1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
|
<Chapter><Heading>Cohomology of groups (and Lie Algebras)</Heading>
<Section><Heading>Finite groups </Heading>
<Subsection><Heading>Naive homology computation for a very small group</Heading>
<P/>It is possible to compute the low degree (co)homology of a
finite group or monoid
of small order directly from the bar resolution.
The following commands take this approach to computing the fifth integral
homology
<P/><M>H_5(Q_4,\mathbb Z) = \mathbb Z_2\oplus\mathbb Z_2</M>
<P/>of the quaternion group <M>G=Q_4</M> of order <M>8</M>.
<Example>
<#Include SYSTEM "tutex/6.0.txt">
</Example>
<P/>However, this approach is of limited applicability since the bar resolution involves <M>|G|^k</M> free generators in degree <M>k</M>. A range of techniques, tailored to specific classes of groups, can be used to compute the (co)homology of larger finite groups.
<P/> This naive approach does have the merit of being applicable to arbitrary small monoids. The following calculates the homology in degrees <M>\le 7</M> of a monoid of order 8, the monoid being specified by its multiplication table.
<Example>
<#Include SYSTEM "tutex/6.0a.txt">
</Example>
</Subsection>
<Subsection><Heading>A more efficient homology computation</Heading>
<P/> The following example computes the seventh integral homology
<P/><M>H_7(M_{23},\mathbb Z) = \mathbb Z_{16}\oplus\mathbb Z_{15}</M>
<P/>and fourth integral cohomomogy
<P/><M>H^4(M_{24},\mathbb Z) = \mathbb Z_{12}</M>
<P/>of the Mathieu groups <M>M_{23}</M> and <M>M_{24}</M>. (Warning: the computation of <M>H_7(M_{23},\mathbb Z)</M> takes a couple of hours to run.)
<Example>
<#Include SYSTEM "tutex/6.1.txt">
</Example>
</Subsection>
<Subsection><Heading>Computation of an induced homology homomorphism</Heading>
<P/>The following example computes the cokernel
<P/><M>{\rm coker}( H_3(A_7,\mathbb Z) \rightarrow H_3(S_{10},\mathbb Z)) \cong \mathbb Z_2\oplus \mathbb Z_2</M>
<P/>of the degree-3 integral homomogy homomorphism induced by the canonical
inclusion <M>A_7 \rightarrow S_{10}</M> of the alternating group on <M>7</M> letters into the symmetric group on <M>10</M> letters. The analogous cokernel
with <M>\mathbb Z_2</M> homology coefficients is also computed.
<Example>
<#Include SYSTEM "tutex/6.1a.txt">
</Example>
</Subsection>
<Subsection><Heading>Some other finite group homology computations</Heading>
<P/>The following example computes the third integral homology of the Weyl group <M>W=Weyl(E_8)</M>, a group of order <M>696729600</M>.
<P/><M>H_3(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_{12}</M>
<Example>
<#Include SYSTEM "tutex/6.2.txt">
</Example>
<P/>The preceding calculation could be achieved more quickly by noting that
<M>W=Weyl(E_8)</M> is a Coxeter group, and by using the associated Coxeter polytope. The following example uses this approach to compute the fourth integral homology of <M>W</M>. It begins by displaying the Coxeter diagram of <M>W</M>,
and then computes
<P/><M>H_4(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus
Z_2 \oplus \mathbb Z_2</M>.
<Example>
<#Include SYSTEM "tutex/6.4.txt">
</Example>
<Alt Only="HTML"><img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/>
</Alt>
<Example>
<#Include SYSTEM "tutex/6.5.txt">
</Example>
<P/>The following example computes the sixth mod-<M>2</M> homology of the Sylow
<M>2</M>-subgroup <M>Syl_2(M_{24})</M> of the Mathieu group <M>M_{24}</M>.
<P/><M>H_6(Syl_2(M_{24}),\mathbb Z_2) = \mathbb Z_2^{143}</M>
<Example>
<#Include SYSTEM "tutex/6.3.txt">
</Example>
<P/>The following example computes the sixth mod-<M>2</M> homology of
the Unitary group <M>U_3(4)</M> of order 312000.
<P/><M>H_6(U_3(4),\mathbb Z_2) = \mathbb Z_2^{4}</M>
<Example>
<#Include SYSTEM "tutex/6.3a.txt">
</Example>
<P/>The following example constructs the Poincare series
<P/><M>p(x)=\frac{1}{-x^3+3*x^2-3*x+1}</M>
<P/>for the cohomology <M>H^\ast(Syl_2(M_{12},\mathbb F_2)</M>. The coefficient
of <M>x^n</M> in the expansion of <M>p(x)</M> is equal to the dimension of the vector space <M>H^n(Syl_2(M_{12},\mathbb F_2)</M>. The computation involves <B>Singular</B>'s Groebner basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.
<Example>
<#Include SYSTEM "tutex/6.6.txt">
</Example>
The additional following command uses the Poincare series
<Example>
<#Include SYSTEM "tutex/6.6a.txt">
</Example>
to determine that <M>H_{1000}(Syl_2(M_{12},\mathbb Z)</M> is a direct sum of 251000 non-trivial cyclic <M>2</M>-groups.
<P/>The following example constructs the series
<P/><M>p(x)=\frac{x^4-x^3+x^2-x+1}{x^6-x^5+x^4-2*x^3+x^2-x+1}</M>
<P/>whose coefficient of <M>x^n</M> is equal to the dimension of the vector space <M>H^n(M_{11},\mathbb F_2)</M> for all <M>n</M> in the range
<M>0\le n\le 14</M>. The coefficient is not guaranteed correct for
<M>n\ge 15</M>.
