1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>GAP (HAP commands) - Chapter 28: Simplicial Complexes</title>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<meta name="generator" content="GAPDoc2HTML" />
<link rel="stylesheet" type="text/css" href="manual.css" />
<script src="manual.js" type="text/javascript"></script>
<script type="text/javascript">overwriteStyle();</script>
</head>
<body class="chap28" onload="jscontent()">
<div class="chlinktop"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<div class="chlinkprevnexttop"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap27.html">[Previous Chapter]</a> <a href="chap29.html">[Next Chapter]</a> </div>
<p id="mathjaxlink" class="pcenter"><a href="chap28_mj.html">[MathJax on]</a></p>
<p><a id="X7AC76D657C578FEE" name="X7AC76D657C578FEE"></a></p>
<div class="ChapSects"><a href="chap28.html#X7AC76D657C578FEE">28 <span class="Heading"> Simplicial Complexes</span></a>
<div class="ContSect"><span class="tocline"><span class="nocss"> </span><a href="chap28.html#X7CFDEEC07F15CF82">28.1 <span class="Heading"> </span></a>
</span>
<div class="ContSSBlock">
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X85A9D5CB8605329C">28.1-1 Homology</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X86D0AEEC79FD104A">28.1-2 RipsHomology</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X7C3327917BE532FD">28.1-3 Bettinumbers</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X7A1C427578108B7E">28.1-4 ChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X87054BC582F01A36">28.1-5 CechComplexOfPureCubicalComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X85E64B207BBF76CE">28.1-6 PureComplexToSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X8174B2CD7839840F">28.1-7 RipsChainComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X7C86B58A7CEA5513">28.1-8 VectorsToSymmetricMatrix</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X8307F8DB85F145AE">28.1-9 EulerCharacteristic</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X86B9F59880C58160">28.1-10 MaximalSimplicesToSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X87CABD297B8B060D">28.1-11 SkeletonOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X782F884F7D9233A2">28.1-12 GraphOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X829ABA507DFBBD7B">28.1-13 ContractibleSubcomplexOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X84DC5B4D783598C7">28.1-14 PathComponentsOfSimplicialComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X7F8D4C4C7ED15A31">28.1-15 QuillenComplex</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X82A625DA815A97DE">28.1-16 SymmetricMatrixToIncidenceMatrix</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X86F6C7E68222BE84">28.1-17 IncidenceMatrixToGraph</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X80CAD0357AF44E48">28.1-18 CayleyGraphOfGroup</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X78E0B1357DDFE43E">28.1-19 PathComponentsOfGraph</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X7BB384467E133719">28.1-20 ContractGraph</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X7F7D27C27A8817DE">28.1-21 GraphDisplay</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X80E8D8517CA19EE3">28.1-22 SimplicialMap</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X876AB1AD7BCC253B">28.1-23 ChainMapOfSimplicialMap</a></span>
<span class="ContSS"><br /><span class="nocss"> </span><a href="chap28.html#X80F5DAB17E349DF1">28.1-24 SimplicialNerveOfGraph</a></span>
</div></div>
</div>
<h3>28 <span class="Heading"> Simplicial Complexes</span></h3>
<p><a id="X7CFDEEC07F15CF82" name="X7CFDEEC07F15CF82"></a></p>
<h4>28.1 <span class="Heading"> </span></h4>
<p><a id="X85A9D5CB8605329C" name="X85A9D5CB8605329C"></a></p>
<h5>28.1-1 Homology</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">T</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Homology</code>( <var class="Arg">T</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, or simplicial complex <span class="SimpleMath">T</span> and a non-negative integer <span class="SimpleMath">n</span>. It returns the n-th integral homology of <span class="SimpleMath">T</span> as a list of torsion integers. If no value of <span class="SimpleMath">n</span> is input then the list of all homologies of <span class="SimpleMath">T</span> in dimensions 0 to Dimension(T) is returned .</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap2.html">2</a></span> , <span class="URL"><a href="../tutorial/chap3.html">3</a></span> , <span class="URL"><a href="../tutorial/chap4.html">4</a></span> , <span class="URL"><a href="../tutorial/chap5.html">5</a></span> , <span class="URL"><a href="../tutorial/chap6.html">6</a></span> , <span class="URL"><a href="../tutorial/chap7.html">7</a></span> , <span class="URL"><a href="../tutorial/chap9.html">8</a></span> , <span class="URL"><a href="../tutorial/chap10.html">9</a></span> , <span class="URL"><a href="../tutorial/chap11.html">10</a></span> , <span class="URL"><a href="../tutorial/chap12.html">11</a></span> , <span class="URL"><a href="../tutorial/chap13.html">12</a></span> , <span class="URL"><a