1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
[1X16 [33X[0;0YRegular CW-structure on knots (written by Kelvin Killeen)[133X[101X
[1X16.1 [33X[0;0YKnot complements in the 3-ball[133X[101X
[33X[0;0YWhile methods for endowing knot complements with CW-structure already exist
in HAP (see section 2.1), they often result in a large number of cells which
can make computing with them taxing. The following example shows how one can
obtain a comparatively small 3-dimensional regular CW-complex corresponding
to the complement of a thickened trefoil knot from an arc presentation.
Recall that an arc presentation is encoded in HAP as a list of integer pairs
corresponding to the position of the endpoints of each horizontal arc in a
grid.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xk_:=PureCubicalKnot(3,1); [127X[104X
[4X[28Xprime knot 1 with 3 crossings[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xarc:=ArcPresentation(k_); [127X[104X
[4X[28X[ [ 2, 5 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 4 ] ][128X[104X
[4X[25Xgap>[125X [27Xk_:=RegularCWComplex(PureComplexComplement(k_));[127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(k_);[127X[104X
[4X[28X13291[128X[104X
[4X[25Xgap>[125X [27Xk:=KnotComplement(arc); [127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(k);[127X[104X
[4X[28X395[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YAn optional argument of [10X"rand"[110X in the [10XKnotComplement[110X function randomises the
order in which [22X2[122X-cells are added to the complex. This allows for alternate
presentations of the knot group.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xarc:=ArcPresentation(PureCubicalKnot(3,1));[127X[104X
[4X[28X[ [ 2, 5 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 1, 4 ] ][128X[104X
[4X[25Xgap>[125X [27Xk:=KnotComplement(arc,"rand");[127X[104X
[4X[28XRandom 2-cell selection is enabled.[128X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xg:=FundamentalGroup(k); RelatorsOfFpGroup(g); [127X[104X
[4X[28X#I there are 2 generators and 1 relator of total length 6[128X[104X
[4X[28X<fp group of size infinity on the generators [ f1, f2 ]>[128X[104X
[4X[28X[ f2^-1*f1*f2^-1*f1^-1*f2*f1^-1 ][128X[104X
[4X[25Xgap>[125X [27Xk:=KnotComplement(arc,"rand"); [127X[104X
[4X[28XRandom 2-cell selection is enabled.[128X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xg:=FundamentalGroup(k); RelatorsOfFpGroup(g);[127X[104X
[4X[28X#I there are 2 generators and 1 relator of total length 7[128X[104X
[4X[28X<fp group of size infinity on the generators [ f1, f2 ]>[128X[104X
[4X[28X[ f1*f2^-2*f1*f2*f1^-1*f2 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YIt is often useful to obtain an inclusion of regular CW-complexes [22Xι : ∂
(N(K)) ↪ B^3 backslash N(K)[122X from the boundary of a tubular neighbourhood of
some knot [22XN(K)[122X into its complement in the [22X3[122X-ball [22XB^3 backslash N(K)[122X. The
below example does this for the first prime knot on 11 crossings.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xarc:=ArcPresentation(PureCubicalKnot(11,1));[127X[104X
[4X[28X[ [ 2, 9 ], [ 1, 3 ], [ 2, 6 ], [ 4, 7 ], [ 3, 5 ], [ 6, 10 ], [ 4, 8 ], [128X[104X
[4X[28X [ 9, 11 ], [ 7, 10 ], [ 1, 8 ], [ 5, 11 ] ][128X[104X
[4X[25Xgap>[125X [27Xk:=KnotComplementWithBoundary(arc);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(Source(i));[127X[104X
[4X[28X616[128X[104X
[4X[25Xgap>[125X [27XSize(Target(i));[127X[104X
[4X[28X1043[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YNote that we can add [22Xn[122X-cells to regular CW-complexes by specifying the
[22X(n-1)[122X-cells in their boundaries and [22X(n+1)[122X-cells in their coboundaries.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xk:=KnotComplement([[1,2],[1,2]])!.boundaries;;[127X[104X