<Example>
<#Include SYSTEM "tutex/6.7.txt">
</Example>
</Subsection>
</Section>
<Section><Heading>Nilpotent groups</Heading>
The following example computes
<P/><M>H_4(N,\mathbb Z) = \mathbb (Z_3)^4 \oplus \mathbb Z^{84}</M>
<P/>for the free nilpotent group <M>N</M> of class <M>2</M> on four generators.
<Example>
<#Include SYSTEM "tutex/6.8.txt">
</Example>
</Section>
<Section><Heading>Crystallographic and Almost Crystallographic groups</Heading>
<P/>The following example computes
<P/><M>H_5(G,\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2</M>
<P/>for the <M>3</M>-dimensional crystallographic space group <M>G</M>
with Hermann-Mauguin symbol "P62"
<Example>
<#Include SYSTEM "tutex/6.9.txt">
</Example>
<P/>The following example computes
<P/><M>H^5(G,\mathbb Z)= \mathbb Z</M>
<P/> for an almost crystallographic group.
<Example>
<#Include SYSTEM "tutex/6.9a.txt">
</Example>
</Section>
<Section><Heading>Arithmetic groups</Heading>
<P/>The following example computes
<P/><M>H_6(SL_2({\cal O},\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_{12}</M>
<P/>for <M>{\cal O}</M> the ring of integers of the
number field <M>\mathbb Q(\sqrt{-2})</M>.
<Example>
<#Include SYSTEM "tutex/6.10.txt">
</Example>
</Section>
<Section><Heading>Artin groups</Heading>
<P/>The following example computes
<P/><M>H_n(G,\mathbb Z) =\left\{ \begin{array}{ll}
\mathbb Z &n=0,1,7,8\\
\mathbb Z_2, &n=2,3\\
\mathbb Z_2\oplus \mathbb Z_6, &n=4,6\\
\mathbb Z_3 \oplus \mathbb Z_6,& n=5\\
0, &n>8 \end{array}\right.
</M>
<P/>for <M>G</M> the Artin group of type <M>E_8</M>. (Similar commands can be used to compute a resolution and homology of arbitrary Artin monoids and, in thoses cases such as the spherical cases where the <M>K(\pi,1)</M>-conjecture is known to hold, the homology is equal to that of the corresponding Artin group.)
<Example>
<#Include SYSTEM "tutex/6.11.txt">
</Example>
<Alt Only="HTML"><img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/>
</Alt>
<Example>
<#Include SYSTEM "tutex/6.12.txt">
</Example>
The Artin group <M>G</M> projects onto the Coxeter group <M>W</M> of type <M>E_8</M>. The group <M>W</M> has a natural representation as a group of <M>8\times 8</M> integer matrices. This projection gives rise to a representation
<M>\rho\colon G\rightarrow GL_8(\mathbb Z)</M>. The following command computes the cohomology group <M>H^6(G,\rho) = (\mathbb Z_2)^6</M>.
<Example>
<#Include SYSTEM "tutex/6.12a.txt">
</Example>
</Section>
<Section><Heading>Graphs of groups</Heading>
<P/>The following example computes
<P/><M>H_5(G,\mathbb Z) = \mathbb Z_2\oplus Z_2\oplus Z_2 \oplus Z_2 \oplus Z_2</M>
<P/>for <M>G</M> the graph of groups corresponding to
the amalgamated product <M>G=S_5*_{S_3}S_4</M>
of the symmetric groups <M>S_5</M> and <M>S_4</M> over the canonical subgroup
<M>S_3</M>.
<Example>
<#Include SYSTEM "tutex/6.13.txt">
</Example>
<Alt Only="HTML"><img src="images/graphgroups.png" align="center" height="100" alt="graph of groups"/>
</Alt>
<Example>
<#Include SYSTEM "tutex/6.14.txt">
</Example>
</Section>
<Section><Heading>Lie algebra homology and free nilpotent groups</Heading>
One method of producting a Lie algebra <M>L</M> from a group
<M>G</M>
is by forming
the direct sum <M>L(G) = G/\gamma_2G \oplus \gamma_2G/\gamma_3G \oplus \gamma_3G/\gamma_4G \oplus \cdots</M> of the quotients of the lower central series <M>\gamma_1G=G</M>, <M>\gamma_{n+1}G=[\gamma_nG,G]</M>.
Commutation in <M>G</M> induces a Lie bracket <M>L(G)\times L(G) \rightarrow L(G)</M>.
<P/>
The homology <M>H_n(L)</M>
of a Lie algebra (with trivial coefficients)
can be calculated as the homology of the Chevalley-Eilenberg chain complex <M>C_\ast(L)</M>.
This chain complex is implemented in <B>HAP</B> in the cases where the underlying additive group of <M>L</M> is either
finitely generated torsion free or finitely generated of prime exponent <M>p</M>. In these two cases the ground ring for the Lie algebra/ Chevalley-Eilenberg complex
is taken to be <M>\mathbb Z</M> and <M>\mathbb Z_p</M> respectively.
<P/> For example, consider the quotient <M>G=F/\gamma_8F</M> of the free group
<M>F=F(x,y)</M> on two generators by eighth term of its lower central series. So <M>G</M> is the <E>free nilpotent group of class 7 on two generators</E>.
