File: chap2.html

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (491 lines) | stat: -rw-r--r-- 67,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 2: Basic functionality for ZG-resolutions and group cohomology</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap2"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap2_mj.html">[MathJax on]</a></p>
<p><a id="X84CA5C9B81900889" name="X84CA5C9B81900889"></a></p>
<div class="ChapSects"><a href="chap2.html#X84CA5C9B81900889">2 <span class="Heading">Basic functionality for <span class="SimpleMath">ZG</span>-resolutions and group cohomology</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7C0B125E7D5415B4">2.1 <span class="Heading"> Resolutions</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X868E2A04832619C5">2.1-1 EquivariantChainMap</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X79EA11238403019D">2.1-2 FreeGResolution</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7CA87AA478007468">2.1-3 ResolutionBieberbachGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X81A5CEFC82A1897D">2.1-4 ResolutionCubicalCrystGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X789B3E7C7CBB3751">2.1-5 ResolutionFiniteGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7CBE6BDA7DB5AD7D">2.1-6 ResolutionNilpotentGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8574D76D7C891A04">2.1-7 ResolutionNormalSeries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X86934BE9858F7199">2.1-8 ResolutionPrimePowerGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7E4556B078B209CE">2.1-9 ResolutionSL2Z</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8518446086A3F7EA">2.1-10 ResolutionSmallGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X79A0221B7E96B642">2.1-11 ResolutionSubgroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X85EC9D8E7A15A570">2.2 <span class="Heading"> Algebras <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7D5DD19D7BA9D816">2.2-1 LeibnizComplex</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7F9E1F1781479F7B">2.3 <span class="Heading"> Resolutions <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X788F3B5E7810E309">2.3-1 HomToIntegers</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X81FED0E9858E413A">2.3-2 HomToIntegralModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X83BA99787CBE2B7D">2.3-3 TensorWithIntegers</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X8122D25786C83565">2.3-4 TensorWithIntegersModP</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X80B6849C835B7F19">2.4 <span class="Heading"> Cohomology rings</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X79C31EED8406A3E9">2.4-1 AreIsomorphicGradedAlgebras</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X83DC2F1A805BA7A3">2.4-2 HAPDerivation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7B93B7D082A50E61">2.4-3 HilbertPoincareSeries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X803D9B5E7A26F749">2.4-4 HomologyOfDerivation</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X855D2D747B6C54E1">2.4-5 IntegralCohomologyGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7F5D00C97A46D686">2.4-6 LHSSpectralSequence</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X828D20AC8735152B">2.4-7 LHSSpectralSequenceLastSheet</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7DEFADD17CAA6308">2.4-8 ModPCohomologyGenerators</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X796632C585D47245">2.4-9 ModPCohomologyRing</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X831034A284F3906F">2.4-10 Mod2CohomologyRingPresentation</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X7BCF8D907D237A03">2.5 <span class="Heading"> Group Invariants</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7D1658EF810022E5">2.5-1 GroupCohomology</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7F0A19E97980FD57">2.5-2 GroupHomology</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7A30C1CC7FB6B2E9">2.5-3 PrimePartDerivedFunctor</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X828B81D9829328F8">2.5-4 PoincareSeries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X828B81D9829328F8">2.5-5 PoincareSeries</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7EFE814686C4EEF5">2.5-6 RankHomologyPGroup</a></span>
</div></div>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap2.html#X86CDD4B77CBE3087">2.6 <span class="Heading"> <span class="SimpleMath">F_p</span>-modules</span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X85758F95832207D2">2.6-1 GroupAlgebraAsFpGModule</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X84B5182E831D0928">2.6-2 Radical</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap2.html#X7929281B848A9FBE">2.6-3 RadicalSeries</a></span>
</div></div>
</div>

<h3>2 <span class="Heading">Basic functionality for <span class="SimpleMath">ZG</span>-resolutions and group cohomology</span></h3>

<p>This page covers the functions used in chapter 3 of the book <span class="URL"><a href="https://global.oup.com/academic/product/an-invitation-to-computational-homotopy-9780198832980">An Invitation to Computational Homotopy</a></span>.</p>

<p><a id="X7C0B125E7D5415B4" name="X7C0B125E7D5415B4"></a></p>

<h4>2.1 <span class="Heading"> Resolutions</span></h4>

<p><a id="X868E2A04832619C5" name="X868E2A04832619C5"></a></p>

<h5>2.1-1 EquivariantChainMap</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EquivariantChainMap</code>( <var class="Arg">R</var>, <var class="Arg">S</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of <span class="SimpleMath">Z</span>, a free <span class="SimpleMath">ZQ</span>-resolution <span class="SimpleMath">S</span> of <span class="SimpleMath">Z</span>, and a group homomorphism <span class="SimpleMath">f: G → Q</span>. It returns the induced <span class="SimpleMath">f</span>-equivariant chain map <span class="SimpleMath">F: R → S</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">4</a></span> </p>

