File: chap28.html

package info (click to toggle)
gap-hap 1.74%2Bds-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 58,664 kB
  • sloc: xml: 16,678; sh: 197; javascript: 155; makefile: 121; ansic: 47; perl: 24
file content (298 lines) | stat: -rw-r--r-- 34,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
         "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 28:  Simplicial Complexes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap28"  onload="jscontent()">


<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<div class="chlinkprevnexttop">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap27.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap29.html">[Next Chapter]</a>&nbsp;  </div>

<p id="mathjaxlink" class="pcenter"><a href="chap28_mj.html">[MathJax on]</a></p>
<p><a id="X7AC76D657C578FEE" name="X7AC76D657C578FEE"></a></p>
<div class="ChapSects"><a href="chap28.html#X7AC76D657C578FEE">28 <span class="Heading"> Simplicial Complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss">&nbsp;</span><a href="chap28.html#X7CFDEEC07F15CF82">28.1 <span class="Heading">  </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X85A9D5CB8605329C">28.1-1 Homology</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X86D0AEEC79FD104A">28.1-2 RipsHomology</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X7C3327917BE532FD">28.1-3 Bettinumbers</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X7A1C427578108B7E">28.1-4 ChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X87054BC582F01A36">28.1-5 CechComplexOfPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X85E64B207BBF76CE">28.1-6 PureComplexToSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X8174B2CD7839840F">28.1-7 RipsChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X7C86B58A7CEA5513">28.1-8 VectorsToSymmetricMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X8307F8DB85F145AE">28.1-9 EulerCharacteristic</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X86B9F59880C58160">28.1-10 MaximalSimplicesToSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X87CABD297B8B060D">28.1-11 SkeletonOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X782F884F7D9233A2">28.1-12 GraphOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X829ABA507DFBBD7B">28.1-13 ContractibleSubcomplexOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X84DC5B4D783598C7">28.1-14 PathComponentsOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X7F8D4C4C7ED15A31">28.1-15 QuillenComplex</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X82A625DA815A97DE">28.1-16 SymmetricMatrixToIncidenceMatrix</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X86F6C7E68222BE84">28.1-17 IncidenceMatrixToGraph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X80CAD0357AF44E48">28.1-18 CayleyGraphOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X78E0B1357DDFE43E">28.1-19 PathComponentsOfGraph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X7BB384467E133719">28.1-20 ContractGraph</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X7F7D27C27A8817DE">28.1-21 GraphDisplay</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X80E8D8517CA19EE3">28.1-22 SimplicialMap</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X876AB1AD7BCC253B">28.1-23 ChainMapOfSimplicialMap</a></span>
<span class="ContSS"><br /><span class="nocss">&nbsp;&nbsp;</span><a href="chap28.html#X80F5DAB17E349DF1">28.1-24 SimplicialNerveOfGraph</a></span>
</div></div>
</div>

<h3>28 <span class="Heading"> Simplicial Complexes</span></h3>

<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>

<h4>28.1 <span class="Heading">  </span></h4>

<p><a id="X85A9D5CB8605329C" name="X85A9D5CB8605329C"></a></p>

<h5>28.1-1 Homology</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">T</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Homology</code>( <var class="Arg">T</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, or simplicial complex <span class="SimpleMath">T</span> and a non-negative integer <span class="SimpleMath">n</span>. It returns the n-th integral homology of <span class="SimpleMath">T</span> as a list of torsion integers. If no value of <span class="SimpleMath">n</span> is input then the list of all homologies of <span class="SimpleMath">T</span> in dimensions 0 to Dimension(T) is returned .</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap6.html">6</a></span> , <span class="URL"><a href="../tutorial/chap7.html">7</a></span> , <span class="URL"><a href="../tutorial/chap9.html">8</a></span> , <span class="URL"><a href="../tutorial/chap10.html">9</a></span> , <span class="URL"><a href="../tutorial/chap11.html">10</a></span> , <span class="URL"><a href="../tutorial/chap12.html">11</a></span> , <span class="URL"><a href="../tutorial/chap13.html">12</a></span> , <span class="URL"><a href="../tutorial/chap14.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">26</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">27</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">28</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutquasi.html">29</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">30</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">31</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">32</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">33</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">34</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">35</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">36</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">37</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">38</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">39</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">40</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTensorSquare.html">41</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLieCovers.html">42</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">43</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLie.html">44</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">45</a></span> </p>

<p><a id="X86D0AEEC79FD104A" name="X86D0AEEC79FD104A"></a></p>

<h5>28.1-2 RipsHomology</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RipsHomology</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RipsHomology</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span>, a non-negative integer <span class="SimpleMath">n</span> (and optionally a prime number <span class="SimpleMath">p</span>). It returns the integral homology (or mod p homology) in degree <span class="SimpleMath">n</span> of the Rips complex of <span class="SimpleMath">G</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7C3327917BE532FD" name="X7C3327917BE532FD"></a></p>