The following commands compute <M>H_4(L(G)) = \mathbb Z_2^{77} \oplus \mathbb Z_6^8 \oplus \mathbb Z_{12}^{51} \oplus \mathbb Z_{132}^{11} \oplus \mathbb Z^{2024}</M> and show that the fourth homology in this case contains 2-, 3- and 11-torsion. (The commands take an hour or so to complete.)
<Example>
<#Include SYSTEM "tutex/6.29.txt">
</Example>
<P/>
For a free nilpotent group <M>G</M> the additive homology <M>H_n(L(G))</M>
of the Lie algebra can be computed more quickly in <B>HAP</B>
than the integral group homology <M>H_n(G,\mathbb Z)</M>.
Clearly there are isomorphisms<M>H_1(G) \cong H_1(L(G)) \cong G_{ab}</M> of abelian groups in homological degree <M>n=1</M>. Hopf's formula can be used to establish an isomorphism
<M>H_2(G) \cong H_2(L(G))</M> also in degree <M>n=2</M>. The following two theorems provide further isomorphisms that allow for the homology of a free nilpotent group to be calculated more efficiently as the homology of the associated Lie algebra.
<P/><B>Theorem 1.</B> <Cite Key="kuzmin"/> <E>Let <M>G</M>
be a finitely generated free nilpotent group of class 2. Then the integral
group homology <M>H_n(G,\mathbb Z)</M> is isomorphic to the integral
Lie algebra homology <M>H_n(L(G),\mathbb Z)</M> in each degree <M>n\ge0</M>.</E>
<P/>
<B>Theorem 2.</B> <Cite Key="igusa"/>
<E>Let <M>G</M>
be a finitely generated free nilpotent group (of any class). Then the integral
group homology <M>H_n(G,\mathbb Z)</M> is isomorphic to the integral
Lie algebra homology <M>H_n(L(G),\mathbb Z)</M> in degrees <M>n=0, 1, 2, 3</M>.</E>
<P/>We should remark that experimentation on free nilpotent groups of class <M>\ge 4</M> has not yielded a group for which the isomorphism <M>H_n(G,\mathbb Z) \cong H_n(L(G),\mathbb G)</M> fails. For instance, the isomorphism holds in degree <M>n=4</M> for the free nilpotent group of class 5 on two generators, and for the free nilpotent group of class 2 on four generators:
<Example>
<#Include SYSTEM "tutex/6.30.txt">
</Example>
</Section>
<Section><Heading>Cohomology with coefficients in a module</Heading>
There are various ways to represent a <M>\mathbb ZG</M>-module <M>A</M>
with action <M>G\times A \rightarrow A, (g,a)\mapsto \alpha(g,a)</M>.
<P/>One possibility is to use the data type of a <E><M>G</M>-Outer Group</E> which involves three components: an <M>ActedGroup</M> <M>A</M>; an <M>Acting Group</M> <M>G</M>; a <M>Mapping</M> <M>(g,a)\mapsto \alpha(g,a)</M>.
The following example uses this data type to compute the cohomology <M>H^4(G,A) =\mathbb Z_5 \oplus \mathbb Z_{10}</M> of the symmetric group <M>G=S_6</M> with coefficients in the integers <M>A=\mathbb Z</M> where odd permutations act non-trivially on <M>A</M>.
<Example>
<#Include SYSTEM "tutex/6.15.txt">
</Example>
<P/> If <M>A=\mathbb Z^n</M> and <M>G</M> acts as
<P/><M>G\times A \rightarrow A, (g, v) \mapsto \rho(g)\, v
</M>
<P/> where <M>\rho\colon G\rightarrow Gl_n(\mathbb Z)</M> is a (not necessarily faithful)
matrix representation of degree <M>n</M> then we can avoid the use of <M>G</M>-outer groups and use just the homomorphism <M>\rho</M> instead.
The following example
uses this data type to compute the cohomology
<P/><M>H^6(G,A) =\mathbb Z_2 </M>
<P/>and the homology
<P/><M>H_6(G,A) = 0 </M>
<P/> of the alternating group <M>G=A_5</M> with coefficients in <M>A=\mathbb Z^5</M> where elements of <M>G</M> act on <M>\mathbb Z^5</M> via an irreducible representation.
<Example>
<#Include SYSTEM "tutex/6.16.txt">
</Example>
<P/>If <M>V=K^d</M> is a vetor space of dimension <M>d</M> over the field
<M>K=GF(p)</M> with <M>p</M> a prime and <M>G</M> acts on <M>V</M> via a homomorphism
<M>\rho\colon G\rightarrow GL_d(K)</M> then the homology
<M>H^n(G,V)</M> can again be computed without the use of G-outer groups.
As an example, the following commands compute
<P/><M>H^4(GL(3,2),V) =K^2</M>
<P/>where <M>K=GF(2)</M> and <M>GL(3,2)</M> acts with its natural action on
<M>V=K^3</M>.
<Example>
<#Include SYSTEM "tutex/6.16B.txt">
</Example>
<P/> It can be computationally difficult to compute resolutions for large finite groups. But the <M>p</M>-primary part of the homology can
be computed using resolutions of Sylow <M>p</M>-subgroups.
This approach is used in the following example that computes
the <M>2</M>-primary part
<P/><M>H_{2}(G,\mathbb Z)_{(2)} = \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2</M>
<P/>of the degree 2 integral homology of the Rubik's cube group <M>G</M>. This group has order <M>43252003274489856000</M>.