href="../tutorial/chap14.html">13</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLinks.html">14</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArithmetic.html">15</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">16</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutArtinGroups.html">17</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutAspherical.html">18</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutParallel.html">19</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">20</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPerformance.html">21</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCocycles.html">22</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">23</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPoincareSeries.html">24</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">25</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">26</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPolytopes.html">27</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoxeter.html">28</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutquasi.html">29</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">30</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">31</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRosenbergerMonster.html">32</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDavisComplex.html">33</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutDefinitions.html">34</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">35</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutExtensions.html">36</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSpaceGroup.html">37</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutFunctorial.html">38</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutGraphsOfGroups.html">39</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">40</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTensorSquare.html">41</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLieCovers.html">42</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTorAndExt.html">43</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutLie.html">44</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTwistedCoefficients.html">45</a></span> </p>
<p><a id="X86D0AEEC79FD104A" name="X86D0AEEC79FD104A"></a></p>
<h5>28.1-2 RipsHomology</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RipsHomology</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RipsHomology</code>( <var class="Arg">G</var>, <var class="Arg">n</var>, <var class="Arg">p</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span>, a non-negative integer <span class="SimpleMath">n</span> (and optionally a prime number <span class="SimpleMath">p</span>). It returns the integral homology (or mod p homology) in degree <span class="SimpleMath">n</span> of the Rips complex of <span class="SimpleMath">G</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7C3327917BE532FD" name="X7C3327917BE532FD"></a></p>
<h5>28.1-3 Bettinumbers</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Bettinumbers</code>( <var class="Arg">T</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ Bettinumbers</code>( <var class="Arg">T</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, simplicial complex or chain complex <span class="SimpleMath">T</span> and a non-negative integer <span class="SimpleMath">n</span>. The rank of the n-th rational homology group <span class="SimpleMath">H_n(T, Q)</span> is returned. If no value for n is input then the list of Betti numbers in dimensions 0 to Dimension(T) is returned .</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTDA.html">2</a></span> </p>
<p><a id="X7A1C427578108B7E" name="X7A1C427578108B7E"></a></p>
<h5>28.1-4 ChainComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainComplex</code>( <var class="Arg">T</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, or simplicial complex <span class="SimpleMath">T</span> and returns the (often very large) cellular chain complex of <span class="SimpleMath">T</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap3.html">2</a></span> , <span class="URL"><a href="../tutorial/chap4.html">3</a></span> , <span class="URL"><a href="../tutorial/chap10.html">4</a></span> , <span class="URL"><a href="../tutorial/chap12.html">5</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">6</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">7</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutPersistent.html">8</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">9</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">10</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">11</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutSimplicialGroups.html">12</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutIntro.html">13</a></span> </p>
<p><a id="X87054BC582F01A36" name="X87054BC582F01A36"></a></p>
