1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
<Chapter Label="chapSimplicialGroups"><Heading>Simplicial groups</Heading>
<Section Label="secCrossedModules"><Heading>Crossed modules</Heading>
A <E>crossed module</E> consists of a homomorphism of groups
<M>\partial\colon M\rightarrow G</M> together with an action
<M>(g,m)\mapsto\, {^gm}</M> of <M>G</M> on <M>M</M> satisfying
<Enum>
<Item> <M>\partial(^gm) = gmg^{-1}</M></Item>
<Item> <M>^{\partial m}m' = mm'm^{-1}</M></Item>
</Enum>
for <M>g\in G</M>, <M>m,m'\in M</M>.
<P/> A crossed module <M>\partial\colon M\rightarrow G</M>
is equivalent to a cat<M>^1</M>-group <M>(H,s,t)</M> (see <Ref Sect="secCat1"/>) where
<M>H=M \rtimes G</M>, <M>s(m,g) = (1,g)</M>, <M>t(m,g)=(1,(\partial m)g)</M>. A cat<M>^1</M>-group is, in turn, equivalent to a simplicial group with Moore complex has length <M>1</M>. The simplicial group is constructed by considering the cat<M>^1</M>-group as a category and taking its nerve.
Alternatively, the simplicial group can be constructed by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.
<P/>The following example concerns the crossed module
<P/><M>\partial\colon G\rightarrow Aut(G), g\mapsto (x\mapsto gxg^{-1})</M>
<P/>associated to the dihedral group <M>G</M> of order <M>16</M>. This crossed module represents, up to homotopy type,
a connected space <M>X</M> with <M>\pi_iX=0</M> for <M>i\ge 3</M>,
<M>\pi_2X=Z(G)</M>, <M>\pi_1X = Aut(G)/Inn(G)</M>.
The space <M>X</M> can be represented, up to homotopy, by a simplicial group.
That simplicial group is used in the example to compute
<P/><M>H_1(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2</M>,
<P/><M>H_2(X,\mathbb Z)= \mathbb Z_2 </M>,
<P/><M>H_3(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2</M>,
<P/><M>H_4(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2</M>,
<P/><M>H_5(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2\oplus \mathbb Z_2</M>.
<Example>
<#Include SYSTEM "tutex/9.1.txt">
</Example>
</Section>
<Section Label="eilennot"><Heading>Eilenberg-MacLane spaces as simplicial groups (not recommended)</Heading>
<P/>The following example concerns the Eilenberg-MacLane space <M>X=K(\mathbb Z_3,3)</M> which is a path-connected space with <M>\pi_3X=\mathbb Z_3</M>,
<M>\pi_iX=0</M> for <M>3\ne i\ge 1</M>. This space is represented by a simplicial group, and perturbation techniques are used to compute
<P/><M>H_7(X,\mathbb Z)=\mathbb Z_3 \oplus \mathbb Z_3</M>.
<Example>
<#Include SYSTEM "tutex/9.2.txt">
</Example>
</Section>
<Section Label="eilen"><Heading>Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</Heading>
<P/>For integer <M>n>1</M> and abelian group <M>A</M> the Eilenberg-MacLane space
<M>K(A,n)</M>
is better represented as a simplicial free abelian group. (The reason is that the functorial bar resolution of a group can be replaced in computations
by the smaller functorial Chevalley-Eilenberg complex of the group
when the group is free abelian, obviating the need for perturbation techniques. When <M>A</M> has torision we can replace it with an inclusion of free abelian groups <M>A_1 \hookrightarrow A_0</M> with <M>A\cong A_0/A_1</M> and again invoke the Chevalley-Eilenberg complex. The current implementation unfortunately handles only free abelian <M>A</M> but the easy extension to non-free <M>A</M> is planned for a future release.)
<P/>The following commands compute the integral homology <M>H_n(K(\mathbb Z,3),\mathbb Z)</M> for <M> 0\le n \le 16</M>. (Note that one typically needs fewer than <M>n</M> terms of the Eilenberg-MacLance space to compute its <M>n</M>-th homology -- an error is printed if too few terms of the space are available for a given computation.)
