File: tutorialGroupCohomology.xml

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (730 lines) | stat: -rw-r--r-- 35,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
<Chapter><Heading>Cohomology of groups (and Lie Algebras)</Heading>
<Section><Heading>Finite groups </Heading>

<Subsection><Heading>Naive homology computation for a very small group</Heading>
<P/>It is possible to compute the low degree (co)homology of a
 finite group or monoid 
of small order directly from the bar resolution. 
The following commands take this approach to computing the fifth integral
homology 
<P/><M>H_5(Q_4,\mathbb Z) = \mathbb Z_2\oplus\mathbb Z_2</M>
<P/>of the quaternion group <M>G=Q_4</M> of order <M>8</M>.
<Example>
<#Include SYSTEM "tutex/6.0.txt">
</Example>
<P/>However, this approach is of limited applicability since the bar resolution involves  <M>|G|^k</M> free generators in degree <M>k</M>. A range of techniques, tailored to specific classes of groups, can be used to compute the (co)homology of larger finite groups. 

<P/> This naive approach  does have the merit of being applicable to arbitrary small monoids.  The following calculates the  homology in degrees <M>\le 7</M> of a monoid of order 8, the monoid being specified by its multiplication table.

	<Example>
<#Include SYSTEM "tutex/6.0a.txt">
</Example>

</Subsection>

<Subsection><Heading>A more efficient homology computation</Heading> 
<P/> The following example computes the seventh integral homology 
<P/><M>H_7(M_{23},\mathbb Z) = \mathbb Z_{16}\oplus\mathbb Z_{15}</M>
<P/>and fourth integral cohomomogy 
<P/><M>H^4(M_{24},\mathbb Z) = \mathbb Z_{12}</M>
<P/>of the Mathieu groups <M>M_{23}</M> and <M>M_{24}</M>. (Warning: the computation of <M>H_7(M_{23},\mathbb Z)</M> takes a couple of hours to run.)
<Example>
<#Include SYSTEM "tutex/6.1.txt">
</Example>
</Subsection>

<Subsection><Heading>Computation of an induced homology homomorphism</Heading>
<P/>The following example computes the cokernel
<P/><M>{\rm coker}( H_3(A_7,\mathbb Z) \rightarrow H_3(S_{10},\mathbb Z)) \cong \mathbb Z_2\oplus \mathbb Z_2</M>
<P/>of the degree-3 integral homomogy homomorphism induced by the canonical
inclusion <M>A_7 \rightarrow S_{10}</M> of the alternating group on <M>7</M> letters into the symmetric group on <M>10</M> letters. The analogous cokernel
 with <M>\mathbb Z_2</M> homology coefficients is also computed.
<Example>
<#Include SYSTEM "tutex/6.1a.txt">
</Example>
</Subsection>

<Subsection><Heading>Some other finite group homology computations</Heading>
<P/>The following example computes the third integral homology of the Weyl group <M>W=Weyl(E_8)</M>, a group of order <M>696729600</M>.
<P/><M>H_3(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_{12}</M>
<Example>
<#Include SYSTEM "tutex/6.2.txt">
</Example>

<P/>The preceding calculation could be achieved more quickly by noting that 
<M>W=Weyl(E_8)</M> is a Coxeter group, and by using the associated Coxeter polytope. The following example uses this approach to compute the fourth integral homology of <M>W</M>. It begins by displaying the Coxeter diagram of <M>W</M>,
and then computes
<P/><M>H_4(Weyl(E_8),\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2 \oplus 
Z_2 \oplus \mathbb Z_2</M>.
<Example>
<#Include SYSTEM "tutex/6.4.txt">
</Example>
<Alt Only="HTML">&lt;img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/>
</Alt>
<Example>
<#Include SYSTEM "tutex/6.5.txt">
</Example>



<P/>The following example computes the sixth mod-<M>2</M> homology of the Sylow
<M>2</M>-subgroup <M>Syl_2(M_{24})</M> of the Mathieu group <M>M_{24}</M>.
<P/><M>H_6(Syl_2(M_{24}),\mathbb Z_2) = \mathbb Z_2^{143}</M>

<Example>
<#Include SYSTEM "tutex/6.3.txt">
</Example>


<P/>The following example computes the sixth mod-<M>2</M> homology of 
 the Unitary group <M>U_3(4)</M> of order 312000.
<P/><M>H_6(U_3(4),\mathbb Z_2) = \mathbb Z_2^{4}</M>

<Example>
<#Include SYSTEM "tutex/6.3a.txt">
</Example>


<P/>The following example constructs the Poincare series 
<P/><M>p(x)=\frac{1}{-x^3+3*x^2-3*x+1}</M>
<P/>for the cohomology <M>H^\ast(Syl_2(M_{12},\mathbb F_2)</M>. The coefficient
 of <M>x^n</M> in the expansion of <M>p(x)</M> is equal to the dimension of the vector space <M>H^n(Syl_2(M_{12},\mathbb F_2)</M>. The computation involves <B>Singular</B>'s Groebner basis algorithms and the Lyndon-Hochschild-Serre spectral sequence.

<Example>
<#Include SYSTEM "tutex/6.6.txt">
</Example>

The additional following command uses the Poincare series 

<Example>
<#Include SYSTEM "tutex/6.6a.txt">
</Example>

to determine that <M>H_{1000}(Syl_2(M_{12},\mathbb Z)</M> is a direct sum of 251000 non-trivial cyclic <M>2</M>-groups.


