File: tutorialBredon.xml

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (45 lines) | stat: -rw-r--r-- 1,475 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
<Chapter><Heading>Bredon homology</Heading>
<Section><Heading>Davis complex</Heading>

<P/>The following example computes the Bredon homology
<P/><M>\underline H_0(W,{\cal R}) = \mathbb Z^{21}</M>
<P/> for the infinite Coxeter group <M>W</M> associated to the Dynkin diagram shown in the computation, with coefficients in the complex representation ring.

<Example>
<#Include SYSTEM "tutex/8.1.txt">
</Example>
<Alt Only="HTML">&lt;img src="images/infcoxdiag.gif" align="center" height="160" alt="Coxeter diagram"/>

</Alt>

<Example>
<#Include SYSTEM "tutex/8.2.txt">
</Example>

</Section>
<Section><Heading>Arithmetic groups</Heading>

<P/>The following example computes the Bredon homology
<P/><M>\underline H_0(SL_2({\cal O}_{-3}),{\cal R}) = \mathbb Z_2\oplus \mathbb Z^{9}</M>
<P/><M>\underline H_1(SL_2({\cal O}_{-3}),{\cal R}) = \mathbb Z</M>
<P/>for <M>{\cal O}_{-3}</M> the ring of integers of the number field
<M>\mathbb Q(\sqrt{-3})</M>, and <M>\cal R</M> the complex reflection ring.

<Example>
<#Include SYSTEM "tutex/8.3.txt">
</Example>

</Section>
<Section><Heading>Crystallographic groups</Heading>

<P/>The following example computes the Bredon homology
<P/><M>\underline H_0(G,{\cal R}) = \mathbb Z^{17}</M>
<P/> for <M>G</M> the second crystallographic group of dimension <M>4</M> in
<B>GAP</B>'s library of crystallographic groups, and for <M>\cal R</M> the Burnside ring.

<Example>
<#Include SYSTEM "tutex/8.4.txt">
</Example>

</Section>
</Chapter>