<Example>
<#Include SYSTEM "tutex/9.3.txt">
</Example>
For an <M>n</M>-connected pointed space <M>X</M> the Freudenthal Suspension
Theorem states that the map <M>X \rightarrow \Omega(\Sigma X)</M> induces a map
<M>\pi_k(X) \rightarrow \pi_k(\Omega(\Sigma X))</M> which is an isomorphism for
<M>k\le 2n</M> and epimorphism for <M>k=2n+1</M>. Thus the Eilenberg-MacLane
space
<M>K(A,n+1)</M> can be constructed from the suspension <M>\Sigma K(A,n)</M>
by attaching cells in dimensions <M>\ge 2n+1</M>. In particular, there is an isomorphism
<M> H_{k-1}(K(A,n),\mathbb Z) \rightarrow H_k(K(A,n+1),\mathbb Z)</M> for <M>k\le 2n</M> and epimorphism for <M>k=2n+1</M>.
<P/>
For instance, <M> H_{k-1}(K(\mathbb Z,3),\mathbb Z) \cong H_k(K(\mathbb Z,4),\mathbb Z) </M> for <M>k\le 6</M> and <M> H_6(K(\mathbb Z,3),\mathbb Z) \twoheadrightarrow H_7(K(\mathbb Z,4),\mathbb Z) </M>. This assertion is seen in the following session.
<Example>
<#Include SYSTEM "tutex/9.4.txt">
</Example>
</Section>
<Section>
<Heading>Elementary theoretical information on
<M>H^\ast(K(\pi,n),\mathbb Z)</M></Heading>
<P/>The cup product is not implemented for the cohomology ring
<M>H^\ast(K(\pi,n),\mathbb Z)</M>. Standard theoretical spectral sequence arguments
have to be applied to obtain basic information relating to
the ring structure. To illustrate this the following commands compute <M>H^n(K(\mathbb Z,2),\mathbb Z)</M>
for the first few values of <M>n</M>.
<Example>
<#Include SYSTEM "tutex/9.7.txt">
</Example>
There is a fibration sequence <M>K(\pi,n) \hookrightarrow \ast \twoheadrightarrow K(\pi,n+1)</M> in which <M>\ast</M> denotes a contractible space.
For <M>n=1, \pi=\mathbb Z</M> the terms of the <M>E_2</M> page of the
Serre integral cohomology spectral sequence for this fibration
are
<List>
<Item> <M>E_2^{pq}= H^p( K(\mathbb Z,2), H^q(K(\mathbb Z,1),\mathbb Z) )</M> .</Item>
</List>
Since <M>K(\mathbb Z,1)</M> can be taken to be the circle <M>S^1</M> we know
that it has non-trivial cohomology in degrees <M>0</M> and <M>1</M> only. The first few terms of
the <M>E_2</M> page are given in the following table.
<Table Align="l|lllllllllll">
<Caption><M>E^2</M> cohomology page for <M>K(\mathbb Z,1) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,2)</M></Caption>
<Row>
<Item> <M>1</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
<Item> <M>8</M> </Item>
<Item> <M>9</M> </Item>
<Item> <M>10</M> </Item>
</Row>
</Table>
Let <M>x</M> denote the generator of <M>H^1(K(\mathbb Z,1),\mathbb Z)</M>
and <M>y</M> denote the generator of <M>H^2(K(\mathbb Z,2),\mathbb Z)</M>.
Since <M>\ast</M> has zero cohomology in degrees <M>\ge 1</M> we see that the differential must restrict to an isomorphism <M>d_2\colon E_2^{0,1} \rightarrow E_2^{2,0}</M> with
<M>d_2(x)=y</M>. Then we see that the differential must restrict
to an isomorphism
<M>d_2\colon E_2^{2,1} \rightarrow E_2^{4,0}</M> defined on the generator <M>xy</M> of <M>E_2^{2,1}</M>
by
<Display>d_2(xy) = d_2(x)y + (-1)^{{\rm deg}(x)}xd_2(y) =y^2\ . </Display>
Hence <M>E_2^{4,0} \cong H^4(K(\mathbb Z,2),\mathbb Z)</M> is generated by <M>y^2</M>. The argument extends to show that <M>H^6(K(\mathbb Z,2),\mathbb Z)</M> is generated by <M>y^3</M>, <M>H^8(K(\mathbb Z,2),\mathbb Z)</M> is generated by <M>y^4</M>, and so on.
