File: tutorialSimplicialGroups.xml

package info (click to toggle)
gap-hap 1.73%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,508 kB
  • sloc: xml: 16,467; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (864 lines) | stat: -rw-r--r-- 31,421 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
<Chapter Label="chapSimplicialGroups"><Heading>Simplicial groups</Heading>
<Section Label="secCrossedModules"><Heading>Crossed modules</Heading>

A <E>crossed module</E> consists of a homomorphism of groups
<M>\partial\colon M\rightarrow G</M> together with an action
<M>(g,m)\mapsto\, {^gm}</M> of <M>G</M> on <M>M</M> satisfying
<Enum>
<Item> <M>\partial(^gm) = gmg^{-1}</M></Item>
<Item> <M>^{\partial m}m' = mm'm^{-1}</M></Item>
</Enum>
for <M>g\in G</M>, <M>m,m'\in M</M>.

<P/> A crossed module <M>\partial\colon M\rightarrow G</M>
is equivalent to a cat<M>^1</M>-group <M>(H,s,t)</M> (see <Ref Sect="secCat1"/>) where
<M>H=M \rtimes G</M>, <M>s(m,g) = (1,g)</M>, <M>t(m,g)=(1,(\partial m)g)</M>. A cat<M>^1</M>-group is, in turn, equivalent to a simplicial group with Moore complex has length <M>1</M>. The simplicial group is constructed by considering the cat<M>^1</M>-group as a category and taking its nerve. 
Alternatively, the simplicial group can be constructed by  viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.
 
<P/>The following example concerns the crossed module
<P/><M>\partial\colon G\rightarrow Aut(G), g\mapsto (x\mapsto gxg^{-1})</M>
<P/>associated to the dihedral group <M>G</M> of order <M>16</M>. This crossed module represents, up to homotopy type,
 a connected space <M>X</M> with <M>\pi_iX=0</M> for <M>i\ge 3</M>,
<M>\pi_2X=Z(G)</M>, <M>\pi_1X = Aut(G)/Inn(G)</M>.
The space <M>X</M> can be represented, up to homotopy, by a simplicial group.
That simplicial group is used in the example to compute
<P/><M>H_1(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2</M>,
<P/><M>H_2(X,\mathbb Z)= \mathbb Z_2 </M>,
<P/><M>H_3(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2</M>,
<P/><M>H_4(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2</M>,
<P/><M>H_5(X,\mathbb Z)= \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2 \oplus \mathbb Z_2\oplus \mathbb Z_2\oplus \mathbb Z_2</M>.




<Example>
<#Include SYSTEM "tutex/9.1.txt">
</Example>
</Section>

<Section Label="eilennot"><Heading>Eilenberg-MacLane spaces as simplicial groups (not recommended)</Heading>
<P/>The following example concerns the Eilenberg-MacLane space <M>X=K(\mathbb Z_3,3)</M> which is a path-connected space with  <M>\pi_3X=\mathbb Z_3</M>,
  <M>\pi_iX=0</M> for <M>3\ne  i\ge 1</M>. This space is represented by a simplicial group, and perturbation techniques are used to compute
<P/><M>H_7(X,\mathbb Z)=\mathbb Z_3 \oplus \mathbb Z_3</M>.

<Example>
<#Include SYSTEM "tutex/9.2.txt">
</Example>

</Section>
<Section Label="eilen"><Heading>Eilenberg-MacLane spaces as simplicial free abelian groups (recommended)</Heading>

<P/>For integer <M>n>1</M> and  abelian group <M>A</M> the Eilenberg-MacLane space 
<M>K(A,n)</M> 
is better represented as a simplicial free abelian group. (The  reason is that   the functorial bar resolution of  a group  can be replaced in computations 
	by the smaller functorial Chevalley-Eilenberg complex of the group
	when the group is free abelian,  obviating the need for perturbation techniques. When <M>A</M> has torision we can replace it with an inclusion of free abelian groups <M>A_1 \hookrightarrow A_0</M> with <M>A\cong A_0/A_1</M> and again invoke the Chevalley-Eilenberg complex. The current implementation unfortunately handles only free abelian <M>A</M> but the easy extension to non-free <M>A</M> is planned for a future release.)