<p><a id="X79EA11238403019D" name="X79EA11238403019D"></a></p>

<h5>2.1-2 FreeGResolution</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; FreeGResolution</code>( <var class="Arg">P</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a non-free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">P_∗</span> and a positive integer <span class="SimpleMath">n</span>. It attempts to return <span class="SimpleMath">n</span> terms of a free <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span>. However, the stabilizer groups in the non-free resolution must be such that HAP can construct free resolutions with contracting homotopies for them.</p>

<p>The contracting homotopy on the resolution was implemented by Bui Anh Tuan.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap6.html">2</a></span> , <span class="URL"><a href="../tutorial/chap7.html">3</a></span> , <span class="URL"><a href="../tutorial/chap11.html">4</a></span> , <span class="URL"><a href="../tutorial/chap13.html">5</a></span> , <span class="URL"><a href="../tutorial/chap14.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">10</a></span> </p>

<p><a id="X7CA87AA478007468" name="X7CA87AA478007468"></a></p>

<h5>2.1-3 ResolutionBieberbachGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionBieberbachGroup</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionBieberbachGroup</code>( <var class="Arg">G</var>, <var class="Arg">v</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a torsion free crystallographic group <span class="SimpleMath">G</span>, also known as a Bieberbach group, represented using <strong class="button">AffineCrystGroupOnRight</strong> as in the GAP package Cryst. It also optionally inputs a choice of vector <span class="SimpleMath">v</span> in the Euclidean space <span class="SimpleMath">R^n</span> on which <span class="SimpleMath">G</span> acts freely. The function returns <span class="SimpleMath">n+1</span> terms of the free ZG-resolution of <span class="SimpleMath">Z</span> arising as the cellular chain complex of the tessellation of <span class="SimpleMath">R^n</span> by the Dirichlet-Voronoi fundamental domain determined by <span class="SimpleMath">v</span>. No contracting homotopy is returned with the resolution.</p>

<p>This function is part of the HAPcryst package written by Marc Roeder and thus requires the HAPcryst package to be loaded.</p>

<p>The function requires the use of Polymake software.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> </p>

<p><a id="X81A5CEFC82A1897D" name="X81A5CEFC82A1897D"></a></p>

<h5>2.1-4 ResolutionCubicalCrystGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionCubicalCrystGroup</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a crystallographic group <span class="SimpleMath">G</span> represented using <strong class="button">AffineCrystGroupOnRight</strong> as in the GAP package <span class="SimpleMath">Cryst</span> together with an integer <span class="SimpleMath">k ≥ 1</span>. The function tries to find a cubical fundamental domain in the Euclidean space <span class="SimpleMath">R^n</span> on which <span class="SimpleMath">G</span> acts. If it succeeds it uses this domain to return <span class="SimpleMath">k+1</span> terms of a free ZG-resolution of <span class="SimpleMath">Z</span>.</p>

<p>This function was written by Bui Anh Tuan.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap8.html">2</a></span> , <span class="URL"><a href="../tutorial/chap11.html">3</a></span> </p>

<p><a id="X789B3E7C7CBB3751" name="X789B3E7C7CBB3751"></a></p>

<h5>2.1-5 ResolutionFiniteGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionFiniteGroup</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and an integer <span class="SimpleMath">k ≥ 1</span>. It returns <span class="SimpleMath">k+1</span> terms of a free ZG-resolution of <span class="SimpleMath">Z</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap8.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap11.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPeriodic.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCrossedMods.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGouter.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">20</a></span> </p>

<p><a id="X7CBE6BDA7DB5AD7D" name="X7CBE6BDA7DB5AD7D"></a></p>

<h5>2.1-6 ResolutionNilpotentGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionNilpotentGroup</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a nilpotent group <span class="SimpleMath">G</span> (which can be infinite) and an integer <span class="SimpleMath">k ≥ 1</span>. It returns <span class="SimpleMath">k+1</span> terms of a free <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap6.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">5</a></span> </p>

<p><a id="X8574D76D7C891A04" name="X8574D76D7C891A04"></a></p>

<h5>2.1-7 ResolutionNormalSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionNormalSeries</code>( <var class="Arg">L</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a a list <span class="SimpleMath">L</span> consisting of a chain $<span class="SimpleMath">1=N_1 ≤ N_2 ≤ ⋯ ≤ N_n =G</span> of normal subgroups of <span class="SimpleMath">G</span>, together with an integer <span class="SimpleMath">k ≥ 1</span>. It returns <span class="SimpleMath">k+1</span> terms of a free ZG-resolution of <span class="SimpleMath">Z</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../tutorial/chap11.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">8</a></span> </p>