<h5>28.1-3 Bettinumbers</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Bettinumbers</code>( <var class="Arg">T</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; Bettinumbers</code>( <var class="Arg">T</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, simplicial complex or chain complex <span class="SimpleMath">T</span> and a non-negative integer <span class="SimpleMath">n</span>. The rank of the n-th rational homology group <span class="SimpleMath">H_n(T, Q)</span> is returned. If no value for n is input then the list of Betti numbers in dimensions 0 to Dimension(T) is returned .</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">2</a></span> </p>

<p><a id="X7A1C427578108B7E" name="X7A1C427578108B7E"></a></p>

<h5>28.1-4 ChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainComplex</code>( <var class="Arg">T</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, or simplicial complex <span class="SimpleMath">T</span> and returns the (often very large) cellular chain complex of <span class="SimpleMath">T</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap12.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> </p>

<p><a id="X87054BC582F01A36" name="X87054BC582F01A36"></a></p>

<h5>28.1-5 CechComplexOfPureCubicalComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CechComplexOfPureCubicalComplex</code>( <var class="Arg">T</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a d-dimensional pure cubical complex <span class="SimpleMath">T</span> and returns a simplicial complex <span class="SimpleMath">S</span>. The simplicial complex <span class="SimpleMath">S</span> has one vertex for each d-cube in <span class="SimpleMath">T</span>, and an n-simplex for each collection of n+1 d-cubes with non-trivial common intersection. The homotopy types of <span class="SimpleMath">T</span> and <span class="SimpleMath">S</span> are equal.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">2</a></span> </p>

<p><a id="X85E64B207BBF76CE" name="X85E64B207BBF76CE"></a></p>

<h5>28.1-6 PureComplexToSimplicialComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PureComplexToSimplicialComplex</code>( <var class="Arg">T</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs either a d-dimensional pure cubical complex <span class="SimpleMath">T</span> or a d-dimensional pure permutahedral complex <span class="SimpleMath">T</span> together with a non-negative integer <span class="SimpleMath">k</span>. It returns the first <span class="SimpleMath">k</span> dimensions of a simplicial complex <span class="SimpleMath">S</span>. The simplicial complex <span class="SimpleMath">S</span> has one vertex for each d-cell in <span class="SimpleMath">T</span>, and an n-simplex for each collection of n+1 d-cells with non-trivial common intersection. The homotopy types of <span class="SimpleMath">T</span> and <span class="SimpleMath">S</span> are equal.</p>

<p>For a pure cubical complex <span class="SimpleMath">T</span> this uses a slightly different algorithm to the function CechComplexOfPureCubicalComplex(T) but constructs the same simplicial complex.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">1</a></span> </p>

<p><a id="X8174B2CD7839840F" name="X8174B2CD7839840F"></a></p>

<h5>28.1-7 RipsChainComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; RipsChainComplex</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and a non-negative integer <span class="SimpleMath">n</span>. It returns <span class="SimpleMath">n+1</span> terms of a chain complex whose homology is that of the nerve (or Rips complex) of the graph in degrees up to <span class="SimpleMath">n</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>

<p><a id="X7C86B58A7CEA5513" name="X7C86B58A7CEA5513"></a></p>

<h5>28.1-8 VectorsToSymmetricMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VectorsToSymmetricMatrix</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; VectorsToSymmetricMatrix</code>( <var class="Arg">M</var>, <var class="Arg">distance</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a matrix <span class="SimpleMath">M</span> of rational numbers and returns a symmetric matrix <span class="SimpleMath">S</span> whose <span class="SimpleMath">(i,j)</span> entry is the distance between the <span class="SimpleMath">i</span>-th row and <span class="SimpleMath">j</span>-th rows of <span class="SimpleMath">M</span> where distance is given by the sum of the absolute values of the coordinate differences.</p>

<p>Optionally, a function distance(v,w) can be entered as a second argument. This function has to return a rational number for each pair of rational vectors <span class="SimpleMath">v,w</span> of length Length(M[1]).</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">3</a></span> </p>

<p><a id="X8307F8DB85F145AE" name="X8307F8DB85F145AE"></a></p>

<h5>28.1-9 EulerCharacteristic</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; EulerCharacteristic</code>( <var class="Arg">T</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, or simplicial complex <span class="SimpleMath">T</span> and returns its Euler characteristic.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X86B9F59880C58160" name="X86B9F59880C58160"></a></p>

<h5>28.1-10 MaximalSimplicesToSimplicialComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; MaximalSimplicesToSimplicialComplex</code>( <var class="Arg">L</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a list L whose entries are lists of vertices representing the maximal simplices of a simplicial complex. The simplicial complex is returned. Here a "vertex" is a GAP object such as an integer or a subgroup.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap3.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>