<P/>The following commands compute the integral homology <M>H_n(K(\mathbb Z,3),\mathbb Z)</M> for <M> 0\le n \le 16</M>. (Note that one typically needs fewer than <M>n</M> terms of the Eilenberg-MacLance space to compute its <M>n</M>-th homology -- an error is printed if too few terms of the space are available for a given computation.)

<Example>
<#Include SYSTEM "tutex/9.3.txt">
</Example>

For an <M>n</M>-connected pointed space <M>X</M> the Freudenthal Suspension 
Theorem states that the map <M>X \rightarrow \Omega(\Sigma X)</M> induces a map 
<M>\pi_k(X) \rightarrow \pi_k(\Omega(\Sigma X))</M> which is an isomorphism for 
<M>k\le 2n</M> and epimorphism for  <M>k=2n+1</M>. Thus the Eilenberg-MacLane 
space
<M>K(A,n+1)</M> can be constructed from the suspension <M>\Sigma K(A,n)</M> 
by attaching cells in dimensions <M>\ge 2n+1</M>. In particular,  there is an isomorphism
<M> H_{k-1}(K(A,n),\mathbb Z) \rightarrow H_k(K(A,n+1),\mathbb Z)</M> for <M>k\le 2n</M> and epimorphism for <M>k=2n+1</M>.

<P/>
For instance, <M> H_{k-1}(K(\mathbb Z,3),\mathbb Z) \cong H_k(K(\mathbb Z,4),\mathbb Z) </M> for <M>k\le 6</M> and <M> H_6(K(\mathbb Z,3),\mathbb Z) \twoheadrightarrow H_7(K(\mathbb Z,4),\mathbb Z) </M>. This assertion is seen in the following session.

<Example>
<#Include SYSTEM "tutex/9.4.txt">
</Example>
</Section>
<Section>
<Heading>Elementary theoretical information on  
<M>H^\ast(K(\pi,n),\mathbb Z)</M></Heading>

<P/>The cup product is not implemented for the cohomology ring
<M>H^\ast(K(\pi,n),\mathbb Z)</M>.  Standard theoretical spectral sequence arguments
have to be applied to obtain basic information relating to
the  ring structure. To illustrate this the following commands compute  <M>H^n(K(\mathbb Z,2),\mathbb Z)</M>
for the first few values of <M>n</M>.
 
<Example>
<#Include SYSTEM "tutex/9.7.txt">
</Example>

There is a fibration sequence <M>K(\pi,n) \hookrightarrow \ast \twoheadrightarrow K(\pi,n+1)</M> in which  <M>\ast</M> denotes a contractible space.
For <M>n=1, \pi=\mathbb Z</M> the terms of the <M>E_2</M> page of the
 Serre integral cohomology spectral sequence for this fibration
are
<List>
<Item> <M>E_2^{pq}= H^p( K(\mathbb Z,2), H^q(K(\mathbb Z,1),\mathbb Z) )</M> .</Item>
</List>
Since <M>K(\mathbb Z,1)</M> can be taken to be  the circle <M>S^1</M> we know
that it has non-trivial cohomology in degrees <M>0</M> and <M>1</M> only. The first few terms of
 the <M>E_2</M> page are given in the following table.

<Table Align="l|lllllllllll">
<Caption><M>E^2</M> cohomology page for <M>K(\mathbb Z,1) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,2)</M></Caption>

<Row>
<Item> <M>1</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
</Row>

<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
</Row>

<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
<Item> <M>8</M> </Item>
<Item> <M>9</M> </Item>
<Item> <M>10</M> </Item>
</Row>
</Table>