<p><a id="X86934BE9858F7199" name="X86934BE9858F7199"></a></p>

<h5>2.1-8 ResolutionPrimePowerGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionPrimePowerGroup</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite <span class="SimpleMath">p</span>-group <span class="SimpleMath">G</span> and an integer <span class="SimpleMath">k ≥ 1</span>. It returns <span class="SimpleMath">k+1</span> terms of a minimal free <span class="SimpleMath">FG</span>-resolution of the field <span class="SimpleMath">F</span> of <span class="SimpleMath">p</span> elements.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap8.html">2</a></span> , <span class="URL"><a href="../tutorial/chap11.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">6</a></span> </p>

<p><a id="X7E4556B078B209CE" name="X7E4556B078B209CE"></a></p>

<h5>2.1-9 ResolutionSL2Z</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionSL2Z</code>( <var class="Arg">m</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs positive integers <span class="SimpleMath">m, n</span> and returns <span class="SimpleMath">n</span> terms of a free <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> for the group <span class="SimpleMath">G=SL_2( Z[1/m])</span>.</p>

<p>This function is joint work with Bui Anh Tuan.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap11.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">4</a></span> </p>

<p><a id="X8518446086A3F7EA" name="X8518446086A3F7EA"></a></p>

<h5>2.1-10 ResolutionSmallGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionSmallGroup</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionSmallGroup</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a small group <span class="SimpleMath">G</span> and an integer <span class="SimpleMath">k ≥ 1</span>. It returns <span class="SimpleMath">k+1</span> terms of a free ZG-resolution of <span class="SimpleMath">Z</span>.</p>

<p>If <span class="SimpleMath">G</span> is a finitely presented group then up to degree <span class="SimpleMath">2</span> the resolution coincides with cellular chain complex of the universal cover of the <span class="SimpleMath">2</span> complex associated to the presentation of <span class="SimpleMath">G</span>. Thus the boundaries of the generators in degree <span class="SimpleMath">3</span> provide a generating set for the module of identities of the presentation.</p>

<p>This function was written by Irina Kholodna.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap11.html">2</a></span> </p>

<p><a id="X79A0221B7E96B642" name="X79A0221B7E96B642"></a></p>

<h5>2.1-11 ResolutionSubgroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ResolutionSubgroup</code>( <var class="Arg">R</var>, <var class="Arg">H</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a free ZG-resolution of <span class="SimpleMath">Z</span> and a finite index subgroup <span class="SimpleMath">H ≤ G</span>. It returns a free ZH-resolution of <span class="SimpleMath">Z</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">3</a></span> </p>

<p><a id="X85EC9D8E7A15A570" name="X85EC9D8E7A15A570"></a></p>

<h4>2.2 <span class="Heading"> Algebras <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></h4>

<p><a id="X7D5DD19D7BA9D816" name="X7D5DD19D7BA9D816"></a></p>

<h5>2.2-1 LeibnizComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LeibnizComplex</code>( <var class="Arg">g</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a Leibniz algebra, or Lie algebra, <span class="SimpleMath">mathfrakg</span> over a ring <span class="SimpleMath">K</span> together with an integer <span class="SimpleMath">n≥ 0</span>. It returns the first <span class="SimpleMath">n</span> terms of the Leibniz chain complex over <span class="SimpleMath">K</span>. The complex was implemented by Pablo Fernandez Ascariz.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7F9E1F1781479F7B" name="X7F9E1F1781479F7B"></a></p>

<h4>2.3 <span class="Heading"> Resolutions <span class="SimpleMath">⟶</span> (Co)chain Complexes</span></h4>

<p><a id="X788F3B5E7810E309" name="X788F3B5E7810E309"></a></p>

<h5>2.3-1 HomToIntegers</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomToIntegers</code>( <var class="Arg">C</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomToIntegers</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomToIntegers</code>( <var class="Arg">F</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> of free abelian groups and returns the cochain complex <span class="SimpleMath">Hom_ Z(C, Z)</span>.</p>

<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> in characteristic <span class="SimpleMath">0</span> and returns the cochain complex <span class="SimpleMath">Hom_ ZG(R, Z)</span>.</p>

<p>Inputs an equivariant chain map <span class="SimpleMath">F: R→ S</span> of resolutions and returns the induced cochain map <span class="SimpleMath">Hom_ ZG(S, Z) ⟶ Hom_ ZG(R, Z)</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap7.html">2</a></span> , <span class="URL"><a href="../tutorial/chap8.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap13.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCohomologyRings.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>

