1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
[1X3 [33X[0;0YCovering spaces[133X[101X
[33X[0;0YLet [22XY[122X denote a finite regular CW-complex. Let [22Xwidetilde Y[122X denote its
universal covering space. The covering space inherits a regular CW-structure
which can be computed and stored using the datatype of a [22Xπ_1Y[122X-equivariant
CW-complex. The cellular chain complex [22XC_∗widetilde Y[122X of [22Xwidetilde Y[122X can be
computed and stored as an equivariant chain complex. Given an admissible
discrete vector field on [22XY,[122X we can endow [22XY[122X with a smaller non-regular
CW-structre whose cells correspond to the critical cells in the vector
field. This smaller CW-structure leads to a more efficient chain complex [22XC_∗
widetilde Y[122X involving one free generator for each critical cell in the
vector field.[133X
[1X3.1 [33X[0;0YCellular chains on the universal cover[133X[101X
[33X[0;0YThe following commands construct a [22X6[122X-dimensional regular CW-complex [22XY≃ S^1 ×
S^1× S^1[122X homotopy equivalent to a product of three circles.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XA:=[[1,1,1],[1,0,1],[1,1,1]];;[127X[104X
[4X[25Xgap>[125X [27XS:=PureCubicalComplex(A);;[127X[104X
[4X[25Xgap>[125X [27XT:=DirectProduct(S,S,S);;[127X[104X
[4X[25Xgap>[125X [27XY:=RegularCWComplex(T);;[127X[104X
[4X[28XRegular CW-complex of dimension 6[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSize(Y);[127X[104X
[4X[28X110592[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe CW-somplex [22XY[122X has [22X110592[122X cells. The next commands construct a free
[22Xπ_1Y[122X-equivariant chain complex [22XC_∗widetilde Y[122X homotopy equivalent to the
chain complex of the universal cover of [22XY[122X. The chain complex [22XC_∗widetilde Y[122X
has just [22X8[122X free generators.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XY:=ContractedComplex(Y);;[127X[104X
[4X[25Xgap>[125X [27XCU:=ChainComplexOfUniversalCover(Y);;[127X[104X
[4X[25Xgap>[125X [27XList([0..Dimension(Y)],n->CU!.dimension(n));[127X[104X
[4X[28X[ 1, 3, 3, 1 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe next commands construct a subgroup [22XH < π_1Y[122X of index [22X50[122X and the chain
complex [22XC_∗widetilde Y⊗_ ZH Z[122X which is homotopy equivalent to the cellular
chain complex [22XC_∗widetilde Y_H[122X of the [22X50[122X-fold cover [22Xwidetilde Y_H[122X of [22XY[122X
corresponding to [22XH[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XL:=LowIndexSubgroupsFpGroup(CU!.group,50);;[127X[104X
[4X[25Xgap>[125X [27XH:=L[Length(L)-1];;[127X[104X
[4X[25Xgap>[125X [27XIndex(CU!.group,H);[127X[104X
[4X[28X50[128X[104X
[4X[25Xgap>[125X [27XD:=TensorWithIntegersOverSubgroup(CU,H);[127X[104X
[4X[28XChain complex of length 3 in characteristic 0 .[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XList([0..3],D!.dimension);[127X[104X
[4X[28X[ 50, 150, 150, 50 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YGeneral theory implies that the [22X50[122X-fold covering space [22Xwidetilde Y_H[122X should
again be homotopy equivalent to a product of three circles. In keeping with
this, the following commands verify that [22Xwidetilde Y_H[122X has the same integral
homology as [22XS^1× S^1× S^1[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XHomology(D,0);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(D,1);[127X[104X