[4X[25Xgap>[125X [27XHomology(RegularCWComplex(k),0);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[25Xgap>[125X [27XAddCell(k,0,[0],[]); [127X[104X
[4X[25Xgap>[125X [27XHomology(RegularCWComplex(k),0);[127X[104X
[4X[28X[ 0, 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X16.2 [33X[0;0YTubular neighbourhoods[133X[101X
[33X[0;0YLet [22XY[122X denote a CW-subcomplex of a regular CW-complex [22XX[122X and let [22XN(Y)[122X denote
an open tubular neighbourhood of [22XY[122X. Given an inclusion of regular
CW-complexes [22Xf : Y ↪ X[122X, this algorithm describes a procedure for obtaining
the associated inclusion [22Xf' : ∂ C ↪ C[122X where [22XC=X backslash N(Y)[122X and [22X∂ C[122X
denotes the boundary of [22XC[122X. The following is also assumed:[133X
[33X[0;0YLet [22Xe^n[122X denote a cell of [22XX backslash Y[122X of dimension [22Xn[122X with [22Xbare^n[122X denoting
its closure. For each [22Xn[122X-cell, all of the connected components of the
subcomplex [22Xbare^n ∩ Y[122X are contractible.[133X
[33X[0;0YSome additional terminology and notation is needed to describe this
algorithm. The output regular CW-complex [22XX backslash N(Y)[122X consists of the
cell complex [22XX backslash Y[122X as well as some additional cells to maintain
regularity. A cell of [22XX backslash N(Y)[122X is referred to as [13Xinternal[113X if it lies
in [22XX backslash Y[122X, it is [13Xexternal[113X otherwise. Let [22Xbare^n[122X denote the closure in
[22XX[122X of an internal cell [22Xe^n[122X. Note that [22Xbare^n[122X is a CW-subcomplex of [22XX[122X and so
is the intersection [22Xbare^n ∩ Y[122X which can be expressed as the union[133X
[33X[0;0Y[22Xbare^n ∩ Y = A_1 ∪ A_2 ∪ ⋯ ∪ A_k[122X[133X
[33X[0;0Yof its path components [22XA_i[122X all of which are CW-subcomplexes of [22XY[122X. For each
[22Xn[122X-cell of [22XX backslash Y[122X there is one internal [22Xn[122X-cell [22Xe^n[122X of [22XX backslash
N(Y)[122X. For [22Xn ≥ 1[122X there is also one external [22X(n-1)[122X-cell [22Xf^e^n_A_i[122X for each
path component [22XA_i[122X of [22Xbare^n ∩ Y[122X. Lastly, we need a method for determining
the homological boundary of the internal and external cells:[133X
[33X[0;0Y[22X∙[122X The boundary of an internal [22Xn[122X-cell [22Xe^n[122X consists of all those internal
[22X(n-1)[122X-cells of [22Xbare^n[122X together with all external [22X(n-1)[122X-cells [22Xf^e^n_A_i[122X where
[22XA_i[122X is a path component of [22Xbare^n ∩ Y[122X.[133X
[33X[0;0Y[22X∙[122X The boundary of an external [22X(n-1)[122X-cell [22Xf^e^n_A_i[122X consists of all those
external [22X(n-2)[122X-cells [22Xf^e^n-1}_B_j[122X where [22Xe^n-1[122X is an [22X(n-1)[122X-cell of [22Xbare^n[122X and
[22XB_j ⊆ A_i[122X is a path component of [22XA_i[122X.[133X
[33X[0;0YThe following three steps comprise the algorithm.[133X
[33X[0;0Y[22X(1)[122X For each internal [22Xn[122X-cell [22Xe^n ⊂ X backslash Y[122X, compute the CW-complex
[22Xbare^n ∩ Y[122X as a union of path components [22XA_1 ∪ A_2 ∪ ⋯ ∪ A_k[122X. This
information can be used to determine the number of cells of [22XX backslash N(Y)[122X
in each dimension.[133X
[33X[0;0Y[22X(2)[122X Create a list [22XB=[ [ ], [ ], ..., [ ] ][122X of length [22XdimX +1[122X.[133X
[33X[0;0Y[22X(3)[122X For [22X0 ≤ n ≤ dimX[122X set [22XB[n+1]=[ b_1, b_2, ..., b_α_n ][122X where [22Xα_n[122X is the
number of [22Xn[122X-cells in [22XX backslash N(Y)[122X and [22Xb_i[122X is a list of integers
describing the [22X(n-1)[122X-cells of the [22Xi ^ th[122X [22Xn[122X-cell of [22XX backslash N(Y)[122X. The
internal cells will always be listed before the external cells in each
sublist. Return B as a regular CW-complex.[133X
[33X[0;0YThe following example computes the tubular neighbourhood of a [22X1[122X-dimensional
subcomplex of a [22X3[122X-dimensional complex corresponding to the Hopf link