<p><a id="X87CABD297B8B060D" name="X87CABD297B8B060D"></a></p>

<h5>28.1-11 SkeletonOfSimplicialComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SkeletonOfSimplicialComplex</code>( <var class="Arg">S</var>, <var class="Arg">k</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and a positive integer <span class="SimpleMath">k</span> less than or equal to the dimension of <span class="SimpleMath">S</span>. It returns the truncated <span class="SimpleMath">k</span>-dimensional simplicial complex <span class="SimpleMath">S^k</span> (and leaves <span class="SimpleMath">S</span> unchanged).</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X782F884F7D9233A2" name="X782F884F7D9233A2"></a></p>

<h5>28.1-12 GraphOfSimplicialComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GraphOfSimplicialComplex</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and returns the graph of <span class="SimpleMath">S</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap5.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">3</a></span> </p>

<p><a id="X829ABA507DFBBD7B" name="X829ABA507DFBBD7B"></a></p>

<h5>28.1-13 ContractibleSubcomplexOfSimplicialComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractibleSubcomplexOfSimplicialComplex</code>( <var class="Arg">S</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and returns a (probably maximal) contractible subcomplex of <span class="SimpleMath">S</span>.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X84DC5B4D783598C7" name="X84DC5B4D783598C7"></a></p>

<h5>28.1-14 PathComponentsOfSimplicialComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PathComponentsOfSimplicialComplex</code>( <var class="Arg">S</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and a nonnegative integer <span class="SimpleMath">n</span>. If <span class="SimpleMath">n=0</span> the number of path components of <span class="SimpleMath">S</span> is returned. Otherwise the n-th path component is returned (as a simplicial complex).</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7F8D4C4C7ED15A31" name="X7F8D4C4C7ED15A31"></a></p>

<h5>28.1-15 QuillenComplex</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; QuillenComplex</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and returns, as a simplicial complex, the order complex of the poset of non-trivial elementary abelian subgroups of <span class="SimpleMath">G</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>

<p><a id="X82A625DA815A97DE" name="X82A625DA815A97DE"></a></p>

<h5>28.1-16 SymmetricMatrixToIncidenceMatrix</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatrixToIncidenceMatrix</code>( <var class="Arg">S</var>, <var class="Arg">t</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SymmetricMatrixToIncidenceMatrix</code>( <var class="Arg">S</var>, <var class="Arg">t</var>, <var class="Arg">d</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a symmetric integer matrix S and an integer t. It returns the matrix <span class="SimpleMath">M</span> with <span class="SimpleMath">M_ij=1</span> if <span class="SimpleMath">I_ij</span> is less than <span class="SimpleMath">t</span> and <span class="SimpleMath">I_ij=1</span> otherwise.</p>

<p>An optional integer <span class="SimpleMath">d</span> can be given as a third argument. In this case the incidence matrix should have roughly at most <span class="SimpleMath">d</span> entries in each row (corresponding to the <span class="SimpleMath">d</span> smallest entries in each row of <span class="SimpleMath">S</span>).</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X86F6C7E68222BE84" name="X86F6C7E68222BE84"></a></p>

<h5>28.1-17 IncidenceMatrixToGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; IncidenceMatrixToGraph</code>( <var class="Arg">M</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a symmetric 0/1 matrix M. It returns the graph with one vertex for each row of <span class="SimpleMath">M</span> and an edges between vertices <span class="SimpleMath">i</span> and <span class="SimpleMath">j</span> if the <span class="SimpleMath">(i,j)</span> entry in <span class="SimpleMath">M</span> equals 1.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X80CAD0357AF44E48" name="X80CAD0357AF44E48"></a></p>

<h5>28.1-18 CayleyGraphOfGroup</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; CayleyGraphOfGroup</code>( <var class="Arg">G</var>, <var class="Arg">A</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a group <span class="SimpleMath">G</span> and a set <span class="SimpleMath">A</span> of generators. It returns the Cayley graph.</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X78E0B1357DDFE43E" name="X78E0B1357DDFE43E"></a></p>

<h5>28.1-19 PathComponentsOfGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; PathComponentsOfGraph</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and a nonnegative integer <span class="SimpleMath">n</span>. If <span class="SimpleMath">n=0</span> the number of path components is returned. Otherwise the n-th path component is returned (as a graph).</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X7BB384467E133719" name="X7BB384467E133719"></a></p>

<h5>28.1-20 ContractGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ContractGraph</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and tries to remove vertices and edges to produce a smaller graph <span class="SimpleMath">G'</span> such that the indlusion <span class="SimpleMath">G' → G</span> induces a homotopy equivalence <span class="SimpleMath">RG → RG'</span> of Rips complexes. If the graph <span class="SimpleMath">G</span> is modified the function returns true, and otherwise returns false.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">2</a></span> </p>