<P/>The following example constructs the  series 
<P/><M>p(x)=\frac{x^4-x^3+x^2-x+1}{x^6-x^5+x^4-2*x^3+x^2-x+1}</M>
<P/>whose coefficient of <M>x^n</M> is equal to the dimension of the vector space <M>H^n(M_{11},\mathbb F_2)</M> for all <M>n</M> in the range
<M>0\le n\le 14</M>. The coefficient is not guaranteed correct for 
<M>n\ge 15</M>. 


<Example>
<#Include SYSTEM "tutex/6.7.txt">
</Example>
</Subsection>
</Section>


<Section><Heading>Nilpotent groups</Heading>

The following example computes 
<P/><M>H_4(N,\mathbb Z) = \mathbb (Z_3)^4 \oplus \mathbb Z^{84}</M>
<P/>for the free nilpotent group <M>N</M> of class <M>2</M> on four generators.
<Example>
<#Include SYSTEM "tutex/6.8.txt">
</Example>

</Section>

<Section><Heading>Crystallographic and Almost Crystallographic groups</Heading>
<P/>The following example computes
<P/><M>H_5(G,\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_2</M>
<P/>for the <M>3</M>-dimensional crystallographic space group <M>G</M>
 with Hermann-Mauguin symbol "P62" 

<Example>
<#Include SYSTEM "tutex/6.9.txt">
</Example>

<P/>The following example computes 
<P/><M>H^5(G,\mathbb Z)= \mathbb Z</M>
<P/> for an almost crystallographic group.

<Example>
<#Include SYSTEM "tutex/6.9a.txt">
</Example>

</Section>

<Section><Heading>Arithmetic groups</Heading>

<P/>The following example computes
<P/><M>H_6(SL_2({\cal O},\mathbb Z) = \mathbb Z_2 \oplus \mathbb Z_{12}</M>
<P/>for  <M>{\cal O}</M> the ring of integers of the
number field  <M>\mathbb Q(\sqrt{-2})</M>.


<Example>
<#Include SYSTEM "tutex/6.10.txt">
</Example>

</Section>


<Section><Heading>Artin groups</Heading>

<P/>The following example computes
<P/><M>H_n(G,\mathbb Z) =\left\{ \begin{array}{ll}
	\mathbb Z &amp;n=0,1,7,8\\
	\mathbb Z_2, &amp;n=2,3\\
	\mathbb Z_2\oplus \mathbb Z_6, &amp;n=4,6\\
	\mathbb Z_3 \oplus \mathbb Z_6,&amp; n=5\\
	0, &amp;n>8 \end{array}\right.
	</M>
	<P/>for  <M>G</M> the  Artin group of type <M>E_8</M>. (Similar commands can be used to compute a resolution and homology of arbitrary Artin monoids and, in thoses cases such as the spherical cases where the <M>K(\pi,1)</M>-conjecture is known to hold, the homology is equal to that of the corresponding Artin group.)


<Example>
<#Include SYSTEM "tutex/6.11.txt">
</Example>
<Alt Only="HTML">&lt;img src="images/e8diagram.gif" align="center" height="200" alt="Coxeter diagram for E8"/>
</Alt>

<Example>
<#Include SYSTEM "tutex/6.12.txt">
</Example>

	The Artin group <M>G</M> projects onto the Coxeter group <M>W</M> of type <M>E_8</M>. The group <M>W</M> has a natural representation as a group of <M>8\times 8</M> integer matrices. This projection gives rise to a representation 
	<M>\rho\colon G\rightarrow GL_8(\mathbb Z)</M>. The following command computes the cohomology group <M>H^6(G,\rho) = (\mathbb Z_2)^6</M>.

		<Example>
<#Include SYSTEM "tutex/6.12a.txt">
</Example>

</Section>

<Section><Heading>Graphs of groups</Heading>

<P/>The following example computes
<P/><M>H_5(G,\mathbb Z) = \mathbb Z_2\oplus Z_2\oplus Z_2 \oplus Z_2 \oplus Z_2</M>
<P/>for  <M>G</M> the graph of groups corresponding to
the amalgamated product <M>G=S_5*_{S_3}S_4</M>
 of the symmetric groups <M>S_5</M> and <M>S_4</M> over the canonical subgroup 
<M>S_3</M>.

<Example>
<#Include SYSTEM "tutex/6.13.txt">
</Example>
<Alt Only="HTML">&lt;img src="images/graphgroups.png" align="center" height="100" alt="graph of groups"/>
</Alt>

<Example>
<#Include SYSTEM "tutex/6.14.txt">
</Example>
</Section>

<Section><Heading>Lie algebra homology and free nilpotent groups</Heading>
One method of producting a Lie algebra <M>L</M> from a group 
		<M>G</M>
is by forming
			the direct sum <M>L(G) = G/\gamma_2G \oplus \gamma_2G/\gamma_3G \oplus \gamma_3G/\gamma_4G \oplus \cdots</M> of the quotients of the lower central series <M>\gamma_1G=G</M>, <M>\gamma_{n+1}G=[\gamma_nG,G]</M>. 
				Commutation in <M>G</M> induces a Lie bracket <M>L(G)\times L(G) \rightarrow L(G)</M>.

			<P/>
				The homology <M>H_n(L)</M>
					of a Lie algebra (with trivial coefficients) 
					can be calculated as the homology of the  Chevalley-Eilenberg chain complex <M>C_\ast(L)</M>. 
						This chain complex is implemented in <B>HAP</B> in the cases where the underlying additive group of <M>L</M> is either 
							finitely generated torsion free or  finitely generated of prime exponent <M>p</M>. In these two cases the ground ring for the Lie algebra/ Chevalley-Eilenberg complex
								is taken to be <M>\mathbb Z</M> and <M>\mathbb Z_p</M> respectively.