embedded in the closed [22X3[122X-ball.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xarc:=[[2,4],[1,3],[2,4],[1,3]];; [127X[104X
[4X[25Xgap>[125X [27Xf:=ArcPresentationToKnottedOneComplex(arc);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xcomp:=RegularCWComplexComplement(f);[127X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X151 out of 151 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YNote that the output of this algorithm is just a regular CW-complex, not an
inclusion map. The function [10XBoundaryMap[110X can be employed to obtain the
boundary of a pure complex. This results in three path components for this
example: two corresponding to the boundary of the knotted tori and the other
corresponding to the boundary of the [22X3[122X-ball in which the link was embedded.
These path components can be obtained as individual CW-subcomplexes if
desired. A CW-subcomplex is represented in HAP as a list [22X[X,s][122X where [22XX[122X is a
regular CW-complex and [22Xs[122X is a list of length [22Xn[122X whose [22Xi^th[122X entry lists the
indexing of each [22X(i-1)[122X-cell of the [22Xn[122X-dimensional subcomplex of [22XX[122X.
CW-subcomplexes and CW maps can be converted between each other
interchangeably. This next example obtains the inclusion detailed in the
above algorithm, finds the path components of the source of said inclusion,
shows that they are in fact disjoint, and then obtains the first four
integral homology groups of each component.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xf_:=BoundaryMap(comp);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xf_:=RegularCWMapToCWSubcomplex(f_);;[127X[104X
[4X[25Xgap>[125X [27Xpaths:=PathComponentsCWSubcomplex(f_);[127X[104X
[4X[28X[ [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [128X[104X
[4X[28X [ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 19, 20 ], [128X[104X
[4X[28X [ 1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 33, 34, 35, 46, 47, 48 [128X[104X
[4X[28X ], [ 11, 12, 13, 14, 15, 16, 35, 36 ] ] ], [128X[104X
[4X[28X [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ 21, 24, 25, 27, 30, 31, 32, 37, 38, 39, 40, 43, 45, 46, 48 ], [128X[104X
[4X[28X [ 49, 51, 53, 56, 57, 59, 61, 63, 65, 67, 69, 71, 73, 74, 76, 79, [128X[104X
[4X[28X 82, 83, 86, 87, 90, 91 ], [ 37, 39, 41, 44, 45, 47, 49 ] ] ], [128X[104X
[4X[28X [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ 22, 23, 26, 28, 29, 33, 34, 35, 36, 41, 42, 44, 47, 49, 50 ], [128X[104X
[4X[28X [ 50, 52, 54, 55, 58, 60, 62, 64, 66, 68, 70, 72, 75, 77, 78, 80, [128X[104X
[4X[28X 81, 84, 85, 88, 89, 92 ], [ 38, 40, 42, 43, 46, 48, 50 ] ] ] ][128X[104X
[4X[25Xgap>[125X [27Xpaths:=List(paths,CWSubcomplexToRegularCWMap);[127X[104X
[4X[28X[ Map of regular CW-complexes[128X[104X
[4X[28X , Map of regular CW-complexes[128X[104X
[4X[28X , Map of regular CW-complexes[128X[104X
[4X[28X ][128X[104X
[4X[25Xgap>[125X [27XList([1..3],x->List(Difference([1..3],[x]),y->IntersectionCWSubcomplex(paths[x],paths[y])));[127X[104X
[4X[28X[ [ [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ ], [ ], [ ] ] ], [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ ], [ ], [ ] ] ] ], [ [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ ], [ ], [ ] ] ], [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ ], [ ], [ ] ] ] ], [ [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ ], [ ], [ ] ] ], [ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [ [ ], [ ], [ ] ] ] ] ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XList(paths,x->List([0..3],y->Homology(Source(x),y)));[127X[104X
[4X[28X[ [ [ 0 ], [ ], [ 0 ], [ ] ], [ [ 0 ], [ 0, 0 ], [ 0 ], [ ] ], [128X[104X
[4X[28X [ [ 0 ], [ 0, 0 ], [ 0 ], [ ] ] ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YAs previously mentioned, for the tubular neighbourhood algorithm to work, we