Let <M>x</M> denote the generator of <M>H^1(K(\mathbb Z,1),\mathbb Z)</M>
and <M>y</M> denote the generator of <M>H^2(K(\mathbb Z,2),\mathbb Z)</M>.
Since <M>\ast</M> has zero cohomology in degrees <M>\ge 1</M> we see that the differential must restrict to an isomorphism  <M>d_2\colon E_2^{0,1} \rightarrow E_2^{2,0}</M> with 
<M>d_2(x)=y</M>. Then we see that the differential must restrict
to an isomorphism
<M>d_2\colon E_2^{2,1} \rightarrow E_2^{4,0}</M> defined on the generator <M>xy</M> of <M>E_2^{2,1}</M>
by  
<Display>d_2(xy) = d_2(x)y + (-1)^{{\rm deg}(x)}xd_2(y) =y^2\ . </Display>
Hence <M>E_2^{4,0} \cong H^4(K(\mathbb Z,2),\mathbb Z)</M> is generated by <M>y^2</M>. The argument extends to show that <M>H^6(K(\mathbb Z,2),\mathbb Z)</M> is generated by <M>y^3</M>, <M>H^8(K(\mathbb Z,2),\mathbb Z)</M> is generated by <M>y^4</M>, and so on.

<P/>In fact, to obtain a complete description of the ring <M>H^\ast(K(\mathbb Z,2),\mathbb Z)</M> in this fashion there is no benefit to using computer methods at all. We only need to know the cohomology ring <M>H^\ast(K(\mathbb Z,1),\mathbb Z) =H^\ast(S^1,\mathbb Z)</M> and the single cohomology group <M>H^2(K(\mathbb Z,2),\mathbb Z)</M>.

<P/>A similar approach can be attempted for <M>H^\ast(K(\mathbb Z,3),\mathbb Z)</M> using the fibration sequence <M>K(\mathbb Z,2) \hookrightarrow \ast \twoheadrightarrow K(\mathbb Z,3)</M> and, as explained in Chapter 5 of
<Cite Key="hatcher"/>, yields the computation of the group <M>H^i(K(\mathbb Z,3),\mathbb Z)</M> for <M>4\le i\le 13</M>. The method does not directly yield <M>H^3(K(\mathbb Z,3),\mathbb Z)</M> and breaks down in degree <M>14</M> yielding
 only that
 <M>H^{14}(K(\mathbb Z,3),\mathbb Z) = 0 {\rm ~or~} \mathbb Z_3</M>. 
The following commands provide <M>H^3(K(\mathbb Z,3),\mathbb Z)= \mathbb Z</M>
and <M>H^{14}(K(\mathbb Z,3),\mathbb Z) =0</M>.

<Example>
<#Include SYSTEM "tutex/9.8.txt">
</Example>

However, the implementation of these commands is currently a bit naive, and computationally inefficient, since they do not currently employ any homological perturbation techniques. 

</Section>

<Section Label="firstthree"><Heading>The first three non-trivial homotopy groups of spheres</Heading>

<P/>The Hurewicz Theorem immediately gives 
<Display>\pi_n(S^n)\cong \mathbb Z ~~~ (n\ge 1)</Display>
 and
<Display>\pi_k(S^n)=0 ~~~ (k\le n-1).</Display>
<P/>As a CW-complex the Eilenberg-MacLane space <M>K=K(\mathbb Z,n)</M> can be
 obtained from an <M>n</M>-sphere <M>S^n=e^0\cup e^n</M> by attaching cells in 
dimensions <M>\ge n+2</M> so as to kill the higher homotopy groups of 
<M>S^n</M>. 
From the inclusion <M>\iota\colon S^n\hookrightarrow K(\mathbb Z,n)</M>
we can form the mapping cone <M>X=C(\iota)</M>. The long
exact  homotopy sequence 

<P/><M> \cdots \rightarrow \pi_{k+1}K \rightarrow \pi_{k+1}(K,S^n) 
\rightarrow \pi_{k} S^n \rightarrow \pi_kK \rightarrow \pi_k(K,S^n) \rightarrow \cdots</M>

<P/>
implies that <M>\pi_k(K,S^n)=0</M> for <M>0 \le k\le  n+1</M> and <M>\pi_{n+2}(K,S^n)\cong \pi_{n+1}(S^n)</M>. The relative Hurewicz Theorem gives an isomorphism <M>\pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z)</M>.
 The long exact homology sequence