<h5>28.1-5 CechComplexOfPureCubicalComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CechComplexOfPureCubicalComplex</code>( <var class="Arg">T</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a d-dimensional pure cubical complex <span class="SimpleMath">T</span> and returns a simplicial complex <span class="SimpleMath">S</span>. The simplicial complex <span class="SimpleMath">S</span> has one vertex for each d-cube in <span class="SimpleMath">T</span>, and an n-simplex for each collection of n+1 d-cubes with non-trivial common intersection. The homotopy types of <span class="SimpleMath">T</span> and <span class="SimpleMath">S</span> are equal.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap10.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">2</a></span> </p>
<p><a id="X85E64B207BBF76CE" name="X85E64B207BBF76CE"></a></p>
<h5>28.1-6 PureComplexToSimplicialComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PureComplexToSimplicialComplex</code>( <var class="Arg">T</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs either a d-dimensional pure cubical complex <span class="SimpleMath">T</span> or a d-dimensional pure permutahedral complex <span class="SimpleMath">T</span> together with a non-negative integer <span class="SimpleMath">k</span>. It returns the first <span class="SimpleMath">k</span> dimensions of a simplicial complex <span class="SimpleMath">S</span>. The simplicial complex <span class="SimpleMath">S</span> has one vertex for each d-cell in <span class="SimpleMath">T</span>, and an n-simplex for each collection of n+1 d-cells with non-trivial common intersection. The homotopy types of <span class="SimpleMath">T</span> and <span class="SimpleMath">S</span> are equal.</p>
<p>For a pure cubical complex <span class="SimpleMath">T</span> this uses a slightly different algorithm to the function CechComplexOfPureCubicalComplex(T) but constructs the same simplicial complex.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">1</a></span> </p>
<p><a id="X8174B2CD7839840F" name="X8174B2CD7839840F"></a></p>
<h5>28.1-7 RipsChainComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ RipsChainComplex</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and a non-negative integer <span class="SimpleMath">n</span>. It returns <span class="SimpleMath">n+1</span> terms of a chain complex whose homology is that of the nerve (or Rips complex) of the graph in degrees up to <span class="SimpleMath">n</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> </p>
<p><a id="X7C86B58A7CEA5513" name="X7C86B58A7CEA5513"></a></p>
<h5>28.1-8 VectorsToSymmetricMatrix</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ VectorsToSymmetricMatrix</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ VectorsToSymmetricMatrix</code>( <var class="Arg">M</var>, <var class="Arg">distance</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a matrix <span class="SimpleMath">M</span> of rational numbers and returns a symmetric matrix <span class="SimpleMath">S</span> whose <span class="SimpleMath">(i,j)</span> entry is the distance between the <span class="SimpleMath">i</span>-th row and <span class="SimpleMath">j</span>-th rows of <span class="SimpleMath">M</span> where distance is given by the sum of the absolute values of the coordinate differences.</p>
<p>Optionally, a function distance(v,w) can be entered as a second argument. This function has to return a rational number for each pair of rational vectors <span class="SimpleMath">v,w</span> of length Length(M[1]).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">3</a></span> </p>
<p><a id="X8307F8DB85F145AE" name="X8307F8DB85F145AE"></a></p>
<h5>28.1-9 EulerCharacteristic</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ EulerCharacteristic</code>( <var class="Arg">T</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a pure cubical complex, or cubical complex, or simplicial complex <span class="SimpleMath">T</span> and returns its Euler characteristic.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X86B9F59880C58160" name="X86B9F59880C58160"></a></p>
<h5>28.1-10 MaximalSimplicesToSimplicialComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ MaximalSimplicesToSimplicialComplex</code>( <var class="Arg">L</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a list L whose entries are lists of vertices representing the maximal simplices of a simplicial complex. The simplicial complex is returned. Here a "vertex" is a GAP object such as an integer or a subgroup.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap3.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoveringSpaces.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCoverinSpaces.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>
<p><a id="X87CABD297B8B060D" name="X87CABD297B8B060D"></a></p>
<h5>28.1-11 SkeletonOfSimplicialComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SkeletonOfSimplicialComplex</code>( <var class="Arg">S</var>, <var class="Arg">k</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and a positive integer <span class="SimpleMath">k</span> less than or equal to the dimension of <span class="SimpleMath">S</span>. It returns the truncated <span class="SimpleMath">k</span>-dimensional simplicial complex <span class="SimpleMath">S^k</span> (and leaves <span class="SimpleMath">S</span> unchanged).</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X782F884F7D9233A2" name="X782F884F7D9233A2"></a></p>