<p><a id="X81FED0E9858E413A" name="X81FED0E9858E413A"></a></p>

<h5>2.3-2 HomToIntegralModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomToIntegralModule</code>( <var class="Arg">R</var>, <var class="Arg">A</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> in characteristic <span class="SimpleMath">0</span> and a group homomorphism <span class="SimpleMath">A: G → GL_n( Z)</span>. The homomorphism <span class="SimpleMath">A</span> can be viewed as the <span class="SimpleMath">ZG</span>-module with underlying abelian group <span class="SimpleMath">Z^n</span> on which <span class="SimpleMath">G</span> acts via the homomorphism <span class="SimpleMath">A</span>. It returns the cochain complex <span class="SimpleMath">Hom_ ZG(R,A)</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> , <span class="URL"><a href="../tutorial/chap14.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">4</a></span> </p>

<p><a id="X83BA99787CBE2B7D" name="X83BA99787CBE2B7D"></a></p>

<h5>2.3-3 TensorWithIntegers</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegers</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegers</code>( <var class="Arg">F</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of characteristic <span class="SimpleMath">0</span> and returns the chain complex <span class="SimpleMath">R ⊗_ ZG Z</span>.</p>

<p>Inputs an equivariant chain map <span class="SimpleMath">F: R → S</span> in characteristic <span class="SimpleMath">0</span> and returns the induced chain map <span class="SimpleMath">F⊗_ ZG Z : R ⊗_ ZG Z ⟶ S ⊗_ ZG Z</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap6.html">3</a></span> , <span class="URL"><a href="../tutorial/chap7.html">4</a></span> , <span class="URL"><a href="../tutorial/chap10.html">5</a></span> , <span class="URL"><a href="../tutorial/chap11.html">6</a></span> , <span class="URL"><a href="../tutorial/chap13.html">7</a></span> , <span class="URL"><a href="../tutorial/chap14.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">26</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">27</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">28</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">29</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">30</a></span> </p>

<p><a id="X8122D25786C83565" name="X8122D25786C83565"></a></p>

<h5>2.3-4 TensorWithIntegersModP</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegersModP</code>( <var class="Arg">C</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegersModP</code>( <var class="Arg">R</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; TensorWithIntegersModP</code>( <var class="Arg">F</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a chain complex <span class="SimpleMath">C</span> of characteristic <span class="SimpleMath">0</span> and a prime integer <span class="SimpleMath">p</span>. It returns the chain complex <span class="SimpleMath">C ⊗_ Z Z_p</span> of characteristic <span class="SimpleMath">p</span>.</p>

<p>Inputs a free <span class="SimpleMath">ZG</span>-resolution <span class="SimpleMath">R</span> of characteristic <span class="SimpleMath">0</span> and a prime integer <span class="SimpleMath">p</span>. It returns the chain complex <span class="SimpleMath">R ⊗_ ZG Z_p</span> of characteristic <span class="SimpleMath">p</span>.</p>

<p>Inputs an equivariant chain map <span class="SimpleMath">F: R → S</span> in characteristic <span class="SimpleMath">0</span> a prime integer <span class="SimpleMath">p</span>. It returns the induced chain map <span class="SimpleMath">F⊗_ ZG Z_p : R ⊗_ ZG Z_p ⟶ S ⊗_ ZG Z_p</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>

<p><a id="X80B6849C835B7F19" name="X80B6849C835B7F19"></a></p>

<h4>2.4 <span class="Heading"> Cohomology rings</span></h4>

<p><a id="X79C31EED8406A3E9" name="X79C31EED8406A3E9"></a></p>

<h5>2.4-1 AreIsomorphicGradedAlgebras</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; AreIsomorphicGradedAlgebras</code>( <var class="Arg">A</var>, <var class="Arg">B</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs two freely presented graded algebras <span class="SimpleMath">A= F[x_1, ..., x_m]/I</span> and <span class="SimpleMath">B= F[y_1, ..., y_n]/J</span> and returns <strong class="button">true</strong> if they are isomorphic, and <strong class="button">false</strong> otherwise. This function was implemented by Paul Smith.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X83DC2F1A805BA7A3" name="X83DC2F1A805BA7A3"></a></p>

<h5>2.4-2 HAPDerivation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HAPDerivation</code>( <var class="Arg">R</var>, <var class="Arg">I</var>, <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a polynomial ring <span class="SimpleMath">R= F[x_1,...,x_m]</span> over a field <span class="SimpleMath">F</span> together with a list <span class="SimpleMath">I</span> of generators for an ideal in <span class="SimpleMath">R</span> and a list <span class="SimpleMath">L=[y_1,...,y_m]⊂ R</span>. It returns the derivation <span class="SimpleMath">d: E → E</span> for <span class="SimpleMath">E=R/I</span> defined by <span class="SimpleMath">d(x_i)=y_i</span>. This function was written by Paul Smith. It uses the Singular commutative algebra package.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7B93B7D082A50E61" name="X7B93B7D082A50E61"></a></p>