						<P/> For example, consider the quotient <M>G=F/\gamma_8F</M> of the free group
						<M>F=F(x,y)</M> on two generators by eighth term of its lower central series. So <M>G</M> is the <E>free nilpotent group of class 7 on two generators</E>.
							The following commands compute <M>H_4(L(G)) =  \mathbb Z_2^{77} \oplus \mathbb Z_6^8 \oplus \mathbb Z_{12}^{51} \oplus \mathbb Z_{132}^{11} \oplus \mathbb Z^{2024}</M> and show that the fourth homology in this case contains 2-, 3- and 11-torsion. (The commands take an hour or so to complete.)


<Example>
<#Include SYSTEM "tutex/6.29.txt">
</Example>

	<P/>
        For a free nilpotent group <M>G</M> the additive homology <M>H_n(L(G))</M>
		of the Lie algebra can be computed more quickly in <B>HAP</B>
			than the integral group homology <M>H_n(G,\mathbb Z)</M>. 
				Clearly there are isomorphisms<M>H_1(G) \cong H_1(L(G)) \cong G_{ab}</M> of abelian groups in homological degree <M>n=1</M>. Hopf's formula can be used to establish an isomorphism
				<M>H_2(G) \cong H_2(L(G))</M> also in degree <M>n=2</M>. The following two theorems provide further isomorphisms that allow for the homology of a free nilpotent group to be calculated more efficiently as the homology of the associated Lie algebra.

				<P/><B>Theorem 1.</B> <Cite Key="kuzmin"/> <E>Let <M>G</M>
						be a finitely generated free nilpotent group of class 2. Then the integral 
						group homology <M>H_n(G,\mathbb Z)</M> is isomorphic to the integral 
Lie algebra homology <M>H_n(L(G),\mathbb Z)</M> in each degree <M>n\ge0</M>.</E>

	<P/>
	<B>Theorem 2.</B> <Cite Key="igusa"/> 
<E>Let <M>G</M>
be a finitely generated free nilpotent group (of any class). Then the integral
                                                group homology <M>H_n(G,\mathbb Z)</M> is isomorphic to the integral
Lie algebra homology <M>H_n(L(G),\mathbb Z)</M> in  degrees <M>n=0, 1, 2, 3</M>.</E>

	<P/>We should remark that experimentation on free nilpotent groups of class <M>\ge 4</M> has not yielded a group for which the isomorphism <M>H_n(G,\mathbb Z) \cong H_n(L(G),\mathbb G)</M> fails. For instance, the isomorphism holds in degree <M>n=4</M> for the free nilpotent group of class 5 on two generators, and for the free nilpotent group of class 2 on four generators:

<Example>
<#Include SYSTEM "tutex/6.30.txt">
</Example>


</Section>

<Section><Heading>Cohomology with coefficients in a module</Heading>
There are various ways to represent a <M>\mathbb ZG</M>-module <M>A</M>
with action <M>G\times A \rightarrow A, (g,a)\mapsto \alpha(g,a)</M>. 

<P/>One possibility is to use the data type of a <E><M>G</M>-Outer Group</E> which involves three components: an <M>ActedGroup</M> <M>A</M>; an <M>Acting Group</M> <M>G</M>; a <M>Mapping</M> <M>(g,a)\mapsto \alpha(g,a)</M>.
The following example uses this data type to compute the cohomology <M>H^4(G,A) =\mathbb Z_5 \oplus \mathbb Z_{10}</M> of the symmetric group <M>G=S_6</M> with coefficients in the integers <M>A=\mathbb Z</M> where odd permutations act non-trivially on <M>A</M>.

<Example>
<#Include SYSTEM "tutex/6.15.txt">
</Example>

<P/> If <M>A=\mathbb Z^n</M> and <M>G</M> acts as
<P/><M>G\times A \rightarrow A, (g, v) \mapsto  \rho(g)\, v 
</M>
<P/> where <M>\rho\colon G\rightarrow Gl_n(\mathbb Z)</M> is a (not necessarily faithful)
matrix representation of degree <M>n</M> then we can avoid the use of <M>G</M>-outer groups and use just the homomorphism <M>\rho</M> instead.
The following example 
 uses this data type to compute the cohomology 
<P/><M>H^6(G,A) =\mathbb Z_2 </M>
<P/>and the homology
<P/><M>H_6(G,A) = 0 </M>
<P/> of the alternating group <M>G=A_5</M> with coefficients in  <M>A=\mathbb Z^5</M> where elements of <M>G</M> act on <M>\mathbb Z^5</M> via an irreducible representation.


<Example>
<#Include SYSTEM "tutex/6.16.txt">
</Example>

<P/>If <M>V=K^d</M> is a vetor space of dimension <M>d</M> over the field 
<M>K=GF(p)</M> with <M>p</M> a prime and <M>G</M> acts on <M>V</M> via a homomorphism 
<M>\rho\colon G\rightarrow GL_d(K)</M> then the homology 
<M>H^n(G,V)</M> can again be computed without the use of G-outer groups. 
 As an example, the following commands compute
<P/><M>H^4(GL(3,2),V) =K^2</M>
<P/>where <M>K=GF(2)</M> and <M>GL(3,2)</M> acts with its natural action on
<M>V=K^3</M>.