<Example>
<#Include SYSTEM "tutex/6.16F.txt">
</Example>
The same approach is used in the following example that computes
the <M>2</M>-primary part
<P/><M>H_{11}(A_7,A)_{(2)} = \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_4</M>
<P/>of the degree 11 homology of the alternating group <M>A_7</M>
of degree <M>7</M> with coefficients in the module
<M>A=\mathbb Z^7</M> on which <M>A_7</M> acts by permuting basis vectors.
<Example>
<#Include SYSTEM "tutex/6.16C.txt">
</Example>
Similar commands compute
<P/><M>H_{3}(A_{10},A)_{(2)} = \mathbb Z_4</M>
<P/>with coefficient module <M>A=\mathbb Z^{10}</M> on which <M>A_{10}</M> acts by permuting basis vectors.
<Example>
<#Include SYSTEM "tutex/6.16D.txt">
</Example>
<P/>The following commands compute
<P/><M>H_{100}(GL(3,2),V)= K^{34}</M>
<P/>where <M>V</M> is the vector space of dimension <M>3</M> over <M>K=GF(2)</M> acting via some irreducible representation <M>\rho\colon GL(3,2) \rightarrow GL(V)</M>.
<Example>
<#Include SYSTEM "tutex/6.16E.txt">
</Example>
</Section>
<Section><Heading>Cohomology as a functor of the first variable</Heading>
Suppose given a group homomorphism <M>f\colon G_1\rightarrow G_2</M> and a <M>G_2</M>-module <M>A</M>. Then <M>A</M> is naturally a <M>G_1</M>-module with action via <M>f</M>, and there is an induced cohomology homomorphism
<M>H^n(f,A)\colon H^n(G_2,A) \rightarrow H^n(G_1,A)</M>.
<P/>The following example computes this cohomology homomorphism in degree <M>n=6</M> for the inclusion <M>f\colon A_5 \rightarrow S_5</M> and <M>A=\mathbb Z^5</M> with action that permutes the canonical basis.
The final commands determine that the kernel of the homomorphism <M>H^6(f,A)</M> is the Klein group of order <M>4</M> and that the cokernel is cyclic of order <M>6</M>.
<Example>
<#Include SYSTEM "tutex/6.16A.txt">
</Example>
</Section>
<Section><Heading>Cohomology as a functor of the second variable and the long exact coefficient sequence</Heading>
A short exact sequence of <M>\mathbb ZG</M>-modules
<M>A \rightarrowtail B \twoheadrightarrow C</M>
induces a long exact sequence of cohomology groups
<P/><M> \rightarrow H^n(G,A) \rightarrow H^n(G,B) \rightarrow H^n(G,C) \rightarrow H^{n+1}(G,A) \rightarrow </M> .
<P/> Consider the symmetric group <M>G=S_4</M> and the sequence
<M> \mathbb Z_4 \rightarrowtail \mathbb Z_8 \twoheadrightarrow \mathbb Z_2</M>
of trivial <M>\mathbb ZG</M>-modules. The following commands compute the induced cohomology homomorphism
<P/><M>f\colon H^3(S_4,\mathbb Z_4) \rightarrow H^3(S_4,\mathbb Z_8)</M>
<P/>and determine that the image of this induced homomorphism has order <M>8</M> and that its kernel has order <M>2</M>.
<Example>
<#Include SYSTEM "tutex/6.17.txt">
</Example>
<P/>
The following commands then compute the homomorphism
<P/><M>H^3(S_4,\mathbb Z_8) \rightarrow H^3(S_4,\mathbb Z_2)</M>
<P/>induced by
<M>\mathbb Z_4 \rightarrowtail \mathbb Z_8 \twoheadrightarrow \mathbb Z_2</M>,
and determine that the kernel of this homomorphsim has order <M>8</M>.
<Example>
<#Include SYSTEM "tutex/6.18.txt">
</Example>
<P/>The following commands then compute the connecting homomorphism
<P/><M>H^2(S_4,\mathbb Z_2) \rightarrow H^3(S_4,\mathbb Z_4)</M>
<P/>and determine that the image of this homomorphism has order <M>2</M>.
<Example>
<#Include SYSTEM "tutex/6.19.txt">
</Example>
Note that the various orders are consistent with exactness of the sequence
<P/><M>H^2(S_4,\mathbb Z_2) \rightarrow H^3(S_4,\mathbb Z_4) \rightarrow H^3(S_4,\mathbb Z_8) \rightarrow H^3(S_4,\mathbb Z_2) </M> .
</Section>
<Section><Heading>Transfer Homomorphism</Heading>
Consider the action of the symmetric group <M>G=S_5</M> on <M>A=\mathbb Z^5</M> which permutes the canonical basis. The action restricts to the
sylow <M>2</M>-subgroup <M>P=Syl_2(G)</M>. The following commands compute the cohomology transfer homomorphism <M>t^4\colon H^4(P,A) \rightarrow H^4(S_5,A)</M> and determine its kernel and image. The integral homology transfer
<M>t_4\colon H_4(S_5,\mathbb Z) \rightarrow H_5(P,\mathbb Z)</M> is also computed.
<Example>
<#Include SYSTEM "tutex/6.25.txt">
</Example>
</Section>
<Section Label="Secfinitefundman"><Heading>Cohomology rings of finite fundamental groups of 3-manifolds
</Heading>
A <E>spherical 3-manifold</E> is a 3-manifold arising as the quotient <M>S^3/\Gamma</M> of the 3-sphere <M>S^3</M> by a finite subgroup <M>\Gamma</M> of <M>SO(4)</M> acting freely as rotations.
