File: chapBib.txt

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (185 lines) | stat: -rw-r--r-- 10,031 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  
  
  References
  
  [AL70]  Atkin,  A.  and Lehner, J., Hecke operators on Γ_0(m) , Math. Ann. ,
  185 (1970), 134--160.
  
  [BCNS15]  Braun,  O.,  Coulangeon,  R.,  Nebe,  G.  and  Schoennenbeck,  S.,
  Computing  in  arithmetic  groups with Voronoï’s algorithm, J. Algebra , 435
  (2015), 263--285.
  
  [BE14]  Bui,  A.  and Ellis, G., The homology of SL_2( Z[1/m]) for small m ,
  Journal of Algebra, 408 (2014), 102--108.
  
  [Ber00] Berkove, E.,  On the Mod-2 Cohomology of the Bianchi Groups , Trans.
  of the AMS., 352, no. 10 (2000).
  
  [Ber06] Berkove, E.,  The integral Cohomology of the Bianchi Groups , Trans.
  of the AMS., 358, no. 3 (2006).
  
  [Ber16]  Bergeron,  N.,  Torsion  homology  growth  in  arithmetic  groups ,
  EuropeanMathematical  Society,  European  Congress  of  Mathematicians, July
  18-22 (2016).
  
  [BL87]  Brown,  R.  and  Loday,  J.-L.,  Van Kampen theorems for diagrams of
  spaces ,  Topology, 26 (1987), 311--335.
  
  [BLR20]  Berkove,  E., Lakeland, G. and Rahm, A.,  The mod2 cohomology rings
  of  congruence  subgroups  in  the  Bianchi groups , J. Algebraic Combin. 52
  (2020).
  
  [Bro60]  Brody, E., The topological classification of the lens spaces , Ann.
  of Math. 71, 163–184 (1960).
  
  [CKL14]  Coeurjolly,  D.,  Kerautret,  B. and Lachaud, J.-O.,  Extraction of
  Connected  Region  Boundary in Multidimensional Images , Image Processing On
  Line (2014).
  
  [DPR91]  Dijkgraaf,  R.,  Pasquier,  V.  and Roche, P., Quasi-Hopf algebras,
  group  cohomology  and  orbifold  models , Nuclear Phys. B Proc. Suppl. 18B,
  60-72 (1991).
  
  [DSGG+16]   Dutour   Sikiric,  M.,  Gangl,  H.,  Gunnells,  P.,  Hanke,  J.,
  Schuermann,  A.  and  Yasaki,  D.,   On the cohomology of linear groups over
  imaginary quadratic fields. , J. Pure and Applied Algebra, volume 220, issue
  7 (2016).
  
  [EHS06]  Ellis,  G., Harris, J. and Skoldberg, E., Polytopal resolutions for
  finite groups ,  J. Reine Angew. Math., 598 (2006), 131--137.
  
  [Eic57]  Eichler,  M.,  Eine  Verallgemeinerung  der  Abelschen  Integrale ,
  Mathematische Zeitschrift , 67 (1957), 267--298.
  
  [GM15]  Goncalves,  D.  and  Martins,  S.,    Diagonal approximation and the
  cohomology  ring of the fundamental groups of surfaces , European Journal of
  Mathematics, 1, pp122--137 (2015).
  
  [Gre13]  Greene,  J.,  The  lens  space  realization  problem  ,  Annals  of
  Mathematics 177, pages 449-511 (2013).
  
  [Hat01] Hatcher, A., Algebraic Topology , Available online (2001).
  
  [Hor00]  Horadam,  K.,  An  introduction  to  cocyclic  generalised Hadamard
  matrices , Discrete Applied Math, 102, 115-130 (2000).
  
  [IO01]  Igusa,  K.  and  Orr,  K.  E.,   Links, pictures and the homology of
  nilpotent groups , Topology, Volume 40, Issue 6, pp-1125--1166 (2001).
  
  [Joh16] Johnson, F., Syzygies and dihedral resolutions for dihedral groups ,
  Communication in Algebra 44(5), pp 2034-2047 (2016).
  
  [KFM08]  Kauffman, L. H. and Faria Martins, J., Invariants of welded virtual
  knots via crossed module invariants of knotted surfaces, Compos. Math., 144,
  4 (2008), 1046--1080.
  
  [Kho01]  Kholodna,  I.,  Low-dimensional  homotopical syzygies , PhD Thesis,
  National University of Ireland Galway (2001).
  
  [KS98]  Kuz'min,  Y.  V.  and  Semenov,  Y.  S.,   On the homology of a free
  nilpotent group of class 2 , Mat. Sb. 189, no. 4, pp 49--82 (1998).
  
  [Kso00]  Ksontini,  R.,  Proprietes  homotopiques  du complexe de Quillen du
  groupe symetrique, These de doctorat, Universitet de Lausanne (2000).
  
  [Kul91]  Kulkarni,  R.,  An  arithmetic-geometric method in the study of the
  subgroups  of the modular group , American Journal of Mathematics , 113, No.
  6 (1991), 1053--1133.
  
  [LY24a]  Liu,  C.  and  Ye,  W.,    Crystallography,  Group  Cohomology, and
  Lieb-Schultz-Mattis Constraints,  https://arxiv.org/abs/2410.03607/ (2024).
  