<P/><M> \cdots H_{n+2}(S^n,\mathbb Z) \rightarrow H_{n+2}(K,\mathbb Z) \rightarrow  H_{n+2}(K,S^n, \mathbb Z) \rightarrow H_{n+1}(S^n,\mathbb Z) \rightarrow \cdots</M>

<P/> arising from the cofibration <M>S^n \hookrightarrow K \twoheadrightarrow X</M> 
implies that <M>\pi_{n+1}(S^n)\cong \pi_{n+2}(K,S^n) \cong H_{n+2}(K,S^n,\mathbb Z) \cong H_{n+2}(K,\mathbb Z)</M>. From the <B>GAP</B> computations in <Ref Sect="eilen"/>   and the Freudenthal Suspension Theorem we find:

<Display> \pi_3S^2 \cong \mathbb Z, ~~~~~~ \pi_{n+1}(S^n)\cong \mathbb Z_2~~~(n\ge 3).</Display>

<P/>The Hopf fibration <M>S^3\rightarrow S^2</M> has fibre <M>S^1 = K(\mathbb Z,1)</M>. It can be constructed by viewing <M>S^3</M> as all pairs
<M>(z_1,z_2)\in \mathbb C^2</M> with <M>|z_1|^2+|z_2|^2=1</M> and viewing
<M>S^2</M> as <M>\mathbb C\cup \infty</M>; the map sends <M>(z_1,z_2)\mapsto z_1/z_2</M>. The homotopy exact sequence of the Hopf fibration   yields
<M>\pi_k(S^3) \cong \pi_k(S^2)</M> for <M>k\ge 3</M>, and in  particular
 <Display>\pi_4(S^2) \cong \pi_4(S^3) \cong \mathbb Z_2\ .</Display>

It will require further techniques (such as the Postnikov tower argument in  Section <Ref Sect="postnikov2"/> below) to establish that <M>\pi_5(S^3) \cong \mathbb Z_2</M>.  
Once we have this isomorphism for <M>\pi_5(S^3)</M>, the generalized Hopf fibration 
<M>S^3 \hookrightarrow S^7 \twoheadrightarrow S^4</M> comes into play. This 
fibration is contructed as for the classical fibration, but using pairs 
<M>(z_1,z_2)</M> of quaternions rather than pairs of complex numbers. The Hurewicz Theorem gives <M>\pi_3(S^7)=0</M>;  the fibre <M>S^3</M> is thus homotopic to a point in <M>S^7</M> and the inclusion of the fibre induces the zero homomorphism <M>\pi_k(S^3) \stackrel{0}{\longrightarrow} \pi_k(S^7) ~~(k\ge 1)</M>. The exact homotopy sequence of the generalized Hopf fibration then gives <M>\pi_k(S^4)\cong \pi_k(S^7)\oplus \pi_{k-1}(S^3)</M>. On taking <M>k=6</M> we obtain <M>\pi_6(S^4)\cong \pi_5(S^3) \cong \mathbb Z_2</M>.

Freudenthal suspension then gives <Display>\pi_{n+2}(S^n)\cong \mathbb Z_2,~~~(n\ge 2).</Display>

</Section>

<Section Label="firsttwo"><Heading>The first two non-trivial homotopy groups of the suspension and double suspension of a <M>K(G,1)</M></Heading>

<P/>For any group <M>G</M> we  consider the homotopy groups 
<M>\pi_n(\Sigma K(G,1))</M> of the suspension <M>\Sigma K(G,1)</M> of the 
Eilenberg-MacLance space <M>K(G,1)</M>. On taking <M>G=\mathbb Z</M>, and 
observing that <M>S^2 = \Sigma K(\mathbb Z,1)</M>, we specialize to the homotopy groups of the <M>2</M>-sphere <M>S^2</M>. 