[4X[28X[ 0, 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(D,2);[127X[104X
[4X[28X[ 0, 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(D,3);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X3.2 [33X[0;0YSpun knots and the Satoh tube map[133X[101X
[33X[0;0YWe'll contruct two spaces [22XY,W[122X with isomorphic fundamental groups and
isomorphic intergal homology, and use the integral homology of finite
covering spaces to establsh that the two spaces have distinct homotopy
types.[133X
[33X[0;0YBy [13Xspinning[113X a link [22XK ⊂ R^3[122X about a plane [22XP⊂ R^3[122X with [22XP∩ K=∅[122X, we obtain a
collection [22XSp(K)⊂ R^4[122X of knotted tori. The following commands produce the
two tori obtained by spinning the Hopf link [22XK[122X and show that the space [22XY=
R^4∖ Sp(K) = Sp( R^3∖ K)[122X is connected with fundamental group [22Xπ_1Y = Z× Z[122X and
homology groups [22XH_0(Y)= Z[122X, [22XH_1(Y)= Z^2[122X, [22XH_2(Y)= Z^4[122X, [22XH_3(Y, Z)= Z^2[122X. The
space [22XY[122X is only constructed up to homotopy, and for this reason is
[22X3[122X-dimensional.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XHopf:=PureCubicalLink("Hopf");[127X[104X
[4X[28XPure cubical link.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XY:=SpunAboutInitialHyperplane(PureComplexComplement(Hopf));[127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XHomology(Y,0);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(Y,1);[127X[104X
[4X[28X[ 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(Y,2);[127X[104X
[4X[28X[ 0, 0, 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(Y,3);[127X[104X
[4X[28X[ 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(Y,4);[127X[104X
[4X[28X[ ][128X[104X
[4X[25Xgap>[125X [27XGY:=FundamentalGroup(Y);;[127X[104X
[4X[25Xgap>[125X [27XGeneratorsOfGroup(GY);[127X[104X
[4X[28X[ f2, f3 ][128X[104X
[4X[25Xgap>[125X [27XRelatorsOfFpGroup(GY);[127X[104X
[4X[28X[ f3^-1*f2^-1*f3*f2 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YAn alternative embedding of two tori [22XL⊂ R^4[122X can be obtained by applying the
'tube map' of Shin Satoh to a welded Hopf link [Sat00]. The following
commands construct the complement [22XW= R^4∖ L[122X of this alternative embedding
and show that [22XW[122X has the same fundamental group and integral homology as [22XY[122X
above.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XL:=HopfSatohSurface();[127X[104X
[4X[28XPure cubical complex of dimension 4.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XW:=ContractedComplex(RegularCWComplex(PureComplexComplement(L)));[127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XHomology(W,0);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(W,1);[127X[104X
[4X[28X[ 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(W,2);[127X[104X
[4X[28X[ 0, 0, 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(W,3);[127X[104X
[4X[28X[ 0, 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(W,4);[127X[104X
[4X[28X[ ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XGW:=FundamentalGroup(W);;[127X[104X
[4X[25Xgap>[125X [27XGeneratorsOfGroup(GW);[127X[104X
[4X[28X[ f1, f2 ][128X[104X
[4X[25Xgap>[125X [27XRelatorsOfFpGroup(GW);[127X[104X
[4X[28X[ f1^-1*f2^-1*f1*f2 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YDespite having the same fundamental group and integral homology groups, the
above two spaces [22XY[122X and [22XW[122X were shown by Kauffman and Martins [KFM08] to be