<h5>28.1-12 GraphOfSimplicialComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GraphOfSimplicialComplex</code>( <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and returns the graph of <span class="SimpleMath">S</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap2.html">1</a></span> , <span class="URL"><a href="../tutorial/chap5.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">3</a></span> </p>
<p><a id="X829ABA507DFBBD7B" name="X829ABA507DFBBD7B"></a></p>
<h5>28.1-13 ContractibleSubcomplexOfSimplicialComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractibleSubcomplexOfSimplicialComplex</code>( <var class="Arg">S</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and returns a (probably maximal) contractible subcomplex of <span class="SimpleMath">S</span>.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X84DC5B4D783598C7" name="X84DC5B4D783598C7"></a></p>
<h5>28.1-14 PathComponentsOfSimplicialComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PathComponentsOfSimplicialComplex</code>( <var class="Arg">S</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial complex <span class="SimpleMath">S</span> and a nonnegative integer <span class="SimpleMath">n</span>. If <span class="SimpleMath">n=0</span> the number of path components of <span class="SimpleMath">S</span> is returned. Otherwise the n-th path component is returned (as a simplicial complex).</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7F8D4C4C7ED15A31" name="X7F8D4C4C7ED15A31"></a></p>
<h5>28.1-15 QuillenComplex</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ QuillenComplex</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a finite group <span class="SimpleMath">G</span> and returns, as a simplicial complex, the order complex of the poset of non-trivial elementary abelian subgroups of <span class="SimpleMath">G</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap1.html">1</a></span> , <span class="URL"><a href="../tutorial/chap10.html">2</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutBredon.html">3</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutCubical.html">4</a></span> </p>
<p><a id="X82A625DA815A97DE" name="X82A625DA815A97DE"></a></p>
<h5>28.1-16 SymmetricMatrixToIncidenceMatrix</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SymmetricMatrixToIncidenceMatrix</code>( <var class="Arg">S</var>, <var class="Arg">t</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SymmetricMatrixToIncidenceMatrix</code>( <var class="Arg">S</var>, <var class="Arg">t</var>, <var class="Arg">d</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a symmetric integer matrix S and an integer t. It returns the matrix <span class="SimpleMath">M</span> with <span class="SimpleMath">M_ij=1</span> if <span class="SimpleMath">I_ij</span> is less than <span class="SimpleMath">t</span> and <span class="SimpleMath">I_ij=1</span> otherwise.</p>
<p>An optional integer <span class="SimpleMath">d</span> can be given as a third argument. In this case the incidence matrix should have roughly at most <span class="SimpleMath">d</span> entries in each row (corresponding to the <span class="SimpleMath">d</span> smallest entries in each row of <span class="SimpleMath">S</span>).</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X86F6C7E68222BE84" name="X86F6C7E68222BE84"></a></p>
<h5>28.1-17 IncidenceMatrixToGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ IncidenceMatrixToGraph</code>( <var class="Arg">M</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a symmetric 0/1 matrix M. It returns the graph with one vertex for each row of <span class="SimpleMath">M</span> and an edges between vertices <span class="SimpleMath">i</span> and <span class="SimpleMath">j</span> if the <span class="SimpleMath">(i,j)</span> entry in <span class="SimpleMath">M</span> equals 1.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X80CAD0357AF44E48" name="X80CAD0357AF44E48"></a></p>
<h5>28.1-18 CayleyGraphOfGroup</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ CayleyGraphOfGroup</code>( <var class="Arg">G</var>, <var class="Arg">A</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a group <span class="SimpleMath">G</span> and a set <span class="SimpleMath">A</span> of generators. It returns the Cayley graph.</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X78E0B1357DDFE43E" name="X78E0B1357DDFE43E"></a></p>
<h5>28.1-19 PathComponentsOfGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ PathComponentsOfGraph</code>( <var class="Arg">G</var>, <var class="Arg">n</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and a nonnegative integer <span class="SimpleMath">n</span>. If <span class="SimpleMath">n=0</span> the number of path components is returned. Otherwise the n-th path component is returned (as a graph).</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X7BB384467E133719" name="X7BB384467E133719"></a></p>