<P/>In fact, to obtain a complete description of the ring <M>H^\ast(K(\mathbb Z,2),\mathbb Z)</M> in this fashion there is no benefit to using computer methods at all. We only need to know the cohomology ring <M>H^\ast(K(\mathbb Z,1),\mathbb Z) =H^\ast(S^1,\mathbb Z)</M> and the single cohomology group <M>H^2(K(\mathbb Z,2),\mathbb Z)</M>.
<P/>A similar approach can be attempted for <M>H^\ast(K(\mathbb Z,3),\mathbb Z)</M> using the fibration sequence <M>K(\mathbb Z,2) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,3)</M> and, as explained in Chapter 5 of
<Cite Key="hatcher"/>, yields the computation of the group <M>H^i(K(\mathbb Z,3),\mathbb Z)</M> for <M>4\le i\le 13</M>. The method does not directly yield <M>H^3(K(\mathbb Z,3),\mathbb Z)</M> and breaks down in degree <M>14</M> yielding
only that
<M>H^{14}(K(\mathbb Z,3),\mathbb Z) = 0 {\rm ~or~} \mathbb Z_3</M>.
The following commands provide <M>H^3(K(\mathbb Z,3),\mathbb Z)= \mathbb Z</M>
and <M>H^{14}(K(\mathbb Z,3),\mathbb Z) =0</M>.
<Example>
<#Include SYSTEM "tutex/9.8.txt">
</Example>
However, the implementation of these commands is currently a bit naive, and computationally inefficient, since they do not currently employ any homological perturbation techniques.
</Section>
<Section Label="firstthree"><Heading>The first three non-trivial homotopy groups of spheres</Heading>
<P/>The Hurewicz Theorem immediately gives
<Display>\pi_n(S^n)\cong \mathbb Z ~~~ (n\ge 1)</Display>
and
<Display>\pi_k(S^n)=0 ~~~ (k\le n-1).</Display>
<P/>As a CW-complex the Eilenberg-MacLane space <M>K=K(\mathbb Z,n)</M> can be
obtained from an <M>n</M>-sphere <M>S^n=e^0\cup e^n</M> by attaching cells in
dimensions <M>\ge n+2</M> so as to kill the higher homotopy groups of
<M>S^n</M>.
From the inclusion <M>\iota\colon S^n\hookrightarrow K(\mathbb Z,n)</M>
we can form the mapping cone <M>X=C(\iota)</M>. The long
exact homotopy sequence
<P/><M> \cdots \rightarrow \pi_{k+1}K \rightarrow \pi_{k+1}(K,S^n)
\rightarrow \pi_{k} S^n \rightarrow \pi_kK \rightarrow \pi_k(K,S^n) \rightarrow \cdots</M>
<P/>
implies that <M>\pi_k(K,S^n)=0</M> for <M>0 \le k\le n+1</M> and <M>\pi_{n+2}(K,S^n)\cong \pi_{n+1}(S^n)</M>. The relative Hurewicz Theorem gives an isomorphism <M>\pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z)</M>.
The long exact homology sequence
<P/><M> \cdots H_{n+2}(S^n,\mathbb Z) \rightarrow H_{n+2}(K,\mathbb Z) \rightarrow H_{n+2}(K,S^n, \mathbb Z) \rightarrow H_{n+1}(S^n,\mathbb Z) \rightarrow \cdots</M>
<P/> arising from the cofibration <M>S^n \hookrightarrow K \twoheadrightarrow X</M>
implies that <M>\pi_{n+1}(S^n)\cong \pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z) \cong H_{n+2}(K,\mathbb Z)</M>. From the <B>GAP</B> computations in <Ref Sect="eilen"/> and the Freudenthal Suspension Theorem we find:
<Display> \pi_3S^2 \cong \mathbb Z, ~~~~~~ \pi_{n+1}(S^n)\cong \mathbb Z_2~~~(n\ge 3).</Display>
<P/>The Hopf fibration <M>S^3\rightarrow S^2</M> has fibre <M>S^1 = K(\mathbb Z,1)</M>. It can be constructed by viewing <M>S^3</M> as all pairs
<M>(z_1,z_2)\in \mathbb C^2</M> with <M>|z_1|^2+|z_2|^2=1</M> and viewing
<M>S^2</M> as <M>\mathbb C\cup \infty</M>; the map sends <M>(z_1,z_2)\mapsto z_1/z_2</M>. The homotopy exact sequence of the Hopf fibration yields
<M>\pi_k(S^3) \cong \pi_k(S^2)</M> for <M>k\ge 3</M>, and in particular
<Display>\pi_4(S^2) \cong \pi_4(S^3) \cong \mathbb Z_2\ .</Display>
It will require further techniques (such as the Postnikov tower argument in Section <Ref Sect="postnikov2"/> below) to establish that <M>\pi_5(S^3) \cong \mathbb Z_2</M>.