<Example>
<#Include SYSTEM "tutex/6.16B.txt">
</Example>

<P/> It can be computationally difficult to compute  resolutions for large finite groups. But the <M>p</M>-primary part of the homology can 
	be computed using resolutions of Sylow <M>p</M>-subgroups.
This approach is used in the following example that computes
 the <M>2</M>-primary part
<P/><M>H_{2}(G,\mathbb Z)_{(2)} = \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2</M>
<P/>of the degree 2 integral homology of the Rubik's cube group <M>G</M>. This group has order <M>43252003274489856000</M>. 

<Example>
<#Include SYSTEM "tutex/6.16F.txt">
</Example>







		The same approach is used in the following example that computes
 the <M>2</M>-primary part 
<P/><M>H_{11}(A_7,A)_{(2)} = \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_4</M>
<P/>of the degree 11 homology of the alternating group <M>A_7</M>
of degree <M>7</M> with coefficients in the module
 <M>A=\mathbb Z^7</M> on which <M>A_7</M> acts by permuting basis vectors.

<Example>
<#Include SYSTEM "tutex/6.16C.txt">
</Example>

Similar commands compute
<P/><M>H_{3}(A_{10},A)_{(2)} = \mathbb Z_4</M>
<P/>with coefficient module <M>A=\mathbb Z^{10}</M> on which <M>A_{10}</M> acts by permuting basis vectors.

<Example>
<#Include SYSTEM "tutex/6.16D.txt">
</Example>

<P/>The following commands compute 
<P/><M>H_{100}(GL(3,2),V)= K^{34}</M>
<P/>where <M>V</M> is the vector space  of dimension <M>3</M> over <M>K=GF(2)</M> acting via some irreducible representation <M>\rho\colon GL(3,2) \rightarrow GL(V)</M>.

<Example>
<#Include SYSTEM "tutex/6.16E.txt">
</Example>
</Section>
 
<Section><Heading>Cohomology as a functor of the first variable</Heading>
Suppose given a group homomorphism <M>f\colon G_1\rightarrow G_2</M> and a <M>G_2</M>-module <M>A</M>. Then <M>A</M> is naturally a <M>G_1</M>-module with  action via <M>f</M>, and there is an induced cohomology homomorphism
<M>H^n(f,A)\colon H^n(G_2,A) \rightarrow H^n(G_1,A)</M>.

<P/>The following example computes this cohomology homomorphism in degree <M>n=6</M> for the inclusion <M>f\colon A_5 \rightarrow S_5</M> and <M>A=\mathbb Z^5</M> with action that permutes the canonical basis.
The final commands determine that the kernel of the homomorphism <M>H^6(f,A)</M> is the Klein group of order <M>4</M> and that the cokernel is cyclic of order <M>6</M>.
<Example>
<#Include SYSTEM "tutex/6.16A.txt">
</Example>

</Section>

<Section><Heading>Cohomology as a functor of the second variable and the long exact coefficient sequence</Heading>
A short exact sequence of <M>\mathbb ZG</M>-modules
<M>A \rightarrowtail B \twoheadrightarrow C</M>
induces a long exact sequence of cohomology groups
<P/><M> \rightarrow H^n(G,A)  \rightarrow H^n(G,B) \rightarrow H^n(G,C) \rightarrow H^{n+1}(G,A) \rightarrow </M> .
<P/> Consider the symmetric group <M>G=S_4</M> and the sequence
<M> \mathbb Z_4  \rightarrowtail  \mathbb Z_8 \twoheadrightarrow \mathbb Z_2</M>
of trivial <M>\mathbb ZG</M>-modules.  The following commands compute the induced cohomology homomorphism

<P/><M>f\colon H^3(S_4,\mathbb Z_4)  \rightarrow  H^3(S_4,\mathbb Z_8)</M>

<P/>and determine that the image of this induced homomorphism has order <M>8</M> and that its kernel has order <M>2</M>. 

<Example>
<#Include SYSTEM "tutex/6.17.txt">
</Example>

<P/>
The following commands then compute the homomorphism

<P/><M>H^3(S_4,\mathbb Z_8)  \rightarrow  H^3(S_4,\mathbb Z_2)</M>

<P/>induced by

<M>\mathbb Z_4  \rightarrowtail  \mathbb Z_8 \twoheadrightarrow \mathbb Z_2</M>, 

and determine that the kernel of this homomorphsim has order <M>8</M>.

<Example>
<#Include SYSTEM "tutex/6.18.txt">
</Example>

<P/>The following commands then compute the connecting homomorphism

<P/><M>H^2(S_4,\mathbb Z_2)  \rightarrow  H^3(S_4,\mathbb Z_4)</M>

<P/>and determine that the image of this homomorphism has order <M>2</M>.

<Example>
<#Include SYSTEM "tutex/6.19.txt">
</Example>

Note that the various orders are consistent with exactness of the sequence

<P/><M>H^2(S_4,\mathbb Z_2)  \rightarrow  H^3(S_4,\mathbb Z_4) \rightarrow  H^3(S_4,\mathbb Z_8) \rightarrow  H^3(S_4,\mathbb Z_2) </M> .

</Section>

<Section><Heading>Transfer Homomorphism</Heading>
Consider the action of the symmetric group <M>G=S_5</M> on <M>A=\mathbb Z^5</M> which permutes the canonical basis. The action restricts to the
 sylow  <M>2</M>-subgroup <M>P=Syl_2(G)</M>. The following commands compute the cohomology transfer homomorphism <M>t^4\colon H^4(P,A) \rightarrow H^4(S_5,A)</M> and determine its kernel and image. The integral homology transfer
<M>t_4\colon H_4(S_5,\mathbb Z) \rightarrow H_5(P,\mathbb Z)</M> is also computed.
<Example>
<#Include SYSTEM "tutex/6.25.txt">
</Example>
</Section>

<Section Label="Secfinitefundman"><Heading>Cohomology rings of finite fundamental groups of 3-manifolds
</Heading>
A <E>spherical 3-manifold</E> is a 3-manifold arising as the quotient <M>S^3/\Gamma</M> of the 3-sphere <M>S^3</M> by a  finite subgroup <M>\Gamma</M> of <M>SO(4)</M> acting freely as rotations.
The geometrization conjecture, proved by Grigori Perelman,
 implies that every closed connected 3-manifold with a finite fundamental group is homeomorphic to a spherical 3-manifold.