not homotopy equivalent. Their technique involves the fundamental crossed
module derived from the first three dimensions of the universal cover of a
space, and counts the representations of this fundamental crossed module
into a given finite crossed module. This homotopy inequivalence is recovered
by the following commands which involves the [22X5[122X-fold covers of the spaces.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XCY:=ChainComplexOfUniversalCover(Y);[127X[104X
[4X[28XEquivariant chain complex of dimension 3[128X[104X
[4X[25Xgap>[125X [27XLY:=LowIndexSubgroups(CY!.group,5);;[127X[104X
[4X[25Xgap>[125X [27XinvY:=List(LY,g->Homology(TensorWithIntegersOverSubgroup(CY,g),2));;[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCW:=ChainComplexOfUniversalCover(W);[127X[104X
[4X[28XEquivariant chain complex of dimension 3[128X[104X
[4X[25Xgap>[125X [27XLW:=LowIndexSubgroups(CW!.group,5);;[127X[104X
[4X[25Xgap>[125X [27XinvW:=List(LW,g->Homology(TensorWithIntegersOverSubgroup(CW,g),2));;[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XSSortedList(invY)=SSortedList(invW);[127X[104X
[4X[28Xfalse[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X3.3 [33X[0;0YCohomology with local coefficients[133X[101X
[33X[0;0YThe [22Xπ_1Y[122X-equivariant cellular chain complex [22XC_∗widetilde Y[122X of the universal
cover [22Xwidetilde Y[122X of a regular CW-complex [22XY[122X can be used to compute the
homology [22XH_n(Y,A)[122X and cohomology [22XH^n(Y,A)[122X of [22XY[122X with local coefficients in a
[22XZπ_1Y[122X-module [22XA[122X. To illustrate this we consister the space [22XY[122X arising as the
complement of the trefoil knot, with fundamental group [22Xπ_1Y = ⟨ x,y :
xyx=yxy ⟩[122X. We take [22XA= Z[122X to be the integers with non-trivial [22Xπ_1Y[122X-action
given by [22Xx.1=-1, y.1=-1[122X. We then compute[133X
[33X[0;0Y[22Xbeginarraylcl H_0(Y,A) &= & Z_2 , H_1(Y,A) &= & Z_3 , H_2(Y,A) &= & Z
.endarray[122X[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XK:=PureCubicalKnot(3,1);;[127X[104X
[4X[25Xgap>[125X [27XY:=PureComplexComplement(K);;[127X[104X
[4X[25Xgap>[125X [27XY:=ContractedComplex(Y);;[127X[104X
[4X[25Xgap>[125X [27XY:=RegularCWComplex(Y);;[127X[104X
[4X[25Xgap>[125X [27XY:=SimplifiedComplex(Y);;[127X[104X
[4X[25Xgap>[125X [27XC:=ChainComplexOfUniversalCover(Y);;[127X[104X
[4X[25Xgap>[125X [27XG:=C!.group;;[127X[104X
[4X[25Xgap>[125X [27XGeneratorsOfGroup(G);[127X[104X
[4X[28X[ f1, f2 ][128X[104X
[4X[25Xgap>[125X [27XRelatorsOfFpGroup(G);[127X[104X
[4X[28X[ f2^-1*f1^-1*f2^-1*f1*f2*f1, f1^-1*f2^-1*f1^-1*f2*f1*f2 ][128X[104X
[4X[25Xgap>[125X [27Xhom:=GroupHomomorphismByImages(G,Group([[-1]]),[G.1,G.2],[[[-1]],[[-1]]]);;[127X[104X
[4X[25Xgap>[125X [27XA:=function(x) return Determinant(Image(hom,x)); end;;[127X[104X
[4X[25Xgap>[125X [27XD:=TensorWithTwistedIntegers(C,A); #Here the function A represents [127X[104X
[4X[25Xgap>[125X [27X#the integers with twisted action of G.[127X[104X
[4X[28XChain complex of length 3 in characteristic 0 .[128X[104X
[4X[25Xgap>[125X [27XHomology(D,0);[127X[104X
[4X[28X[ 2 ][128X[104X
[4X[25Xgap>[125X [27XHomology(D,1);[127X[104X
[4X[28X[ 3 ][128X[104X
[4X[25Xgap>[125X [27XHomology(D,2);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X3.4 [33X[0;0YDistinguishing between two non-homeomorphic homotopy equivalent spaces[133X[101X
