]);
od;
Append(FacesFinal,[[index[i+1]]]);
FacesFinal:=(List(FacesFinal,x->List(x,i->Faces[i])));
else
FacesFinal:=[[1..index[1]]];
for i in [1..Length(index)-1] do
Append(FacesFinal,[[index[i]+1..index[i+1]]]);
od;
FacesFinal:=Reversed(List(FacesFinal,x->List(x,i->Faces[i])));
fi;
#FUDGE: Sometimes Polymake lists vertices first, and sometimes last.
#Above we assume that they are listed last. So we'll test and adjust
#if necessary.
if Length(FacesFinal[2][Length(FacesFinal[2])])=1 then
for i in [2..Length(FacesFinal)-1] do
p:=Length(FacesFinal[i]);
FacesFinal[i-1]:=Reversed(FacesFinal[i-1]);
Add(FacesFinal[i-1],FacesFinal[i][p]);
Remove(FacesFinal[i],p);
FacesFinal[i-1]:=Reversed(FacesFinal[i-1]);
od;
fi;
############### HASSE DIAGRAM READ ##################################
return rec(
generators:=EdgeGenerators,
hasseDiagram:=FacesFinal,
vector:=v);
end);
#####################################################################
|