<P/>By construction, <Display>\pi_1(\Sigma K(G,1))=0\ .</Display> The Hurewicz Theorem gives
<Display>\pi_2(\Sigma K(G,1)) \cong G_{ab}</Display>
via the isomorphisms
<M>\pi_2(\Sigma K(G,1)) \cong H_2(\Sigma K(G,1),\mathbb Z) \cong H_1(K(G,1),\mathbb Z) \cong G_{ab}</M>.
R. Brown and J.-L. Loday <Cite Key="brownloday"/> obtained the formulae

<Display>\pi_3(\Sigma K(G,1)) \cong \ker (G\otimes G \rightarrow G, x\otimes y\mapsto [x,y]) \ ,</Display>

<Display>\pi_4(\Sigma^2 K(G,1)) \cong \ker (G\, {\widetilde \otimes}\, G \rightarrow G, x\, {\widetilde \otimes}\, y\mapsto [x,y]) </Display>

involving the nonabelian tensor square and nonabelian symmetric square of the group <M>G</M>. The following commands use the nonabelian tensor and symmetric product to compute the third and fourth homotopy groups for 
<M>G =Syl_2(M_{12})</M> the Sylow <M>2</M>-subgroup of the Mathieu group <M>M_{12}</M>.


<Example>
<#Include SYSTEM "tutex/9.5.txt">
</Example>

</Section>

<Section Label="postnikov2"><Heading>Postnikov towers and <M>\pi_5(S^3)</M> </Heading>
A Postnikov system for the sphere <M>S^3</M> consists of a sequence
of fibrations
<M>\cdots X_3\stackrel{p_3}{\rightarrow} X_2\stackrel{p_2}{\rightarrow} X_1\stackrel{p_1}{\rightarrow} \ast</M> and a sequence of maps <M>\phi_n\colon S^3 \rightarrow X_n</M> such that 
<List>
<Item> <M>p_n \circ \phi_n =\phi_{n-1}</M> </Item>
<Item>The map <M>\phi_n\colon S^3 \rightarrow X_n</M> induces an isomorphism <M>\pi_k(S^3)\rightarrow \pi_k(X_n)</M> for all <M>k\le n</M> </Item>
<Item><M>\pi_k(X_n)=0</M> for <M>k &gt; n</M></Item> 
<Item>and consequently each fibration <M>p_n</M> has fibre an Eilenberg-MacLane space <M>K(\pi_n(S^3),n)</M>.</Item>
</List>
The space <M>X_n</M> is obtained from <M>S^3</M> by adding cells in dimensions <M>\ge n+2</M> and thus 
<List><Item><M>H_k(X_n,\mathbb Z)=H_k(S^3,\mathbb Z)</M> for <M>k\le n+1</M>. 
</Item></List>
So in particular <M>X_1=X_2=\ast, X_3=K(\mathbb Z,3)</M> and we have a fibration sequence
<M>K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow K(\mathbb Z,3)</M>.
The
 terms in the <M>E_2</M> page of the
Serre integral cohomology spectral sequence of this fibration are 
<List><Item><M>E_2^{p,q}=H^p(\,K(\mathbb Z,3),\,H_q(K(\mathbb Z_2,4),\mathbb Z)\,)</M>.</Item></List>
The first few terms in the <M>E_2</M> page can be computed using the commands of Sections <Ref Sect="eilennot"/> and <Ref Sect="eilen"/> and recorded as follows.
<Table Align="l|llllllllll">
<Caption><M>E_2</M> cohomology page for <M>K(\pi_4(S^3),4) \hookrightarrow X_4 \twoheadrightarrow X_3</M></Caption> 
<Row>
<Item> <M>8</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item>  <M>0</M></Item>
<Item>  <M>0</M></Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>7</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item>  <M>0</M></Item>
<Item>  <M>0</M></Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>



</Row>
<Row>
<Item> <M>6</M> </Item>
<Item> <M>0</M> </Item>
<Item>  <M>0</M></Item>
<Item>  <M>0</M></Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>5</M> </Item>
<Item> <M>\pi_4(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\pi_4(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item>  <M>0</M></Item>
<Item> <M>0</M> </Item>
<Item>  <M></M></Item>
<Item>  </Item>
<Item>  </Item>

</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item><M>0</M>  </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
<Item>  </Item>
</Row>


<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item><M>0</M>  </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
<Item>  </Item>