<h5>2.4-3 HilbertPoincareSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HilbertPoincareSeries</code>( <var class="Arg">E</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a presentation <span class="SimpleMath">E= F[x_1,...,x_m]/I</span> of a graded algebra and returns its Hilbert–Poincaré series. This function was written by Paul Smith and uses the Singular commutative algebra package. It is essentially a wrapper for Singular's Hilbert–Poincaré series.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap8.html">1</a></span> </p>

<p><a id="X803D9B5E7A26F749" name="X803D9B5E7A26F749"></a></p>

<h5>2.4-4 HomologyOfDerivation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; HomologyOfDerivation</code>( <var class="Arg">d</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a derivation <span class="SimpleMath">d: E → E</span> on a quotient <span class="SimpleMath">E=R/I</span> of a polynomial ring <span class="SimpleMath">R= F[x_1,...,x_m]</span> over a field <span class="SimpleMath">F</span>. It returns a list <span class="SimpleMath">[S,J,h]</span> where <span class="SimpleMath">S</span> is a polynomial ring and <span class="SimpleMath">J</span> is a list of generators for an ideal in <span class="SimpleMath">S</span> such that there is an isomorphism <span class="SimpleMath">α: S/J → ker d/ im~ d</span>. This isomorphism lifts to the ring homomorphism <span class="SimpleMath">h: S → ker d</span>. This function was written by Paul Smith. It uses the Singular commutative algebra package.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X855D2D747B6C54E1" name="X855D2D747B6C54E1"></a></p>

<h5>2.4-5 IntegralCohomologyGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IntegralCohomologyGenerators</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs at least <span class="SimpleMath">n+1</span> terms of a free <span class="SimpleMath">ZG</span>-resolution of <span class="SimpleMath">Z</span> and the integer <span class="SimpleMath">n ≥ 1</span>. It returns a minimal list of cohomology classes in <span class="SimpleMath">H^n(G, Z)</span> which, together with all cup products of lower degree classes, generate the group <span class="SimpleMath">H^n(G, Z)</span> . (Let <span class="SimpleMath">a_i</span> be the <span class="SimpleMath">i</span>-th canonical generator of the <span class="SimpleMath">d</span>-generator abelian group <span class="SimpleMath">H^n(G,Z)</span>. The cohomology class <span class="SimpleMath">n_1a_1 + ... +n_da_d</span> is represented by the integer vector <span class="SimpleMath">u=(n_1, ..., n_d)</span>. )</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7F5D00C97A46D686" name="X7F5D00C97A46D686"></a></p>

<h5>2.4-6 LHSSpectralSequence</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LHSSpectralSequence</code>( <var class="Arg">G</var>, <var class="Arg">N</var>, <var class="Arg">r</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite <span class="SimpleMath">2</span>-group <span class="SimpleMath">G</span>, and normal subgroup <span class="SimpleMath">N</span> and an integer <span class="SimpleMath">r</span>. It returns a list of length <span class="SimpleMath">r</span> whose <span class="SimpleMath">i</span>-th term is a presentation for the <span class="SimpleMath">i</span>-th page of the Lyndon-Hochschild-Serre spectral sequence. This function was written by Paul Smith. It uses the Singular commutative algebra package.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X828D20AC8735152B" name="X828D20AC8735152B"></a></p>

<h5>2.4-7 LHSSpectralSequenceLastSheet</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; LHSSpectralSequenceLastSheet</code>( <var class="Arg">G</var>, <var class="Arg">N</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite <span class="SimpleMath">2</span>-group <span class="SimpleMath">G</span> and normal subgroup <span class="SimpleMath">N</span>. It returns presentation for the <span class="SimpleMath">E_∞</span> page of the Lyndon-Hochschild-Serre spectral sequence. This function was written by Paul Smith. It uses the Singular commutative algebra package.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7DEFADD17CAA6308" name="X7DEFADD17CAA6308"></a></p>