[33X[0;0YThe granny knot is the sum of the trefoil knot and its mirror image. The
reef knot is the sum of two identical copies of the trefoil knot. The
following commands show that the degree [22X1[122X homology homomorphisms[133X
[33X[0;0Y[22XH_1(p^-1(B), Z) → H_1(widetilde X_H, Z)[122X[133X
[33X[0;0Ydistinguish between the homeomorphism types of the complements [22XX⊂ R^3[122X of the
granny knot and the reef knot, where [22XB⊂ X[122X is the knot boundary, and where [22Xp:
widetilde X_H → X[122X is the covering map corresponding to the finite index
subgroup [22XH < π_1X[122X. More precisely, [22Xp^-1(B)[122X is in general a union of path
components[133X
[33X[0;0Y[22Xp^-1(B) = B_1 ∪ B_2 ∪ ⋯ ∪ B_t[122X .[133X
[33X[0;0YThe function [10XFirstHomologyCoveringCokernels(f,c)[110X inputs an integer [22Xc[122X and the
inclusion [22Xf: B↪ X[122X of a knot boundary [22XB[122X into the knot complement [22XX[122X. The
function returns the ordered list of the lists of abelian invariants of
cokernels[133X
[33X[0;0Y[22Xcoker( H_1(p^-1(B_i), Z) → H_1(widetilde X_H, Z) )[122X[133X
[33X[0;0Yarising from subgroups [22XH < π_1X[122X of index [22Xc[122X. To distinguish between the
granny and reef knots we use index [22Xc=6[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XK:=PureCubicalKnot(3,1);;[127X[104X
[4X[25Xgap>[125X [27XL:=ReflectedCubicalKnot(K);;[127X[104X
[4X[25Xgap>[125X [27Xgranny:=KnotSum(K,L);;[127X[104X
[4X[25Xgap>[125X [27Xreef:=KnotSum(K,K);;[127X[104X
[4X[25Xgap>[125X [27Xfg:=KnotComplementWithBoundary(ArcPresentation(granny));;[127X[104X
[4X[25Xgap>[125X [27Xfr:=KnotComplementWithBoundary(ArcPresentation(reef));;[127X[104X
[4X[25Xgap>[125X [27Xa:=FirstHomologyCoveringCokernels(fg,6);;[127X[104X
[4X[25Xgap>[125X [27Xb:=FirstHomologyCoveringCokernels(fr,6);;[127X[104X
[4X[25Xgap>[125X [27Xa=b;[127X[104X
[4X[28Xfalse[128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X3.5 [33X[0;0YSecond homotopy groups of spaces with finite fundamental group[133X[101X
[33X[0;0YIf [22Xp:widetilde Y → Y[122X is the universal covering map, then the fundamental
group of [22Xwidetilde Y[122X is trivial and the Hurewicz homomorphism [22Xπ_2widetilde
Y→ H_2(widetilde Y, Z)[122X from the second homotopy group of [22Xwidetilde Y[122X to the
second integral homology of [22Xwidetilde Y[122X is an isomorphism. Furthermore, the
map [22Xp[122X induces an isomorphism [22Xπ_2widetilde Y → π_2Y[122X. Thus [22XH_2(widetilde Y, Z)[122X
is isomorphic to the second homotopy group [22Xπ_2Y[122X.[133X
[33X[0;0YIf the fundamental group of [22XY[122X happens to be finite, then in principle we can
calculate [22XH_2(widetilde Y, Z) ≅ π_2Y[122X. We illustrate this computation for [22XY[122X
equal to the real projective plane. The above computation shows that [22XY[122X has
second homotopy group [22Xπ_2Y ≅ Z[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XK:=[ [1,2,3], [1,3,4], [1,2,6], [1,5,6], [1,4,5], [127X[104X
[4X[25X>[125X [27X [2,3,5], [2,4,5], [2,4,6], [3,4,6], [3,5,6]];;[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XK:=MaximalSimplicesToSimplicialComplex(K);[127X[104X
[4X[28XSimplicial complex of dimension 2.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XY:=RegularCWComplex(K); [127X[104X
[4X[28XRegular CW-complex of dimension 2[128X[104X
[4X[25Xgap>[125X [27X# Y is a regular CW-complex corresponding to the projective plane.[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XU:=UniversalCover(Y);[127X[104X
