File: homotopyLowerCenterSeries.gi

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (168 lines) | stat: -rw-r--r-- 4,189 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#############################################################################
#0
#F	HomotopyLowerCentralSeriesOfCrossedModule
##	Input:	A crossed module X
##	Output:	The homotopy lower central series of X
##
InstallGlobalFunction(HomotopyLowerCentralSeriesOfCrossedModule, function(X)
local 
	del,act,M,P,GensM,ImgGensM,A,G,nat,Gs,Ps,
	nOne,XOne,i,phi,MorphismOne,
	Gens,As,nTwo,a,g,natMs,Ms,XTwo,GenMs,
	PreImGenMs,MorphismTwo,
	ActOne,MapOne,MapTwo;
	
	del:=X!.map;
	act:=X!.action;
	M:=Source(del);
	P:=Range(del);
	GensM:=GeneratorsOfGroup(M);
	ImgGensM:=List(GensM,m->Image(del,m));
	nat:=NaturalHomomorphismByNormalSubgroup(P,Image(del));
	A:=Kernel(del);
	G:=Range(nat);
	Gs:=[G];
	Ps:=[P];
	nOne:=1;
	while not IsTrivial(Gs[nOne]) do
		nOne:=nOne+1;
		Gs[nOne]:=CommutatorSubgroup(Gs[nOne-1],G);
		Ps[nOne]:=PreImage(nat,Gs[nOne]);
	od;
	MorphismOne:=[];
	if nOne>1 then	
		Ps:=Reversed(Ps);
		XOne:=[];
		for i in [1..nOne-1] do
			phi:=GroupHomomorphismByImages(M,Ps[i],GensM,ImgGensM);
			XOne[i]:=Objectify(HapCrossedModule,
							rec(map:=phi,
								action:=act
								));
		od;
		XOne[nOne]:=X;
		#########################################################
		#1
		MapOne:= function(i)
			return function(n)
				local Gens;
				if n = 1 then
					return IdentityMapping(M);
				fi;
				if n =2 then
					Gens:=GeneratorsOfGroup(Ps[i]);
					return GroupHomomorphismByImages(Ps[i],
							Ps[i+1],Gens,Gens);
				fi;
			end;
		end;
		##
		#########################################################
		
		for i in [1..nOne-1] do
			MorphismOne[i]:=Objectify(HapCrossedModuleMorphism,
						rec(source:=XOne[i],
							target:=XOne[i+1],
							mapping:=MapOne(i)
						));
		od;
	fi;  ## end of nOne>1

	G:=List(G,g->PreImagesRepresentative(nat,g));
	As:=[A];
	nTwo:=1;
	while not IsTrivial(As[nTwo]) do
		Gens:=[];
		for a in As[nTwo] do
			for g in G do
				Add(Gens,a*act(g,a^(-1)));
			od;
		od;
		nTwo:=nTwo+1;
		As[nTwo]:=Group(Gens);
	od;
	MorphismTwo:=[];
	if nTwo>1 then
		As:=Reversed(As);
		natMs:=[IdentityMapping(M)];
		Ms:=[M];
		XTwo:=[X];
		GenMs:=[GensM];
		PreImGenMs:=[GensM];
		
		#########################################################
		#1
		ActOne:=function(i)
			return	function(p,mA)
				return Image(natMs[i],act(p,
						PreImagesRepresentative(natMs[i],mA)));
			end;
		end;
		##
		#########################################################
		
		for i in [2..nTwo] do
			natMs[i]:=NaturalHomomorphismByNormalSubgroup(M,As[i]);
			Ms[i]:=Range(natMs[i]);
			GenMs[i]:=GeneratorsOfGroup(Ms[i]);
			PreImGenMs[i]:=List(GenMs[i],
					m->PreImagesRepresentative(natMs[i],m));
			phi:=GroupHomomorphismByImages(Ms[i],P,GenMs[i],
					List(PreImGenMs[i],m->Image(del,m)));
			XTwo[i]:=Objectify(HapCrossedModule,
							rec(map:=phi,
								action:=ActOne(i)
								));
		od;
		
		#########################################################
		#1
		MapTwo:=function(i)
			return function(n)
				if n = 1 then
					return GroupHomomorphismByImages(Ms[i],Ms[i+1],
						GenMs[i],List(PreImGenMs[i],
							m->Image(natMs[i+1],m)));
				fi;
				if n =2 then
					return IdentityMapping(P);
				fi;
			end;
		end;
		##
		#########################################################
		
		for i in [1..nTwo-1] do
			MorphismTwo[i]:=Objectify(HapCrossedModuleMorphism,
							rec(source:=XTwo[i],
								target:=XTwo[i+1],
								mapping:=MapTwo(i)
								));
		od;
	fi; 	##end of nTwo>1
	return Concatenation(MorphismOne,MorphismTwo);
end);
##
################### end of HomotopyLowerCentralSeriesOfCrossedModule ########


#############################################################################
#0
#F	HomotopyLowerCentralSeries
##	Input:	A crossed module or a cat-1-group
##	Output:	The homotopy lower central series of the input
##
InstallGlobalFunction(HomotopyLowerCentralSeries, function(X)
local XC,LXC;

	if IsHapCrossedModule(X) then
		return HomotopyLowerCentralSeriesOfCrossedModule(X);
	fi;	
	if IsHapCatOneGroup(X) then
		XC:=CrossedModuleByCatOneGroup(X);
		LXC:=HomotopyLowerCentralSeriesOfCrossedModule(XC);
		return CatOneGroupByCrossedModule(LXC);
	fi;
end);
##
################### end of HomotopyLowerCentralSeries #######################