<h5>2.4-8 ModPCohomologyGenerators</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ModPCohomologyGenerators</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ModPCohomologyGenerators</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs either a <span class="SimpleMath">p</span>-group <span class="SimpleMath">G</span> and positive integer <span class="SimpleMath">n</span>, or else <span class="SimpleMath">n+1</span> terms of a minimal <span class="SimpleMath">FG</span>-resolution <span class="SimpleMath">R</span> of the field <span class="SimpleMath">F</span> of <span class="SimpleMath">p</span> elements. It returns a pair whose first entry is a minimal list of homogeneous generators for the cohomology ring <span class="SimpleMath">A=H^∗(G, F)</span> modulo all elements in degree greater than <span class="SimpleMath">n</span>. The second entry of the pair is a function <strong class="button">deg</strong> which, when applied to a minimal generator, yields its degree. WARNING: the following rule must be applied when multiplying generators <span class="SimpleMath">x_i</span> together. Only products of the form <span class="SimpleMath">x_1*(x_2*(x_3*(x_4*...)))</span> with <span class="SimpleMath">deg(x_i) ≤ deg(x_i+1)</span> should be computed (since the <span class="SimpleMath">x_i</span> belong to a structure constant algebra with only a partially defined structure constants table).</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">1</a></span> </p>

<p><a id="X796632C585D47245" name="X796632C585D47245"></a></p>

<h5>2.4-9 ModPCohomologyRing</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ModPCohomologyRing</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ModPCohomologyRing</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">level</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ModPCohomologyRing</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ModPCohomologyRing</code>( <var class="Arg">R</var>, <var class="Arg">level</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs either a <span class="SimpleMath">p</span>-group <span class="SimpleMath">G</span> and positive integer <span class="SimpleMath">n</span>, or else <span class="SimpleMath">n</span> terms of a minimal <span class="SimpleMath">FG</span>-resolution <span class="SimpleMath">R</span> of the field <span class="SimpleMath">F</span> of <span class="SimpleMath">p</span> elements. It returns the cohomology ring <span class="SimpleMath">A=H^∗(G, F)</span> modulo all elements in degree greater than <span class="SimpleMath">n</span>. The ring is returned as a structure constant algebra <span class="SimpleMath">A</span>. The ring <span class="SimpleMath">A</span> is graded. It has a component <strong class="button">A!.degree(x)</strong> which is a function returning the degree of each (homogeneous) element <span class="SimpleMath">x</span> in <strong class="button">GeneratorsOfAlgebra(A)</strong>. An optional input variable <span class="SimpleMath">"level"</span> can be set to one of the strings <span class="SimpleMath">"medium"</span> or <span class="SimpleMath">"high"</span>. These settings determine parameters in the algorithm. The default setting is <span class="SimpleMath">"medium"</span>. When <span class="SimpleMath">"level"</span> is set to <span class="SimpleMath">"high"</span> the ring <span class="SimpleMath">A</span> is returned with a component <strong class="button">A!.niceBasis</strong>. This component is a pair <span class="SimpleMath">[Coeff,Bas]</span>. Here <span class="SimpleMath">Bas</span> is a list of integer lists; a "nice" basis for the vector space <span class="SimpleMath">A</span> can be constructed using the command <strong class="button">List(Bas,x-&gt;Product(List(x,i-&gt;Basis(A)[i]))</strong>. The coefficients of the canonical basis element <strong class="button">Basis(A)[i]</strong> are stored as <strong class="button">Coeff[i]</strong>. If the ring <span class="SimpleMath">A</span> is computed using the setting <span class="SimpleMath">"level"="medium"</span> then the component <strong class="button">A!.niceBasis</strong> can be added to <span class="SimpleMath">A</span> using the command <strong class="button">A:=ModPCohomologyRing_part_2(A)</strong>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap8.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">2</a></span> </p>

<p><a id="X831034A284F3906F" name="X831034A284F3906F"></a></p>

<h5>2.4-10 Mod2CohomologyRingPresentation</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Mod2CohomologyRingPresentation</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Mod2CohomologyRingPresentation</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Mod2CohomologyRingPresentation</code>( <var class="Arg">A</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Mod2CohomologyRingPresentation</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>When applied to a finite <span class="SimpleMath">2</span>-group <span class="SimpleMath">G</span> this function returns a presentation for the mod-<span class="SimpleMath">2</span> cohomology ring <span class="SimpleMath">H^∗(G, F)</span>. The Lyndon-Hochschild-Serre spectral sequence is used to prove that the presentation is complete. When the function is applied to a <span class="SimpleMath">2</span>-group G and positive integer <span class="SimpleMath">n</span> the function first constructs <span class="SimpleMath">n+1</span> terms of a free <span class="SimpleMath">FG</span>-resolution <span class="SimpleMath">R</span>, then constructs the finite-dimensional graded algebra <span class="SimpleMath">A=H^(∗ ≤ n)(G, F)</span>, and finally uses <span class="SimpleMath">A</span> to approximate a presentation for <span class="SimpleMath">H^*(G, F)</span>. For "sufficiently large" <span class="SimpleMath">n</span> the approximation will be a correct presentation for <span class="SimpleMath">H^∗(G, F)</span>. Alternatively, the function can be applied directly to either the resolution <span class="SimpleMath">R</span> or graded algebra <span class="SimpleMath">A</span>. This function was written by Paul Smith. It uses the Singular commutative algebra package to handle the Lyndon-Hochschild-Serre spectral sequence.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap8.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">2</a></span> </p>