<P/> A spherical 3-manifold <M>S^3/\Gamma</M> has finite fundamental group isomorphic to <M>\Gamma</M>. This fundamental group is one of: 
<List>
<Item> <M>\Gamma=C_m=\langle x\ |\ x^m\rangle</M> (<B>cyclic fundamental group</B>)</Item>
<Item> <M>\Gamma=C_m\times  \langle x,y \ |\ xyx^{-1}=y^{-1}, x^{2^k}=y^n
\rangle</M> for  integers <M>k, m\ge 1, n\ge 2</M> and <M>m</M> coprime to <M>2n</M> (<B>prism manifold case</B>)</Item>
<Item> <M>\Gamma= C_m\times \langle x,y, z \ |\ (xy)^2=x^2=y^2, zxz^{-1}=y, zyz^{-1}=xy, z^{3^k}=1\rangle </M> for integers <M>k,m\ge 1</M> and <M>m</M> coprime to 6 (<B>tetrahedral case</B>)</Item>
<Item> <M>\Gamma=C_m\times\langle x,y\ |\ (xy)^2=x^3=y^4\rangle </M> for <M>m\ge 1</M> coprime to 6 (<B>octahedral case</B>)</Item>
<Item><M>\Gamma=C_m\times \langle x,y\ |\ (xy)^2=x^3=y^5\rangle </M> for <M>m\ge 1</M> coprime to 30 (<B>icosahedral case</B>).</Item></List>
This list of cases 
is taken from the  <URL><Link>https://en.wikipedia.org/wiki/Spherical_3-manifold</Link><LinkText>Wikipedia pages</LinkText></URL>. The group <M>\Gamma</M>
  has periodic cohomology since it acts on a sphere. The cyclic group has
period 2 and in the other four cases it has  period 4. (Recall that in general a finite group <M>G</M> has <E>periodic cohomology of period <M>n</M></E> if there is an element <M>u\in H^n(G,\mathbb Z)</M> such that the cup product <M>-\ \cup u\colon H^k(G,\mathbb Z) \rightarrow H^{k+n}(G,\mathbb Z)</M> is an isomorphism for all <M>k\ge 1</M>. It can be shown that <M>G</M> has periodic cohomology of period <M>n</M> if and only if <M>H^{n}(G,\mathbb Z)=\mathbb Z_{|G|}</M>.)

<P/>The cohomology of the cyclic group is well-known, and the cohomology of a direct product can be obtained from that of the factors using the Kunneth formula.

<P/> In the icosahedral case with <M>m=1</M> the following commands yield
$$H^\ast(\Gamma,\mathbb Z)=Z[t]/(120t=0)$$
with generator <M>t</M> of degree 4. The final command demonstrates that a periodic resolution is used in the computation.

<Example>
<#Include SYSTEM "tutex/6.19A.txt">
</Example>

In the octahedral case with <M>m=1</M> we obtain
$$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=24t, 2s=0, 48t=0)$$
where <M>s</M> has degree 2 and  <M>t</M> has degree 4,
from the following commands.
<Example>
<#Include SYSTEM "tutex/6.19B.txt">
</Example>


In the tetrahedral case with <M>m=1</M> we obtain
$$H^\ast(\Gamma,\mathbb Z) = \mathbb Z[s,t]/(s^2=16t, 3s=0, 24t=0)$$
where <M>s</M> has degree 2 and  <M>t</M> has degree 4,
from the following commands.
<Example>
<#Include SYSTEM "tutex/6.19C.txt">
</Example>

A theoretical calculation of the integral and mod-p cohomology rings of all of these fundamental groups of spherical 3-manifolds is given in <Cite Key="tomoda"/>.

</Section>

<Section><Heading>Explicit cocycles </Heading>

Given a <M>\mathbb ZG</M>-resolution <M>R_\ast</M> and a <M>\mathbb ZG</M>-module 
<M>A</M>, one defines an <E><M>n</M>-cocycle</E> to be a <M>\mathbb ZG</M>-homomorphism 
<M>f\colon R_n \rightarrow A</M> for which the composite homomorphism 
<M>fd_{n+1}\colon R_{n+1}\rightarrow A</M> is zero. If <M>R_\ast</M>
 happens to be the standard bar resolution (i.e. the cellular chain complex of the nerve of the group <M>G</M> considered as a one object category) then the free <M>\mathbb ZG</M>-generators of <M>R_n</M> are indexed by <M>n</M>-tuples 
<M>(g_1 | g_2 | \ldots | g_n)</M> of elements <M>g_i</M> in <M>G</M>. In this case we say that the <M>n</M>-cocycle is a <E>standard n-cocycle</E>
 and we think of it as a set-theoretic function
<P/><M>f \colon  G \times G \times \cdots \times   G  \longrightarrow A</M>
<P/>satisfying a certain algebraic cocycle condition. 