The geometrization conjecture, proved by Grigori Perelman,
implies that every closed connected 3-manifold with a finite fundamental group is homeomorphic to a spherical 3-manifold.
<P/> A spherical 3-manifold <M>S^3/\Gamma</M> has finite fundamental group isomorphic to <M>\Gamma</M>. This fundamental group is one of:
<List>
<Item> <M>\Gamma=C_m=\langle x\ |\ x^m\rangle</M> (<B>cyclic fundamental group</B>)</Item>
<Item> <M>\Gamma=C_m\times \langle x,y \ |\ xyx^{-1}=y^{-1}, x^{2^k}=y^n
\rangle</M> for integers <M>k, m\ge 1, n\ge 2</M> and <M>m</M> coprime to <M>2n</M> (<B>prism manifold case</B>)</Item>
<Item> <M>\Gamma= C_m\times \langle x,y, z \ |\ (xy)^2=x^2=y^2, zxz^{-1}=y, zyz^{-1}=xy, z^{3^k}=1\rangle </M> for integers <M>k,m\ge 1</M> and <M>m</M> coprime to 6 (<B>tetrahedral case</B>)</Item>
<Item> <M>\Gamma=C_m\times\langle x,y\ |\ (xy)^2=x^3=y^4\rangle </M> for <M>m\ge 1</M> coprime to 6 (<B>octahedral case</B>)</Item>
<Item><M>\Gamma=C_m\times \langle x,y\ |\ (xy)^2=x^3=y^5\rangle </M> for <M>m\ge 1</M> coprime to 30 (<B>icosahedral case</B>).</Item></List>
This list of cases
is taken from the <URL><Link>https://en.wikipedia.org/wiki/Spherical_3-manifold</Link><LinkText>Wikipedia pages</LinkText></URL>. The group <M>\Gamma</M>
has periodic cohomology since it acts on a sphere. The cyclic group has
period 2 and in the other four cases it has period 4. (Recall that in general a finite group <M>G</M> has <E>periodic cohomology of period <M>n</M></E> if there is an element <M>u\in H^n(G,\mathbb Z)</M> such that the cup product <M>-\ \cup u\colon H^k(G,\mathbb Z) \rightarrow H^{k+n}(G,\mathbb Z)</M> is an isomorphism for all <M>k\ge 1</M>. It can be shown that <M>G</M> has periodic cohomology of period <M>n</M> if and only if <M>H^{n}(G,\mathbb Z)=\mathbb Z_{|G|}</M>.)
<P/>The cohomology of the cyclic group is well-known, and the cohomology of a direct product can be obtained from that of the factors using the Kunneth formula.
<P/> In the icosahedral case with <M>m=1</M> the following commands yield
$$H^\ast(\Gamma,\mathbb Z)=Z[t]/(120t=0)$$
with generator <M>t</M> of degree 4. The final command demonstrates that a periodic resolution is used in the computation.
<Example>
<#Include SYSTEM "tutex/6.19A.txt">
</Example>
In the octahedral case with <M>m=1</M> we obtain
$$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=24t, 2s=0, 48t=0)$$
where <M>s</M> has degree 2 and <M>t</M> has degree 4,
from the following commands.
<Example>
<#Include SYSTEM "tutex/6.19B.txt">
</Example>
In the tetrahedral case with <M>m=1</M> we obtain
$$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=16t, 3s=0, 24t=0)$$
where <M>s</M> has degree 2 and <M>t</M> has degree 4,
from the following commands.
<Example>
<#Include SYSTEM "tutex/6.19C.txt">
</Example>
A theoretical calculation of the integral and mod-p cohomology rings of all of these fundamental groups of spherical 3-manifolds is given in <Cite Key="tomoda"/>.
</Section>
<Section><Heading>Explicit cocycles </Heading>
Given a <M>\mathbb ZG</M>-resolution <M>R_\ast</M> and a <M>\mathbb ZG</M>-module
<M>A</M>, one defines an <E><M>n</M>-cocycle</E> to be a <M>\mathbb ZG</M>-homomorphism
<M>f\colon R_n \rightarrow A</M> for which the composite homomorphism
<M>fd_{n+1}\colon R_{n+1}\rightarrow A</M> is zero. If <M>R_\ast</M>
happens to be the standard bar resolution (i.e. the cellular chain complex of the nerve of the group <M>G</M> considered as a one object category) then the free <M>\mathbb ZG</M>-generators of <M>R_n</M> are indexed by <M>n</M>-tuples
<M>(g_1 | g_2 | \ldots | g_n)</M> of elements <M>g_i</M> in <M>G</M>. In this case we say that the <M>n</M>-cocycle is a <E>standard n-cocycle</E>
and we think of it as a set-theoretic function
<P/><M>f \colon G \times G \times \cdots \times G \longrightarrow A</M>
<P/>satisfying a certain algebraic cocycle condition.
Bearing in mind that a standard <M>n</M>-cocycle really just assigns an element <M>f(g_1, \ldots ,g_n) \in A</M> to an <M>n</M>-simplex in the nerve of <M>G</M>
, the cocycle condition is a very natural one which states that
<E><M>f</M> must vanish on the boundary of a certain <M>(n+1)</M>-simplex</E>. For <M>n=2</M> the condition is that a <M>2</M>-cocycle <M>f(g_1,g_2)</M>
must satisfy
<P/><M>g.f(h,k) + f(g,hk) = f(gh,k) + f(g,h)</M>
<P/> for all <M>g,h,k \in G</M>. This equation is explained by the following picture.
