1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
#DeclareGlobalFunction("Spin");
####################################################################
################### Spinning CW-complexes ##########################
####################################################################
############ Input: inclusion map from a subcomplex U to ###########
################### its parent (n-dimensional) regular #############
################### CW-complex X ###################################
########### Output: (n+1)-dimensional CW-complex S(X) ##############
################### corresponding to the `spinning' ################
################### of the original complex about U ################
####################################################################
InstallGlobalFunction(Spin,
function(inc)
local X,Y,U, map, bndX, bndY, bnd, orient, quad2pair, pair2quad,
indx,bndd,p,pr,INDX,pos,i, j, ij, n, x, y, a, b, ia, ib,
count, BND, ORIEN, M;
X:=Target(inc);
U:=Source(inc);
indx:=U!.boundaries;;
map:=inc!.mapping;
Y:=[ [[1,0],[1,0]], [[2,1,2],[2,1,2]], [[2,1,2]], [] ];
Y:=RegularCWComplex(Y);
#Y is the unit disk
bndX:=X!.boundaries;
bndY:=Y!.boundaries;
bnd:=List([0..Dimension(X)+Dimension(Y)],i->[]);
orient:=List([0..Dimension(X)+Dimension(Y)],i->[]);
###############################
###############################
quad2pair:=[];
pair2quad:=List([1..1+Dimension(X)+Dimension(Y)],i->[]);;
count:=List([1..1+Dimension(X)+Dimension(Y)],i->0);
for i in [1..1+Dimension(X)] do
quad2pair[i]:=[];
for j in [1..1+Dimension(Y)] do
quad2pair[i][j]:=[];
ij:=i-1+j;
for x in [1..Length(bndX[i])] do
quad2pair[i][j][x]:=[];
for y in [1..Length(bndY[j])] do
count[ij]:=count[ij]+1;
quad2pair[i][j][x][y]:=[ij,count[ij]];
pair2quad[ij][count[ij]]:=[i,j,x,y];
od; od;
od; od;
###############################
###############################
###############################
###############################
for i in [1..1+Dimension(X)] do
for j in [1..1+Dimension(Y)] do
for x in [1..Length(bndX[i])] do
for y in [1..Length(bndY[j])] do
BND:=[0];
ORIEN:=[];
if i>1 then
a:=bndX[i][x];
for ia in [2..Length(a)] do #a{[2..Length(a)]} do
Add(BND,quad2pair[i-1][j][a[ia]][y][2]);
BND[1]:=BND[1]+1;
##############
##############
od;
fi;
if j>1 then
b:=bndY[j][y];
for ib in [2..Length(b)] do #b{[2..Length(b)]} do
Add(BND,quad2pair[i][j-1][x][b[ib]][2]);
BND[1]:=BND[1]+1;
##############
##############
od;
fi;
bnd[i-1+j][quad2pair[i][j][x][y][2]]:=BND;
orient[i-1+j][quad2pair[i][j][x][y][2]]:=ORIEN;
od;od;
od;od;
bnd[1]:=List(bnd[1],i->[1,0]);
Add(bnd,[]);
##############################
##############################
#Let's now work on removing those cells of the
#form f x e with e the unique 2-cell in Y and f NOT in U.
indx:=List([1..Length(X!.boundaries)], a-> [1..Length(X!.boundaries[a])]);
for n in [1..Length(indx)-1] do
for j in [1..Length(U!.boundaries[n])] do
indx[n][map(n-1,j)]:=0;
od;
od;
#INDX[n] is a list of n-1-cells
#bnd[n] is a list of boundaries of n-1-cells
#map(n,i) is the image of the ith n-cell in U
INDX:=List([1..Length(bnd)], a-> [1..Length(bnd[a])]);
for p in [1..1+Dimension(X)] do
for x in [1..X!.nrCells(p-1)] do
if indx[p][x]>0 then
pr:=quad2pair[p][3][x][1];
INDX[pr[1]][pr[2]]:=0;
fi;
od;
od;
for n in [1..Length(INDX)] do
INDX[n]:=Filtered(INDX[n],a->a>0);
od;
for n in [1..Length(bnd)] do
bnd[n]:=bnd[n]{INDX[n]};
od;
###########################
pos:=function(n,i)
return Position(INDX[n],i);
end;
###########################
#For safety, we'll be inefficient and create a copy of bnd rather
#than modify bnd. This gets around silly mistakes that could arise
#with pointers.
bndd:=List([1..Length(bnd)],i->[]);
bndd[1]:=bnd[1];
for n in [1..Length(bnd)-1] do
for x in bnd[n+1] do
Add(bndd[n+1], Concatenation([x[1]], List(x{[2..Length(x)]}, i-> pos(n,i)))) ;
od;
od;
M:= RegularCWComplex(1*bndd);
OrientRegularCWComplex(M);
return M;
end);
##################################################
##################################################
|