<h5>28.1-20 ContractGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ContractGraph</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and tries to remove vertices and edges to produce a smaller graph <span class="SimpleMath">G'</span> such that the indlusion <span class="SimpleMath">G' → G</span> induces a homotopy equivalence <span class="SimpleMath">RG → RG'</span> of Rips complexes. If the graph <span class="SimpleMath">G</span> is modified the function returns true, and otherwise returns false.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../tutorial/chap5.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">2</a></span> </p>
<p><a id="X7F7D27C27A8817DE" name="X7F7D27C27A8817DE"></a></p>
<h5>28.1-21 GraphDisplay</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ GraphDisplay</code>( <var class="Arg">G</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>This function uses GraphViz software to display a graph <span class="SimpleMath">G</span>.</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutTopology.html">2</a></span> </p>
<p><a id="X80E8D8517CA19EE3" name="X80E8D8517CA19EE3"></a></p>
<h5>28.1-22 SimplicialMap</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplicialMap</code>( <var class="Arg">K</var>, <var class="Arg">L</var>, <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplicialMapNC</code>( <var class="Arg">K</var>, <var class="Arg">L</var>, <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs simplicial complexes <span class="SimpleMath">K</span> , <span class="SimpleMath">L</span> and a function <span class="SimpleMath">f: K!.vertices → L!.vertices</span> representing a simplicial map. It returns a simplicial map <span class="SimpleMath">K → L</span>. If <span class="SimpleMath">f</span> does not happen to represent a simplicial map then SimplicialMap(K,L,f) will return fail; SimplicialMapNC(K,L,f) will not do any check and always return something of the data type "simplicial map".</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X876AB1AD7BCC253B" name="X876AB1AD7BCC253B"></a></p>
<h5>28.1-23 ChainMapOfSimplicialMap</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ ChainMapOfSimplicialMap</code>( <var class="Arg">f</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a simplicial map <span class="SimpleMath">f: K → L</span> and returns the corresponding chain map <span class="SimpleMath">C_∗(f) : C_∗(K) → C_∗(L)</span> of the simplicial chain complexes..</p>
<p><strong class="button">Examples:</strong></p>
<p><a id="X80F5DAB17E349DF1" name="X80F5DAB17E349DF1"></a></p>
<h5>28.1-24 SimplicialNerveOfGraph</h5>
<div class="func"><table class="func" width="100%"><tr><td class="tdleft"><code class="func">‣ SimplicialNerveOfGraph</code>( <var class="Arg">G</var>, <var class="Arg">d</var> )</td><td class="tdright">( function )</td></tr></table></div>
<p>Inputs a graph <span class="SimpleMath">G</span> and returns a <span class="SimpleMath">d</span>-dimensional simplicial complex <span class="SimpleMath">K</span> whose 1-skeleton is equal to <span class="SimpleMath">G</span>. There is a simplicial inclusion <span class="SimpleMath">K → RG</span> where: (i) the inclusion induces isomorphisms on homotopy groups in dimensions less than <span class="SimpleMath">d</span>; (ii) the complex <span class="SimpleMath">RG</span> is the Rips complex (with one <span class="SimpleMath">n</span>-simplex for each complete subgraph of <span class="SimpleMath">G</span> on <span class="SimpleMath">n+1</span> vertices).</p>
<p><strong class="button">Examples:</strong> <span class="URL"><a href="../www/SideLinks/About/aboutMetrics.html">1</a></span> , <span class="URL"><a href="../www/SideLinks/About/aboutRandomComplexes.html">2</a></span> </p>
<div class="chlinkprevnextbot"> <a href="chap0.html">[Top of Book]</a> <a href="chap0.html#contents">[Contents]</a> <a href="chap27.html">[Previous Chapter]</a> <a href="chap29.html">[Next Chapter]</a> </div>
<div class="chlinkbot"><span class="chlink1">Goto Chapter: </span><a href="chap0.html">Top</a> <a href="chap1.html">1</a> <a href="chap2.html">2</a> <a href="chap3.html">3</a> <a href="chap4.html">4</a> <a href="chap5.html">5</a> <a href="chap6.html">6</a> <a href="chap7.html">7</a> <a href="chap8.html">8</a> <a href="chap9.html">9</a> <a href="chap10.html">10</a> <a href="chap11.html">11</a> <a href="chap12.html">12</a> <a href="chap13.html">13</a> <a href="chap14.html">14</a> <a href="chap15.html">15</a> <a href="chap16.html">16</a> <a href="chap17.html">17</a> <a href="chap18.html">18</a> <a href="chap19.html">19</a> <a href="chap20.html">20</a> <a href="chap21.html">21</a> <a href="chap22.html">22</a> <a href="chap23.html">23</a> <a href="chap24.html">24</a> <a href="chap25.html">25</a> <a href="chap26.html">26</a> <a href="chap27.html">27</a> <a href="chap28.html">28</a> <a href="chap29.html">29</a> <a href="chap30.html">30</a> <a href="chap31.html">31</a> <a href="chap32.html">32</a> <a href="chap33.html">33</a> <a href="chap34.html">34</a> <a href="chap35.html">35</a> <a href="chap36.html">36</a> <a href="chap37.html">37</a> <a href="chap38.html">38</a> <a href="chap39.html">39</a> <a href="chap40.html">40</a> <a href="chapInd.html">Ind</a> </div>
<hr />
<p class="foot">generated by <a href="https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc">GAPDoc2HTML</a></p>
</body>
</html>
|