<P/><Alt Only="HTML"><img src="images/cocycle.png" align="center" height="200" alt="2-cocycle equation"/>
</Alt>
<P/>
The definition of a cocycle clearly depends on the choice of <M>\mathbb ZG</M>-resolution <M>R_\ast</M>. However, the cohomology group <M>H^n(G,A)</M>, which is a group of equivalence classes of <M>n</M>-cocycles, is independent of the choice of <M>R_\ast</M>.
<P/>
There are some occasions when one needs explicit examples of standard cocycles. For instance:
<List>
<Item> Let <M>G</M> be a finite group and <M>k</M>
a field of characteristic <M>0</M>. The group algebra <M>k(G)</M>,
and the algebra <M>F(G)</M> of functions
<M>d_g\colon G\rightarrow k, h\rightarrow d_{g,h}</M>,
are both Hopf algebras. The tensor product <M>F(G) \otimes k(G)</M>
also admits a Hopf algebra structure known as the quantum double <M>D(G)</M>.
A twisted quantum double <M>D_f(G)</M> was introduced by
R. Dijkraaf, V. Pasquier & P. Roche <Cite Key="dpr"/>.
The twisted double is a quasi-Hopf algebra depending on a <M>3</M>-cocycle
<M>f\colon G\times G\times G\rightarrow k</M>. The multiplication is given by
<M>(d_g \otimes x)(d_h \otimes y) = d_{gx,xh}\beta_g(x,y)(d_g \otimes xy)</M> where <M>\beta_a </M>
is defined by <M>\beta_a(h,g) = f(a,h,g) f(h,h^{-1}ah,g)^{-1} f(h,g,(hg)^{-1}ahg)</M> . Although the algebraic structure of <M>D_f(G)</M> depends very much on the particular <M>3</M>-cocycle <M>f</M>, representation-theoretic properties of <M>D_f(G)</M> depend only on the cohomology class of <M>f</M>.
</Item>
<Item> An explicit <M>2</M>-cocycle <M>f\colon G\times G\rightarrow A</M> is needed to construct the multiplication <M>(a,g)(a',g') = (a + g\cdot a' + f(g,g'), gg')</M> in the extension a group <M>G</M> by a <M>\mathbb ZG</M>-module
<M>A</M> determined by the cohomology class of <M>f</M> in <M>H^2(G,A)</M>.
See <Ref Sect="secExtensions"/>.
</Item>
<Item> In work on coding theory and Hadamard matrices a number of papers have investigated square matrices <M>(a_{ij})</M> whose entries <M>a_{ij}=f(g_i,g_j)</M>
are the values of a <M>2</M>-cocycle <M>f\colon G\times G \rightarrow
\mathbb Z_2</M>
where <M>G</M> is a finite group acting trivially on <M>\mathbb Z_2</M>. See for instance <Cite Key="horadam"/> and <Ref Sect="secHadamard"/>.
</Item>
</List>
<P/>
Given a <M>\mathbb ZG</M>-resolution <M>R_\ast</M>
(with contracting homotopy) and a <M>\mathbb ZG</M>-module <M>A</M>
one can use HAP commands to compute explicit standard <M>n</M>-cocycles
<M>f\colon G^n \rightarrow A</M>. With the twisted quantum double in mind, we illustrate the computation for <M>n=3</M>, <M>G=S_3</M>, and <M>A=U(1)</M>
the group of complex numbers of modulus <M>1</M> with trivial <M>G</M>-action.
<P/>
We first compute a <M>\mathbb ZG</M>-resolution <M>R_\ast</M>. The Universal Coefficient Theorem gives an isomorphism <M>H_3(G,U(1)) = Hom_{\mathbb Z}(H_3(G,\mathbb Z), U(1))</M>, The multiplicative group <M>U(1)</M> can thus be viewed as
<M>\mathbb Z_m</M> where <M>m</M> is a multiple of the exponent of <M>H_3(G,\mathbb Z)</M>.
<Example>
<#Include SYSTEM "tutex/6.20.txt">
</Example>
<P/>
We thus replace the very infinite group U(1) by the finite cyclic group <M>\mathbb Z_6</M>. Since the resolution <M>R_\ast </M> has <M>4</M> generators in degree <M>3</M>, a homomorphism <M>f\colon R^3\rightarrow U(1)</M> can
be represented by a list <M>f=[f_1, f_2, f_3, f_4]</M> with <M>f_i</M>
the image in <M>\mathbb Z_6</M> of the <M>i</M>th generator. The cocycle condition on <M>f</M> can be expressed as a matrix equation
<P/><M>Mf^t = 0 \bmod 6</M>.
<P/>
where the matrix <M>M</M> is obtained from the following command and <M>f^t</M> denotes the transpose.
<Example>
<#Include SYSTEM "tutex/6.21.txt">
</Example>
A particular cocycle <M>f=[f_1, f_2, f_3, f_4]</M> can be obtained by choosing a solution to the equation Mf^t=0.