require that no external cells yield non-contractible path-components in
their intersection with the subcomplex. If this is ever the case then we can
subdivide the offending cell to prevent this from happening. We have
implemented two subdivision algorithms in HAP, one for barycentrically
subdividing a given cell, and the other for subdividing an [22Xn[122X-cell into as
many [22Xn[122X-cells as there are [22X(n-1)[122X-cells in its boundary. Barycentric
subdivision is integrated into the [10XRegularCWComplexComplement[110X function and
will be performed automatically as required. The following example shows
this automatic subdivision running via the complement of a tubular
neighbourhood of the unknot, then obtains an inclusion map from the closure
of an arbitrary [22X3[122X-cell of this complex and then compares the difference in
size of the two different subdivisions of a 2-cell in the boundary of this
[22X3[122X-cell.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xarc:=[[1,2],[1,2]];;[127X[104X
[4X[25Xgap>[125X [27Xunknot:=ArcPresentationToKnottedOneComplex(arc);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xf:=RegularCWComplexComplement(unknot);[127X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X79 out of 79 cells tested.[128X[104X
[4X[28XSubdividing 3 cell(s):[128X[104X
[4X[28X100% complete. [128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X145 out of 145 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xf:=Objectify(HapRegularCWMap,rec(source:=f,target:=f,mapping:={i,j}->j)); [127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xclosure:=ClosureCWCell(Target(f),3,1);[127X[104X
[4X[28X[ Regular CW-complex of dimension 3[128X[104X
[4X[28X , [128X[104X
[4X[28X [ [ 1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 20, 21, 22, 23, 25 ], [128X[104X
[4X[28X [ 1, 2, 3, 7, 8, 9, 10, 11, 15, 16, 17, 20, 21, 22, 23, 24, 25, 27, 28, 55, 58, 59, [128X[104X
[4X[28X 60, 63 ], [ 1, 4, 7, 8, 9, 13, 14, 15, 18, 52 ], [ 1 ] ] ][128X[104X
[4X[25Xgap>[125X [27XSize(Target(f)); [127X[104X
[4X[28X195[128X[104X
[4X[25Xgap>[125X [27XSize(Target(BarycentricallySubdivideCell(f,2,1))); [127X[104X
[4X[28X231[128X[104X
[4X[25Xgap>[125X [27XSize(Target(SubdivideCell(f,2,1))); [127X[104X
[4X[28X207[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X16.3 [33X[0;0YKnotted surface complements in the 4-ball[133X[101X
[33X[0;0YA construction of Satoh's, the tube map, associates a ribbon torus-knot to
virtual knot diagrams. A virtual knot diagram differs from a knot diagram in
that it allows for a third type of crossing, a virtual crossing. The image
of such a crossing via the tube map is two tori which pass through each
other. An arc diagram is a triple of lists [10X[arc,cross,cols][110X that encode
virtual knot diagrams. [10Xarc[110X is an arc presentation. [10Xcross[110X is a list of length
the number of crossings in the knot associated to the arc presentation whose
entries are [22X-1,0[122X or [22X1[122X corresponding to an undercrossing (horizontal arc
underneath vertical arc), a virtual crossing (depicted by intersecting
horizontal and vertical arcs) and an overcrossing (horizontal arc above
vertical arc) respectively. [10Xcols[110X is a list of length the number of [22X0[122X entries
in [10Xcross[110X and its entries are [22X1,2,3[122X or [22X4[122X. It describes the types of
'colourings' we assign to the virtual crossings. We interpret each integer
as the change in 4-dimensional height information as represented by a colour
scale from blue (lower down in 4-space), to green (0 level), to red (higher
up in 4-space). Without loss of generality, we impose that at each virtual
crossing, the vertical arc passes through the horizontal arc. Thus, [22X1[122X