Bearing in mind that a standard <M>n</M>-cocycle really just assigns an element <M>f(g_1, \ldots ,g_n) \in A</M> to an <M>n</M>-simplex in the nerve of <M>G</M>
, the cocycle condition is a very natural one which states that 
<E><M>f</M> must vanish on the boundary of a certain <M>(n+1)</M>-simplex</E>. For <M>n=2</M> the condition is that a <M>2</M>-cocycle <M>f(g_1,g_2)</M>
must satisfy 
<P/><M>g.f(h,k) + f(g,hk) = f(gh,k) + f(g,h)</M>
<P/> for all <M>g,h,k \in G</M>. This equation is explained by the following picture.

<P/><Alt Only="HTML">&lt;img src="images/cocycle.png" align="center" height="200" alt="2-cocycle equation"/>
</Alt>

<P/>
The definition of a cocycle clearly depends on the choice of <M>\mathbb ZG</M>-resolution <M>R_\ast</M>. However, the cohomology group <M>H^n(G,A)</M>, which is a group of equivalence classes of <M>n</M>-cocycles, is independent of the choice of <M>R_\ast</M>. 

<P/>
There are some occasions when one needs explicit examples of standard cocycles. For instance:

<List>
<Item>    Let <M>G</M> be a finite group and <M>k</M>
a field of characteristic <M>0</M>. The group algebra <M>k(G)</M>,
 and the algebra <M>F(G)</M> of functions 
<M>d_g\colon G\rightarrow k, h\rightarrow d_{g,h}</M>,
 are both Hopf algebras. The tensor product <M>F(G) \otimes k(G)</M>
 also admits a Hopf algebra structure known as the quantum double <M>D(G)</M>. 
A twisted quantum double <M>D_f(G)</M> was introduced by 
R. Dijkraaf, V. Pasquier &amp; P. Roche <Cite Key="dpr"/>. 
The twisted double is a quasi-Hopf algebra depending on a <M>3</M>-cocycle 
<M>f\colon G\times G\times G\rightarrow k</M>. The multiplication is given by 
<M>(d_g \otimes x)(d_h \otimes y) = d_{gx,xh}\beta_g(x,y)(d_g \otimes xy)</M> where <M>\beta_a </M>
is defined by <M>\beta_a(h,g) = f(a,h,g) f(h,h^{-1}ah,g)^{-1} f(h,g,(hg)^{-1}ahg)</M> .  Although the algebraic structure of <M>D_f(G)</M> depends very much on the particular <M>3</M>-cocycle <M>f</M>, representation-theoretic properties of <M>D_f(G)</M> depend only on the cohomology class of <M>f</M>.
</Item>
<Item>    An explicit <M>2</M>-cocycle <M>f\colon G\times G\rightarrow A</M> is needed to construct the multiplication <M>(a,g)(a',g') = (a + g\cdot a' + f(g,g'),  gg')</M> in the extension a group <M>G</M> by a <M>\mathbb ZG</M>-module 
<M>A</M> determined by the cohomology class of <M>f</M> in <M>H^2(G,A)</M>.
See <Ref Sect="secExtensions"/>.
</Item>
<Item>    In work on coding theory and Hadamard matrices a number of papers have investigated square matrices <M>(a_{ij})</M> whose entries <M>a_{ij}=f(g_i,g_j)</M>
 are the values of a <M>2</M>-cocycle <M>f\colon G\times G \rightarrow
 \mathbb Z_2</M>
 where <M>G</M> is a finite group acting trivially on <M>\mathbb Z_2</M>. See for instance <Cite Key="horadam"/> and <Ref Sect="secHadamard"/>.
</Item>
</List>


<P/>
Given a <M>\mathbb ZG</M>-resolution <M>R_\ast</M>
 (with contracting homotopy) and a <M>\mathbb ZG</M>-module <M>A</M>
 one can use HAP commands to compute explicit standard <M>n</M>-cocycles 
<M>f\colon G^n \rightarrow A</M>. With the twisted quantum double in mind, we illustrate the computation for <M>n=3</M>, <M>G=S_3</M>, and <M>A=U(1)</M>
 the group of complex numbers of modulus <M>1</M> with trivial <M>G</M>-action.

<P/>
We first compute a <M>\mathbb ZG</M>-resolution <M>R_\ast</M>. The Universal Coefficient Theorem gives an isomorphism <M>H_3(G,U(1)) = Hom_{\mathbb Z}(H_3(G,\mathbb Z), U(1))</M>, The multiplicative group <M>U(1)</M> can thus be viewed as 
<M>\mathbb Z_m</M> where <M>m</M> is a multiple of the exponent of <M>H_3(G,\mathbb Z)</M>.

<Example>
<#Include SYSTEM "tutex/6.20.txt">
</Example>

<P/>
We thus replace the very infinite group U(1) by the finite cyclic group <M>\mathbb Z_6</M>. Since the resolution <M>R_\ast </M> has <M>4</M> generators in degree <M>3</M>, a homomorphism <M>f\colon R^3\rightarrow U(1)</M> can 
be represented by a list <M>f=[f_1, f_2, f_3, f_4]</M> with <M>f_i</M>
  the image in <M>\mathbb Z_6</M> of the <M>i</M>th generator. The cocycle condition on <M>f</M> can be expressed as a matrix equation

<P/><M>Mf^t = 0  \bmod 6</M>.

<P/>
where the matrix <M>M</M> is obtained from the following command and <M>f^t</M> denotes the transpose.
<Example>
<#Include SYSTEM "tutex/6.21.txt">
</Example>

A particular cocycle <M>f=[f_1, f_2, f_3, f_4]</M> can be obtained by choosing a solution to the equation Mf^t=0.