<Example>
<#Include SYSTEM "tutex/6.22.txt">
</Example>
A non-standard <M>3</M>-cocycle <M>f</M> can be converted to a standard one using the command <Code>StandardCocycle(R,f,n,q)</Code> . This command inputs
<M> R_\ast</M>, integers <M>n</M> and <M>q</M>, and an <M>n</M>-cocycle <M>f</M> for the resolution <M>R_\ast</M>. It returns a standard cocycle <M>G^n \rightarrow \mathbb Z_q</M>.
<Example>
<#Include SYSTEM "tutex/6.23.txt">
</Example>
A function <M>f\colon G\times G\times G \rightarrow A</M>
is a standard <M>3</M>-cocycle if and only if
<P/><M>g\cdot f(h,k,l) - f(gh,k,l) + f(g,hk,l) - f(g,h,kl) + f(g,h,k) = 0</M>
<P/>for all <M>g,h,k,l \in G</M>. In the above example the group <M>G=S_3</M>
acts trivially on <M>A=Z_6</M>. The following commands show that the standard
<M>3</M>-cocycle produced in the example really does satisfy this <M>3</M>-cocycle condition.
<Example>
<#Include SYSTEM "tutex/6.24.txt">
</Example>
</Section>
<Section Label="secWebb"><Heading>Quillen's complex and the <M>p</M>-part of homology </Heading>
Let <M>G</M> be a finite group with order divisible by prime <M>p</M>. Let
<M>{\mathcal A}={\mathcal A}_p(G)</M> denote Quillen's simplicial complex arising as the order complex of the poset of non-trivial elementary abelian <M>p</M>-subgroups of <M>G</M>. The group <M>G</M> acts on <M>\mathcal A</M>. Denote the orbit of a <M>k</M>-simplex <M>e^k</M> by <M>[e^k]</M>, and the stabilizer of <M>e^k</M> by <M>Stab(e^k) \le G</M>. For a finite abelian group <M>H</M> let
<M>H_p</M> denote the Sylow <M>p</M>-subgroup or the "<M>p</M>-part". In Theorem 3.3 of <Cite Key="Webb"/> P.J. Webb proved the following.
<P/>
<B>Theorem.</B><Cite Key="Webb"/> For any <M>G</M>-module <M>M</M> there is a (non natural) isomomorphism<P/>
<M>H_n(G,M)_p \oplus \bigoplus_{[e^k]\, :\, k~{\rm odd}~}H_n(Stab(e^k),M)_p \cong \bigoplus_{[e^k]\, : \, k~{\rm even}~}H_n(Stab(e^k),M)_p</M>
<P/> for <M>n\ge 1</M>. The isomorphism can also be expressed as
<P/>
<M>H_n(G,M)_p \cong \bigoplus_{[e^k]\, : \, k~{\rm even}~}H_n(Stab(e^k),M)_p\ -\ \bigoplus_{[e^k] \, :\, k~{\rm odd}~}H_n(Stab(e^k),M)_p</M>
<P/>where terms can often be cancelled.
<P/>Thus the additive structure of the <M>p</M>-part of the
homology of <M>G</M> is determined by that of the stabilizer groups. The result also holds with homology replaced by cohomology.
<P/><B>Illustration 1</B>
<P/>
As an illustration of the theorem, the following commands calculate
<P/>
<M>H_n(SL_3(\mathbb Z_2),\mathbb Z) \cong H_n(S_4,\mathbb Z)_2 \oplus H_n(S_4,\mathbb Z)_2 \ominus H_n(D_8,\mathbb Z)_2 \oplus H_n(S_3,\mathbb Z)_3 \oplus
H_n(C_7 : C_3,\mathbb Z)_7 </M>
<P/>
where <M>n\ge 1</M>,
<M>S_k</M> denotes the symmetric group on <M>n</M> letters, <M>D_8</M> the dihedral group of order <M>8</M> and <M>C_7 : C_3</M> a nonabelian semi-direct product of cyclic groups.
Furthermore, for <M>n\ge 1</M>
<P/><M> H_n(C_7 : C_3,\mathbb Z)_7 =\left\{\begin{array}{ll}\mathbb Z_7,\ n \equiv 5 {\rm \ mod\ } 6\\
0,\ {\rm otherwise} \end{array}\right.</M>
<P/>and
<P/><M> H_n(S_3,\mathbb Z)_3 =\left\{\begin{array}{ll}\mathbb Z_3,\ n \equiv 3 {\rm \ mod\ } 4\\
0,\ n{\rm ~otherwise .} \end{array}\right.</M>
<P/> Formulas for <M>H_n(S_4,\mathbb Z)</M> and <M> H_n(D_8,\mathbb Z)</M> can be found in the literature. Alternatively, they can be computed using <B>GAP</B> for a given value of <M>n</M>. For <M>n=27</M> we find
<P/><M> H_{27}(S_4,\mathbb Z)_2 \oplus H_{27}(S_4,\mathbb Z)_2 \ominus H_{27}(D_8,\mathbb Z)_2 \cong
\mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_4</M>
<P/> and
<P/><M>H_{27}(SL_3(\mathbb Z_2),\mathbb Z) \cong \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2
\oplus \mathbb Z_4 \oplus \mathbb Z_3 </M> .