  [LY24b]  Liu,  C.  and  Ye,  W.,  Space group cohomology and LSM -- a github
  repository,     https://github.com/liuchx1993/Space-Group-Cohomology-and-LSM
  (2024).
  
  [MFTM01]  Martin,  D.,  Fowlkes,  C.,  Tal, D. and Malik, J.,  A Database of
  Human   Segmented   Natural   Images   and  its  Application  to  Evaluating
  Segmentation  Algorithms  and  Measuring  Ecological  Statistics , Proc. 8th
  Int'l Conf. Computer Vision, 2, pp 416--423 (2001).
  
  [Mil58] Milnor, J., On simply connected 4-manifolds, International symposium
  on  algebraic  topology, Universidad Nacional Autonoma de Mexico and UNESCO,
  Mexico City (1958).
  
  [Moi52]  Moise,  E.,  Affine  structures in 3-manifolds V. The triangulation
  theorem and Hauptvermu- tung, Annals of Math. 56, 96--114 (1952).
  
  [Mos71]  Moser,  L., Elementary surgery along a torus knot , Pacific Journal
  of Mathematics, Vol. 38, No. 3 (1971).
  
  [PY03] Przytycki, J. and Yasukhara, A., Symmetry of links and classification
  of lens spaces, Geom. Dedicata 98, 57--61 (2003).
  
  [Rah10]  Rahm,  A.,  Cohomologies  and  K-theory  of  Bianchi  groups  using
  computational   geometric   models   ,   These   de   doctorat,   Universite
  Joseph-Fourier -- Grenoble I (2010).
  
  [Rah13a] Rahm, A.,  Higher torsion in the Abelianization of the full Bianchi
  groups , LMS J. Comput. Math. 16 (2013).
  
  [Rah13b]  Rahm,  A.,    The  homological  torsion  of  PSL2 of the imaginary
  quadratic integers , Trans. Amer. Math. Soc. 365 (2013).
  
  [Rei35]  Reidemeister,  K., Homotopieringe und Linsenraume , Abh. Math. Sem.
  Univ. Hamburg 11 , 102–109 (1935).
  
  [RF13]  Rahm,  A. and Fuchs, M.,  The integral homology of PSL2 of imaginary
  quadratic  integers  with  nontrivial class group, J. Pure Appl. Algebra 215
  (2013).
  
  [Sat00]  Satoh, S., Virtual knot presentation of ribbon torus-knots, J. Knot
  Theory Ramifications, 9, 4 (2000), 531--542.
  
  [Sen11]  Sengun,  M.  H.,  On  the  Integral  Cohomology of Bianchi Groups ,
  Experimental Mathematics , 20(4) (2011), 487--505.
  
  [Shi59]  Shimura,  G., Sur les integrales attachees aux formes automorphes ,
  Journal of the Mathematical Society of Japan , 67 (1959), 291--311.
  
  [SK11]  Spreer,  J.  and  Khuenel,  W.,  Combinatorial  properties of the K3
  surface: Simplicial blowups and slicings, Experimental Mathematics Volume 20
  Issue 2 (2011).
  
  [Ste07]  Stein,  W.,  Modular forms, a computational approach , AMS Graduate
  Studies in Mathematics , 79 (2007).
  
  [SV83]  Schwermer,  J.  and  Vogtmann, K.,  The Integral Homology of SL2 and
  PSL2  of Euclidean Imaginary Quadratic Integer , Comment. Math. Helvetica 58
  (1983).
  
  [Swa60]  Swan,  R.,  Periodic  resolutions  for  finite  groups  , Annals of
  Mathematics 72, pages 267-291 (1960).
  
  [Swa71a]  Swan,  R.,  Generators  and  relations  for certain general linear
  groups , Advances in Mathematics , 6 (1971), 1--77.
  
  [Swa71b]  Swan,  R.,  Generators  and  relations  for certain Special Linear
  Groups , Advances in Mathematics 6, 1--77 (1971).
  
  [Sym10]  Symmonds,  P.,    ON  THE  CASTELNUOVO-MUMFORD  REGULARITY  OF  THE
  COHOMOLOGY  RING  OF A GROUP , Journal of the Americal Mathematical Society,
  Volume 23 (2010).
  
  [Thu02]  Thurston,  W.,    The  Geometry  and  Topology of Three-Manifolds ,
  http://www.msri.org/publications/books/gt3m/ (2002).
  
  [TZ08]  Tomoda,  S. and Zvengrowski, P., Remarks on the cohomology of finite
  fundamental  groups  of  3-manifolds,  Geometry  and Topology Monographs 14,
  519-556 (2008).
  
  [Vog85]  Vogtmann, K.,  Cohomology of Bianchi Groups, Math. , Math. Ann. 272
  (1985).
  
  [Web87]  Webb,  P.,    Subgroup  complexes,  Proceedings of Symposia in Pure
  Mathematics, Volume 47 (1987).
  
  [Wie78]  Wieser, G., Computational arithmetic of modular forms , Universitat
  Duisburg-Essen (2007/8).
  
  [Wue92]  Wuestner,  M.,    An example of a nonsolvable Lie algebra , Seminar
  Sophus Lie 2, 57-58 (1992).