</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
<Item>  </Item>




</Row>
<Row>
<Item> <M>1</M> </Item>
<Item><M>0</M>  </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
<Item>  </Item>




</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>




</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
<Item> <M>8</M> </Item>
<Item> <M>9</M> </Item>





</Row>
</Table>
Since we know  that <M>H^5(X_4,\mathbb Z) =0</M>, the differentials in the spectral sequence must restrict to
 an isomorphism <M>E_2^{0,5}=\pi_4(S^3) \stackrel{\cong}{\longrightarrow} E_2^{6,0}=\mathbb Z_2</M>. This provides an alternative derivation of <M>\pi_4(S^3) \cong \mathbb Z_2</M>.
We can also immediately deduce that <M>H^6(X_4,\mathbb Z)=0</M>.

Let <M>x</M> be the generator of <M>E_2^{0,5}</M> and <M>y</M> the generator of
<M>E_2^{3,0}</M>. Then the generator <M>xy</M> of <M>E_2^{3,5}</M>
gets mapped to a non-zero element <M>d_7(xy)=d_7(x)y -xd_7(y)</M>. Hence the
term <M>E_2^{0,7}=\mathbb Z_2</M> must get mapped to zero in <M>E_2^{3,5}</M>.  It follows that <M>H^7(X_4,\mathbb Z)=\mathbb Z_2</M>.
 
 

<P/>The integral cohomology of Eilenberg-MacLane spaces  yields
 the following information on the <M>E_2</M> page
<M>E_2^{p,q}=H_p(\,X_4,\,H^q(K(\pi_5S^3,5),\mathbb Z)\,)</M> for the 
fibration <M>K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4</M>.
<Table Align="l|llllllll">
<Caption><M>E_2</M> cohomology page for <M>K(\pi_5(S^3),5) \hookrightarrow X_5 \twoheadrightarrow X_4</M></Caption>

<Row>
<Item> <M>6</M> </Item>
<Item> <M>\pi_5(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\pi_5(S^3)</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
<Item>  </Item>
</Row>

<Row>
<Item> <M>5</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>1</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>H^7(X_4,\mathbb Z)</M> </Item>

</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
</Row>
</Table>
Since we know that <M>H^6(X_5,\mathbb Z)=0</M>, the differentials in the spectral sequence must restrict to an isomorphism <M>E_2^{0,6}=\pi_5(S^3)
\stackrel{\cong}{\longrightarrow} E_2^{7,0}=H^7(X_4,\mathbb Z)</M>.
We can  conclude the desired result: 
<Display>\pi_5(S^3) = \mathbb Z_2\ .</Display>

<P/>
<M>~~~</M><P/><P/>


Note that the fibration <M>X_4 \twoheadrightarrow K(\mathbb Z,3)</M> is determined by a cohomology class <M>\kappa \in H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2</M>.
 If <M>\kappa=0</M> then we'd have <M>X_4 =K(\mathbb Z_2,4)\times K(\mathbb Z,3)</M> and, as the following commands show, we'd then have <M>H_4(X_4,\mathbb Z)=\mathbb Z_2</M>.

<Example>
<#Include SYSTEM "tutex/9.6.txt">
</Example>

Since we know that <M>H_4(X_4,\mathbb Z)=0</M> we can conclude that the Postnikov invariant
 <M>\kappa</M> is the non-zero class in <M>H^5(K(\mathbb Z,3), \mathbb Z_2) = \mathbb Z_2</M>.


</Section>

<Section Label="postnikov"><Heading>Towards <M>\pi_4(\Sigma K(G,1))</M> </Heading>

Consider the suspension <M>X=\Sigma K(G,1)</M> of a classifying space of a group <M>G</M> once again. This space has a Postnikov system in which
<M>X_1 = \ast</M>, <M>X_2= K(G_{ab},2)</M>. We have a fibration sequence
<M>K(\pi_3 X, 3) \hookrightarrow X_3 \twoheadrightarrow K(G_{ab},2)</M>. The corresponding integral cohomology Serre spectral sequence has <M>E_2</M> page with terms
<List>
<Item>
<M>E_2^{p,q}=H^p(\,K(G_{ab},2), H^q(K(\pi_3 X,3)),\mathbb Z)\, )</M>.
</Item>
</List>

<P/>As an example, for the Alternating group <M>G=A_4</M> of order <M>12</M> the following
commands of 
Section
<Ref Sect="firsttwo"/> 
 compute <M>G_{ab} = \mathbb Z_3</M> and <M>\pi_3 X = \mathbb Z_6</M>. 