Once we have this isomorphism for <M>\pi_5(S^3)</M>, the generalized Hopf fibration
<M>S^3 \hookrightarrow S^7 \twoheadrightarrow S^4</M> comes into play. This
fibration is contructed as for the classical fibration, but using pairs
<M>(z_1,z_2)</M> of quaternions rather than pairs of complex numbers. The Hurewicz Theorem gives <M>\pi_3(S^7)=0</M>; the fibre <M>S^3</M> is thus homotopic to a point in <M>S^7</M> and the inclusion of the fibre induces the zero homomorphism <M>\pi_k(S^3) \stackrel{0}{\longrightarrow} \pi_k(S^7) ~~(k\ge 1)</M>. The exact homotopy sequence of the generalized Hopf fibration then gives <M>\pi_k(S^4)\cong \pi_k(S^7)\oplus \pi_{k-1}(S^3)</M>. On taking <M>k=6</M> we obtain <M>\pi_6(S^4)\cong \pi_5(S^3) \cong \mathbb Z_2</M>.
Freudenthal suspension then gives <Display>\pi_{n+2}(S^n)\cong \mathbb Z_2,~~~(n\ge 2).</Display>
</Section>
<Section Label="firsttwo"><Heading>The first two non-trivial homotopy groups of the suspension and double suspension of a <M>K(G,1)</M></Heading>
<P/>For any group <M>G</M> we consider the homotopy groups
<M>\pi_n(\Sigma K(G,1))</M> of the suspension <M>\Sigma K(G,1)</M> of the
Eilenberg-MacLance space <M>K(G,1)</M>. On taking <M>G=\mathbb Z</M>, and
observing that <M>S^2 = \Sigma K(\mathbb Z,1)</M>, we specialize to the homotopy groups of the <M>2</M>-sphere <M>S^2</M>.
<P/>By construction, <Display>\pi_1(\Sigma K(G,1))=0\ .</Display> The Hurewicz Theorem gives
<Display>\pi_2(\Sigma K(G,1)) \cong G_{ab}</Display>
via the isomorphisms
<M>\pi_2(\Sigma K(G,1)) \cong H_2(\Sigma K(G,1),\mathbb Z) \cong H_1(K(G,1),\mathbb Z) \cong G_{ab}</M>.
R. Brown and J.-L. Loday <Cite Key="brownloday"/> obtained the formulae
<Display>\pi_3(\Sigma K(G,1)) \cong \ker (G\otimes G \rightarrow G, x\otimes y\mapsto [x,y]) \ ,</Display>
<Display>\pi_4(\Sigma^2 K(G,1)) \cong \ker (G\, {\widetilde \otimes}\, G \rightarrow G, x\, {\widetilde \otimes}\, y\mapsto [x,y]) </Display>
involving the nonabelian tensor square and nonabelian symmetric square of the group <M>G</M>. The following commands use the nonabelian tensor and symmetric product to compute the third and fourth homotopy groups for
<M>G =Syl_2(M_{12})</M> the Sylow <M>2</M>-subgroup of the Mathieu group <M>M_{12}</M>.