[4X[28XEquivariant CW-complex of dimension 2[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XG:=U!.group;; [127X[104X
[4X[25Xgap>[125X [27X# G is the fundamental group of Y, which by the next command [127X[104X
[4X[25Xgap>[125X [27X# is finite of order 2.[127X[104X
[4X[25Xgap>[125X [27XOrder(G);[127X[104X
[4X[28X2[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XU:=EquivariantCWComplexToRegularCWComplex(U,Group(One(G))); [127X[104X
[4X[28XRegular CW-complex of dimension 2[128X[104X
[4X[25Xgap>[125X [27X#U is the universal cover of Y[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XHomology(U,0);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(U,1);[127X[104X
[4X[28X[ ][128X[104X
[4X[25Xgap>[125X [27XHomology(U,2);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X3.6 [33X[0;0YThird homotopy groups of simply connected spaces[133X[101X
[1X3.6-1 [33X[0;0YFirst example: Whitehead's certain exact sequence[133X[101X
[33X[0;0YFor any path connected space [22XY[122X with universal cover [22Xwidetilde Y[122X there is an
exact sequence[133X
[33X[0;0Y[22X→ π_4widetilde Y → H_4(widetilde Y, Z) → H_4( K(π_2widetilde Y,2), Z ) →
π_3widetilde Y → H_3(widetilde Y, Z) → 0[122X[133X
[33X[0;0Ydue to J.H.C.Whitehead. Here [22XK(π_2(widetilde Y),2)[122X is an Eilenberg-MacLane
space with second homotopy group equal to [22Xπ_2widetilde Y[122X.[133X
[33X[0;0YContinuing with the above example where [22XY[122X is the real projective plane, we
see that [22XH_4(widetilde Y, Z) = H_3(widetilde Y, Z) = 0[122X since [22Xwidetilde Y[122X is
a [22X2[122X-dimensional CW-space. The exact sequence implies [22Xπ_3widetilde Y ≅
H_4(K(π_2widetilde Y,2), Z )[122X. Furthermore, [22Xπ_3widetilde Y = π_3 Y[122X. The
following commands establish that [22Xπ_3Y ≅ Z[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XA:=AbelianPcpGroup([0]);[127X[104X
[4X[28XPcp-group with orders [ 0 ][128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XK:=EilenbergMacLaneSimplicialGroup(A,2,5);;[127X[104X
[4X[25Xgap>[125X [27XC:=ChainComplexOfSimplicialGroup(K);[127X[104X
[4X[28XChain complex of length 5 in characteristic 0 .[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XHomology(C,4);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[1X3.6-2 [33X[0;0YSecond example: the Hopf invariant[133X[101X
[33X[0;0YThe following commands construct a [22X4[122X-dimensional simplicial complex [22XY[122X with [22X9[122X
vertices and [22X36[122X [22X4[122X-dimensional simplices, and establish that[133X
[33X[0;0Y[22Xπ_1Y=0 , π_2Y= Z , H_3(Y, Z)=0, H_4(Y, Z)= Z[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27Xsmp:=[ [ 1, 2, 4, 5, 6 ], [ 1, 2, 4, 5, 9 ], [ 1, 2, 5, 6, 8 ], [127X[104X
[4X[25X>[125X [27X [ 1, 2, 6, 4, 7 ], [ 2, 3, 4, 5, 8 ], [ 2, 3, 5, 6, 4 ], [127X[104X
[4X[25X>[125X [27X [ 2, 3, 5, 6, 7 ], [ 2, 3, 6, 4, 9 ], [ 3, 1, 4, 5, 7 ],[127X[104X
[4X[25X>[125X [27X [ 3, 1, 5, 6, 9 ], [ 3, 1, 6, 4, 5 ], [ 3, 1, 6, 4, 8 ], [127X[104X
[4X[25X>[125X [27X [ 4, 5, 7, 8, 3 ], [ 4, 5, 7, 8, 9 ], [ 4, 5, 8, 9, 2 ], [127X[104X
[4X[25X>[125X [27X [ 4, 5, 9, 7, 1 ], [ 5, 6, 7, 8, 2 ], [ 5, 6, 8, 9, 1 ],[127X[104X
[4X[25X>[125X [27X [ 5, 6, 8, 9, 7 ], [ 5, 6, 9, 7, 3 ], [ 6, 4, 7, 8, 1 ], [127X[104X
[4X[25X>[125X [27X [ 6, 4, 8, 9, 3 ], [ 6, 4, 9, 7, 2 ], [ 6, 4, 9, 7, 8 ], [127X[104X
[4X[25X>[125X [27X [ 7, 8, 1, 2, 3 ], [ 7, 8, 1, 2, 6 ], [ 7, 8, 2, 3, 5 ],[127X[104X