<p><a id="X7BCF8D907D237A03" name="X7BCF8D907D237A03"></a></p>

<h4>2.5 <span class="Heading"> Group Invariants</span></h4>

<p><a id="X7D1658EF810022E5" name="X7D1658EF810022E5"></a></p>

<h5>2.5-1 GroupCohomology</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupCohomology</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupCohomology</code>( <var class="Arg">G</var>, <var class="Arg">k</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a group <span class="SimpleMath">G</span> and integer <span class="SimpleMath">k ≥ 0</span>. The group <span class="SimpleMath">G</span> should either be finite or else lie in one of a range of classes of infinite groups (such as nilpotent, crystallographic, Artin etc.). The function returns the list of abelian invariants of <span class="SimpleMath">H^k(G, Z)</span>.</p>

<p>If a prime <span class="SimpleMath">p</span> is given as an optional third input variable then the function returns the list of abelian invariants of <span class="SimpleMath">H^k(G, Z_p)</span>. In this case each abelian invariant will be equal to <span class="SimpleMath">p</span> and the length of the list will be the dimension of the vector space <span class="SimpleMath">H^k(G, Z_p)</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap8.html">2</a></span> </p>

<p><a id="X7F0A19E97980FD57" name="X7F0A19E97980FD57"></a></p>

<h5>2.5-2 GroupHomology</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupHomology</code>( <var class="Arg">G</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupHomology</code>( <var class="Arg">G</var>, <var class="Arg">k</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a group <span class="SimpleMath">G</span> and integer <span class="SimpleMath">k ≥ 0</span>. The group <span class="SimpleMath">G</span> should either be finite or else lie in one of a range of classes of infinite groups (such as nilpotent, crystallographic, Artin etc.). The function returns the list of abelian invariants of <span class="SimpleMath">H_k(G, Z)</span>.</p>

<p>If a prime <span class="SimpleMath">p</span> is given as an optional third input variable then the function returns the list of abelian invariants of <span class="SimpleMath">H_k(G, Z_p)</span>. In this case each abelian invariant will be equal to <span class="SimpleMath">p</span> and the length of the list will be the dimension of the vector space <span class="SimpleMath">H_k(G, Z_p)</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap13.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTensorSquare.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLie.html">9</a></span> </p>

<p><a id="X7A30C1CC7FB6B2E9" name="X7A30C1CC7FB6B2E9"></a></p>

<h5>2.5-3 PrimePartDerivedFunctor</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PrimePartDerivedFunctor</code>( <var class="Arg">G</var>, <var class="Arg">R</var>, <var class="Arg">A</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a group <span class="SimpleMath">G</span>, an integer <span class="SimpleMath">k ≥ 0</span>, at least <span class="SimpleMath">k+1</span> terms of a free <span class="SimpleMath">ZP</span>-resolution of <span class="SimpleMath">Z</span> for <span class="SimpleMath">P</span> a Sylow <span class="SimpleMath">p</span>-subgroup of <span class="SimpleMath">G</span>. A function such as <strong class="button">A=TensorWithIntegers</strong> is also entered. The abelian invariants of the <span class="SimpleMath">p</span>-primary part <span class="SimpleMath">H_k(G,A)_(p)</span> of the homology with coefficients in <span class="SimpleMath">A</span> is returned.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">4</a></span> </p>

<p><a id="X828B81D9829328F8" name="X828B81D9829328F8"></a></p>

<h5>2.5-4 PoincareSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">L</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite <span class="SimpleMath">p</span>-group <span class="SimpleMath">G</span> and a positive integer <span class="SimpleMath">n</span>. It returns a quotient of polynomials <span class="SimpleMath">f(x)=P(x)/Q(x)</span> whose expansion has coefficient of <span class="SimpleMath">x^k</span> equal to the rank of the vector space <span class="SimpleMath">H_k(G, F_p)</span> for all <span class="SimpleMath">k</span> in the range <span class="SimpleMath">1 ≤ k ≤ n</span>. (The second input variable can be omitted, in which case the function tries to choose a `reasonable' value for <span class="SimpleMath">n</span>. For 2-groups the function <strong class="button">PoincareSeriesLHS(G)</strong> can be used to produce an <span class="SimpleMath">f(x)</span> that is correct in all degrees.) In place of the group <span class="SimpleMath">G</span> the function can also input (at least <span class="SimpleMath">n</span> terms of) a minimal mod-<span class="SimpleMath">p</span> resolution <span class="SimpleMath">R</span> for <span class="SimpleMath">G</span>. Alternatively, the first input variable can be a list <span class="SimpleMath">L</span> of integers. In this case the coefficient of <span class="SimpleMath">x^k</span> in <span class="SimpleMath">f(x)</span> is equal to the <span class="SimpleMath">(k+1)</span>st term in the list.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap8.html">2</a></span> , <span class="URL"><a href="../tutorial/chap11.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeriesII.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>