<Example>
<#Include SYSTEM "tutex/9.5.txt">
</Example>
</Section>
<Section Label="postnikov2"><Heading>Postnikov towers and <M>\pi_5(S^3)</M> </Heading>
A Postnikov system for the sphere <M>S^3</M> consists of a sequence
of fibrations
<M>\cdots X_3\stackrel{p_3}{\rightarrow} X_2\stackrel{p_2}{\rightarrow} X_1\stackrel{p_1}{\rightarrow} \ast</M> and a sequence of maps <M>\phi_n\colon S^3 \rightarrow X_n</M> such that
<List>
<Item> <M>p_n \circ \phi_n =\phi_{n-1}</M> </Item>
<Item>The map <M>\phi_n\colon S^3 \rightarrow X_n</M> induces an isomorphism <M>\pi_k(S^3)\rightarrow \pi_k(X_n)</M> for all <M>k\le n</M> </Item>
<Item><M>\pi_k(X_n)=0</M> for <M>k > n</M></Item>
<Item>and consequently each fibration <M>p_n</M> has fibre an Eilenberg-MacLane space <M>K(\pi_n(S^3),n)</M>.</Item>
</List>
The space <M>X_n</M> is obtained from <M>S^3</M> by adding cells in dimensions <M>\ge n+2</M> and thus
<List><Item><M>H_k(X_n,\mathbb Z)=H_k(S^3,\mathbb Z)</M> for <M>k\le n+1</M>.
</Item></List>
So in particular <M>X_1=X_2=\ast, X_3=K(\mathbb Z,3)</M> and we have a fibration sequence
<M>K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow K(\mathbb Z,3)</M>.
The
terms in the <M>E_2</M> page of the
Serre integral cohomology spectral sequence of this fibration are
<List><Item><M>E_2^{p,q}=H^p(\,K(\mathbb Z,3),\,H_q(K(\mathbb Z_2,4),\mathbb Z)\,)</M>.</Item></List>
The first few terms in the <M>E_2</M> page can be computed using the commands of Sections <Ref Sect="eilennot"/> and <Ref Sect="eilen"/> and recorded as follows.
<Table Align="l|llllllllll">
<Caption><M>E_2</M> cohomology page for <M>K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow X_3</M></Caption>
<Row>
<Item> <M>8</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M></Item>
<Item> <M>0</M></Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>7</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M></Item>
<Item> <M>0</M></Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>6</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M></Item>
<Item> <M>0</M></Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>5</M> </Item>
<Item> <M>\pi_4(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\pi_4(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M></Item>
<Item> <M>0</M> </Item>
<Item> <M></M></Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item><M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item><M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>1</M> </Item>
<Item><M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
<Item> <M>8</M> </Item>
<Item> <M>9</M> </Item>
</Row>
</Table>
Since we know that <M>H^5(X_4,\mathbb Z) =0</M>, the differentials in the spectral sequence must restrict to
an isomorphism <M>E_2^{0,5}=\pi_4(S^3) \stackrel{\cong}{\longrightarrow} E_2^{6,0}=\mathbb Z_2</M>. This provides an alternative derivation of <M>\pi_4(S^3) \cong \mathbb Z_2</M>.
We can also immediately deduce that <M>H^6(X_4,\mathbb Z)=0</M>.
Let <M>x</M> be the generator of <M>E_2^{0,5}</M> and <M>y</M> the generator of
<M>E_2^{3,0}</M>. Then the generator <M>xy</M> of <M>E_2^{3,5}</M>
gets mapped to a non-zero element <M>d_7(xy)=d_7(x)y -xd_7(y)</M>. Hence the
term <M>E_2^{0,7}=\mathbb Z_2</M> must get mapped to zero in <M>E_2^{3,5}</M>. It follows that <M>H^7(X_4,\mathbb Z)=\mathbb Z_2</M>.
<P/>The integral cohomology of Eilenberg-MacLane spaces yields
the following information on the <M>E_2</M> page
<M>E_2^{p,q}=H_p(\,X_4,\,H^q(K(\pi_5S^3,5),\mathbb Z)\,)</M> for the
fibration <M>K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4</M>.
<Table Align="l|llllllll">
<Caption><M>E_2</M> cohomology page for <M>K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4</M></Caption>
<Row>
<Item> <M>6</M> </Item>
<Item> <M>\pi_5(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\pi_5(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>5</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>1</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>H^7(X_4,\mathbb Z)</M> </Item>
</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
</Row>
</Table>
Since we know that <M>H^6(X_5,\mathbb Z)=0</M>, the differentials in the spectral sequence must restrict to an isomorphism <M>E_2^{0,6}=\pi_5(S^3)
\stackrel{\cong}{\longrightarrow} E_2^{7,0}=H^7(X_4,\mathbb Z)</M>.