[4X[25X>[125X [27X [ 7, 8, 3, 1, 4 ], [ 8, 9, 1, 2, 5 ], [ 8, 9, 2, 3, 1 ], [127X[104X
[4X[25X>[125X [27X [ 8, 9, 2, 3, 4 ], [ 8, 9, 3, 1, 6 ], [ 9, 7, 1, 2, 4 ], [127X[104X
[4X[25X>[125X [27X [ 9, 7, 2, 3, 6 ], [ 9, 7, 3, 1, 2 ], [ 9, 7, 3, 1, 5 ] ];;[127X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XK:=MaximalSimplicesToSimplicialComplex(smp);[127X[104X
[4X[28XSimplicial complex of dimension 4.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XY:=RegularCWComplex(Y);[127X[104X
[4X[28XRegular CW-complex of dimension 4[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XOrder(FundamentalGroup(Y));[127X[104X
[4X[28X1[128X[104X
[4X[25Xgap>[125X [27XHomology(Y,2);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[25Xgap>[125X [27XHomology(Y,3);[127X[104X
[4X[28X[ ][128X[104X
[4X[25Xgap>[125X [27XHomology(Y,4);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YPrevious commands have established [22XH_4(K( Z,2), Z)= Z[122X. So Whitehead's
sequence reduces to an exact sequence[133X
[33X[0;0Y[22XZ → Z → π_3Y → 0[122X[133X
[33X[0;0Yin which the first map is [22XH_4(Y, Z)= Z → H_4(K(π_2Y,2), Z )= Z[122X. Hence [22Xπ_3Y[122X
is cyclic.[133X
[33X[0;0YHAP is currently unable to compute the order of [22Xπ_3Y[122X directly from
Whitehead's sequence. Instead, we can use the [13XHopf invariant[113X. For any map [22Xϕ:
S^3 → S^2[122X we consider the space [22XC(ϕ) = S^2 ∪_ϕ e^4[122X obtained by attaching a
[22X4[122X-cell [22Xe^4[122X to [22XS^2[122X via the attaching map [22Xϕ[122X. The cohomology groups [22XH^2(C(ϕ),
Z)= Z[122X, [22XH^4(C(ϕ), Z)= Z[122X are generated by elements [22Xα, β[122X say, and the cup
product has the form[133X
[33X[0;0Y[22X- ∪ -: H^2(C(ϕ), Z)× H^2(C(ϕ), Z) → H^4(C(ϕ), Z), (α,α) ↦ h_ϕ β[122X[133X
[33X[0;0Yfor some integer [22Xh_ϕ[122X. The integer [22Xh_ϕ[122X is the [12XHopf invariant[112X. The function [22Xh:
π_3(S^3)→ Z[122X is a homomorphism and there is an isomorphism[133X
[33X[0;0Y[22Xπ_3(S^2∪ e^4) ≅ Z/⟨ h_ϕ⟩[122X.[133X
[33X[0;0YThe following commands begin by simplifying the cell structure on the above
CW-complex [22XY≅ K[122X to obtain a homeomorphic CW-complex [22XW[122X with fewer cells. They
then create a space [22XS[122X by removing one [22X4[122X-cell from [22XW[122X. The space [22XS[122X is seen to
be homotopy equivalent to a CW-complex [22Xe^2∪ e^0[122X with a single [22X0[122X-cell and
single [22X2[122X-cell. Hence [22XS≃ S^2[122X is homotopy equivalent to the [22X2[122X-sphere.
Consequently [22XY ≃ C(ϕ ) = S^2∪_ϕ e^4[122X for some map [22Xϕ: S^3 → S^2[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XW:=SimplifiedComplex(Y);[127X[104X
[4X[28XRegular CW-complex of dimension 4[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XS:=RegularCWComplexWithRemovedCell(W,4,6);[127X[104X
[4X[28XRegular CW-complex of dimension 4[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XCriticalCells(S);[127X[104X
[4X[28X[ [ 2, 6 ], [ 0, 5 ] ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe next commands show that the map [22Xϕ[122X in the construction [22XY ≃ C(ϕ)[122X has Hopf
invariant -1. Hence [22Xh: π_3(S^3)→ Z[122X is an isomorphism. Therefore [22Xπ_3Y=0[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XIntersectionForm(K);[127X[104X
[4X[28X[ [ -1 ] ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0Y[The simplicial complex [22XK[122X in this second example is due to W. Kuehnel and T.