<p><a id="X7F7D27C27A8817DE" name="X7F7D27C27A8817DE"></a></p>

<h5>28.1-21 GraphDisplay</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; GraphDisplay</code>( <var class="Arg">G</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>This function uses GraphViz software to display a graph <span class="SimpleMath">G</span>.</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">2</a></span> </p>

<p><a id="X80E8D8517CA19EE3" name="X80E8D8517CA19EE3"></a></p>

<h5>28.1-22 SimplicialMap</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplicialMap</code>( <var class="Arg">K</var>, <var class="Arg">L</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplicialMapNC</code>( <var class="Arg">K</var>, <var class="Arg">L</var>, <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs simplicial complexes <span class="SimpleMath">K</span> , <span class="SimpleMath">L</span> and a function <span class="SimpleMath">f: K!.vertices → L!.vertices</span> representing a simplicial map. It returns a simplicial map <span class="SimpleMath">K → L</span>. If <span class="SimpleMath">f</span> does not happen to represent a simplicial map then SimplicialMap(K,L,f) will return fail; SimplicialMapNC(K,L,f) will not do any check and always return something of the data type "simplicial map".</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X876AB1AD7BCC253B" name="X876AB1AD7BCC253B"></a></p>

<h5>28.1-23 ChainMapOfSimplicialMap</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; ChainMapOfSimplicialMap</code>( <var class="Arg">f</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a simplicial map <span class="SimpleMath">f: K → L</span> and returns the corresponding chain map <span class="SimpleMath">C_∗(f) : C_∗(K) → C_∗(L)</span> of the simplicial chain complexes..</p>

<p><strong class="button">Examples:</strong></p>

<p><a id="X80F5DAB17E349DF1" name="X80F5DAB17E349DF1"></a></p>

<h5>28.1-24 SimplicialNerveOfGraph</h5>

<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">&#8227; SimplicialNerveOfGraph</code>( <var class="Arg">G</var>, <var class="Arg">d</var> )</td><td class="tdright">(&nbsp;function&nbsp;)</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and returns a <span class="SimpleMath">d</span>-dimensional simplicial complex <span class="SimpleMath">K</span> whose 1-skeleton is equal to <span class="SimpleMath">G</span>. There is a simplicial inclusion <span class="SimpleMath">K → RG</span> where: (i) the inclusion induces isomorphisms on homotopy groups in dimensions less than <span class="SimpleMath">d</span>; (ii) the complex <span class="SimpleMath">RG</span> is the Rips complex (with one <span class="SimpleMath">n</span>-simplex for each complete subgraph of <span class="SimpleMath">G</span> on <span class="SimpleMath">n+1</span> vertices).</p>

<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">2</a></span> </p>


<div class="chlinkprevnextbot">&nbsp;<a href="chap0.html">[Top of Book]</a>&nbsp;  <a href="chap0.html#contents">[Contents]</a>&nbsp;  &nbsp;<a href="chap27.html">[Previous Chapter]</a>&nbsp;  &nbsp;<a href="chap29.html">[Next Chapter]</a>&nbsp;  </div>


<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a>  <a href="chap1.html">1</a>  <a href="chap2.html">2</a>  <a href="chap3.html">3</a>  <a href="chap4.html">4</a>  <a href="chap5.html">5</a>  <a href="chap6.html">6</a>  <a href="chap7.html">7</a>  <a href="chap8.html">8</a>  <a href="chap9.html">9</a>  <a href="chap10.html">10</a>  <a href="chap11.html">11</a>  <a href="chap12.html">12</a>  <a href="chap13.html">13</a>  <a href="chap14.html">14</a>  <a href="chap15.html">15</a>  <a href="chap16.html">16</a>  <a href="chap17.html">17</a>  <a href="chap18.html">18</a>  <a href="chap19.html">19</a>  <a href="chap20.html">20</a>  <a href="chap21.html">21</a>  <a href="chap22.html">22</a>  <a href="chap23.html">23</a>  <a href="chap24.html">24</a>  <a href="chap25.html">25</a>  <a href="chap26.html">26</a>  <a href="chap27.html">27</a>  <a href="chap28.html">28</a>  <a href="chap29.html">29</a>  <a href="chap30.html">30</a>  <a href="chap31.html">31</a>  <a href="chap32.html">32</a>  <a href="chap33.html">33</a>  <a href="chap34.html">34</a>  <a href="chap35.html">35</a>  <a href="chap36.html">36</a>  <a href="chap37.html">37</a>  <a href="chap38.html">38</a>  <a href="chap39.html">39</a>  <a href="chap40.html">40</a>  <a href="chapInd.html">Ind</a>  </div>

<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>