<p><a id="X828B81D9829328F8" name="X828B81D9829328F8"></a></p>

<h5>2.5-5 PoincareSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">R</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PoincareSeries</code>( <var class="Arg">L</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite <span class="SimpleMath">p</span>-group <span class="SimpleMath">G</span> and a positive integer <span class="SimpleMath">n</span>. It returns a quotient of polynomials <span class="SimpleMath">f(x)=P(x)/Q(x)</span> whose expansion has coefficient of <span class="SimpleMath">x^k</span> equal to the rank of the vector space <span class="SimpleMath">H_k(G, F_p)</span> for all <span class="SimpleMath">k</span> in the range <span class="SimpleMath">1 ≤ k ≤ n</span>. (The second input variable can be omitted, in which case the function tries to choose a `reasonable' value for <span class="SimpleMath">n</span>. For 2-groups the function <strong class="button">PoincareSeriesLHS(G)</strong> can be used to produce an <span class="SimpleMath">f(x)</span> that is correct in all degrees.) In place of the group <span class="SimpleMath">G</span> the function can also input (at least <span class="SimpleMath">n</span> terms of) a minimal mod-<span class="SimpleMath">p</span> resolution <span class="SimpleMath">R</span> for <span class="SimpleMath">G</span>. Alternatively, the first input variable can be a list <span class="SimpleMath">L</span> of integers. In this case the coefficient of <span class="SimpleMath">x^k</span> in <span class="SimpleMath">f(x)</span> is equal to the <span class="SimpleMath">(k+1)</span>st term in the list.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> , <span class="URL"><a href="../tutorial/chap8.html">2</a></span> , <span class="URL"><a href="../tutorial/chap11.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">4</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutModPRings.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeriesII.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">9</a></span> </p>

<p><a id="X7EFE814686C4EEF5" name="X7EFE814686C4EEF5"></a></p>

<h5>2.5-6 RankHomologyPGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RankHomologyPGroup</code>( <var class="Arg">G</var>, <var class="Arg">P</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a <span class="SimpleMath">p</span>-group <span class="SimpleMath">G</span>, a rational function <span class="SimpleMath">P</span> representing the Poincaré series of the mod-<span class="SimpleMath">p</span> cohomology of <span class="SimpleMath">G</span> and a positive integer <span class="SimpleMath">n</span>. It returns the minimum number of generators for the finite abelian <span class="SimpleMath">p</span>-group <span class="SimpleMath">H_n(G, Z)</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap7.html">1</a></span> </p>

<p><a id="X86CDD4B77CBE3087" name="X86CDD4B77CBE3087"></a></p>

<h4>2.6 <span class="Heading"> <span class="SimpleMath">F_p</span>-modules</span></h4>

<p><a id="X85758F95832207D2" name="X85758F95832207D2"></a></p>

<h5>2.6-1 GroupAlgebraAsFpGModule</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GroupAlgebraAsFpGModule</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite <span class="SimpleMath">p</span>-group <span class="SimpleMath">G</span> and returns the modular group algebra <span class="SimpleMath">F_pG</span> in the form of an <span class="SimpleMath">F_pG</span>-module.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X84B5182E831D0928" name="X84B5182E831D0928"></a></p>

<h5>2.6-2 Radical</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Radical</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">F_pG</span>-module and returns its radical.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7929281B848A9FBE" name="X7929281B848A9FBE"></a></p>

<h5>2.6-3 RadicalSeries</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RadicalSeries</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RadicalSeries</code>( <var class="Arg">R</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs an <span class="SimpleMath">F_pG</span>-module <span class="SimpleMath">M</span> and returns its radical series as a list of <span class="SimpleMath">F_pG</span>-modules.</p>

<p>Inputs a free <span class="SimpleMath">F_pG</span>-resolution R and returns the filtered chain complex <span class="SimpleMath">⋯ Rad_2( F_pG)R ≤ Rad_1( F_pG)R ≤ R</span>.</p>

<p><strong class="button">Examples:</strong></p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap1.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap3.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>