corresponds to the vertical bar entering the horizontal bar as blue and
leaving as blue, [22X2[122X corresponds to entering as blue and leaving as red, [22X3[122X
corresponds to entering as red and leaving as blue and [22X4[122X corresponds to
entering and leaving as red. A coloured arc diagram can be visualised using
the [10XViewColouredArcDiagram[110X function.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xarc:=ArcPresentation(PureCubicalKnot(6,1));[127X[104X
[4X[28X[ [ 5, 8 ], [ 4, 6 ], [ 3, 5 ], [ 2, 4 ], [ 1, 3 ], [ 2, 7 ], [ 6, 8 ], [ 1, 7 ] ][128X[104X
[4X[25Xgap>[125X [27Xcross:=[0,0,1,-1,-1,0];;[127X[104X
[4X[25Xgap>[125X [27Xcols:=[1,4,3];;[127X[104X
[4X[25Xgap>[125X [27XViewArc2Presentation([arc,cross,cols]); [127X[104X
[4X[28Xconvert-im6.q16: pixels are not authentic `/tmp/HAPtmpImage.txt' @ error/cache.c/QueueAuthenticPixelCacheNexus/4381.[128X[104X
[4X[28X[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YTowards obtaining a regular CW-decomposition of ribbon torus-knots, we first
begin by embedding a self-intersecting knotted torus in the 3-ball. The
function [10XArcDiagramToTubularSurface[110X inputs a coloured arc diagram and
outputs an inclusion from the boundary of some (potentially
self-intersecting) torus in the [22X3[122X-ball. By inputting just an arc
presentation, one can obtain an inclusion identical to the
[10XKnotComplementWithBoundary[110X function. By additionally inputting a list of [22X-1[122Xs
and [22X1[122Xs, one can obtain an inclusion similar to [10XKnotComplementWithBoundary[110X
but where there is extra freedom in determining whether or not a given
crossing is an under/overcrossing. If one inputs both of the above but
includes [22X0[122X entries in the [10Xcross[110X list and includes the list of colours, the
output is then an inclusion from an embedded self-intersecting torus into
the 3-ball where each [22X2[122X-cell (the top-dimensional cells of the
self-intersecting surface) is assigned a colour.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xtub:=ArcDiagramToTubularSurface(arc); [127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xtub:=ArcDiagramToTubularSurface([arc,cross]);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xtub:=ArcDiagramToTubularSurface([arc,cross,cols]);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XList([1..Length(Source(tub)!.boundaries[3])],x->tub!.colour(2,tub!.mapping(2,x)));[127X[104X
[4X[28X[ [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [128X[104X
[4X[28X [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [128X[104X
[4X[28X [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [128X[104X
[4X[28X [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [128X[104X
[4X[28X [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ -1 ], [ -1 ], [128X[104X
[4X[28X [ 0 ], [ 0 ], [ -1 ], [ -1 ], [ -1 ], [ -1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 1 ], [ 1 ], [128X[104X
[4X[28X [ 0 ], [ 0 ], [ 1 ], [ 1 ], [ 1 ], [ 1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 1 ], [ 1 ], [ 0 ], [128X[104X
[4X[28X [ 0 ], [ -1 ], [ -1 ], [ 1 ], [ -1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ -1 ], [ -1 ], [ 0 ], [128X[104X
[4X[28X [ 1 ], [ 1 ], [ 0 ], [ 0 ], [ 0 ], [ 0 ], [ 1 ], [ -1 ], [ 0 ] ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YFrom this self-intersecting surface with colour, we can lift it to a surface
without self-intersections in [22XR^4[122X. We do this by constructing a regular
CW-complex of the direct product [22XB^3 × [a,b][122X where [22XB^3[122X denotes the [22X3[122X-ball, [22Xa[122X
is [22X1[122X less than the smallest integer assigned to a cell by the colouring, and
[22Xb[122X is [22X1[122X greater than the largest integer assigned to a cell by the colouring.
The subcomplex of the direct product corresponding to the surface without