<Example>
<#Include SYSTEM "tutex/6.22.txt">
</Example>

A non-standard <M>3</M>-cocycle <M>f</M> can be converted to a standard one using the command  <Code>StandardCocycle(R,f,n,q)</Code> . This command inputs 
<M>  R_\ast</M>, integers <M>n</M> and <M>q</M>, and an <M>n</M>-cocycle <M>f</M> for the resolution <M>R_\ast</M>. It returns a standard cocycle <M>G^n \rightarrow \mathbb Z_q</M>.

<Example>
<#Include SYSTEM "tutex/6.23.txt">
</Example>

A function <M>f\colon G\times G\times G \rightarrow A</M>
 is a standard <M>3</M>-cocycle if and only if

<P/><M>g\cdot f(h,k,l) -  f(gh,k,l) + f(g,hk,l) -  f(g,h,kl) + f(g,h,k) = 0</M>

<P/>for all <M>g,h,k,l \in G</M>. In the above example the group <M>G=S_3</M>
 acts trivially on <M>A=Z_6</M>. The following commands show that the standard 
<M>3</M>-cocycle produced in the example really does satisfy this <M>3</M>-cocycle condition. 

<Example>
<#Include SYSTEM "tutex/6.24.txt">
</Example>

</Section>

<Section Label="secWebb"><Heading>Quillen's complex and the <M>p</M>-part of homology </Heading>
Let <M>G</M> be a finite group with order divisible by  prime <M>p</M>. Let
<M>{\mathcal A}={\mathcal A}_p(G)</M> denote Quillen's simplicial complex arising as the order complex of the poset of non-trivial elementary abelian <M>p</M>-subgroups of <M>G</M>. The group <M>G</M> acts on <M>\mathcal A</M>. Denote the orbit of a <M>k</M>-simplex <M>e^k</M> by <M>[e^k]</M>, and the stabilizer of <M>e^k</M> by <M>Stab(e^k) \le G</M>. For a finite abelian group <M>H</M> let
<M>H_p</M> denote the Sylow <M>p</M>-subgroup or the "<M>p</M>-part". In Theorem 3.3 of <Cite Key="Webb"/> P.J. Webb proved the following.
<P/>
<B>Theorem.</B><Cite Key="Webb"/> For any <M>G</M>-module <M>M</M> there is a (non natural) isomomorphism<P/>
<M>H_n(G,M)_p \oplus \bigoplus_{[e^k]\, :\, k~{\rm odd}~}H_n(Stab(e^k),M)_p \cong \bigoplus_{[e^k]\, : \, k~{\rm even}~}H_n(Stab(e^k),M)_p</M>
<P/> for <M>n\ge 1</M>. The isomorphism can also be expressed as
<P/>
<M>H_n(G,M)_p  \cong \bigoplus_{[e^k]\, : \, k~{\rm even}~}H_n(Stab(e^k),M)_p\ -\ \bigoplus_{[e^k] \, :\, k~{\rm odd}~}H_n(Stab(e^k),M)_p</M> 
<P/>where terms can often be cancelled.
<P/>Thus the additive structure of the <M>p</M>-part of the
homology of <M>G</M> is determined by that of the stabilizer groups. The result also holds with homology replaced by cohomology.

<P/><B>Illustration 1</B>
<P/>
As an illustration of the theorem, the following commands calculate
<P/>
<M>H_n(SL_3(\mathbb Z_2),\mathbb Z) \cong H_n(S_4,\mathbb Z)_2 \oplus H_n(S_4,\mathbb Z)_2 \ominus H_n(D_8,\mathbb Z)_2 \oplus H_n(S_3,\mathbb Z)_3 \oplus
	H_n(C_7 : C_3,\mathbb Z)_7 </M>
<P/>
	where <M>n\ge 1</M>,
	<M>S_k</M> denotes the symmetric group on <M>n</M> letters, <M>D_8</M> the dihedral group of order <M>8</M> and <M>C_7 : C_3</M> a nonabelian semi-direct product of cyclic groups.
		Furthermore, for <M>n\ge 1</M>
		<P/><M> H_n(C_7 : C_3,\mathbb Z)_7 =\left\{\begin{array}{ll}\mathbb Z_7,\ n \equiv 5 {\rm \ mod\ } 6\\
	                                         0,\ {\rm otherwise} \end{array}\right.</M>
					 <P/>and
					 <P/><M> H_n(S_3,\mathbb Z)_3 =\left\{\begin{array}{ll}\mathbb Z_3,\ n \equiv 3 {\rm \ mod\ } 4\\
                                                 0,\ n{\rm ~otherwise .} \end{array}\right.</M>
					 <P/> Formulas for <M>H_n(S_4,\mathbb Z)</M> and <M> H_n(D_8,\mathbb Z)</M> can be found in the literature. Alternatively, they can be computed using <B>GAP</B> for a given value of <M>n</M>. For <M>n=27</M> we find
					 <P/><M> H_{27}(S_4,\mathbb Z)_2 \oplus H_{27}(S_4,\mathbb Z)_2 \ominus H_{27}(D_8,\mathbb Z)_2 \cong
						 \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_4</M>
					 <P/> and
					 <P/><M>H_{27}(SL_3(\mathbb Z_2),\mathbb Z) \cong \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 
						 \oplus \mathbb Z_4 \oplus \mathbb Z_3 </M>  .