We can conclude the desired result:
<Display>\pi_5(S^3) = \mathbb Z_2\ .</Display>
<P/>
<M>~~~</M><P/><P/>
Note that the fibration <M>X_4 \twoheadrightarrow K(\mathbb Z,3)</M> is determined by a cohomology class <M>\kappa \in H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2</M>.
If <M>\kappa=0</M> then we'd have <M>X_4 =K(\mathbb Z_2,4)\times K(\mathbb Z,3)</M> and, as the following commands show, we'd then have <M>H_4(X_4,\mathbb Z)=\mathbb Z_2</M>.
<Example>
<#Include SYSTEM "tutex/9.6.txt">
</Example>
Since we know that <M>H_4(X_4,\mathbb Z)=0</M> we can conclude that the Postnikov invariant
<M>\kappa</M> is the non-zero class in <M>H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2</M>.
</Section>
<Section Label="postnikov"><Heading>Towards <M>\pi_4(\Sigma K(G,1))</M> </Heading>
Consider the suspension <M>X=\Sigma K(G,1)</M> of a classifying space of a group <M>G</M> once again. This space has a Postnikov system in which
<M>X_1 = \ast</M>, <M>X_2= K(G_{ab},2)</M>. We have a fibration sequence
<M>K(\pi_3 X, 3) \hookrightarrow X_3 \twoheadrightarrow K(G_{ab},2)</M>. The corresponding integral cohomology Serre spectral sequence has <M>E_2</M> page with terms
<List>
<Item>
<M>E_2^{p,q}=H^p(\,K(G_{ab},2), H^q(K(\pi_3 X,3)),\mathbb Z)\, )</M>.
</Item>
</List>
<P/>As an example, for the Alternating group <M>G=A_4</M> of order <M>12</M> the following
commands of
Section
<Ref Sect="firsttwo"/>
compute <M>G_{ab} = \mathbb Z_3</M> and <M>\pi_3 X = \mathbb Z_6</M>.
<Example>
<#Include SYSTEM "tutex/9.9.txt">
</Example>
The first terms of the <M>E_2</M> page can be calculated
using the commands of Sections <Ref Sect="eilennot"/> and <Ref Sect="eilen"/>.
<Table Align="l|llllllll">
<Caption><M>E^2</M> cohomology page for <M>K(\pi_3 X,3) \hookrightarrow X_3 \twoheadrightarrow X_2</M></Caption>
<Row>
<Item> <M>7</M> </Item>
<Item> <M>\mathbb Z_2 </M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>6</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>5</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>\mathbb Z_6</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>1</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_9</M> </Item>
</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
</Row>
</Table>
We know that
<M>H^1(X_3,\mathbb Z)=0</M>,
<M>H^2(X_3,\mathbb Z)=H^1(G,\mathbb Z) =0</M>,
<M>H^3(X_3,\mathbb Z)=H^2(G,\mathbb Z) =\mathbb Z_3</M>, and that
<M>H^4(X_3,\mathbb Z)</M> is a subgroup of <M>H^3(G,\mathbb Z) = \mathbb Z_2</M>.
It follows that the differential induces a surjection
<M>E_2^{0,4}=\mathbb Z_6 \twoheadrightarrow E_2^{5,0}=\mathbb Z_3</M>. Consequently <M>H^4(X_3,\mathbb Z)=\mathbb Z_2</M> and <M>H^5(X_3,\mathbb Z)=0</M>
and <M>H^6(X_3,\mathbb Z)=\mathbb Z_2</M>.
<P/>The <M>E_2</M> page for the fibration <M>K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3</M> contains the following terms.
<Table Align="l|lllllll">
<Caption><M>E^2</M> cohomology page for <M>K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3</M></Caption>
<Row>
<Item> <M>5</M> </Item>
<Item> <M>\pi_4 X</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
</Row>
<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> </Item>
</Row>
<Row>
<Item> <M>1</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
</Row>
</Table>
We know that <M>H^5(X_4,\mathbb Z)</M> is a subgroup of
<M>H^4(G,\mathbb Z)=\mathbb Z_6</M>, and hence that there is a homomorphisms
<M>\pi_4X \rightarrow \mathbb Z_2</M> whose kernel is a subgroup of <M>\mathbb Z_6</M>. If follows that <M>|\pi_4 X|\le 12</M>.