intersection can be obtained using the colouring with additional care taken
to not lift any 1-cells arising as double-point singularities. The following
example constructs the complement of a ribbon torus-link embedded in [22XR^4[122X
obtained from the Hopf link with one virtual crossing and then calculates
some invariants of the resulting space. We compare the size of this complex,
as well as how long it takes to obtain the same invariants, with a cubical
complex of the same space. As barycentric subdivision can massively increase
the size of the cell complex, the below method sequentially obtains the
tubular neighbourhood of the entire subcomplex by obtaining the tubular
neighbourhood of each individual [22X2[122X-cell. This has yet to be optimised so it
currently takes some time to complete.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xarc:=[[2,4],[1,3],[2,4],[1,3]];; [127X[104X
[4X[25Xgap>[125X [27Xtub:=ArcDiagramToTubularSurface([arc,[0,-1],[2]]);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27Xtub:=LiftColouredSurface(tub);[127X[104X
[4X[28XMap of regular CW-complexes[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XDimension(Source(tub));[127X[104X
[4X[28X2[128X[104X
[4X[25Xgap>[125X [27XDimension(Source(tub));[127X[104X
[4X[28X4[128X[104X
[4X[25Xgap>[125X [27Xmap:=RegularCWMapToCWSubcomplex(tub);;[127X[104X
[4X[25Xgap>[125X [27Xsub:=SortedList(map[2][3]);;[127X[104X
[4X[25Xgap>[125X [27Xsub:=List(sub,x->x-(Position(sub,x)-1));;[127X[104X
[4X[25Xgap>[125X [27Xclsr:=ClosureCWCell(map[1],2,sub[1])[2];;[127X[104X
[4X[25Xgap>[125X [27Xseq:=CWSubcomplexToRegularCWMap([map[1],clsr]);;[127X[104X
[4X[25Xgap>[125X [27Xtub:=RegularCWComplexComplement(seq);[127X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X3501 out of 3501 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[25Xgap>[125X [27Xfor i in [2..Length(sub)] do[127X[104X
[4X[25X>[125X [27X clsr:=ClosureCWCell(tub,2,sub[i])[2];;[127X[104X
[4X[25X>[125X [27X seq:=CWSubcomplexToRegularCWMap([tub,clsr]);;[127X[104X
[4X[25X>[125X [27X tub:=RegularCWComplexComplement(seq);[127X[104X
[4X[25X>[125X [27Xod;[127X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X3612 out of 3612 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X3693 out of 3693 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X3871 out of 3871 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X3925 out of 3925 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X4084 out of 4084 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X4216 out of 4216 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X4348 out of 4348 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X4529 out of 4529 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X4688 out of 4688 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X4723 out of 4723 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X4918 out of 4918 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X5107 out of 5107 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X5269 out of 5269 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X5401 out of 5401 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X5548 out of 5548 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X5702 out of 5702 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X5846 out of 5846 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6027 out of 6027 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6089 out of 6089 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6124 out of 6124 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6159 out of 6159 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6349 out of 6349 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6467 out of 6467 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6639 out