<Example>
<#Include SYSTEM "tutex/9.9.txt">
</Example>


The first terms of the <M>E_2</M> page can be calculated
using the commands of Sections <Ref Sect="eilennot"/> and <Ref Sect="eilen"/>.  

<Table Align="l|llllllll">
<Caption><M>E^2</M> cohomology page for <M>K(\pi_3 X,3) \hookrightarrow X_3 \twoheadrightarrow X_2</M></Caption>

<Row>
<Item> <M>7</M> </Item>
<Item> <M>\mathbb Z_2 </M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item>  </Item>
<Item>  </Item>
</Row>

<Row>
<Item> <M>6</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item>  </Item>
<Item>  </Item>
</Row>

<Row>
<Item> <M>5</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>\mathbb Z_6</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>1</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_9</M> </Item>

</Row>
<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
<Item> <M>7</M> </Item>
</Row>
</Table>

We know that 
<M>H^1(X_3,\mathbb Z)=0</M>,
<M>H^2(X_3,\mathbb Z)=H^1(G,\mathbb Z) =0</M>,
<M>H^3(X_3,\mathbb Z)=H^2(G,\mathbb Z) =\mathbb Z_3</M>, and that
<M>H^4(X_3,\mathbb Z)</M> is a subgroup of <M>H^3(G,\mathbb Z) = \mathbb Z_2</M>.
It follows that the differential induces a surjection
<M>E_2^{0,4}=\mathbb Z_6 \twoheadrightarrow E_2^{5,0}=\mathbb Z_3</M>. Consequently <M>H^4(X_3,\mathbb Z)=\mathbb Z_2</M> and <M>H^5(X_3,\mathbb Z)=0</M>
and <M>H^6(X_3,\mathbb Z)=\mathbb Z_2</M>.

<P/>The <M>E_2</M> page for the fibration <M>K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3</M> contains the following terms.

<Table Align="l|lllllll">
<Caption><M>E^2</M> cohomology page for <M>K(\pi_4 X,4) \hookrightarrow X_4 \twoheadrightarrow X_3</M></Caption>



<Row>
<Item> <M>5</M> </Item>
<Item> <M>\pi_4 X</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
</Row>
<Row>
<Item> <M>4</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
<Item> <M></M> </Item>
</Row>
<Row>
<Item> <M>3</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M></M> </Item>
</Row>
<Row>
<Item> <M>2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item>  </Item>
</Row>
<Row>
<Item> <M>1</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
</Row>
<Row>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_3</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>\mathbb Z_2</M> </Item>

</Row>

<Row>
<Item> <M>q/p</M> </Item>
<Item> <M>0</M> </Item>
<Item> <M>1</M> </Item>
<Item> <M>2</M> </Item>
<Item> <M>3</M> </Item>
<Item> <M>4</M> </Item>
<Item> <M>5</M> </Item>
<Item> <M>6</M> </Item>
</Row>
</Table>

We know that <M>H^5(X_4,\mathbb Z)</M> is a subgroup of
<M>H^4(G,\mathbb Z)=\mathbb Z_6</M>, and hence that there is a homomorphisms
<M>\pi_4X \rightarrow \mathbb Z_2</M> whose kernel is a subgroup of <M>\mathbb Z_6</M>. If follows that <M>|\pi_4 X|\le 12</M>.


</Section>


<Section>
<Heading>Enumerating homotopy 2-types</Heading>

A <E>2-type</E> is a CW-complex <M>X</M> whose homotopy groups are trivial in dimensions <M>n=0 </M> 
and <M>n>2</M>. As explained in <Ref Sect="secCat1"/> the homotopy type of such a space can be captured algebraically by a cat<M>^1</M>-group <M>G</M>. 
 