							 <Example>
<#Include SYSTEM "tutex/6.34.txt">
</Example>

<P/><B>Illustration 2</B>
<P/>
As a further illustration of the theorem, the following commands calculate


<P/>
<M>H_n(M_{12},M)_3 \cong \bigoplus_{1\le i\le 3}\,H_n(Stab_i,M)_3 - \bigoplus_{4\le i\le 5}H_n(Stab_i,M)_3</M>
<P/> for the Mathieu simple group <M>M_{12}</M> of order <M>95040</M>, where
<P/><M>Stab_1\cong Stab_3=(((C_3 \times C_3) : Q_8) : C_3) : C_2</M>
<P/><M>Stab_2=A_4 \times S_3</M>
<P/><M>Stab_4=C_3 \times S_3</M>
<P/><M>Stab_5=((C_3 \times C_3) : C_3) : (C_2 \times C_2)</M>  .
<Example>
<#Include SYSTEM "tutex/6.26.txt">
</Example>

<P/><B>Illustration 3</B>
<P/>
As a third illustration, the following commands show that <M>H_n(M_{23},M)_{p}</M> is periodic for primes <M>p=5, 7, 11, 23</M> of periods dividing <M>8, 6, 10, 22</M> respectively.


<Example>
<#Include SYSTEM "tutex/6.27.txt">
</Example>

<P/>The order <M>|M_{23}|=10200960</M> is divisible by primes 
<M>p=2, 3, 5, 7, 11, 23</M>. For <M>p=3</M> the following commands establish 
that the Poincare series
<P/><M>(x^{16} - 2x^{15}</M>
<M> + 3x^{14} - 4x^{13}</M>
<M> + 4x^{12} - 4x^{11}</M>
<M> + 4x^{10} - 3x^9</M>
<M> + 3x^8 - 3x^7 +</M>
<M> 4x^6 - 4x^5 </M>
<M>+ 4x^4 -4x^3</M>
<M> + 3x^2 -2x + 1) /</M>
<M> (x^{18} - 2x^{17}</M>
<M> + 3x^{16} - 4x^{15}</M>
<M> + 4x^{14} - </M>
<M>4x^{13} + 4x^{12}</M>
<M> - 4x^{11} + 4x^{10}</M>
<M> - 4x^9 + 4x^8</M>
<M> - 4x^7 + 4x^6 </M>
<M> - 4x^5 + 4x^4</M>
<M> - 4x^3 +</M>
<M> 3x^2 - 2x + 1)</M>
 
<P/>describes the dimension of the vector space <M>H^n(M_{23},\mathbb Z_3)</M> up to at least degree
<M>n=40</M>. To  prove that it describes the dimension in all degrees one would need to verify "completion criteria".

<Example>
<#Include SYSTEM "tutex/6.28.txt">
</Example>

</Section>

<Section><Heading>Homology of a Lie algebra</Heading>

		Let <M>A</M> be the Lie algebra constructed from the associative algebra <M>M^{4\times 4}(\mathbb Q)</M> of all <M>4\times 4</M> rational matrices. Let <M>V</M> be its adjoint module (with underlying vector space of dimension <M>16</M> and
			equal to that of <M>A</M>). The following commands compute <M>H_{4}(A,V) = \mathbb Q</M>.

			<Example>
<#Include SYSTEM "tutex/6.31.txt">
</Example>

<P/>Note that the eighth term  <M>C_{8}(V)</M> in the Chevalley-Eilenberg complex <M>C_\ast(V)</M> is a vector space of dimension <M>205920</M> and so it will take longer to compute the homology in degree <M>8</M>.

<P/>As a second example, let <M>B</M> be the classical Lie ring of type <M>B_3</M> over the ring of integers. The following commands compute
<M>H_3(B,\mathbb Z)= \mathbb Z \oplus \mathbb Z_2^{105}</M>.
	 <Example>
<#Include SYSTEM "tutex/6.32.txt">
</Example>

</Section>

<Section><Heading>Covers of Lie algebras</Heading>

A short exact sequence of Lie algebras

	<P/><M> M \rightarrowtail C \twoheadrightarrow L </M>


	<P/>		(over a field <M>k</M>) is said to be a <E>stem extension</E>
			of <M>L</M> if <M>M</M> lies both in the centre <M>Z(C)</M> and in the derived subalgeba <M>C^2</M>. If, in addition, the rank of the vector space <M>M</M> is equal to the rank of the second Chevalley-Eilenberg homology <M>H_2(L,k)</M> then the Lie algebra <M>C</M> is said to be a <E>cover</E> of <M>L</M>.

			<P/>Each finite dimensional Lie algebra <M>L</M> admits a cover <M>C</M>, and this cover can be shown to be unique up to Lie isomorphism.

			<P/>The cover can be used to determine whether there exists a Lie algebra <M>E</M> whose central quotient <M>E/Z(E)</M> is isomorphic to <M>L</M>. The image in <M>L</M> of the centre of <M>C</M> is called the <E>Lie Epicentre</E> of <M>L</M>, and this image is trivial if and only if such an <M>E</M> exists.

			<P/>The cover can also be used to determine the stem extensions of <M>L</M>. It can be shown that each stem extension is a quotient of the cover by an ideal in the Lie multiplier <M>H_2(L,k)</M>. 

			<Subsection><Heading>Computing a cover</Heading>
				The following commands compute the cover <M>C</M> of the solvable but non-nilpotent 13-dimensional Lie algebra <M>L</M> (over <M>k=\mathbb Q</M>)
					that was introduced by M. Wuestner <Cite Key="Wustner"/>.
						They also show that:

						
							the second  homology of <M>C</M> is trivial and compute the ranks of the homology groups in other dimensions;
								the Lie algebra <M>L</M> is not isomorphic to any central quotient <M>E/Z(E)</M>.

									<Example>
<#Include SYSTEM "tutex/6.33.txt">
</Example>
			</Subsection>
</Section>
</Chapter>