of 6639 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6757 out of 6757 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X6962 out of 6962 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7052 out of 7052 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7242 out of 7242 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7360 out of 7360 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7470 out of 7470 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7561 out of 7561 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7624 out of 7624 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7764 out of 7764 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7904 out of 7904 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X7979 out of 7979 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8024 out of 8024 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8086 out of 8086 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8148 out of 8148 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8202 out of 8202 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8396 out of 8396 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8534 out of 8534 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8625 out of 8625 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8736 out of 8736 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8817 out of 8817 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X8983 out of 8983 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9073 out of 9073 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9218 out of 9218 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9323 out of 9323 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9442 out of 9442 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9487 out of 9487 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9538 out of 9538 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9583 out of 9583 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[28XTesting contractibility...[128X[104X
[4X[28X9634 out of 9634 cells tested.[128X[104X
[4X[28XThe input is compatible with this algorithm.[128X[104X
[4X[25Xgap>[125X [27XSize(tub); [127X[104X
[4X[28X9685[128X[104X
[4X[25Xgap>[125X [27Xtotal_time_1:=0;;[127X[104X
[4X[25Xgap>[125X [27XList([0..4],x->Homology(tub,x)); total_time_1:=total_time_1+time;;[127X[104X
[4X[28X[ [ 0 ], [ 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0 ], [ ] ][128X[104X
[4X[25Xgap>[125X [27Xc:=ChainComplexOfUniversalCover(tub);; total_time_1:=total_time_1+time;;[127X[104X
[4X[25Xgap>[125X [27Xl:=Filtered(LowIndexSubgroups(c!.group,5),g->Index(c!.group,g)=5);; total_time_1:=total_time_1+time;;[127X[104X
[4X[25Xgap>[125X [27Xinv:=Set(l,g->Homology(TensorWithIntegersOverSubgroup(c,g),2)); total_time_1:=total_time_1+time;;[127X[104X
[4X[28X[ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] [128X[104X
[4X[28X ][128X[104X
[4X[25Xgap>[125X [27Xtotal_time_1;[127X[104X
[4X[28X3407[128X[104X
[4X[25Xgap>[125X [27Xhopf:=PureComplexComplement(HopfSatohSurface());;[127X[104X
[4X[25Xgap>[125X [27Xhopf:=RegularCWComplex(hopf);;[127X[104X
[4X[25Xgap>[125X [27XSize(hopf);[127X[104X
[4X[28X4508573[128X[104X
[4X[25Xgap>[125X [27Xtotal_time_2:=0;;[127X[104X
[4X[25Xgap>[125X [27Xc_:=ChainComplexOfUniversalCover(hopf);; total_time_2:=total_time_2+time;;[127X[104X
[4X[25Xgap>[125X [27Xl_:=Filtered(LowIndexSubgroups(c_!.group,5),g->Index(c_!.group,g)=5);; total_time_2:=total_time_2+time;;[127X[104X
[4X[25Xgap>[125X [27Xinv_:=Set(l_,g->Homology(TensorWithIntegersOverSubgroup(c_,g),2));; total_time_2:=total_time_2+time;;[127X[104X
[4X[25Xgap>[125X [27Xtotal_time_2;[127X[104X
[4X[28X1116000[128X[104X
[4X[25Xgap>[125X [27Xinv_=inv;[127X[104X
[4X[28Xtrue[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
|