</Section>
<Section>
<Heading>Enumerating homotopy 2-types</Heading>
A <E>2-type</E> is a CW-complex <M>X</M> whose homotopy groups are trivial in dimensions <M>n=0 </M>
and <M>n>2</M>. As explained in <Ref Sect="secCat1"/> the homotopy type of such a space can be captured algebraically by a cat<M>^1</M>-group <M>G</M>.
Let <M>X</M>, <M>Y</M> be <M>2</M>-tytpes represented by cat<M>^1</M>-groups <M>G</M>, <M>H</M>. If <M>X</M> and <M>Y</M> are homotopy equivalent then there exists a sequence of morphisms of cat<M>^1</M>-groups
<Display>G \rightarrow K_1 \rightarrow K_2 \leftarrow K_3 \rightarrow \cdots \rightarrow K_n \leftarrow H</Display>
in which each morphism induces isomorphisms of homotopy groups. When such a sequence exists we say that <M>G</M> is <E>quasi-isomorphic</E> to <M>H</M>. We have the following result.
<P/><B>Theorem.</B> The <M>2</M>-types <M>X</M> and <M>Y</M> are homotopy equivalent if and only if the associated cat<M>^1</M>-groups <M>G</M> and <M>H</M> are quasi-isomorphic.
<P/>The following commands produce a list <M>L</M> of all of the <M>62</M> non-isomorphic cat<M>^1</M>-groups whose underlying group has order <M>16</M>.
<Example>
<#Include SYSTEM "tutex/9.10.txt">
</Example>
The next commands use the first and second homotopy groups to prove that the list <M>L</M> contains at least <M>37</M> distinct quasi-isomorphism types.
<Example>
<#Include SYSTEM "tutex/9.11.txt">
</Example>
The following additional commands use second and third integral homology in conjunction with the first two homotopy groups to prove that the list <M>L</M> contains <B>at least</B> <M>49</M> distinct quasi-isomorphism types.
<Example>
<#Include SYSTEM "tutex/9.12.txt">
</Example>
The following commands show that the above list <M>L</M> contains <B>at most</B> <M>51</M> distinct quasi-isomorphism types.
<Example>
<#Include SYSTEM "tutex/9.13.txt">
</Example>
</Section>
<Section>
<Heading>Identifying cat<M>^1</M>-groups of low order</Heading>
Let us define the <E>order</E> of a cat<M>^1</M>-group to be the order of
its underlying group. The function <Code>IdQuasiCatOneGroup(C)</Code> inputs a
cat<M>^1</M>-group <M>C</M> of "low order" and returns an integer pair
<M>[n,k]</M> that uniquely idenifies the quasi-isomorphism type of <M>C</M>. The integer <M>n</M> is the order of a smallest cat<M>^1</M>-group quasi-isomorphic to <M>C</M>. The integer <M>k</M> identifies a particular cat<M>^1</M>-group of order <M>n</M>.
<P/>The following commands use this function to show that there are precisely <M>49</M> distinct quasi-isomorphism types of cat<M>^1</M>-groups of order <M>16</M>.
<Example>
<#Include SYSTEM "tutex/9.14.txt">
</Example>
The next example first
identifies the order and the identity number of the cat<M>^1</M>-group <M>C</M> corresponding to the crossed module (see <Ref Sect="secCrossedModules"/>)
<Display>\iota\colon G \longrightarrow Aut(G), g \mapsto (x\mapsto gxg^{-1})</Display>
for the dihedral group <M>G</M> of order <M>10</M>.
It then realizes a smallest possible cat<M>^1</M>-group <M>D</M> of this quasi-isomorphism type.
<Example>
<#Include SYSTEM "tutex/9.15.txt">
</Example>
</Section>
<Section>
<Heading>Identifying crossed modules of low order</Heading>
<P/>The following commands construct the crossed module <M>\partial \colon G\otimes G \rightarrow G</M> involving the nonabelian tensor square of the dihedral group $G$ of order <M>10</M>, identify it as being number <M>71</M> in the list of crossed modules of order <M>100</M>, create a quasi-isomorphic crossed module of order <M>4</M>, and finally construct the corresponding cat<M>^1</M>-group of order <M>100</M>.
<Example>
<#Include SYSTEM "tutex/9.16.txt">
</Example>
</Section>
</Chapter>
|