Let <M>X</M>, <M>Y</M> be <M>2</M>-tytpes represented by cat<M>^1</M>-groups <M>G</M>, <M>H</M>. If <M>X</M> and <M>Y</M> are homotopy equivalent then there exists a sequence of morphisms of cat<M>^1</M>-groups
<Display>G \rightarrow K_1 \rightarrow K_2 \leftarrow K_3 \rightarrow \cdots \rightarrow K_n  \leftarrow H</Display>
in which each morphism induces isomorphisms of homotopy groups. When such a sequence exists we say that <M>G</M> is <E>quasi-isomorphic</E> to <M>H</M>. We have the following result.

<P/><B>Theorem.</B> The <M>2</M>-types <M>X</M> and <M>Y</M> are homotopy equivalent if and only if the associated cat<M>^1</M>-groups <M>G</M> and <M>H</M> are quasi-isomorphic.

<P/>The following commands produce a list <M>L</M> of all of the <M>62</M> non-isomorphic cat<M>^1</M>-groups whose underlying group has order <M>16</M>.

<Example>
<#Include SYSTEM "tutex/9.10.txt">
</Example>

The next commands use the first and second homotopy groups to prove that the list <M>L</M> contains at least <M>37</M> distinct quasi-isomorphism types.

<Example>
<#Include SYSTEM "tutex/9.11.txt">
</Example>

The following additional commands use second and third integral homology in conjunction with the first two homotopy groups to prove that the list <M>L</M> contains <B>at least</B> <M>49</M> distinct quasi-isomorphism types.

<Example>
<#Include SYSTEM "tutex/9.12.txt">
</Example>

The following commands show that the above list <M>L</M> contains <B>at most</B> <M>51</M> distinct quasi-isomorphism types.

<Example>
<#Include SYSTEM "tutex/9.13.txt">
</Example>

</Section>


<Section>
<Heading>Identifying cat<M>^1</M>-groups of low order</Heading>

Let us define the <E>order</E> of a cat<M>^1</M>-group to be the order of 
its underlying group. The function <Code>IdQuasiCatOneGroup(C)</Code>  inputs a 
cat<M>^1</M>-group <M>C</M> of "low order" and returns an integer pair 
<M>[n,k]</M> that uniquely idenifies the quasi-isomorphism type of <M>C</M>. The integer <M>n</M> is the order of a smallest cat<M>^1</M>-group quasi-isomorphic to <M>C</M>. The integer <M>k</M> identifies a particular cat<M>^1</M>-group of order <M>n</M>.

<P/>The following commands use this function to show that there are  precisely <M>49</M> distinct quasi-isomorphism types of cat<M>^1</M>-groups of order <M>16</M>. 

<Example>
<#Include SYSTEM "tutex/9.14.txt">
</Example>

The next example  first
 identifies the order and the identity number of  the cat<M>^1</M>-group <M>C</M> corresponding to the crossed module (see <Ref Sect="secCrossedModules"/>)

<Display>\iota\colon G \longrightarrow Aut(G), g \mapsto (x\mapsto gxg^{-1})</Display>

for the dihedral group <M>G</M> of order <M>10</M>. 
 
 It then realizes a smallest possible cat<M>^1</M>-group <M>D</M> of this quasi-isomorphism type.

<Example>
<#Include SYSTEM "tutex/9.15.txt">
</Example>
</Section>

<Section>
<Heading>Identifying crossed modules of low order</Heading>

<P/>The following commands  construct the crossed module <M>\partial \colon G\otimes G \rightarrow G</M> involving the nonabelian tensor square of the dihedral group $G$ of order <M>10</M>, identify it as being number <M>71</M> in the list of crossed modules of order <M>100</M>, create a quasi-isomorphic crossed module of order <M>4</M>, and finally construct the corresponding cat<M>^1</M>-group of order <M>100</M>.

<Example>
<#Include SYSTEM "tutex/9.16.txt">
</Example>

</Section>

</Chapter>