F. Banchoff and is homeomorphic to the complex projective plane. ][133X
[1X3.7 [33X[0;0YComputing the second homotopy group of a space with infinite fundamental[101X
[1Xgroup[133X[101X
[33X[0;0YThe following commands compute the second integral homology[133X
[33X[0;0Y[22XH_2(π_1W, Z) = Z[122X[133X
[33X[0;0Yof the fundamental group [22Xπ_1W[122X of the complement [22XW[122X of the Hopf-Satoh surface.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XL:=HopfSatohSurface();[127X[104X
[4X[28XPure cubical complex of dimension 4.[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XW:=ContractedComplex(RegularCWComplex(PureComplexComplement(L)));[127X[104X
[4X[28XRegular CW-complex of dimension 3[128X[104X
[4X[28X[128X[104X
[4X[25Xgap>[125X [27XGW:=FundamentalGroup(W);;[127X[104X
[4X[25Xgap>[125X [27XIsAspherical(GW);[127X[104X
[4X[28XPresentation is aspherical.[128X[104X
[4X[28Xtrue[128X[104X
[4X[25Xgap>[125X [27XR:=ResolutionAsphericalPresentation(GW);;[127X[104X
[4X[25Xgap>[125X [27XHomology(TensorWithIntegers(R),2);[127X[104X
[4X[28X[ 0 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YFrom Hopf's exact sequence[133X
[33X[0;0Y[22Xπ_2W stackrelh⟶ H_2(W, Z) ↠ H_2(π_1W, Z) → 0[122X[133X
[33X[0;0Yand the computation [22XH_2(W, Z)= Z^4[122X we see that the image of the Hurewicz
homomorphism is [22Xim(h)= Z^3[122X . The image of [22Xh[122X is referred to as the subgroup
of [13Xspherical homology classes[113X and often denoted by [22XΣ^2W[122X.[133X
[33X[0;0YThe following command computes the presentation of [22Xπ_1W[122X corresponding to the
[22X2[122X-skeleton [22XW^2[122X and establishes that [22XW^2 = S^2∨ S^2 ∨ S^2 ∨ (S^1× S^1)[122X is a
wedge of three spheres and a torus.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XF:=FundamentalGroupOfRegularCWComplex(W,"no simplification");[127X[104X
[4X[28X< fp group on the generators [ f1, f2 ]>[128X[104X
[4X[25Xgap>[125X [27XRelatorsOfFpGroup(F);[127X[104X
[4X[28X[ < identity ...>, f1^-1*f2^-1*f1*f2, < identity ...>, <identity ...> ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YThe next command shows that the [22X3[122X-dimensional space [22XW[122X has two [22X3[122X-cells each
of which is attached to the base-point of [22XW[122X with trivial boundary (up to
homotopy in [22XW^2[122X). Hence [22XW = S^3∨ S^3∨ S^2 ∨ S^2 ∨ S^2 ∨ (S^1× S^1)[122X.[133X
[4X[32X Example [32X[104X
[4X[25Xgap>[125X [27XCriticalCells(W);[127X[104X
[4X[28X[ [ 3, 1 ], [ 3, 3148 ], [ 2, 6746 ], [ 2, 20510 ], [ 2, 33060 ], [128X[104X
[4X[28X [ 2, 50919 ], [ 1, 29368 ], [ 1, 50822 ], [ 0, 21131 ] ][128X[104X
[4X[25Xgap>[125X [27XCriticalBoundaryCells(W,3,1);[127X[104X
[4X[28X[ ][128X[104X
[4X[25Xgap>[125X [27XCriticalBoundaryCells(W,3,3148);[127X[104X
[4X[28X[ -50919, 50919 ][128X[104X
[4X[28X[128X[104X
[4X[32X[104X
[33X[0;0YTherefore [22Xπ_1W[122X is the free abelian group on two generators, and [22Xπ_2W[122X is the
free [22XZπ_1W[122X-module on three free generators.[133X
|