<Example>
<#Include SYSTEM "tutex/6.34.txt">
</Example>
<P/><B>Illustration 2</B>
<P/>
As a further illustration of the theorem, the following commands calculate
<P/>
<M>H_n(M_{12},M)_3 \cong \bigoplus_{1\le i\le 3}\,H_n(Stab_i,M)_3 - \bigoplus_{4\le i\le 5}H_n(Stab_i,M)_3</M>
<P/> for the Mathieu simple group <M>M_{12}</M> of order <M>95040</M>, where
<P/><M>Stab_1\cong Stab_3=(((C_3 \times C_3) : Q_8) : C_3) : C_2</M>
<P/><M>Stab_2=A_4 \times S_3</M>
<P/><M>Stab_4=C_3 \times S_3</M>
<P/><M>Stab_5=((C_3 \times C_3) : C_3) : (C_2 \times C_2)</M> .
<Example>
<#Include SYSTEM "tutex/6.26.txt">
</Example>
<P/><B>Illustration 3</B>
<P/>
As a third illustration, the following commands show that <M>H_n(M_{23},M)_{p}</M> is periodic for primes <M>p=5, 7, 11, 23</M> of periods dividing <M>8, 6, 10, 22</M> respectively.
<Example>
<#Include SYSTEM "tutex/6.27.txt">
</Example>
<P/>The order <M>|M_{23}|=10200960</M> is divisible by primes
<M>p=2, 3, 5, 7, 11, 23</M>. For <M>p=3</M> the following commands establish
that the Poincare series
<P/><M>(x^{16} - 2x^{15}</M>
<M> + 3x^{14} - 4x^{13}</M>
<M> + 4x^{12} - 4x^{11}</M>
<M> + 4x^{10} - 3x^9</M>
<M> + 3x^8 - 3x^7 +</M>
<M> 4x^6 - 4x^5 </M>
<M>+ 4x^4 -4x^3</M>
<M> + 3x^2 -2x + 1) /</M>
<M> (x^{18} - 2x^{17}</M>
<M> + 3x^{16} - 4x^{15}</M>
<M> + 4x^{14} - </M>
<M>4x^{13} + 4x^{12}</M>
<M> - 4x^{11} + 4x^{10}</M>
<M> - 4x^9 + 4x^8</M>
<M> - 4x^7 + 4x^6 </M>
<M> - 4x^5 + 4x^4</M>
<M> - 4x^3 +</M>
<M> 3x^2 - 2x + 1)</M>
<P/>describes the dimension of the vector space <M>H^n(M_{23},\mathbb Z_3)</M> up to at least degree
<M>n=40</M>. To prove that it describes the dimension in all degrees one would need to verify "completion criteria".
<Example>
<#Include SYSTEM "tutex/6.28.txt">
</Example>
</Section>
<Section><Heading>Homology of a Lie algebra</Heading>
Let <M>A</M> be the Lie algebra constructed from the associative algebra <M>M^{4\times 4}(\mathbb Q)</M> of all <M>4\times 4</M> rational matrices. Let <M>V</M> be its adjoint module (with underlying vector space of dimension <M>16</M> and
equal to that of <M>A</M>). The following commands compute <M>H_{4}(A,V) = \mathbb Q</M>.
<Example>
<#Include SYSTEM "tutex/6.31.txt">
</Example>
<P/>Note that the eighth term <M>C_{8}(V)</M> in the Chevalley-Eilenberg complex <M>C_\ast(V)</M> is a vector space of dimension <M>205920</M> and so it will take longer to compute the homology in degree <M>8</M>.
<P/>As a second example, let <M>B</M> be the classical Lie ring of type <M>B_3</M> over the ring of integers. The following commands compute
<M>H_3(B,\mathbb Z)= \mathbb Z \oplus \mathbb Z_2^{105}</M>.
<Example>
<#Include SYSTEM "tutex/6.32.txt">
</Example>
</Section>
<Section><Heading>Covers of Lie algebras</Heading>
A short exact sequence of Lie algebras
<P/><M> M \rightarrowtail C \twoheadrightarrow L </M>
<P/> (over a field <M>k</M>) is said to be a <E>stem extension</E>
of <M>L</M> if <M>M</M> lies both in the centre <M>Z(C)</M> and in the derived subalgeba <M>C^2</M>. If, in addition, the rank of the vector space <M>M</M> is equal to the rank of the second Chevalley-Eilenberg homology <M>H_2(L,k)</M> then the Lie algebra <M>C</M> is said to be a <E>cover</E> of <M>L</M>.
<P/>Each finite dimensional Lie algebra <M>L</M> admits a cover <M>C</M>, and this cover can be shown to be unique up to Lie isomorphism.
<P/>The cover can be used to determine whether there exists a Lie algebra <M>E</M> whose central quotient <M>E/Z(E)</M> is isomorphic to <M>L</M>. The image in <M>L</M> of the centre of <M>C</M> is called the <E>Lie Epicentre</E> of <M>L</M>, and this image is trivial if and only if such an <M>E</M> exists.
<P/>The cover can also be used to determine the stem extensions of <M>L</M>. It can be shown that each stem extension is a quotient of the cover by an ideal in the Lie multiplier <M>H_2(L,k)</M>.
<Subsection><Heading>Computing a cover</Heading>
The following commands compute the cover <M>C</M> of the solvable but non-nilpotent 13-dimensional Lie algebra <M>L</M> (over <M>k=\mathbb Q</M>)
that was introduced by M. Wuestner <Cite Key="Wustner"/>.
They also show that:
the second homology of <M>C</M> is trivial and compute the ranks of the homology groups in other dimensions;
the Lie algebra <M>L</M> is not isomorphic to any central quotient <M>E/Z(E)</M>.
<Example>
<#Include SYSTEM "tutex/6.33.txt">
</Example>
</Subsection>
</Section>
</Chapter>
|